Diff for /imach/src/imach.c between versions 1.7 and 1.101

version 1.7, 2001/05/02 17:50:24 version 1.101, 2004/09/15 10:38:38
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.101  2004/09/15 10:38:38  brouard
   individuals from different ages are interviewed on their health status    Fix on curr_time
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.100  2004/07/12 18:29:06  brouard
   Health expectancies are computed from the transistions observed between    Add version for Mac OS X. Just define UNIX in Makefile
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.99  2004/06/05 08:57:40  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    *** empty log message ***
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.98  2004/05/16 15:05:56  brouard
   to be observed in state i at the first wave. Therefore the model is:    New version 0.97 . First attempt to estimate force of mortality
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    directly from the data i.e. without the need of knowing the health
   is a covariate. If you want to have a more complex model than "constant and    state at each age, but using a Gompertz model: log u =a + b*age .
   age", you should modify the program where the markup    This is the basic analysis of mortality and should be done before any
     *Covariates have to be included here again* invites you to do it.    other analysis, in order to test if the mortality estimated from the
   More covariates you add, less is the speed of the convergence.    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    The same imach parameter file can be used but the option for mle should be -3.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Agnès, who wrote this part of the code, tried to keep most of the
   hPijx is the probability to be    former routines in order to include the new code within the former code.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    The output is very simple: only an estimate of the intercept and of
   unobserved intermediate  states. This elementary transition (by month or    the slope with 95% confident intervals.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Current limitations:
   and the contribution of each individual to the likelihood is simply hPijx.    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Also this programme outputs the covariance matrix of the parameters but also    B) There is no computation of Life Expectancy nor Life Table.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.97  2004/02/20 13:25:42  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Version 0.96d. Population forecasting command line is (temporarily)
            Institut national d'études démographiques, Paris.    suppressed.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.96  2003/07/15 15:38:55  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   software can be distributed freely for non commercial use. Latest version    rewritten within the same printf. Workaround: many printfs.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
 #include <math.h>    (Repository): Using imachwizard code to output a more meaningful covariance
 #include <stdio.h>    matrix (cov(a12,c31) instead of numbers.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.93  2003/06/25 16:33:55  brouard
 /*#define DEBUG*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define windows    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Version 0.96b
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): On windows (cygwin) function asctime_r doesn't
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    exist so I changed back to asctime which exists.
   
 #define NINTERVMAX 8    Revision 1.91  2003/06/25 15:30:29  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Duplicated warning errors corrected.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Repository): Elapsed time after each iteration is now output. It
 #define NCOVMAX 8 /* Maximum number of covariates */    helps to forecast when convergence will be reached. Elapsed time
 #define MAXN 20000    is stamped in powell.  We created a new html file for the graphs
 #define YEARM 12. /* Number of months per year */    concerning matrix of covariance. It has extension -cov.htm.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int nvar;    of the covariance matrix to be input.
 static int cptcov;  
 int cptcovn, cptcovage=0, cptcoveff=0;    Revision 1.89  2003/06/24 12:30:52  brouard
 int npar=NPARMAX;    (Module): Some bugs corrected for windows. Also, when
 int nlstate=2; /* Number of live states */    mle=-1 a template is output in file "or"mypar.txt with the design
 int ndeath=1; /* Number of dead states */    of the covariance matrix to be input.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Revision 1.87  2003/06/18 12:26:01  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Version 0.96
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.86  2003/06/17 20:04:08  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Change position of html and gnuplot routines and added
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    routine fileappend.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.85  2003/06/17 13:12:43  brouard
   char filerese[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
  FILE  *ficresvij;    current date of interview. It may happen when the death was just
   char fileresv[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
  FILE  *ficresvpl;    was wrong (infinity). We still send an "Error" but patch by
   char fileresvpl[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
     interview.
 #define NR_END 1    (Repository): Because some people have very long ID (first column)
 #define FREE_ARG char*    we changed int to long in num[] and we added a new lvector for
 #define FTOL 1.0e-10    memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define NRANSI    (Repository): No more line truncation errors.
 #define ITMAX 200  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define CGOLD 0.3819660    many times. Probs is memory consuming and must be used with
 #define ZEPS 1.0e-10    parcimony.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define GOLD 1.618034    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.82  2003/06/05 15:57:20  brouard
 static double maxarg1,maxarg2;    Add log in  imach.c and  fullversion number is now printed.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  */
    /*
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     Interpolated Markov Chain
 #define rint(a) floor(a+0.5)  
     Short summary of the programme:
 static double sqrarg;    
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This program computes Healthy Life Expectancies from
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int imx;    interviewed on their health status or degree of disability (in the
 int stepm;    case of a health survey which is our main interest) -2- at least a
 /* Stepm, step in month: minimum step interpolation*/    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int m,nb;    computed from the time spent in each health state according to a
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    model. More health states you consider, more time is necessary to reach the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Maximum Likelihood of the parameters involved in the model.  The
 double **pmmij;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 double *weight;    conditional to be observed in state i at the first wave. Therefore
 int **s; /* Status */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double *agedc, **covar, idx;    'age' is age and 'sex' is a covariate. If you want to have a more
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    you to do it.  More covariates you add, slower the
 double ftolhess; /* Tolerance for computing hessian */    convergence.
   
 /**************** split *************************/    The advantage of this computer programme, compared to a simple
 static  int split( char *path, char *dirc, char *name )    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
    char *s;                             /* pointer */    intermediate interview, the information is lost, but taken into
    int  l1, l2;                         /* length counters */    account using an interpolation or extrapolation.  
   
    l1 = strlen( path );                 /* length of path */    hPijx is the probability to be observed in state i at age x+h
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to the observed state i at age x. The delay 'h' can be
    s = strrchr( path, '\\' );           /* find last / */    split into an exact number (nh*stepm) of unobserved intermediate
    if ( s == NULL ) {                   /* no directory, so use current */    states. This elementary transition (by month, quarter,
 #if     defined(__bsd__)                /* get current working directory */    semester or year) is modelled as a multinomial logistic.  The hPx
       extern char       *getwd( );    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
       if ( getwd( dirc ) == NULL ) {    hPijx.
 #else  
       extern char       *getcwd( );    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
          return( GLOCK_ERROR_GETCWD );             Institut national d'études démographiques, Paris.
       }    This software have been partly granted by Euro-REVES, a concerted action
       strcpy( name, path );             /* we've got it */    from the European Union.
    } else {                             /* strip direcotry from path */    It is copyrighted identically to a GNU software product, ie programme and
       s++;                              /* after this, the filename */    software can be distributed freely for non commercial use. Latest version
       l2 = strlen( s );                 /* length of filename */    can be accessed at http://euroreves.ined.fr/imach .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       dirc[l1-l2] = 0;                  /* add zero */    
    }    **********************************************************************/
    l1 = strlen( dirc );                 /* length of directory */  /*
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    main
    return( 0 );                         /* we're done */    read parameterfile
 }    read datafile
     concatwav
     freqsummary
 /******************************************/    if (mle >= 1)
       mlikeli
 void replace(char *s, char*t)    print results files
 {    if mle==1 
   int i;       computes hessian
   int lg=20;    read end of parameter file: agemin, agemax, bage, fage, estepm
   i=0;        begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(i=0; i<= lg; i++) {    open html file
     (s[i] = t[i]);    stable prevalence
     if (t[i]== '\\') s[i]='/';     for age prevalim()
   }    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 int nbocc(char *s, char occ)    health expectancies
 {    Variance-covariance of DFLE
   int i,j=0;    prevalence()
   int lg=20;     movingaverage()
   i=0;    varevsij() 
   lg=strlen(s);    if popbased==1 varevsij(,popbased)
   for(i=0; i<= lg; i++) {    total life expectancies
   if  (s[i] == occ ) j++;    Variance of stable prevalence
   }   end
   return j;  */
 }  
   
 void cutv(char *u,char *v, char*t, char occ)  
 {   
   int i,lg,j,p=0;  #include <math.h>
   i=0;  #include <stdio.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <stdlib.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <unistd.h>
   }  
   /* #include <sys/time.h> */
   lg=strlen(t);  #include <time.h>
   for(j=0; j<p; j++) {  #include "timeval.h"
     (u[j] = t[j]);  
   }  /* #include <libintl.h> */
      u[p]='\0';  /* #define _(String) gettext (String) */
   
    for(j=0; j<= lg; j++) {  #define MAXLINE 256
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 /********************** nrerror ********************/  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void nrerror(char error_text[])  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   fprintf(stderr,"ERREUR ...\n");  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   fprintf(stderr,"%s\n",error_text);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   exit(1);  
 }  #define NINTERVMAX 8
 /*********************** vector *******************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double *vector(int nl, int nh)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   double *v;  #define MAXN 20000
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define YEARM 12. /* Number of months per year */
   if (!v) nrerror("allocation failure in vector");  #define AGESUP 130
   return v-nl+NR_END;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /************************ free vector ******************/  #define DIRSEPARATOR '/'
 void free_vector(double*v, int nl, int nh)  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /* $Id$ */
 {  /* $State$ */
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   if (!v) nrerror("allocation failure in ivector");  char fullversion[]="$Revision$ $Date$"; 
   return v-nl+NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************free ivector **************************/  int npar=NPARMAX;
 void free_ivector(int *v, long nl, long nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(v+nl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************* imatrix *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int maxwav; /* Maxim number of waves */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;                     to the likelihood and the sum of weights (done by funcone)*/
   int **m;  int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate pointers to rows */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m) nrerror("allocation failure 1 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m += NR_END;  double jmean; /* Mean space between 2 waves */
   m -= nrl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   /* allocate rows and set pointers to them */  FILE *ficlog, *ficrespow;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int globpr; /* Global variable for printing or not */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double fretone; /* Only one call to likelihood */
   m[nrl] += NR_END;  long ipmx; /* Number of contributions */
   m[nrl] -= ncl;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   /* return pointer to array of pointers to rows */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return m;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /****************** free_imatrix *************************/  char filerese[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE  *ficresvij;
       int **m;  char fileresv[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  FILE  *ficresvpl;
      /* free an int matrix allocated by imatrix() */  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* matrix *******************************/  int  outcmd=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileregp[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char popfile[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timezone tzp;
   m[nrl] += NR_END;  extern int gettimeofday();
   m[nrl] -= ncl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern long time();
   return m;  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /*************************free matrix ************************/  #define FREE_ARG char*
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define FTOL 1.0e-10
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG)(m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double ***m;  
   #define GOLD 1.618034 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] -= ncl;  #define rint(a) floor(a+0.5)
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int agegomp= AGEGOMP;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  int imx; 
   for (j=ncl+1; j<=nch; j++)  int stepm=1;
     m[nrl][j]=m[nrl][j-1]+nlay;  /* Stepm, step in month: minimum step interpolation*/
    
   for (i=nrl+1; i<=nrh; i++) {  int estepm;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int m,nb;
   }  long *num;
   return m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************************free ma3x ************************/  double *ageexmed,*agecens;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double dateintmean=0;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /***************** f1dim *************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 extern int ncom;  double ftolhess; /* Tolerance for computing hessian */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 double f1dim(double x)  {
 {    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   int j;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double f;    */ 
   double *xt;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    l1 = strlen(path );                   /* length of path */
   f=(*nrfunc)(xt);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(xt,1,ncom);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return f;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*****************brent *************************/      /* get current working directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int iter;        return( GLOCK_ERROR_GETCWD );
   double a,b,d,etemp;      }
   double fu,fv,fw,fx;      strcpy( name, path );               /* we've got it */
   double ftemp;    } else {                              /* strip direcotry from path */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      ss++;                               /* after this, the filename */
   double e=0.0;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   a=(ax < cx ? ax : cx);      strcpy( name, ss );         /* save file name */
   b=(ax > cx ? ax : cx);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   x=w=v=bx;      dirc[l1-l2] = 0;                    /* add zero */
   fw=fv=fx=(*f)(x);    }
   for (iter=1;iter<=ITMAX;iter++) {    l1 = strlen( dirc );                  /* length of directory */
     xm=0.5*(a+b);    /*#ifdef windows
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #else
     printf(".");fflush(stdout);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 #ifdef DEBUG  #endif
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      ss++;
       *xmin=x;      strcpy(ext,ss);                     /* save extension */
       return fx;      l1= strlen( name);
     }      l2= strlen(ss)+1;
     ftemp=fu;      strncpy( finame, name, l1-l2);
     if (fabs(e) > tol1) {      finame[l1-l2]= 0;
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);    return( 0 );                          /* we're done */
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************************************/
       etemp=e;  
       e=d;  void replace_back_to_slash(char *s, char*t)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i;
       else {    int lg=0;
         d=p/q;    i=0;
         u=x+d;    lg=strlen(t);
         if (u-a < tol2 || b-u < tol2)    for(i=0; i<= lg; i++) {
           d=SIGN(tol1,xm-x);      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
     } else {    }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int nbocc(char *s, char occ)
     fu=(*f)(u);  {
     if (fu <= fx) {    int i,j=0;
       if (u >= x) a=x; else b=x;    int lg=20;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    lg=strlen(s);
         } else {    for(i=0; i<= lg; i++) {
           if (u < x) a=u; else b=u;    if  (s[i] == occ ) j++;
           if (fu <= fw || w == x) {    }
             v=w;    return j;
             w=u;  }
             fv=fw;  
             fw=fu;  void cutv(char *u,char *v, char*t, char occ)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    /* cuts string t into u and v where u is ended by char occ excluding it
             fv=fu;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
           }       gives u="abcedf" and v="ghi2j" */
         }    int i,lg,j,p=0;
   }    i=0;
   nrerror("Too many iterations in brent");    for(j=0; j<=strlen(t)-1; j++) {
   *xmin=x;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   return fx;    }
 }  
     lg=strlen(t);
 /****************** mnbrak ***********************/    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))       u[p]='\0';
 {  
   double ulim,u,r,q, dum;     for(j=0; j<= lg; j++) {
   double fu;      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /********************** nrerror ********************/
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  void nrerror(char error_text[])
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    fprintf(stderr,"ERREUR ...\n");
   *fc=(*func)(*cx);    fprintf(stderr,"%s\n",error_text);
   while (*fb > *fc) {    exit(EXIT_FAILURE);
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  /*********************** vector *******************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double *vector(int nl, int nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double *v;
     if ((*bx-u)*(u-*cx) > 0.0) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in vector");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return v-nl+NR_END;
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /************************ free vector ******************/
           SHFT(*fb,*fc,fu,(*func)(u))  void free_vector(double*v, int nl, int nh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /************************ivector *******************************/
       u=(*cx)+GOLD*(*cx-*bx);  int *ivector(long nl,long nh)
       fu=(*func)(u);  {
     }    int *v;
     SHFT(*ax,*bx,*cx,u)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       SHFT(*fa,*fb,*fc,fu)    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
 }  }
   
 /*************** linmin ************************/  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 int ncom;  {
 double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    long *v;
   double f1dim(double x);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!v) nrerror("allocation failure in ivector");
               double *fc, double (*func)(double));    return v-nl+NR_END;
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   ncom=n;  {
   pcom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
     pcom[j]=p[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     xicom[j]=xi[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   }  { 
   ax=0.0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   xx=1.0;    int **m; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* allocate pointers to rows */ 
 #ifdef DEBUG    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
   for (j=1;j<=n;j++) {    m -= nrl; 
     xi[j] *= xmin;    
     p[j] += xi[j];    
   }    /* allocate rows and set pointers to them */ 
   free_vector(xicom,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_vector(pcom,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /*************** powell ************************/    
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             double (*func)(double []))    
 {    /* return pointer to array of pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    return m; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /****************** free_imatrix *************************/
   double fp,fptt;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double *xits;        int **m;
   pt=vector(1,n);        long nch,ncl,nrh,nrl; 
   ptt=vector(1,n);       /* free an int matrix allocated by imatrix() */ 
   xit=vector(1,n);  { 
   xits=vector(1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fret=(*func)(p);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=n;j++) pt[j]=p[j];  } 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* matrix *******************************/
     ibig=0;  double **matrix(long nrl, long nrh, long ncl, long nch)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (i=1;i<=n;i++)    double **m;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<=n;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m += NR_END;
       fptt=(*fret);    m -= nrl;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d",i);fflush(stdout);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);    m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*************************free matrix ************************/
         printf(" x(%d)=%.12e",j,xit[j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
       for(j=1;j<=n;j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(m+nrl-NR_END));
       printf("\n");  }
 #endif  
     }  /******************* ma3x *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
       int k[2],l;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       k[0]=1;    double ***m;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" %.12e",p[j]);    m += NR_END;
       printf("\n");    m -= nrl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       free_vector(xit,1,n);    m[nrl][ncl] += NR_END;
       free_vector(xits,1,n);    m[nrl][ncl] -= nll;
       free_vector(ptt,1,n);    for (j=ncl+1; j<=nch; j++) 
       free_vector(pt,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
       return;    
     }    for (i=nrl+1; i<=nrh; i++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
       ptt[j]=2.0*p[j]-pt[j];        m[i][j]=m[i][j-1]+nlay;
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     fptt=(*func)(ptt);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if (fptt < fp) {    */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /*************************free ma3x ************************/
         for (j=1;j<=n;j++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** function subdirf ***********/
         printf("\n");  char *subdirf(char fileres[])
 #endif  {
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*************** function subdirf2 ***********/
 {  char *subdirf2(char fileres[], char *preop)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    
     /* Caution optionfilefiname is hidden */
   int i, ii,j,k;    strcpy(tmpout,optionfilefiname);
   double min, max, maxmin, maxmax,sumnew=0.;    strcat(tmpout,"/");
   double **matprod2();    strcat(tmpout,preop);
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** function subdirf3 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf3(char fileres[], char *preop, char *preop2)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,preop2);
     newm=savm;    strcat(tmpout,fileres);
     /* Covariates have to be included here again */    return tmpout;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /***************** f1dim *************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  extern int ncom; 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  extern double *pcom,*xicom;
       }  extern double (*nrfunc)(double []); 
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double f1dim(double x) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int j; 
     double f;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double *xt; 
    
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     savm=oldm;    return f; 
     oldm=newm;  } 
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /*****************brent *************************/
       min=1.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    int iter; 
         sumnew=0;    double a,b,d,etemp;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double fu,fv,fw,fx;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double ftemp;
         max=FMAX(max,prlim[i][j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         min=FMIN(min,prlim[i][j]);    double e=0.0; 
       }   
       maxmin=max-min;    a=(ax < cx ? ax : cx); 
       maxmax=FMAX(maxmax,maxmin);    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     if(maxmax < ftolpl){    fw=fv=fx=(*f)(x); 
       return prlim;    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /*************** transition probabilities **********/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double s1, s2;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /*double t34;*/  #endif
   int i,j,j1, nc, ii, jj;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
     for(i=1; i<= nlstate; i++){        return fx; 
     for(j=1; j<i;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      ftemp=fu;
         /*s2 += param[i][j][nc]*cov[nc];*/      if (fabs(e) > tol1) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        r=(x-w)*(fx-fv); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       ps[i][j]=s2;        q=2.0*(q-r); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
     for(j=i+1; j<=nlstate+ndeath;j++){        etemp=e; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        e=d; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
       ps[i][j]=s2;          d=p/q; 
     }          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
   for(i=1; i<= nlstate; i++){            d=SIGN(tol1,xm-x); 
      s1=0;        } 
     for(j=1; j<i; j++)      } else { 
       s1+=exp(ps[i][j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       s1+=exp(ps[i][j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     ps[i][i]=1./(s1+1.);      fu=(*f)(u); 
     for(j=1; j<i; j++)      if (fu <= fx) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (u >= x) a=x; else b=x; 
     for(j=i+1; j<=nlstate+ndeath; j++)        SHFT(v,w,x,u) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          SHFT(fv,fw,fx,fu) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          } else { 
   } /* end i */            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){              v=w; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              w=u; 
       ps[ii][jj]=0;              fv=fw; 
       ps[ii][ii]=1;              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
   }              v=u; 
               fv=fu; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            } 
     for(jj=1; jj<= nlstate+ndeath; jj++){          } 
      printf("%lf ",ps[ii][jj]);    } 
    }    nrerror("Too many iterations in brent"); 
     printf("\n ");    *xmin=x; 
     }    return fx; 
     printf("\n ");printf("%lf ",cov[2]);*/  } 
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /****************** mnbrak ***********************/
   goto end;*/  
     return ps;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
 /**************** Product of 2 matrices ******************/    double ulim,u,r,q, dum;
     double fu; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)   
 {    *fa=(*func)(*ax); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    *fb=(*func)(*bx); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    if (*fb > *fa) { 
   /* in, b, out are matrice of pointers which should have been initialized      SHFT(dum,*ax,*bx,dum) 
      before: only the contents of out is modified. The function returns        SHFT(dum,*fb,*fa,dum) 
      a pointer to pointers identical to out */        } 
   long i, j, k;    *cx=(*bx)+GOLD*(*bx-*ax); 
   for(i=nrl; i<= nrh; i++)    *fc=(*func)(*cx); 
     for(k=ncolol; k<=ncoloh; k++)    while (*fb > *fc) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      r=(*bx-*ax)*(*fb-*fc); 
         out[i][k] +=in[i][j]*b[j][k];      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   return out;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 /************* Higher Matrix Product ***************/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        if (fu < *fc) { 
 {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month            SHFT(*fb,*fc,fu,(*func)(u)) 
      duration (i.e. until            } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        u=ulim; 
      (typically every 2 years instead of every month which is too big).        fu=(*func)(u); 
      Model is determined by parameters x and covariates have to be      } else { 
      included manually here.        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
      */      } 
       SHFT(*ax,*bx,*cx,u) 
   int i, j, d, h, k;        SHFT(*fa,*fb,*fc,fu) 
   double **out, cov[NCOVMAX];        } 
   double **newm;  } 
   
   /* Hstepm could be zero and should return the unit matrix */  /*************** linmin ************************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  int ncom; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double *pcom,*xicom;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double (*nrfunc)(double []); 
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for(h=1; h <=nhstepm; h++){  { 
     for(d=1; d <=hstepm; d++){    double brent(double ax, double bx, double cx, 
       newm=savm;                 double (*f)(double), double tol, double *xmin); 
       /* Covariates have to be included here again */    double f1dim(double x); 
       cov[1]=1.;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                double *fc, double (*func)(double)); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int j; 
 for (k=1; k<=cptcovage;k++)    double xx,xmin,bx,ax; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fx,fb,fa;
    for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    nrfunc=func; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (j=1;j<=n;j++) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      pcom[j]=p[j]; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      xicom[j]=xi[j]; 
       savm=oldm;    } 
       oldm=newm;    ax=0.0; 
     }    xx=1.0; 
     for(i=1; i<=nlstate+ndeath; i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for(j=1;j<=nlstate+ndeath;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         po[i][j][h]=newm[i][j];  #ifdef DEBUG
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }  #endif
   } /* end h */    for (j=1;j<=n;j++) { 
   return po;      xi[j] *= xmin; 
 }      p[j] += xi[j]; 
     } 
     free_vector(xicom,1,n); 
 /*************** log-likelihood *************/    free_vector(pcom,1,n); 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  char *asc_diff_time(long time_sec, char ascdiff[])
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    long sec_left, days, hours, minutes;
   double sw; /* Sum of weights */    days = (time_sec) / (60*60*24);
   double lli; /* Individual log likelihood */    sec_left = (time_sec) % (60*60*24);
   long ipmx;    hours = (sec_left) / (60*60) ;
   /*extern weight */    sec_left = (sec_left) %(60*60);
   /* We are differentiating ll according to initial status */    minutes = (sec_left) /60;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    sec_left = (sec_left) % (60);
   /*for(i=1;i<imx;i++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 printf(" %d\n",s[4][i]);    return ascdiff;
   */  }
   cov[1]=1.;  
   /*************** powell ************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){              double (*func)(double [])) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  { 
        for(mi=1; mi<= wav[i]-1; mi++){    void linmin(double p[], double xi[], int n, double *fret, 
       for (ii=1;ii<=nlstate+ndeath;ii++)                double (*func)(double [])); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int i,ibig,j; 
             for(d=0; d<dh[mi][i]; d++){    double del,t,*pt,*ptt,*xit;
               newm=savm;    double fp,fptt;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double *xits;
               for (kk=1; kk<=cptcovage;kk++) {    int niterf, itmp;
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
                  /*printf("%d %d",kk,Tage[kk]);*/    pt=vector(1,n); 
               }    ptt=vector(1,n); 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/    xit=vector(1,n); 
               /*cov[3]=pow(cov[2],2)/1000.;*/    xits=vector(1,n); 
     *fret=(*func)(p); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) pt[j]=p[j]; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    for (*iter=1;;++(*iter)) { 
           savm=oldm;      fp=(*fret); 
           oldm=newm;      ibig=0; 
       del=0.0; 
       last_time=curr_time;
       } /* end mult */      (void) gettimeofday(&curr_time,&tzp);
          printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       ipmx +=1;      */
       sw += weight[i];     for (i=1;i<=n;i++) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf(" %d %.12f",i, p[i]);
     } /* end of wave */        fprintf(ficlog," %d %.12lf",i, p[i]);
   } /* end of individual */        fprintf(ficrespow," %.12lf", p[i]);
       }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      printf("\n");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      fprintf(ficlog,"\n");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficrespow,"\n");fflush(ficrespow);
   return -l;      if(*iter <=3){
 }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
 /*********** Maximum Likelihood Estimation ***************/        forecast_time=curr_time; 
         itmp = strlen(strcurr);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   int i,j, iter;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double **xi,*delti;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double fret;        for(niterf=10;niterf<=30;niterf+=10){
   xi=matrix(1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)          tmf = *localtime(&forecast_time.tv_sec);
     for (j=1;j<=npar;j++)  /*      asctime_r(&tmf,strfor); */
       xi[i][j]=(i==j ? 1.0 : 0.0);          strcpy(strfor,asctime(&tmf));
   printf("Powell\n");          itmp = strlen(strfor);
   powell(p,xi,npar,ftol,&iter,&fret,func);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 }      }
       for (i=1;i<=n;i++) { 
 /**** Computes Hessian and covariance matrix ***/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fptt=(*fret); 
 {  #ifdef DEBUG
   double  **a,**y,*x,pd;        printf("fret=%lf \n",*fret);
   double **hess;        fprintf(ficlog,"fret=%lf \n",*fret);
   int i, j,jk;  #endif
   int *indx;        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   double hessii(double p[], double delta, int theta, double delti[]);        linmin(p,xit,n,fret,func); 
   double hessij(double p[], double delti[], int i, int j);        if (fabs(fptt-(*fret)) > del) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;          del=fabs(fptt-(*fret)); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          ibig=i; 
         } 
   #ifdef DEBUG
   hess=matrix(1,npar,1,npar);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     printf("%d",i);fflush(stdout);          printf(" x(%d)=%.12e",j,xit[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     /*printf(" %f ",p[i]);*/        }
   }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for (i=1;i<=npar;i++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=npar;j++)  {        }
       if (j>i) {        printf("\n");
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"\n");
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];      } 
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
   }        int k[2],l;
   printf("\n");        k[0]=1;
         k[1]=-1;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
   a=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) {
   y=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
   x=vector(1,npar);          fprintf(ficlog," %.12e",p[j]);
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)        printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   for (j=1;j<=npar;j++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++) x[i]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     x[j]=1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     lubksb(a,npar,indx,x);          }
     for (i=1;i<=npar;i++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       matcov[i][j]=x[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
   }  #endif
   
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {        free_vector(xit,1,n); 
     for (j=1;j<=npar;j++) {        free_vector(xits,1,n); 
       printf("%.3e ",hess[i][j]);        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
     printf("\n");        return; 
   }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /* Recompute Inverse */      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++)        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        xit[j]=p[j]-pt[j]; 
   ludcmp(a,npar,indx,&pd);        pt[j]=p[j]; 
       } 
   /*  printf("\n#Hessian matrix recomputed#\n");      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   for (j=1;j<=npar;j++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (i=1;i<=npar;i++) x[i]=0;        if (t < 0.0) { 
     x[j]=1;          linmin(p,xit,n,fret,func); 
     lubksb(a,npar,indx,x);          for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++){            xi[j][ibig]=xi[j][n]; 
       y[i][j]=x[i];            xi[j][n]=xit[j]; 
       printf("%.3e ",y[i][j]);          }
     }  #ifdef DEBUG
     printf("\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   free_matrix(a,1,npar,1,npar);            fprintf(ficlog," %.12e",xit[j]);
   free_matrix(y,1,npar,1,npar);          }
   free_vector(x,1,npar);          printf("\n");
   free_ivector(indx,1,npar);          fprintf(ficlog,"\n");
   free_matrix(hess,1,npar,1,npar);  #endif
         }
       } 
 }    } 
   } 
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   int i;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int l=1, lmax=20;  {
   double k1,k2;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double p2[NPARMAX+1];       matrix by transitions matrix until convergence is reached */
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    int i, ii,j,k;
   double fx;    double min, max, maxmin, maxmax,sumnew=0.;
   int k=0,kmax=10;    double **matprod2();
   double l1;    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   fx=func(x);    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){    for (ii=1;ii<=nlstate+ndeath;ii++)
     l1=pow(10,l);      for (j=1;j<=nlstate+ndeath;j++){
     delts=delt;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;     cov[1]=1.;
       k1=func(p2)-fx;   
       p2[theta]=x[theta]-delt;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       k2=func(p2)-fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       /*res= (k1-2.0*fx+k2)/delt/delt; */      newm=savm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      /* Covariates have to be included here again */
             cov[2]=agefin;
 #ifdef DEBUG    
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (k=1; k<=cptcovn;k++) {
 #endif          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         k=kmax; l=lmax*10.;  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         delts=delt;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
   }      savm=oldm;
   delti[theta]=delts;      oldm=newm;
   return res;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 double hessij( double x[], double delti[], int thetai,int thetaj)        for(i=1; i<=nlstate; i++) {
 {          sumnew=0;
   int i;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int l=1, l1, lmax=20;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double k1,k2,k3,k4,res,fx;          max=FMAX(max,prlim[i][j]);
   double p2[NPARMAX+1];          min=FMIN(min,prlim[i][j]);
   int k;        }
         maxmin=max-min;
   fx=func(x);        maxmax=FMAX(maxmax,maxmin);
   for (k=1; k<=2; k++) {      }
     for (i=1;i<=npar;i++) p2[i]=x[i];      if(maxmax < ftolpl){
     p2[thetai]=x[thetai]+delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;    }
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************** transition probabilities ***************/ 
     k2=func(p2)-fx;  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double s1, s2;
     k3=func(p2)-fx;    /*double t34;*/
      int i,j,j1, nc, ii, jj;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(i=1; i<= nlstate; i++){
     k4=func(p2)-fx;        for(j=1; j<i;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #ifdef DEBUG            /*s2 += param[i][j][nc]*cov[nc];*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 #endif  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   }          }
   return res;          ps[i][j]=s2;
 }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
 /************** Inverse of matrix **************/        for(j=i+1; j<=nlstate+ndeath;j++){
 void ludcmp(double **a, int n, int *indx, double *d)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i,imax,j,k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double big,dum,sum,temp;          }
   double *vv;          ps[i][j]=s2;
          }
   vv=vector(1,n);      }
   *d=1.0;      /*ps[3][2]=1;*/
   for (i=1;i<=n;i++) {      
     big=0.0;      for(i=1; i<= nlstate; i++){
     for (j=1;j<=n;j++)        s1=0;
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=1; j<i; j++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          s1+=exp(ps[i][j]);
     vv[i]=1.0/big;        for(j=i+1; j<=nlstate+ndeath; j++)
   }          s1+=exp(ps[i][j]);
   for (j=1;j<=n;j++) {        ps[i][i]=1./(s1+1.);
     for (i=1;i<j;i++) {        for(j=1; j<i; j++)
       sum=a[i][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       a[i][j]=sum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     big=0.0;      } /* end i */
     for (i=j;i<=n;i++) {      
       sum=a[i][j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (k=1;k<j;k++)        for(jj=1; jj<= nlstate+ndeath; jj++){
         sum -= a[i][k]*a[k][j];          ps[ii][jj]=0;
       a[i][j]=sum;          ps[ii][ii]=1;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;      }
         imax=i;      
       }  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     if (j != imax) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (k=1;k<=n;k++) {  /*         printf("ddd %lf ",ps[ii][jj]); */
         dum=a[imax][k];  /*       } */
         a[imax][k]=a[j][k];  /*       printf("\n "); */
         a[j][k]=dum;  /*        } */
       }  /*        printf("\n ");printf("%lf ",cov[2]); */
       *d = -(*d);         /*
       vv[imax]=vv[j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
     indx[j]=imax;      return ps;
     if (a[j][j] == 0.0) a[j][j]=TINY;  }
     if (j != n) {  
       dum=1.0/(a[j][j]);  /**************** Product of 2 matrices ******************/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   free_vector(vv,1,n);  /* Doesn't work */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 ;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 void lubksb(double **a, int n, int *indx, double b[])       a pointer to pointers identical to out */
 {    long i, j, k;
   int i,ii=0,ip,j;    for(i=nrl; i<= nrh; i++)
   double sum;      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=n;i++) {          out[i][k] +=in[i][j]*b[j][k];
     ip=indx[i];  
     sum=b[ip];    return out;
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /************* Higher Matrix Product ***************/
     b[i]=sum;  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=n;i>=1;i--) {  {
     sum=b[i];    /* Computes the transition matrix starting at age 'age' over 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       'nhstepm*hstepm*stepm' months (i.e. until
     b[i]=sum/a[i][i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
 }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /************ Frequencies ********************/       for the memory).
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)       Model is determined by parameters x and covariates have to be 
 {  /* Some frequencies */       included manually here. 
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       */
   double ***freq; /* Frequencies */  
   double *pp;    int i, j, d, h, k;
   double pos;    double **out, cov[NCOVMAX];
   FILE *ficresp;    double **newm;
   char fileresp[FILENAMELENGTH];  
     /* Hstepm could be zero and should return the unit matrix */
   pp=vector(1,nlstate);    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");        oldm[i][j]=(i==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {      }
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     exit(0);    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        newm=savm;
   j1=0;        /* Covariates have to be included here again */
         cov[1]=1.;
   j=cptcoveff;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   for(k1=1; k1<=j;k1++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovprod;k++)
        j1++;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
            for(m=agemin; m <= agemax+3; m++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              freq[i][jk][m]=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                             pmij(pmmij,cov,ncovmodel,x,nlstate));
        for (i=1; i<=imx; i++) {        savm=oldm;
          bool=1;        oldm=newm;
          if  (cptcovn>0) {      }
            for (z1=1; z1<=cptcoveff; z1++)      for(i=1; i<=nlstate+ndeath; i++)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;        for(j=1;j<=nlstate+ndeath;j++) {
          }          po[i][j][h]=newm[i][j];
           if (bool==1) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            for(m=firstpass; m<=lastpass-1; m++){           */
              if(agev[m][i]==0) agev[m][i]=agemax+1;        }
              if(agev[m][i]==1) agev[m][i]=agemax+2;    } /* end h */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return po;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
            }  
          }  
        }  /*************** log-likelihood *************/
         if  (cptcovn>0) {  double func( double *x)
          fprintf(ficresp, "\n#********** Variable ");  {
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, ii, j, k, mi, d, kk;
        }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
        fprintf(ficresp, "**********\n#");    double **out;
        for(i=1; i<=nlstate;i++)    double sw; /* Sum of weights */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double lli; /* Individual log likelihood */
        fprintf(ficresp, "\n");    int s1, s2;
            double bbh, survp;
   for(i=(int)agemin; i <= (int)agemax+3; i++){    long ipmx;
     if(i==(int)agemax+3)    /*extern weight */
       printf("Total");    /* We are differentiating ll according to initial status */
     else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       printf("Age %d", i);    /*for(i=1;i<imx;i++) 
     for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    */
         pp[jk] += freq[jk][m][i];    cov[1]=1.;
     }  
     for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];    if(mle==1){
       if(pp[jk]>=1.e-10)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         pp[jk] += freq[jk][m][i];            }
     }          for(d=0; d<dh[mi][i]; d++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
       pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
       if(pos>=1.e-5)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
       else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if( i <= (int) agemax){            savm=oldm;
         if(pos>=1.e-5)            oldm=newm;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
       else        
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(m=-1; m <=nlstate+ndeath; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if(i <= (int) agemax)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       fprintf(ficresp,"\n");           * probability in order to take into account the bias as a fraction of the way
     printf("\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
  }           * For stepm > 1 the results are less biased than in previous versions. 
             */
   fclose(ficresp);          s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
 }  /* End of Freq */           * is higher than the multiple of stepm and negative otherwise.
            */
 /************* Waves Concatenation ***************/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 {               to the likelihood is the probability to die between last step unit time and current 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.               step unit time, which is also equal to probability to die before dh 
      Death is a valid wave (if date is known).               minus probability to die before dh-stepm . 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               In version up to 0.92 likelihood was computed
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          as if date of death was unknown. Death was treated as any other
      and mw[mi+1][i]. dh depends on stepm.          health state: the date of the interview describes the actual state
      */          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   int i, mi, m;          (healthy, disable or death) and IMaCh was corrected; but when we
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          introduced the exact date of death then we should have modified
 float sum=0.;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   for(i=1; i<=imx; i++){          stepm. It is no more the probability to die between last interview
     mi=0;          and month of death but the probability to survive from last
     m=firstpass;          interview up to one month before death multiplied by the
     while(s[m][i] <= nlstate){          probability to die within a month. Thanks to Chris
       if(s[m][i]>=1)          Jackson for correcting this bug.  Former versions increased
         mw[++mi][i]=m;          mortality artificially. The bad side is that we add another loop
       if(m >=lastpass)          which slows down the processing. The difference can be up to 10%
         break;          lower mortality.
       else            */
         m++;            lli=log(out[s1][s2] - savm[s1][s2]);
     }/* end while */          }else{
     if (s[m][i] > nlstate){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       mi++;     /* Death is another wave */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       /* if(mi==0)  never been interviewed correctly before death */          } 
          /* Only death is a correct wave */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       mw[mi][i]=m;          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
     wav[i]=mi;          sw += weight[i];
     if(mi==0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } /* end of wave */
   }      } /* end of individual */
     }  else if(mle==2){
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (stepm <=0)        for(mi=1; mi<= wav[i]-1; mi++){
         dh[mi][i]=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
       else{            for (j=1;j<=nlstate+ndeath;j++){
         if (s[mw[mi+1][i]][i] > nlstate) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(j=0) j=1;  /* Survives at least one month after exam */            }
         }          for(d=0; d<=dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           sum=sum+j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;            savm=oldm;
         jl= j -jk*stepm;            oldm=newm;
         ju= j -(jk+1)*stepm;          } /* end mult */
         if(jl <= -ju)        
           dh[mi][i]=jk;          s1=s[mw[mi][i]][i];
         else          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk+1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if(dh[mi][i]==0)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           dh[mi][i]=1; /* At least one step */          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      } /* end of individual */
 }    }  else if(mle==3){  /* exponential inter-extrapolation */
 /*********** Tricode ****************************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void tricode(int *Tvar, int **nbcode, int imx)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int Ndum[20],ij=1, k, j, i;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int cptcode=0;            for (j=1;j<=nlstate+ndeath;j++){
   cptcoveff=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=imx; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       ij=(int)(covar[Tvar[j]][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;            }
       if (ij > cptcode) cptcode=ij;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/            oldm=newm;
     for (i=0; i<=cptcode; i++) {          } /* end mult */
       if(Ndum[i]!=0) ncodemax[j]++;        
     }          s1=s[mw[mi][i]][i];
     ij=1;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1; i<=ncodemax[j]; i++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (k=0; k<=19; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/        } /* end of wave */
           ij++;      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if (ij > ncodemax[j]) break;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }            for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
       ij=Tvar[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
  ij=1;          for(d=0; d<dh[mi][i]; d++){
  for (i=1; i<=cptcovn; i++) {            newm=savm;
    if((Ndum[i]!=0) && (i<=ncov)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Tvaraff[i]=ij;            for (kk=1; kk<=cptcovage;kk++) {
    ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    }            }
  }          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];            savm=oldm;
    /*printf("j=%d %d\n",j,Tvar[j]);*/            oldm=newm;
  }          } /* end mult */
          
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);          s1=s[mw[mi][i]][i];
     scanf("%d",i);*/          s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Health Expectancies ****************/          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          }
 {          ipmx +=1;
   /* Health expectancies */          sw += weight[i];
   int i, j, nhstepm, hstepm, h;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age, agelim,hf;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double ***p3mat;        } /* end of wave */
        } /* end of individual */
   fprintf(ficreseij,"# Health expectancies\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficreseij," %1d-%1d",i,j);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /*  Every j years of age (in month) */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            }
           for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;            newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */            for (kk=1; kk<=cptcovage;kk++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years = 20*12/6=40 stepm */            }
     if (stepm >= YEARM) hstepm=1;          
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            savm=oldm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            oldm=newm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            } /* end mult */
         
           s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          ipmx +=1;
           eij[i][j][(int)age] +=p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     hf=1;        } /* end of wave */
     if (stepm >= YEARM) hf=stepm/YEARM;      } /* end of individual */
     fprintf(ficreseij,"%.0f",age );    } /* End of if */
     for(i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate;j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
     fprintf(ficreseij,"\n");  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
 /************ Variance ******************/    /* Same as likeli but slower because of a lot of printf and if */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* Variance of health expectancies */    double **out;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double lli; /* Individual log likelihood */
   double **newm;    double llt;
   double **dnewm,**doldm;    int s1, s2;
   int i, j, nhstepm, hstepm, h;    double bbh, survp;
   int k, cptcode;    /*extern weight */
    double *xp;    /* We are differentiating ll according to initial status */
   double **gp, **gm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***gradg, ***trgradg;    /*for(i=1;i<imx;i++) 
   double ***p3mat;      printf(" %d\n",s[4][i]);
   double age,agelim;    */
   int theta;    cov[1]=1.;
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvij,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);          }
          for(d=0; d<dh[mi][i]; d++){
   hstepm=1*YEARM; /* Every year of age */          newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim = AGESUP;          for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     if (stepm >= YEARM) hstepm=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          savm=oldm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          oldm=newm;
     gp=matrix(0,nhstepm,1,nlstate);        } /* end mult */
     gm=matrix(0,nhstepm,1,nlstate);        
         s1=s[mw[mi][i]][i];
     for(theta=1; theta <=npar; theta++){        s2=s[mw[mi+1][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        bbh=(double)bh[mi][i]/(double)stepm; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2] - savm[s1][s2]);
         for(h=0; h<=nhstepm; h++){        } else if (mle==1){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }        } else if(mle==3){  /* exponential inter-extrapolation */
              lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++) /* Computes gradient */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli=log(out[s1][s2]); /* Original formula */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++){        } /* End of if */
         for(h=0; h<=nhstepm; h++){        ipmx +=1;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        sw += weight[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
       for(j=1; j<= nlstate; j++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         for(h=0; h<=nhstepm; h++){   %10.6f %10.6f %10.6f ", \
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     } /* End theta */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     for(h=0; h<=nhstepm; h++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)      } /* end of wave */
           trgradg[h][j][theta]=gradg[h][theta][j];    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1;i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1;j<=nlstate;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         vareij[i][j][(int)age] =0.;    if(globpr==0){ /* First time we count the contributions and weights */
     for(h=0;h<=nhstepm;h++){      gipmx=ipmx;
       for(k=0;k<=nhstepm;k++){      gsw=sw;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    return -l;
         for(i=1;i<=nlstate;i++)  }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j];  
       }  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     h=1;  {
     if (stepm >= YEARM) h=stepm/YEARM;    /* This routine should help understanding what is done with 
     fprintf(ficresvij,"%.0f ",age );       the selection of individuals/waves and
     for(i=1; i<=nlstate;i++)       to check the exact contribution to the likelihood.
       for(j=1; j<=nlstate;j++){       Plotting could be done.
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);     */
       }    int k;
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
     free_matrix(gm,0,nhstepm,1,nlstate);      strcpy(fileresilk,"ilk"); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      strcat(fileresilk,fileres);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("Problem with resultfile: %s\n", fileresilk);
   } /* End age */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   free_vector(xp,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_matrix(dnewm,1,nlstate,1,nlstate);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 /************ Variance of prevlim ******************/    }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    *fretone=(*funcone)(p);
   /* Variance of prevalence limit */    if(*globpri !=0){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fclose(ficresilk);
   double **newm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double **dnewm,**doldm;      fflush(fichtm); 
   int i, j, nhstepm, hstepm;    } 
   int k, cptcode;    return;
   double *xp;  }
   double *gp, *gm;  
   double **gradg, **trgradg;  
   double age,agelim;  /*********** Maximum Likelihood Estimation ***************/
   int theta;  
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  {
   fprintf(ficresvpl,"# Age");    int i,j, iter;
   for(i=1; i<=nlstate;i++)    double **xi;
       fprintf(ficresvpl," %1d-%1d",i,i);    double fret;
   fprintf(ficresvpl,"\n");    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   xp=vector(1,npar);    xi=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++)
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /* Every year of age */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    strcpy(filerespow,"pow"); 
   agelim = AGESUP;    strcat(filerespow,fileres);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf("Problem with resultfile: %s\n", filerespow);
     if (stepm >= YEARM) hstepm=1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gp=vector(1,nlstate);    for (i=1;i<=nlstate;i++)
     gm=vector(1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fclose(ficrespow);
       for(i=1;i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         gp[i] = prlim[i][i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
         gm[i] = prlim[i][i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
       for(i=1;i<=nlstate;i++)    double  **a,**y,*x,pd;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double **hess;
     } /* End theta */    int i, j,jk;
     int *indx;
     trgradg =matrix(1,nlstate,1,npar);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(j=1; j<=nlstate;j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(theta=1; theta <=npar; theta++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         trgradg[j][theta]=gradg[theta][j];    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     for(i=1;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    printf("\nCalculation of the hessian matrix. Wait...\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficresvpl,"%.0f ",age );     
     for(i=1; i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      
     fprintf(ficresvpl,"\n");      /*  printf(" %f ",p[i]);
     free_vector(gp,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=npar;i++) {
   } /* End age */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   free_vector(xp,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
 }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }
       }
 /***********************************************/    }
 /**************** Main Program *****************/    printf("\n");
 /***********************************************/    fprintf(ficlog,"\n");
   
 /*int main(int argc, char *argv[])*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 int main()    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
     a=matrix(1,npar,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    y=matrix(1,npar,1,npar);
   double agedeb, agefin,hf;    x=vector(1,npar);
   double agemin=1.e20, agemax=-1.e20;    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   double fret;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double **xi,tmp,delta;    ludcmp(a,npar,indx,&pd);
   
   double dum; /* Dummy variable */    for (j=1;j<=npar;j++) {
   double ***p3mat;      for (i=1;i<=npar;i++) x[i]=0;
   int *indx;      x[j]=1;
   char line[MAXLINE], linepar[MAXLINE];      lubksb(a,npar,indx,x);
   char title[MAXLINE];      for (i=1;i<=npar;i++){ 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        matcov[i][j]=x[i];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      }
   char filerest[FILENAMELENGTH];    }
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    printf("\n#Hessian matrix#\n");
   int firstobs=1, lastobs=10;    fprintf(ficlog,"\n#Hessian matrix#\n");
   int sdeb, sfin; /* Status at beginning and end */    for (i=1;i<=npar;i++) { 
   int c,  h , cpt,l;      for (j=1;j<=npar;j++) { 
   int ju,jl, mi;        printf("%.3e ",hess[i][j]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }
        printf("\n");
   int hstepm, nhstepm;      fprintf(ficlog,"\n");
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;  
   double **prlim;    /* Recompute Inverse */
   double *severity;    for (i=1;i<=npar;i++)
   double ***param; /* Matrix of parameters */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double  *p;    ludcmp(a,npar,indx,&pd);
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    /*  printf("\n#Hessian matrix recomputed#\n");
   double *delti; /* Scale */  
   double ***eij, ***vareij;    for (j=1;j<=npar;j++) {
   double **varpl; /* Variances of prevalence limits by age */      for (i=1;i<=npar;i++) x[i]=0;
   double *epj, vepp;      x[j]=1;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      lubksb(a,npar,indx,x);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   char z[1]="c", occ;        printf("%.3e ",y[i][j]);
 #include <sys/time.h>        fprintf(ficlog,"%.3e ",y[i][j]);
 #include <time.h>      }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      printf("\n");
   /* long total_usecs;      fprintf(ficlog,"\n");
   struct timeval start_time, end_time;    }
      */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
     free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   printf("\nIMACH, Version 0.64a");    free_vector(x,1,npar);
   printf("\nEnter the parameter file name: ");    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 #ifdef windows  
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /*************** hessian matrix ****************/
   /* cutv(path,optionfile,pathtot,'\\');*/  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
 split(pathtot, path,optionfile);    int i;
   chdir(path);    int l=1, lmax=20;
   replace(pathc,path);    double k1,k2;
 #endif    double p2[NPARMAX+1];
 #ifdef unix    double res;
   scanf("%s",optionfile);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 #endif    double fx;
     int k=0,kmax=10;
 /*-------- arguments in the command line --------*/    double l1;
   
   strcpy(fileres,"r");    fx=func(x);
   strcat(fileres, optionfile);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   /*---------arguments file --------*/      l1=pow(10,l);
       delts=delt;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(k=1 ; k <kmax; k=k+1){
     printf("Problem with optionfile %s\n",optionfile);        delt = delta*(l1*k);
     goto end;        p2[theta]=x[theta] +delt;
   }        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   strcpy(filereso,"o");        k2=func(p2)-fx;
   strcat(filereso,fileres);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   if((ficparo=fopen(filereso,"w"))==NULL) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        
   }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   while((c=getc(ficpar))=='#' && c!= EOF){  #endif
     ungetc(c,ficpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fgets(line, MAXLINE, ficpar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     puts(line);          k=kmax;
     fputs(line,ficparo);        }
   }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   ungetc(c,ficpar);          k=kmax; l=lmax*10.;
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          delts=delt;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        }
       }
   covar=matrix(0,NCOVMAX,1,n);        }
   if (strlen(model)<=1) cptcovn=0;    delti[theta]=delts;
   else {    return res; 
     j=0;    
     j=nbocc(model,'+');  }
     cptcovn=j+1;  
   }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   ncovmodel=2+cptcovn;    int i;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   /* Read guess parameters */    double p2[NPARMAX+1];
   /* Reads comments: lines beginning with '#' */    int k;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    fx=func(x);
     fgets(line, MAXLINE, ficpar);    for (k=1; k<=2; k++) {
     puts(line);      for (i=1;i<=npar;i++) p2[i]=x[i];
     fputs(line,ficparo);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   ungetc(c,ficpar);      k1=func(p2)-fx;
      
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(i=1; i <=nlstate; i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j <=nlstate+ndeath-1; j++){      k2=func(p2)-fx;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);      p2[thetai]=x[thetai]-delti[thetai]/k;
       printf("%1d%1d",i,j);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(k=1; k<=ncovmodel;k++){      k3=func(p2)-fx;
         fscanf(ficpar," %lf",&param[i][j][k]);    
         printf(" %lf",param[i][j][k]);      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficparo," %lf",param[i][j][k]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       fscanf(ficpar,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       printf("\n");  #ifdef DEBUG
       fprintf(ficparo,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    }
   p=param[1][1];    return res;
    }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************** Inverse of matrix **************/
     ungetc(c,ficpar);  void ludcmp(double **a, int n, int *indx, double *d) 
     fgets(line, MAXLINE, ficpar);  { 
     puts(line);    int i,imax,j,k; 
     fputs(line,ficparo);    double big,dum,sum,temp; 
   }    double *vv; 
   ungetc(c,ficpar);   
     vv=vector(1,n); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    *d=1.0; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (i=1;i<=n;i++) { 
   for(i=1; i <=nlstate; i++){      big=0.0; 
     for(j=1; j <=nlstate+ndeath-1; j++){      for (j=1;j<=n;j++) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       printf("%1d%1d",i,j);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficparo,"%1d%1d",i1,j1);      vv[i]=1.0/big; 
       for(k=1; k<=ncovmodel;k++){    } 
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (j=1;j<=n;j++) { 
         printf(" %le",delti3[i][j][k]);      for (i=1;i<j;i++) { 
         fprintf(ficparo," %le",delti3[i][j][k]);        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fscanf(ficpar,"\n");        a[i][j]=sum; 
       printf("\n");      } 
       fprintf(ficparo,"\n");      big=0.0; 
     }      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   delti=delti3[1][1];        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   /* Reads comments: lines beginning with '#' */        a[i][j]=sum; 
   while((c=getc(ficpar))=='#' && c!= EOF){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     ungetc(c,ficpar);          big=dum; 
     fgets(line, MAXLINE, ficpar);          imax=i; 
     puts(line);        } 
     fputs(line,ficparo);      } 
   }      if (j != imax) { 
   ungetc(c,ficpar);        for (k=1;k<=n;k++) { 
            dum=a[imax][k]; 
   matcov=matrix(1,npar,1,npar);          a[imax][k]=a[j][k]; 
   for(i=1; i <=npar; i++){          a[j][k]=dum; 
     fscanf(ficpar,"%s",&str);        } 
     printf("%s",str);        *d = -(*d); 
     fprintf(ficparo,"%s",str);        vv[imax]=vv[j]; 
     for(j=1; j <=i; j++){      } 
       fscanf(ficpar," %le",&matcov[i][j]);      indx[j]=imax; 
       printf(" %.5le",matcov[i][j]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fprintf(ficparo," %.5le",matcov[i][j]);      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
     fscanf(ficpar,"\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     printf("\n");      } 
     fprintf(ficparo,"\n");    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   for(i=1; i <=npar; i++)  ;
     for(j=i+1;j<=npar;j++)  } 
       matcov[i][j]=matcov[j][i];  
      void lubksb(double **a, int n, int *indx, double b[]) 
   printf("\n");  { 
     int i,ii=0,ip,j; 
     double sum; 
     /*-------- data file ----------*/   
     if((ficres =fopen(fileres,"w"))==NULL) {    for (i=1;i<=n;i++) { 
       printf("Problem with resultfile: %s\n", fileres);goto end;      ip=indx[i]; 
     }      sum=b[ip]; 
     fprintf(ficres,"#%s\n",version);      b[ip]=b[i]; 
          if (ii) 
     if((fic=fopen(datafile,"r"))==NULL)    {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       printf("Problem with datafile: %s\n", datafile);goto end;      else if (sum) ii=i; 
     }      b[i]=sum; 
     } 
     n= lastobs;    for (i=n;i>=1;i--) { 
     severity = vector(1,maxwav);      sum=b[i]; 
     outcome=imatrix(1,maxwav+1,1,n);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     num=ivector(1,n);      b[i]=sum/a[i][i]; 
     moisnais=vector(1,n);    } 
     annais=vector(1,n);  } 
     moisdc=vector(1,n);  
     andc=vector(1,n);  /************ Frequencies ********************/
     agedc=vector(1,n);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     cod=ivector(1,n);  {  /* Some frequencies */
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     mint=matrix(1,maxwav,1,n);    int first;
     anint=matrix(1,maxwav,1,n);    double ***freq; /* Frequencies */
     s=imatrix(1,maxwav+1,1,n);    double *pp, **prop;
     adl=imatrix(1,maxwav+1,1,n);        double pos,posprop, k2, dateintsum=0,k2cpt=0;
     tab=ivector(1,NCOVMAX);    FILE *ficresp;
     ncodemax=ivector(1,8);    char fileresp[FILENAMELENGTH];
     
     i=1;    pp=vector(1,nlstate);
     while (fgets(line, MAXLINE, fic) != NULL)    {    prop=matrix(1,nlstate,iagemin,iagemax+3);
       if ((i >= firstobs) && (i <=lastobs)) {    strcpy(fileresp,"p");
            strcat(fileresp,fileres);
         for (j=maxwav;j>=1;j--){    if((ficresp=fopen(fileresp,"w"))==NULL) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      printf("Problem with prevalence resultfile: %s\n", fileresp);
           strcpy(line,stra);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      exit(0);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
            j1=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    first=1;
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    for(k1=1; k1<=j;k1++){
         for (j=ncov;j>=1;j--){      for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         num[i]=atol(stra);          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
         i=i+1;              freq[i][jk][m]=0;
       }  
     }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     /*scanf("%d",i);*/          prop[i][m]=0;
   imx=i-1; /* Number of individuals */        
         dateintsum=0;
   /* Calculation of the number of parameter from char model*/        k2cpt=0;
   Tvar=ivector(1,15);        for (i=1; i<=imx; i++) {
   Tprod=ivector(1,15);          bool=1;
   Tvaraff=ivector(1,15);          if  (cptcovn>0) {
   Tvard=imatrix(1,15,1,2);            for (z1=1; z1<=cptcoveff; z1++) 
   Tage=ivector(1,15);                    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
   if (strlen(model) >1){          }
     j=0, j1=0, k1=1, k2=1;          if (bool==1){
     j=nbocc(model,'+');            for(m=firstpass; m<=lastpass; m++){
     j1=nbocc(model,'*');              k2=anint[m][i]+(mint[m][i]/12.);
     cptcovn=j+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     cptcovprod=j1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     strcpy(modelsav,model);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    if (j==0) {                if (m<lastpass) {
       if (j1==0){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         cutv(stra,strb,modelsav,'V');                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         Tvar[1]=atoi(strb);                }
       }                
       else if (j1==1) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         cutv(stra,strb,modelsav,'*');                  dateintsum=dateintsum+k2;
         Tage[1]=1; cptcovage++;                  k2cpt++;
         if (strcmp(stra,"age")==0) {                }
           cptcovprod--;                /*}*/
           cutv(strd,strc,strb,'V');            }
           Tvar[1]=atoi(strc);          }
         }        }
         else if (strcmp(strb,"age")==0) {         
           cptcovprod--;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           cutv(strd,strc,stra,'V');  
           Tvar[1]=atoi(strc);        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
         else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strd,strc,strb,'V');          fprintf(ficresp, "**********\n#");
           cutv(stre,strd,stra,'V');        }
           Tvar[1]=ncov+1;        for(i=1; i<=nlstate;i++) 
           for (k=1; k<=lastobs;k++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];        fprintf(ficresp, "\n");
         }        
         /*printf("%s %s %s\n", stra,strb,modelsav);        for(i=iagemin; i <= iagemax+3; i++){
 printf("%d ",Tvar[1]);          if(i==iagemax+3){
 scanf("%d",i);*/            fprintf(ficlog,"Total");
       }          }else{
     }            if(first==1){
    else {              first=0;
       for(i=j; i>=1;i--){              printf("See log file for details...\n");
         cutv(stra,strb,modelsav,'+');            }
         /*printf("%s %s %s\n", stra,strb,modelsav);            fprintf(ficlog,"Age %d", i);
           scanf("%d",i);*/          }
         if (strchr(strb,'*')) {          for(jk=1; jk <=nlstate ; jk++){
           cutv(strd,strc,strb,'*');            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           if (strcmp(strc,"age")==0) {              pp[jk] += freq[jk][m][i]; 
             cptcovprod--;          }
             cutv(strb,stre,strd,'V');          for(jk=1; jk <=nlstate ; jk++){
             Tvar[i+1]=atoi(stre);            for(m=-1, pos=0; m <=0 ; m++)
             cptcovage++;              pos += freq[jk][m][i];
             Tage[cptcovage]=i+1;            if(pp[jk]>=1.e-10){
             printf("stre=%s ", stre);              if(first==1){
           }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           else if (strcmp(strd,"age")==0) {              }
             cptcovprod--;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             cutv(strb,stre,strc,'V');            }else{
             Tvar[i+1]=atoi(stre);              if(first==1)
             cptcovage++;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             Tage[cptcovage]=i+1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
           else {          }
             cutv(strb,stre,strc,'V');  
             Tvar[i+1]=ncov+k1;          for(jk=1; jk <=nlstate ; jk++){
             cutv(strb,strc,strd,'V');            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             Tprod[k1]=i+1;              pp[jk] += freq[jk][m][i];
             Tvard[k1][1]=atoi(strc);          }       
             Tvard[k1][2]=atoi(stre);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             Tvar[cptcovn+k2]=Tvard[k1][1];            pos += pp[jk];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];            posprop += prop[jk][i];
             for (k=1; k<=lastobs;k++)          }
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(jk=1; jk <=nlstate ; jk++){
             k1++;            if(pos>=1.e-5){
             k2=k2+2;              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         else {            }else{
           cutv(strd,strc,strb,'V');              if(first==1)
           /* printf("%s %s %s", strd,strc,strb);*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           Tvar[i+1]=atoi(strc);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
         strcpy(modelsav,stra);              if( i <= iagemax){
       }              if(pos>=1.e-5){
       cutv(strd,strc,stra,'V');                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       Tvar[1]=atoi(strc);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   }              }
   /* for (i=1; i<=5; i++)              else
      printf("i=%d %d ",i,Tvar[i]);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/            }
  /*printf("cptcovprod=%d ", cptcovprod);*/          }
   /*  scanf("%d ",i);*/          
     fclose(fic);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     /*  if(mle==1){*/              if(freq[jk][m][i] !=0 ) {
     if (weightopt != 1) { /* Maximisation without weights*/              if(first==1)
       for(i=1;i<=n;i++) weight[i]=1.0;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     /*-calculation of age at interview from date of interview and age at death -*/              }
     agev=matrix(1,maxwav,1,imx);          if(i <= iagemax)
                fprintf(ficresp,"\n");
     for (i=1; i<=imx; i++)  {          if(first==1)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            printf("Others in log...\n");
       for(m=1; (m<= maxwav); m++){          fprintf(ficlog,"\n");
         if(s[m][i] >0){        }
           if (s[m][i] == nlstate+1) {      }
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    dateintmean=dateintsum/k2cpt; 
               agev[m][i]=agedc[i];   
             else{    fclose(ficresp);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
               agev[m][i]=-1;    free_vector(pp,1,nlstate);
             }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
           else if(s[m][i] !=9){ /* Should no more exist */  }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  /************ Prevalence ********************/
               agev[m][i]=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             else if(agev[m][i] <agemin){  {  
               agemin=agev[m][i];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       in each health status at the date of interview (if between dateprev1 and dateprev2).
             }       We still use firstpass and lastpass as another selection.
             else if(agev[m][i] >agemax){    */
               agemax=agev[m][i];   
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             }    double ***freq; /* Frequencies */
             /*agev[m][i]=anint[m][i]-annais[i];*/    double *pp, **prop;
             /*   agev[m][i] = age[i]+2*m;*/    double pos,posprop; 
           }    double  y2; /* in fractional years */
           else { /* =9 */    int iagemin, iagemax;
             agev[m][i]=1;  
             s[m][i]=-1;    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
         }    /*pp=vector(1,nlstate);*/
         else /*= 0 Unknown */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           agev[m][i]=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       }    j1=0;
        
     }    j=cptcoveff;
     for (i=1; i<=imx; i++)  {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {    for(k1=1; k1<=j;k1++){
           printf("Error: Wrong value in nlstate or ndeath\n");        for(i1=1; i1<=ncodemax[k1];i1++){
           goto end;        j1++;
         }        
       }        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       
         for (i=1; i<=imx; i++) { /* Each individual */
     free_vector(severity,1,maxwav);          bool=1;
     free_imatrix(outcome,1,maxwav+1,1,n);          if  (cptcovn>0) {
     free_vector(moisnais,1,n);            for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(annais,1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(mint,1,maxwav,1,n);                bool=0;
     free_matrix(anint,1,maxwav,1,n);          } 
     free_vector(moisdc,1,n);          if (bool==1) { 
     free_vector(andc,1,n);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     wav=ivector(1,imx);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     /* Concatenates waves */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
       Tcode=ivector(1,100);              }
       nbcode=imatrix(1,nvar,1,8);            } /* end selection of waves */
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
              for(i=iagemin; i <= iagemax+3; i++){  
    codtab=imatrix(1,100,1,10);          
    h=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    m=pow(2,cptcoveff);            posprop += prop[jk][i]; 
            } 
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){          for(jk=1; jk <=nlstate ; jk++){     
        for(j=1; j <= ncodemax[k]; j++){            if( i <=  iagemax){ 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              if(posprop>=1.e-5){ 
            h++;                probs[i][jk][j1]= prop[jk][i]/posprop;
            if (h>m) h=1;codtab[h][k]=j;              } 
          }            } 
        }          }/* end jk */ 
      }        }/* end i */ 
    }      } /* end i1 */
     } /* end k1 */
     
    /*for(i=1; i <=m ;i++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      for(k=1; k <=cptcovn; k++){    /*free_vector(pp,1,nlstate);*/
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  }  /* End of prevalence */
      printf("\n");  
    }  /************* Waves Concatenation ***************/
    scanf("%d",i);*/  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    /* Calculates basic frequencies. Computes observed prevalence at single age  {
        and prints on file fileres'p'. */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       and mw[mi+1][i]. dh depends on stepm.
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     /* For Powell, parameters are in a vector p[] starting at p[1]       double sum=0., jmean=0.;*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int first;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int j, k=0,jk, ju, jl;
     double sum=0.;
     if(mle==1){    first=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    jmin=1e+5;
     }    jmax=-1;
        jmean=0.;
     /*--------- results files --------------*/    for(i=1; i<=imx; i++){
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      mi=0;
          m=firstpass;
    jk=1;      while(s[m][i] <= nlstate){
    fprintf(ficres,"# Parameters\n");        if(s[m][i]>=1)
    printf("# Parameters\n");          mw[++mi][i]=m;
    for(i=1,jk=1; i <=nlstate; i++){        if(m >=lastpass)
      for(k=1; k <=(nlstate+ndeath); k++){          break;
        if (k != i)        else
          {          m++;
            printf("%d%d ",i,k);      }/* end while */
            fprintf(ficres,"%1d%1d ",i,k);      if (s[m][i] > nlstate){
            for(j=1; j <=ncovmodel; j++){        mi++;     /* Death is another wave */
              printf("%f ",p[jk]);        /* if(mi==0)  never been interviewed correctly before death */
              fprintf(ficres,"%f ",p[jk]);           /* Only death is a correct wave */
              jk++;        mw[mi][i]=m;
            }      }
            printf("\n");  
            fprintf(ficres,"\n");      wav[i]=mi;
          }      if(mi==0){
      }        nbwarn++;
    }        if(first==0){
  if(mle==1){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     /* Computing hessian and covariance matrix */          first=1;
     ftolhess=ftol; /* Usually correct */        }
     hesscov(matcov, p, npar, delti, ftolhess, func);        if(first==1){
  }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     fprintf(ficres,"# Scales\n");        }
     printf("# Scales\n");      } /* end mi==0 */
      for(i=1,jk=1; i <=nlstate; i++){    } /* End individuals */
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    for(i=1; i<=imx; i++){
           fprintf(ficres,"%1d%1d",i,j);      for(mi=1; mi<wav[i];mi++){
           printf("%1d%1d",i,j);        if (stepm <=0)
           for(k=1; k<=ncovmodel;k++){          dh[mi][i]=1;
             printf(" %.5e",delti[jk]);        else{
             fprintf(ficres," %.5e",delti[jk]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             jk++;            if (agedc[i] < 2*AGESUP) {
           }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           printf("\n");              if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficres,"\n");              else if(j<0){
         }                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Temporary Dangerous patch */
                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     k=1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficres,"# Covariance\n");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     printf("# Covariance\n");              }
     for(i=1;i<=npar;i++){              k=k+1;
       /*  if (k>nlstate) k=1;              if (j >= jmax) jmax=j;
       i1=(i-1)/(ncovmodel*nlstate)+1;              if (j <= jmin) jmin=j;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              sum=sum+j;
       printf("%s%d%d",alph[k],i1,tab[i]);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficres,"%3d",i);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       printf("%3d",i);            }
       for(j=1; j<=i;j++){          }
         fprintf(ficres," %.5e",matcov[i][j]);          else{
         printf(" %.5e",matcov[i][j]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficres,"\n");            k=k+1;
       printf("\n");            if (j >= jmax) jmax=j;
       k++;            else if (j <= jmin)jmin=j;
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     while((c=getc(ficpar))=='#' && c!= EOF){            if(j<0){
       ungetc(c,ficpar);              nberr++;
       fgets(line, MAXLINE, ficpar);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       puts(line);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fputs(line,ficparo);            }
     }            sum=sum+j;
     ungetc(c,ficpar);          }
            jk= j/stepm;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          jl= j -jk*stepm;
              ju= j -(jk+1)*stepm;
     if (fage <= 2) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       bage = agemin;            if(jl==0){
       fage = agemax;              dh[mi][i]=jk;
     }              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                    * at the price of an extra matrix product in likelihood */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
                }
 /*------------ gnuplot -------------*/          }else{
 chdir(pathcd);            if(jl <= -ju){
   if((ficgp=fopen("graph.plt","w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with file graph.gp");goto end;              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
 #ifdef windows                                   */
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }
 #endif            else{
 m=pow(2,cptcoveff);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
  /* 1eme*/            }
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(dh[mi][i]==0){
    for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 #ifdef windows              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            }
 #endif          } /* end if mle */
 #ifdef unix        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      } /* end wave */
 #endif    }
     jmean=sum/k;
 for (i=1; i<= nlstate ; i ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  /*********** Tricode ****************************/
     for (i=1; i<= nlstate ; i ++) {  void tricode(int *Tvar, int **nbcode, int imx)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int cptcode=0;
      for (i=1; i<= nlstate ; i ++) {    cptcoveff=0; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
 }      for (k=1; k<=7; k++) ncodemax[k]=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 fprintf(ficgp,"\nset ter gif small size 400,300");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 #endif                                 modality*/ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    }        Ndum[ij]++; /*store the modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /*2 eme*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   for (k1=1; k1<= m ; k1 ++) {                                         female is 1, then  cptcode=1.*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      }
      
     for (i=1; i<= nlstate+1 ; i ++) {      for (i=0; i<=cptcode; i++) {
       k=2*i;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      ij=1; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=ncodemax[j]; i++) {
 }          for (k=0; k<= maxncov; k++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          if (Ndum[k] != 0) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            nbcode[Tvar[j]][ij]=k; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for (j=1; j<= nlstate+1 ; j ++) {            
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            ij++;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (ij > ncodemax[j]) break; 
       fprintf(ficgp,"\" t\"\" w l 0,");        }  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } 
       for (j=1; j<= nlstate+1 ; j ++) {    }  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");   for (i=1; i<=ncovmodel-2; i++) { 
       else fprintf(ficgp,"\" t\"\" w l 0,");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);     Ndum[ij]++;
   }   }
    
   /*3eme*/   ij=1;
    for (i=1; i<= maxncov; i++) {
   for (k1=1; k1<= m ; k1 ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     for (cpt=1; cpt<= nlstate ; cpt ++) {       Tvaraff[ij]=i; /*For printing */
       k=2+nlstate*(cpt-1);       ij++;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     }
       for (i=1; i< nlstate ; i ++) {   }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);   
       }   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  }
     }  
   }  /*********** Health Expectancies ****************/
    
   /* CV preval stat */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    /* Health expectancies */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for (i=1; i< nlstate ; i ++)    double age, agelim, hf;
         fprintf(ficgp,"+$%d",k+i+1);    double ***p3mat,***varhe;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double **dnewm,**doldm;
          double *xp;
       l=3+(nlstate+ndeath)*cpt;    double **gp, **gm;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double ***gradg, ***trgradg;
       for (i=1; i< nlstate ; i ++) {    int theta;
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
   }    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   /* proba elementaires */    for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){      for(j=1; j<=nlstate;j++)
     for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       if (k != i) {    fprintf(ficreseij,"\n");
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    if(estepm < stepm){
           /*fprintf(ficgp,"%s",alph[1]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    else  hstepm=estepm;   
           fprintf(ficgp,"\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
         }     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
     }     * we are calculating an estimate of the Life Expectancy assuming a linear 
     }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   for(jk=1; jk <=m; jk++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);     * to compare the new estimate of Life expectancy with the same linear 
    i=1;     * hypothesis. A more precise result, taking into account a more precise
    for(k2=1; k2<=nlstate; k2++) {     * curvature will be obtained if estepm is as small as stepm. */
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {    /* For example we decided to compute the life expectancy with the smallest unit */
        if (k != k2){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       nhstepm is the number of hstepm from age to agelim 
 ij=1;       nstepm is the number of stepm from age to agelin. 
         for(j=3; j <=ncovmodel; j++) {       Look at hpijx to understand the reason of that which relies in memory size
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       and note for a fixed period like estepm months */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             ij++;       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           else       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       results. So we changed our mind and took the option of the best precision.
         }    */
           fprintf(ficgp,")/(1");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          
         for(k1=1; k1 <=nlstate; k1++){      agelim=AGESUP;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 ij=1;      /* nhstepm age range expressed in number of stepm */
           for(j=3; j <=ncovmodel; j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* if (stepm >= YEARM) hstepm=1;*/
             ij++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           else      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficgp,")");  
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         i=i+ncovmodel;   
        }  
      }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      /* Computing  Variances of health expectancies */
   }  
           for(theta=1; theta <=npar; theta++){
   fclose(ficgp);        for(i=1; i<=npar; i++){ 
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
 chdir(path);        }
     free_matrix(agev,1,maxwav,1,imx);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_ivector(wav,1,imx);    
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        cptj=0;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=1; j<= nlstate; j++){
              for(i=1; i<=nlstate; i++){
     free_imatrix(s,1,maxwav+1,1,n);            cptj=cptj+1;
                for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                  gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     free_ivector(num,1,n);            }
     free_vector(agedc,1,n);          }
     free_vector(weight,1,n);        }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       
     fclose(ficparo);       
     fclose(ficres);        for(i=1; i<=npar; i++) 
     /*  }*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    /*________fin mle=1_________*/        
            cptj=0;
         for(j=1; j<= nlstate; j++){
            for(i=1;i<=nlstate;i++){
     /* No more information from the sample is required now */            cptj=cptj+1;
   /* Reads comments: lines beginning with '#' */            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);        }
   }        for(j=1; j<= nlstate*nlstate; j++)
   ungetc(c,ficpar);          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       } 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     
 /*--------- index.htm --------*/  /* End theta */
   
   if((fichtm=fopen("index.htm","w"))==NULL)    {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Problem with index.htm \n");goto end;  
   }       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n          for(theta=1; theta <=npar; theta++)
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            trgradg[h][j][theta]=gradg[h][theta][j];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       for(i=1;i<=nlstate*nlstate;i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        for(j=1;j<=nlstate*nlstate;j++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          varhe[i][j][(int)age] =0.;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>       printf("%d|",(int)age);fflush(stdout);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  fprintf(fichtm," <li>Graphs</li>\n<p>");        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  m=cptcoveff;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
  j1=0;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      }
        j1++;      /* Computing expectancies */
        if (cptcovn > 0) {      for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<hr>************ Results for covariates");        for(j=1; j<=nlstate;j++)
          for (cpt=1; cpt<=cptcoveff;cpt++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
          fprintf(fichtm," ************\n<hr>");            
        }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      cptj=0;
        }      for(i=1; i<=nlstate;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1; j<=nlstate;j++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          cptj++;
 interval) in state (%d): v%s%d%d.gif <br>          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }
      }      fprintf(ficreseij,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {     
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 health expectancies in states (1) and (2): e%s%d.gif<br>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    }
 fprintf(fichtm,"\n</body>");    printf("\n");
    }    fprintf(ficlog,"\n");
  }  
 fclose(fichtm);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /*--------------- Prevalence limit --------------*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcpy(filerespl,"pl");  }
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /* Variance of health expectancies */
   fprintf(ficrespl,"#Prevalence limit\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficrespl,"#Age ");    /* double **newm;*/
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double **dnewm,**doldm;
   fprintf(ficrespl,"\n");    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   prlim=matrix(1,nlstate,1,nlstate);    int k, cptcode;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gp, **gm;  /* for var eij */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***gradg, ***trgradg; /*for var eij */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gradgp, **trgradgp; /* for var p point j */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double *gpp, *gmp; /* for var p point j */
   k=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   agebase=agemin;    double ***p3mat;
   agelim=agemax;    double age,agelim, hf;
   ftolpl=1.e-10;    double ***mobaverage;
   i1=cptcoveff;    int theta;
   if (cptcovn < 1){i1=1;}    char digit[4];
     char digitp[25];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char fileresprobmorprev[FILENAMELENGTH];
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    if(popbased==1){
         fprintf(ficrespl,"\n#******");      if(mobilav!=0)
         for(j=1;j<=cptcoveff;j++)        strcpy(digitp,"-populbased-mobilav-");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficrespl,"******\n");    }
            else 
         for (age=agebase; age<=agelim; age++){      strcpy(digitp,"-stablbased-");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    if (mobilav!=0) {
           for(i=1; i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl," %.5f", prlim[i][i]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespl,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   printf("Computing pij: result on file '%s' \n", filerespij);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if (stepm<=24) stepsize=2;    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   agelim=AGESUP;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   k=0;      fprintf(ficresprobmorprev," p.%-d SE",j);
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       k=k+1;    }  
         fprintf(ficrespij,"\n#****** ");    fprintf(ficresprobmorprev,"\n");
         for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\n# Routine varevsij");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrespij,"******\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          /*   } */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++)
           fprintf(ficrespij,"# Age");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           for(i=1; i<=nlstate;i++)    fprintf(ficresvij,"\n");
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    xp=vector(1,npar);
           fprintf(ficrespij,"\n");    dnewm=matrix(1,nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    doldm=matrix(1,nlstate,1,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             for(i=1; i<=nlstate;i++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             fprintf(ficrespij,"\n");    gpp=vector(nlstate+1,nlstate+ndeath);
           }    gmp=vector(nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrespij,"\n");    
         }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   fclose(ficrespij);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*---------- Health expectancies and variances ------------*/       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   strcpy(filerest,"t");       Look at hpijx to understand the reason of that which relies in memory size
   strcat(filerest,fileres);       and note for a fixed period like k years */
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
   strcpy(filerese,"e");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(filerese,fileres);    agelim = AGESUP;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  strcpy(fileresv,"v");      gp=matrix(0,nhstepm,1,nlstate);
   strcat(fileresv,fileres);      gm=matrix(0,nhstepm,1,nlstate);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       k=k+1;  
       fprintf(ficrest,"\n#****** ");        if (popbased==1) {
       for(j=1;j<=cptcoveff;j++)          if(mobilav ==0){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"******\n");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       fprintf(ficreseij,"\n#****** ");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficreseij,"******\n");        }
     
       fprintf(ficresvij,"\n#****** ");        for(j=1; j<= nlstate; j++){
       for(j=1;j<=cptcoveff;j++)          for(h=0; h<=nhstepm; h++){
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficresvij,"******\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        /* This for computing probability of death (h=1 means
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);             computed over hstepm matrices product = hstepm*stepm months) 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           as a weighted average of prlim.
       oldm=oldms;savm=savms;        */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }    
       fprintf(ficrest,"\n");        /* end probability of death */
          
       hf=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       if (stepm >= YEARM) hf=stepm/YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       epj=vector(1,nlstate+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(age=bage; age <=fage ;age++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   
         fprintf(ficrest," %.0f",age);        if (popbased==1) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          if(mobilav ==0){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            for(i=1; i<=nlstate;i++)
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           epj[nlstate+1] +=epj[j];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
         for(i=1, vepp=0.;i <=nlstate;i++)          }
           for(j=1;j <=nlstate;j++)        }
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for(j=1; j<= nlstate; j++){
         for(j=1;j <=nlstate;j++){          for(h=0; h<=nhstepm; h++){
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficrest,"\n");          }
       }        }
     }        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
  fclose(ficreseij);        */
  fclose(ficresvij);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficrest);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fclose(ficpar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   free_vector(epj,1,nlstate+1);        }    
   /*  scanf("%d ",i); */        /* end probability of death */
   
   /*------- Variance limit prevalence------*/          for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
 strcpy(fileresvpl,"vpl");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcat(fileresvpl,fileres);          }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     exit(0);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
       } /* End theta */
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;      for(h=0; h<=nhstepm; h++) /* veij */
      fprintf(ficresvpl,"\n#****** ");        for(j=1; j<=nlstate;j++)
      for(j=1;j<=cptcoveff;j++)          for(theta=1; theta <=npar; theta++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            trgradg[h][j][theta]=gradg[h][theta][j];
      fprintf(ficresvpl,"******\n");  
            for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(theta=1; theta <=npar; theta++)
      oldm=oldms;savm=savms;          trgradgp[j][theta]=gradgp[theta][j];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    
    }  
  }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   fclose(ficresvpl);        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
        /* pptj */
   free_matrix(matcov,1,npar,1,npar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   free_vector(delti,1,npar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   printf("End of Imach\n");      /* end ppptj */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /*printf("Total time was %d uSec.\n", total_usecs);*/   
   /*------ End -----------*/      if (popbased==1) {
         if(mobilav ==0){
  end:          for(i=1; i<=nlstate;i++)
 #ifdef windows            prlim[i][i]=probs[(int)age][i][ij];
  chdir(pathcd);        }else{ /* mobilav */ 
 #endif          for(i=1; i<=nlstate;i++)
  system("wgnuplot graph.plt");            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
 #ifdef windows      }
   while (z[0] != 'q') {               
     chdir(pathcd);      /* This for computing probability of death (h=1 means
     printf("\nType e to edit output files, c to start again, and q for exiting: ");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     scanf("%s",z);         as a weighted average of prlim.
     if (z[0] == 'c') system("./imach");      */
     else if (z[0] == 'e') {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       chdir(path);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       system("index.htm");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
     else if (z[0] == 'q') exit(0);      /* end probability of death */
   }  
 #endif      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.7  
changed lines
  Added in v.1.101


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>