Diff for /imach/src/imach.c between versions 1.7 and 1.59

version 1.7, 2001/05/02 17:50:24 version 1.59, 2002/11/18 23:01:13
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month or quarter trimester,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is model as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80    **********************************************************************/
 /*#define DEBUG*/   
 #define windows  #include <math.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <stdio.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <stdlib.h>
   #include <unistd.h>
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define NINTERVMAX 8  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define FILENAMELENGTH 80
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*#define DEBUG*/
 #define NCOVMAX 8 /* Maximum number of covariates */  #define windows
 #define MAXN 20000  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define YEARM 12. /* Number of months per year */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define AGESUP 130  
 #define AGEBASE 40  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int nvar;  #define NINTERVMAX 8
 static int cptcov;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int cptcovn, cptcovage=0, cptcoveff=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int npar=NPARMAX;  #define NCOVMAX 8 /* Maximum number of covariates */
 int nlstate=2; /* Number of live states */  #define MAXN 20000
 int ndeath=1; /* Number of dead states */  #define YEARM 12. /* Number of months per year */
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define AGESUP 130
   #define AGEBASE 40
 int *wav; /* Number of waves for this individuual 0 is possible */  #ifdef windows
 int maxwav; /* Maxim number of waves */  #define DIRSEPARATOR '\\'
 int mle, weightopt;  #define ODIRSEPARATOR '/'
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #else
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define DIRSEPARATOR '/'
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define ODIRSEPARATOR '\\'
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #endif
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;  char version[80]="Imach version 0.9, November 2002, INED-EUROREVES ";
 FILE *ficreseij;  int erreur; /* Error number */
   char filerese[FILENAMELENGTH];  int nvar;
  FILE  *ficresvij;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   char fileresv[FILENAMELENGTH];  int npar=NPARMAX;
  FILE  *ficresvpl;  int nlstate=2; /* Number of live states */
   char fileresvpl[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define NR_END 1  int popbased=0;
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 #define NRANSI  int jmin, jmax; /* min, max spacing between 2 waves */
 #define ITMAX 200  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define TOL 2.0e-4  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define CGOLD 0.3819660             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define ZEPS 1.0e-10  double jmean; /* Mean space between 2 waves */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define GOLD 1.618034  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define GLIMIT 100.0  FILE *ficlog;
 #define TINY 1.0e-20  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 static double maxarg1,maxarg2;  FILE *fichtm; /* Html File */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *ficreseij;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char filerese[FILENAMELENGTH];
    FILE  *ficresvij;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char fileresv[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 static double sqrarg;  char title[MAXLINE];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
 int imx;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int stepm;  char filelog[FILENAMELENGTH]; /* Log file */
 /* Stepm, step in month: minimum step interpolation*/  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 int m,nb;  char popfile[FILENAMELENGTH];
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 double **pmmij;  
   #define NR_END 1
 double *weight;  #define FREE_ARG char*
 int **s; /* Status */  #define FTOL 1.0e-10
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NRANSI 
   #define ITMAX 200 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define TOL 2.0e-4 
   
 /**************** split *************************/  #define CGOLD 0.3819660 
 static  int split( char *path, char *dirc, char *name )  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #define GOLD 1.618034 
   #define GLIMIT 100.0 
    l1 = strlen( path );                 /* length of path */  #define TINY 1.0e-20 
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */  static double maxarg1,maxarg2;
    if ( s == NULL ) {                   /* no directory, so use current */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #if     defined(__bsd__)                /* get current working directory */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       extern char       *getwd( );    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       if ( getwd( dirc ) == NULL ) {  #define rint(a) floor(a+0.5)
 #else  
       extern char       *getcwd( );  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  
          return( GLOCK_ERROR_GETCWD );  int imx; 
       }  int stepm;
       strcpy( name, path );             /* we've got it */  /* Stepm, step in month: minimum step interpolation*/
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  int estepm;
       l2 = strlen( s );                 /* length of filename */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  int m,nb;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
       dirc[l1-l2] = 0;                  /* add zero */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    }  double **pmmij, ***probs;
    l1 = strlen( dirc );                 /* length of directory */  double dateintmean=0;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /******************************************/  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void replace(char *s, char*t)  double ftolhess; /* Tolerance for computing hessian */
 {  
   int i;  /**************** split *************************/
   int lg=20;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   i=0;  {
   lg=strlen(t);    char  *ss;                            /* pointer */
   for(i=0; i<= lg; i++) {    int   l1, l2;                         /* length counters */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 int nbocc(char *s, char occ)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i,j=0;  #if     defined(__bsd__)                /* get current working directory */
   int lg=20;      extern char *getwd( );
   i=0;  
   lg=strlen(s);      if ( getwd( dirc ) == NULL ) {
   for(i=0; i<= lg; i++) {  #else
   if  (s[i] == occ ) j++;      extern char *getcwd( );
   }  
   return j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }  #endif
         return( GLOCK_ERROR_GETCWD );
 void cutv(char *u,char *v, char*t, char occ)      }
 {      strcpy( name, path );               /* we've got it */
   int i,lg,j,p=0;    } else {                              /* strip direcotry from path */
   i=0;      ss++;                               /* after this, the filename */
   for(j=0; j<=strlen(t)-1; j++) {      l2 = strlen( ss );                  /* length of filename */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   lg=strlen(t);      dirc[l1-l2] = 0;                    /* add zero */
   for(j=0; j<p; j++) {    }
     (u[j] = t[j]);    l1 = strlen( dirc );                  /* length of directory */
   }  #ifdef windows
      u[p]='\0';    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
    for(j=0; j<= lg; j++) {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
     if (j>=(p+1))(v[j-p-1] = t[j]);  #endif
   }    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /********************** nrerror ********************/    l1= strlen( name);
     l2= strlen(ss)+1;
 void nrerror(char error_text[])    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   fprintf(stderr,"ERREUR ...\n");    return( 0 );                          /* we're done */
   fprintf(stderr,"%s\n",error_text);  }
   exit(1);  
 }  
 /*********************** vector *******************/  /******************************************/
 double *vector(int nl, int nh)  
 {  void replace(char *s, char*t)
   double *v;  {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    int i;
   if (!v) nrerror("allocation failure in vector");    int lg=20;
   return v-nl+NR_END;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /************************ free vector ******************/      (s[i] = t[i]);
 void free_vector(double*v, int nl, int nh)      if (t[i]== '\\') s[i]='/';
 {    }
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   int nbocc(char *s, char occ)
 /************************ivector *******************************/  {
 int *ivector(long nl,long nh)    int i,j=0;
 {    int lg=20;
   int *v;    i=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    lg=strlen(s);
   if (!v) nrerror("allocation failure in ivector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /******************free ivector **************************/  }
 void free_ivector(int *v, long nl, long nh)  
 {  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /******************* imatrix *******************************/       gives u="abcedf" and v="ghi2j" */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    int i,lg,j,p=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    i=0;
 {    for(j=0; j<=strlen(t)-1; j++) {
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   int **m;    }
    
   /* allocate pointers to rows */    lg=strlen(t);
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    for(j=0; j<p; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      (u[j] = t[j]);
   m += NR_END;    }
   m -= nrl;       u[p]='\0';
    
       for(j=0; j<= lg; j++) {
   /* allocate rows and set pointers to them */      if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /********************** nrerror ********************/
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  void nrerror(char error_text[])
    {
   /* return pointer to array of pointers to rows */    fprintf(stderr,"ERREUR ...\n");
   return m;    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /****************** free_imatrix *************************/  /*********************** vector *******************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  double *vector(int nl, int nh)
       int **m;  {
       long nch,ncl,nrh,nrl;    double *v;
      /* free an int matrix allocated by imatrix() */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   /************************ free vector ******************/
 /******************* matrix *******************************/  void free_vector(double*v, int nl, int nh)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   /************************ivector *******************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************************free matrix ************************/  /******************* imatrix *******************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  { 
   free((FREE_ARG)(m+nrl-NR_END));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /******************* ma3x *******************************/    /* allocate pointers to rows */ 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m += NR_END; 
   double ***m;    m -= nrl; 
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    /* allocate rows and set pointers to them */ 
   m += NR_END;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m -= nrl;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl] -= ncl; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m[nrl] -= ncl;    
     /* return pointer to array of pointers to rows */ 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return m; 
   } 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /****************** free_imatrix *************************/
   m[nrl][ncl] += NR_END;  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl][ncl] -= nll;        int **m;
   for (j=ncl+1; j<=nch; j++)        long nch,ncl,nrh,nrl; 
     m[nrl][j]=m[nrl][j-1]+nlay;       /* free an int matrix allocated by imatrix() */ 
    { 
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    free((FREE_ARG) (m+nrl-NR_END)); 
     for (j=ncl+1; j<=nch; j++)  } 
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************* matrix *******************************/
   return m;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************************free ma3x ************************/    double **m;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END;
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 extern int ncom;    m[nrl] += NR_END;
 extern double *pcom,*xicom;    m[nrl] -= ncl;
 extern double (*nrfunc)(double []);  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double f1dim(double x)    return m;
 {  }
   int j;  
   double f;  /*************************free matrix ************************/
   double *xt;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
   xt=vector(1,ncom);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    free((FREE_ARG)(m+nrl-NR_END));
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /******************* ma3x *******************************/
 }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 /*****************brent *************************/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    double ***m;
 {  
   int iter;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double a,b,d,etemp;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fu,fv,fw,fx;    m += NR_END;
   double ftemp;    m -= nrl;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   a=(ax < cx ? ax : cx);    m[nrl] += NR_END;
   b=(ax > cx ? ax : cx);    m[nrl] -= ncl;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl][ncl] += NR_END;
     printf(".");fflush(stdout);    m[nrl][ncl] -= nll;
 #ifdef DEBUG    for (j=ncl+1; j<=nch; j++) 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      m[nrl][j]=m[nrl][j-1]+nlay;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    
 #endif    for (i=nrl+1; i<=nrh; i++) {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       *xmin=x;      for (j=ncl+1; j<=nch; j++) 
       return fx;        m[i][j]=m[i][j-1]+nlay;
     }    }
     ftemp=fu;    return m;
     if (fabs(e) > tol1) {  }
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /*************************free ma3x ************************/
       p=(x-v)*q-(x-w)*r;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       q=fabs(q);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       etemp=e;    free((FREE_ARG)(m+nrl-NR_END));
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /***************** f1dim *************************/
       else {  extern int ncom; 
         d=p/q;  extern double *pcom,*xicom;
         u=x+d;  extern double (*nrfunc)(double []); 
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);  double f1dim(double x) 
       }  { 
     } else {    int j; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double f;
     }    double *xt; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);    xt=vector(1,ncom); 
     if (fu <= fx) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       if (u >= x) a=x; else b=x;    f=(*nrfunc)(xt); 
       SHFT(v,w,x,u)    free_vector(xt,1,ncom); 
         SHFT(fv,fw,fx,fu)    return f; 
         } else {  } 
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /*****************brent *************************/
             v=w;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             w=u;  { 
             fv=fw;    int iter; 
             fw=fu;    double a,b,d,etemp;
           } else if (fu <= fv || v == x || v == w) {    double fu,fv,fw,fx;
             v=u;    double ftemp;
             fv=fu;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           }    double e=0.0; 
         }   
   }    a=(ax < cx ? ax : cx); 
   nrerror("Too many iterations in brent");    b=(ax > cx ? ax : cx); 
   *xmin=x;    x=w=v=bx; 
   return fx;    fw=fv=fx=(*f)(x); 
 }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /****************** mnbrak ***********************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(".");fflush(stdout);
             double (*func)(double))      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   double ulim,u,r,q, dum;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fu;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   *fa=(*func)(*ax);  #endif
   *fb=(*func)(*bx);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   if (*fb > *fa) {        *xmin=x; 
     SHFT(dum,*ax,*bx,dum)        return fx; 
       SHFT(dum,*fb,*fa,dum)      } 
       }      ftemp=fu;
   *cx=(*bx)+GOLD*(*bx-*ax);      if (fabs(e) > tol1) { 
   *fc=(*func)(*cx);        r=(x-w)*(fx-fv); 
   while (*fb > *fc) {        q=(x-v)*(fx-fw); 
     r=(*bx-*ax)*(*fb-*fc);        p=(x-v)*q-(x-w)*r; 
     q=(*bx-*cx)*(*fb-*fa);        q=2.0*(q-r); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        if (q > 0.0) p = -p; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        q=fabs(q); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        etemp=e; 
     if ((*bx-u)*(u-*cx) > 0.0) {        e=d; 
       fu=(*func)(u);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     } else if ((*cx-u)*(u-ulim) > 0.0) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);        else { 
       if (fu < *fc) {          d=p/q; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          u=x+d; 
           SHFT(*fb,*fc,fu,(*func)(u))          if (u-a < tol2 || b-u < tol2) 
           }            d=SIGN(tol1,xm-x); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        } 
       u=ulim;      } else { 
       fu=(*func)(u);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else {      } 
       u=(*cx)+GOLD*(*cx-*bx);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*func)(u);      fu=(*f)(u); 
     }      if (fu <= fx) { 
     SHFT(*ax,*bx,*cx,u)        if (u >= x) a=x; else b=x; 
       SHFT(*fa,*fb,*fc,fu)        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
 /*************** linmin ************************/            if (fu <= fw || w == x) { 
               v=w; 
 int ncom;              w=u; 
 double *pcom,*xicom;              fv=fw; 
 double (*nrfunc)(double []);              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              v=u; 
 {              fv=fu; 
   double brent(double ax, double bx, double cx,            } 
                double (*f)(double), double tol, double *xmin);          } 
   double f1dim(double x);    } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    nrerror("Too many iterations in brent"); 
               double *fc, double (*func)(double));    *xmin=x; 
   int j;    return fx; 
   double xx,xmin,bx,ax;  } 
   double fx,fb,fa;  
    /****************** mnbrak ***********************/
   ncom=n;  
   pcom=vector(1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   xicom=vector(1,n);              double (*func)(double)) 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    double ulim,u,r,q, dum;
     pcom[j]=p[j];    double fu; 
     xicom[j]=xi[j];   
   }    *fa=(*func)(*ax); 
   ax=0.0;    *fb=(*func)(*bx); 
   xx=1.0;    if (*fb > *fa) { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      SHFT(dum,*ax,*bx,dum) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        SHFT(dum,*fb,*fa,dum) 
 #ifdef DEBUG        } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *cx=(*bx)+GOLD*(*bx-*ax); 
 #endif    *fc=(*func)(*cx); 
   for (j=1;j<=n;j++) {    while (*fb > *fc) { 
     xi[j] *= xmin;      r=(*bx-*ax)*(*fb-*fc); 
     p[j] += xi[j];      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   free_vector(xicom,1,n);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_vector(pcom,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 /*************** powell ************************/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        fu=(*func)(u); 
             double (*func)(double []))        if (fu < *fc) { 
 {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   void linmin(double p[], double xi[], int n, double *fret,            SHFT(*fb,*fc,fu,(*func)(u)) 
               double (*func)(double []));            } 
   int i,ibig,j;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double del,t,*pt,*ptt,*xit;        u=ulim; 
   double fp,fptt;        fu=(*func)(u); 
   double *xits;      } else { 
   pt=vector(1,n);        u=(*cx)+GOLD*(*cx-*bx); 
   ptt=vector(1,n);        fu=(*func)(u); 
   xit=vector(1,n);      } 
   xits=vector(1,n);      SHFT(*ax,*bx,*cx,u) 
   *fret=(*func)(p);        SHFT(*fa,*fb,*fc,fu) 
   for (j=1;j<=n;j++) pt[j]=p[j];        } 
   for (*iter=1;;++(*iter)) {  } 
     fp=(*fret);  
     ibig=0;  /*************** linmin ************************/
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int ncom; 
     for (i=1;i<=n;i++)  double *pcom,*xicom;
       printf(" %d %.12f",i, p[i]);  double (*nrfunc)(double []); 
     printf("\n");   
     for (i=1;i<=n;i++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { 
       fptt=(*fret);    double brent(double ax, double bx, double cx, 
 #ifdef DEBUG                 double (*f)(double), double tol, double *xmin); 
       printf("fret=%lf \n",*fret);    double f1dim(double x); 
 #endif    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       printf("%d",i);fflush(stdout);                double *fc, double (*func)(double)); 
       linmin(p,xit,n,fret,func);    int j; 
       if (fabs(fptt-(*fret)) > del) {    double xx,xmin,bx,ax; 
         del=fabs(fptt-(*fret));    double fx,fb,fa;
         ibig=i;   
       }    ncom=n; 
 #ifdef DEBUG    pcom=vector(1,n); 
       printf("%d %.12e",i,(*fret));    xicom=vector(1,n); 
       for (j=1;j<=n;j++) {    nrfunc=func; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (j=1;j<=n;j++) { 
         printf(" x(%d)=%.12e",j,xit[j]);      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
       for(j=1;j<=n;j++)    } 
         printf(" p=%.12e",p[j]);    ax=0.0; 
       printf("\n");    xx=1.0; 
 #endif    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #ifdef DEBUG
 #ifdef DEBUG    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       int k[2],l;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       k[0]=1;  #endif
       k[1]=-1;    for (j=1;j<=n;j++) { 
       printf("Max: %.12e",(*func)(p));      xi[j] *= xmin; 
       for (j=1;j<=n;j++)      p[j] += xi[j]; 
         printf(" %.12e",p[j]);    } 
       printf("\n");    free_vector(xicom,1,n); 
       for(l=0;l<=1;l++) {    free_vector(pcom,1,n); 
         for (j=1;j<=n;j++) {  } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));              double (*func)(double [])) 
       }  { 
 #endif    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
     int i,ibig,j; 
       free_vector(xit,1,n);    double del,t,*pt,*ptt,*xit;
       free_vector(xits,1,n);    double fp,fptt;
       free_vector(ptt,1,n);    double *xits;
       free_vector(pt,1,n);    pt=vector(1,n); 
       return;    ptt=vector(1,n); 
     }    xit=vector(1,n); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    xits=vector(1,n); 
     for (j=1;j<=n;j++) {    *fret=(*func)(p); 
       ptt[j]=2.0*p[j]-pt[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
       xit[j]=p[j]-pt[j];    for (*iter=1;;++(*iter)) { 
       pt[j]=p[j];      fp=(*fret); 
     }      ibig=0; 
     fptt=(*func)(ptt);      del=0.0; 
     if (fptt < fp) {      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       if (t < 0.0) {      for (i=1;i<=n;i++) 
         linmin(p,xit,n,fret,func);        printf(" %d %.12f",i, p[i]);
         for (j=1;j<=n;j++) {      fprintf(ficlog," %d %.12f",i, p[i]);
           xi[j][ibig]=xi[j][n];      printf("\n");
           xi[j][n]=xit[j];      fprintf(ficlog,"\n");
         }      for (i=1;i<=n;i++) { 
 #ifdef DEBUG        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fptt=(*fret); 
         for(j=1;j<=n;j++)  #ifdef DEBUG
           printf(" %.12e",xit[j]);        printf("fret=%lf \n",*fret);
         printf("\n");        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       }        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /**** Prevalence limit ****************/          ibig=i; 
         } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        fprintf(ficlog,"%d %.12e",i,(*fret));
      matrix by transitions matrix until convergence is reached */        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int i, ii,j,k;          printf(" x(%d)=%.12e",j,xit[j]);
   double min, max, maxmin, maxmax,sumnew=0.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **matprod2();        }
   double **out, cov[NCOVMAX], **pmij();        for(j=1;j<=n;j++) {
   double **newm;          printf(" p=%.12e",p[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */          fprintf(ficlog," p=%.12e",p[j]);
         }
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf("\n");
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"\n");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
     }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    cov[1]=1.;  #ifdef DEBUG
          int k[2],l;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        k[0]=1;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        k[1]=-1;
     newm=savm;        printf("Max: %.12e",(*func)(p));
     /* Covariates have to be included here again */        fprintf(ficlog,"Max: %.12e",(*func)(p));
      cov[2]=agefin;        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
       for (k=1; k<=cptcovn;k++) {          fprintf(ficlog," %.12e",p[j]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        printf("\n");
       }        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)        for(l=0;l<=1;l++) {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovprod;k++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #endif
   
     savm=oldm;  
     oldm=newm;        free_vector(xit,1,n); 
     maxmax=0.;        free_vector(xits,1,n); 
     for(j=1;j<=nlstate;j++){        free_vector(ptt,1,n); 
       min=1.;        free_vector(pt,1,n); 
       max=0.;        return; 
       for(i=1; i<=nlstate; i++) {      } 
         sumnew=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      for (j=1;j<=n;j++) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        ptt[j]=2.0*p[j]-pt[j]; 
         max=FMAX(max,prlim[i][j]);        xit[j]=p[j]-pt[j]; 
         min=FMIN(min,prlim[i][j]);        pt[j]=p[j]; 
       }      } 
       maxmin=max-min;      fptt=(*func)(ptt); 
       maxmax=FMAX(maxmax,maxmin);      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     if(maxmax < ftolpl){        if (t < 0.0) { 
       return prlim;          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
 /*************** transition probabilities **********/  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   double s1, s2;            printf(" %.12e",xit[j]);
   /*double t34;*/            fprintf(ficlog," %.12e",xit[j]);
   int i,j,j1, nc, ii, jj;          }
           printf("\n");
     for(i=1; i<= nlstate; i++){          fprintf(ficlog,"\n");
     for(j=1; j<i;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         /*s2 += param[i][j][nc]*cov[nc];*/      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /**** Prevalence limit (stable prevalence)  ****************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       matrix by transitions matrix until convergence is reached */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    int i, ii,j,k;
       ps[i][j]=s2;    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
   for(i=1; i<= nlstate; i++){    double **newm;
      s1=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=1;j<=nlstate+ndeath;j++){
       s1+=exp(ps[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ps[i][i]=1./(s1+1.);      }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];     cov[1]=1.;
     for(j=i+1; j<=nlstate+ndeath; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   } /* end i */      newm=savm;
       /* Covariates have to be included here again */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       cov[2]=agefin;
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;        for (k=1; k<=cptcovn;k++) {
       ps[ii][ii]=1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        for (k=1; k<=cptcovprod;k++)
     for(jj=1; jj<= nlstate+ndeath; jj++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      printf("%lf ",ps[ii][jj]);  
    }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     printf("\n ");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     printf("\n ");printf("%lf ",cov[2]);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      savm=oldm;
   goto end;*/      oldm=newm;
     return ps;      maxmax=0.;
 }      for(j=1;j<=nlstate;j++){
         min=1.;
 /**************** Product of 2 matrices ******************/        max=0.;
         for(i=1; i<=nlstate; i++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          prlim[i][j]= newm[i][j]/(1-sumnew);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          max=FMAX(max,prlim[i][j]);
   /* in, b, out are matrice of pointers which should have been initialized          min=FMIN(min,prlim[i][j]);
      before: only the contents of out is modified. The function returns        }
      a pointer to pointers identical to out */        maxmin=max-min;
   long i, j, k;        maxmax=FMAX(maxmax,maxmin);
   for(i=nrl; i<= nrh; i++)      }
     for(k=ncolol; k<=ncoloh; k++)      if(maxmax < ftolpl){
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        return prlim;
         out[i][k] +=in[i][j]*b[j][k];      }
     }
   return out;  }
 }  
   /*************** transition probabilities ***************/ 
   
 /************* Higher Matrix Product ***************/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double s1, s2;
 {    /*double t34;*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int i,j,j1, nc, ii, jj;
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for(i=1; i<= nlstate; i++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      for(j=1; j<i;j++){
      (typically every 2 years instead of every month which is too big).        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      Model is determined by parameters x and covariates have to be          /*s2 += param[i][j][nc]*cov[nc];*/
      included manually here.          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
      */        }
         ps[i][j]=s2;
   int i, j, d, h, k;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **out, cov[NCOVMAX];      }
   double **newm;      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /* Hstepm could be zero and should return the unit matrix */          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=nlstate+ndeath;i++)          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        ps[i][j]=s2;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      }
     }    }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /*ps[3][2]=1;*/
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){    for(i=1; i<= nlstate; i++){
       newm=savm;       s1=0;
       /* Covariates have to be included here again */      for(j=1; j<i; j++)
       cov[1]=1.;        s1+=exp(ps[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        s1+=exp(ps[i][j]);
 for (k=1; k<=cptcovage;k++)      ps[i][i]=1./(s1+1.);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(j=1; j<i; j++)
    for (k=1; k<=cptcovprod;k++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    } /* end i */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for(jj=1; jj<= nlstate+ndeath; jj++){
       savm=oldm;        ps[ii][jj]=0;
       oldm=newm;        ps[ii][ii]=1;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)    }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
          */      for(jj=1; jj<= nlstate+ndeath; jj++){
       }       printf("%lf ",ps[ii][jj]);
   } /* end h */     }
   return po;      printf("\n ");
 }      }
       printf("\n ");printf("%lf ",cov[2]);*/
   /*
 /*************** log-likelihood *************/    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 double func( double *x)    goto end;*/
 {      return ps;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /**************** Product of 2 matrices ******************/
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   long ipmx;  {
   /*extern weight */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* We are differentiating ll according to initial status */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* in, b, out are matrice of pointers which should have been initialized 
   /*for(i=1;i<imx;i++)       before: only the contents of out is modified. The function returns
 printf(" %d\n",s[4][i]);       a pointer to pointers identical to out */
   */    long i, j, k;
   cov[1]=1.;    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          out[i][k] +=in[i][j]*b[j][k];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
        for(mi=1; mi<= wav[i]-1; mi++){    return out;
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             for(d=0; d<dh[mi][i]; d++){  
               newm=savm;  /************* Higher Matrix Product ***************/
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
               for (kk=1; kk<=cptcovage;kk++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
                  /*printf("%d %d",kk,Tage[kk]);*/    /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
               }       duration (i.e. until
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/       age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
               /*cov[3]=pow(cov[2],2)/1000.;*/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big).
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       Model is determined by parameters x and covariates have to be 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       included manually here. 
           savm=oldm;  
           oldm=newm;       */
   
     int i, j, d, h, k;
       } /* end mult */    double **out, cov[NCOVMAX];
        double **newm;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Hstepm could be zero and should return the unit matrix */
       ipmx +=1;    for (i=1;i<=nlstate+ndeath;i++)
       sw += weight[i];      for (j=1;j<=nlstate+ndeath;j++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     } /* end of wave */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   } /* end of individual */      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(h=1; h <=nhstepm; h++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for(d=1; d <=hstepm; d++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        newm=savm;
   return -l;        /* Covariates have to be included here again */
 }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*********** Maximum Likelihood Estimation ***************/        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,j, iter;  
   double **xi,*delti;  
   double fret;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   xi=matrix(1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       xi[i][j]=(i==j ? 1.0 : 0.0);        savm=oldm;
   printf("Powell\n");        oldm=newm;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       for(i=1; i<=nlstate+ndeath; i++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for(j=1;j<=nlstate+ndeath;j++) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 }           */
         }
 /**** Computes Hessian and covariance matrix ***/    } /* end h */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return po;
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  
   int i, j,jk;  /*************** log-likelihood *************/
   int *indx;  double func( double *x)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    int i, ii, j, k, mi, d, kk;
   double hessij(double p[], double delti[], int i, int j);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double **out;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     int s1, s2;
   hess=matrix(1,npar,1,npar);    double bbh;
     long ipmx;
   printf("\nCalculation of the hessian matrix. Wait...\n");    /*extern weight */
   for (i=1;i<=npar;i++){    /* We are differentiating ll according to initial status */
     printf("%d",i);fflush(stdout);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     hess[i][i]=hessii(p,ftolhess,i,delti);    /*for(i=1;i<imx;i++) 
     /*printf(" %f ",p[i]);*/      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       if (j>i) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(".%d%d",i,j);fflush(stdout);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         hess[i][j]=hessij(p,delti,i,j);      for(mi=1; mi<= wav[i]-1; mi++){
         hess[j][i]=hess[i][j];        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\n");          }
         for(d=0; d<dh[mi][i]; d++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          newm=savm;
            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   a=matrix(1,npar,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
   y=matrix(1,npar,1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   x=vector(1,npar);          }
   indx=ivector(1,npar);          
   for (i=1;i<=npar;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   ludcmp(a,npar,indx,&pd);          savm=oldm;
           oldm=newm;
   for (j=1;j<=npar;j++) {          
     for (i=1;i<=npar;i++) x[i]=0;          
     x[j]=1;        } /* end mult */
     lubksb(a,npar,indx,x);        
     for (i=1;i<=npar;i++){        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       matcov[i][j]=x[i];        /* But now since version 0.9 we anticipate for bias and large stepm.
     }         * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }         * (in months) between two waves is not a multiple of stepm, we rounded to 
          * the nearest (and in case of equal distance, to the lowest) interval but now
   printf("\n#Hessian matrix#\n");         * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=npar;i++) {         * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=1;j<=npar;j++) {         * probability in order to take into account the bias as a fraction of the way
       printf("%.3e ",hess[i][j]);         * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }         * -stepm/2 to stepm/2 .
     printf("\n");         * For stepm=1 the results are the same as for previous versions of Imach.
   }         * For stepm > 1 the results are less biased than in previous versions. 
          */
   /* Recompute Inverse */        s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++)        s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        bbh=(double)bh[mi][i]/(double)stepm;
   ludcmp(a,npar,indx,&pd);        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/
   /*  printf("\n#Hessian matrix recomputed#\n");        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         /*if(lli ==000.0)*/
   for (j=1;j<=npar;j++) {        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=1;i<=npar;i++) x[i]=0;        ipmx +=1;
     x[j]=1;        sw += weight[i];
     lubksb(a,npar,indx,x);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1;i<=npar;i++){      } /* end of wave */
       y[i][j]=x[i];    } /* end of individual */
       printf("%.3e ",y[i][j]);  
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     printf("\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   */    return -l;
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /*********** Maximum Likelihood Estimation ***************/
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     int i,j, iter;
 }    double **xi,*delti;
     double fret;
 /*************** hessian matrix ****************/    xi=matrix(1,npar,1,npar);
 double hessii( double x[], double delta, int theta, double delti[])    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++)
   int i;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int l=1, lmax=20;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double k1,k2;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double p2[NPARMAX+1];  
   double res;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double fx;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int k=0,kmax=10;  
   double l1;  }
   
   fx=func(x);  /**** Computes Hessian and covariance matrix ***/
   for (i=1;i<=npar;i++) p2[i]=x[i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for(l=0 ; l <=lmax; l++){  {
     l1=pow(10,l);    double  **a,**y,*x,pd;
     delts=delt;    double **hess;
     for(k=1 ; k <kmax; k=k+1){    int i, j,jk;
       delt = delta*(l1*k);    int *indx;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    double hessii(double p[], double delta, int theta, double delti[]);
       p2[theta]=x[theta]-delt;    double hessij(double p[], double delti[], int i, int j);
       k2=func(p2)-fx;    void lubksb(double **a, int npar, int *indx, double b[]) ;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    void ludcmp(double **a, int npar, int *indx, double *d) ;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          hess=matrix(1,npar,1,npar);
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    printf("\nCalculation of the hessian matrix. Wait...\n");
 #endif    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (i=1;i<=npar;i++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("%d",i);fflush(stdout);
         k=kmax;      fprintf(ficlog,"%d",i);fflush(ficlog);
       }      hess[i][i]=hessii(p,ftolhess,i,delti);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      /*printf(" %f ",p[i]);*/
         k=kmax; l=lmax*10.;      /*printf(" %lf ",hess[i][i]);*/
       }    }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    
         delts=delt;    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   delti[theta]=delts;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   return res;          hess[i][j]=hessij(p,delti,i,j);
            hess[j][i]=hess[i][j];    
 }          /*printf(" %lf ",hess[i][j]);*/
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {    }
   int i;    printf("\n");
   int l=1, l1, lmax=20;    fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int k;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   fx=func(x);    a=matrix(1,npar,1,npar);
   for (k=1; k<=2; k++) {    y=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++) p2[i]=x[i];    x=vector(1,npar);
     p2[thetai]=x[thetai]+delti[thetai]/k;    indx=ivector(1,npar);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=1;i<=npar;i++)
     k1=func(p2)-fx;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (j=1;j<=npar;j++) {
     k2=func(p2)-fx;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;      lubksb(a,npar,indx,x);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1;i<=npar;i++){ 
     k3=func(p2)-fx;        matcov[i][j]=x[i];
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    printf("\n#Hessian matrix#\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    fprintf(ficlog,"\n#Hessian matrix#\n");
 #ifdef DEBUG    for (i=1;i<=npar;i++) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (j=1;j<=npar;j++) { 
 #endif        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
   return res;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /************** Inverse of matrix **************/    }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    /* Recompute Inverse */
   int i,imax,j,k;    for (i=1;i<=npar;i++)
   double big,dum,sum,temp;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double *vv;    ludcmp(a,npar,indx,&pd);
    
   vv=vector(1,n);    /*  printf("\n#Hessian matrix recomputed#\n");
   *d=1.0;  
   for (i=1;i<=n;i++) {    for (j=1;j<=npar;j++) {
     big=0.0;      for (i=1;i<=npar;i++) x[i]=0;
     for (j=1;j<=n;j++)      x[j]=1;
       if ((temp=fabs(a[i][j])) > big) big=temp;      lubksb(a,npar,indx,x);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (i=1;i<=npar;i++){ 
     vv[i]=1.0/big;        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   for (j=1;j<=n;j++) {        fprintf(ficlog,"%.3e ",y[i][j]);
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      printf("\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      fprintf(ficlog,"\n");
       a[i][j]=sum;    }
     }    */
     big=0.0;  
     for (i=j;i<=n;i++) {    free_matrix(a,1,npar,1,npar);
       sum=a[i][j];    free_matrix(y,1,npar,1,npar);
       for (k=1;k<j;k++)    free_vector(x,1,npar);
         sum -= a[i][k]*a[k][j];    free_ivector(indx,1,npar);
       a[i][j]=sum;    free_matrix(hess,1,npar,1,npar);
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  
         imax=i;  }
       }  
     }  /*************** hessian matrix ****************/
     if (j != imax) {  double hessii( double x[], double delta, int theta, double delti[])
       for (k=1;k<=n;k++) {  {
         dum=a[imax][k];    int i;
         a[imax][k]=a[j][k];    int l=1, lmax=20;
         a[j][k]=dum;    double k1,k2;
       }    double p2[NPARMAX+1];
       *d = -(*d);    double res;
       vv[imax]=vv[j];    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
     indx[j]=imax;    int k=0,kmax=10;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double l1;
     if (j != n) {  
       dum=1.0/(a[j][j]);    fx=func(x);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){
   }      l1=pow(10,l);
   free_vector(vv,1,n);  /* Doesn't work */      delts=delt;
 ;      for(k=1 ; k <kmax; k=k+1){
 }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
 void lubksb(double **a, int n, int *indx, double b[])        k1=func(p2)-fx;
 {        p2[theta]=x[theta]-delt;
   int i,ii=0,ip,j;        k2=func(p2)-fx;
   double sum;        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   for (i=1;i<=n;i++) {        
     ip=indx[i];  #ifdef DEBUG
     sum=b[ip];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     b[ip]=b[i];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (ii)  #endif
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     else if (sum) ii=i;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     b[i]=sum;          k=kmax;
   }        }
   for (i=n;i>=1;i--) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     sum=b[i];          k=kmax; l=lmax*10.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   }          delts=delt;
 }        }
       }
 /************ Frequencies ********************/    }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    delti[theta]=delts;
 {  /* Some frequencies */    return res; 
      
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  double hessij( double x[], double delti[], int thetai,int thetaj)
   double pos;  {
   FILE *ficresp;    int i;
   char fileresp[FILENAMELENGTH];    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   pp=vector(1,nlstate);    double p2[NPARMAX+1];
     int k;
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    fx=func(x);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (k=1; k<=2; k++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (i=1;i<=npar;i++) p2[i]=x[i];
     exit(0);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      k1=func(p2)-fx;
   j1=0;    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   j=cptcoveff;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      k2=func(p2)-fx;
     
   for(k1=1; k1<=j;k1++){      p2[thetai]=x[thetai]-delti[thetai]/k;
    for(i1=1; i1<=ncodemax[k1];i1++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        j1++;      k3=func(p2)-fx;
     
         for (i=-1; i<=nlstate+ndeath; i++)        p2[thetai]=x[thetai]-delti[thetai]/k;
          for (jk=-1; jk<=nlstate+ndeath; jk++)        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            for(m=agemin; m <= agemax+3; m++)      k4=func(p2)-fx;
              freq[i][jk][m]=0;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
          #ifdef DEBUG
        for (i=1; i<=imx; i++) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          bool=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          if  (cptcovn>0) {  #endif
            for (z1=1; z1<=cptcoveff; z1++)    }
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;    return res;
          }  }
           if (bool==1) {  
            for(m=firstpass; m<=lastpass-1; m++){  /************** Inverse of matrix **************/
              if(agev[m][i]==0) agev[m][i]=agemax+1;  void ludcmp(double **a, int n, int *indx, double *d) 
              if(agev[m][i]==1) agev[m][i]=agemax+2;  { 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i,imax,j,k; 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double big,dum,sum,temp; 
            }    double *vv; 
          }   
        }    vv=vector(1,n); 
         if  (cptcovn>0) {    *d=1.0; 
          fprintf(ficresp, "\n#********** Variable ");    for (i=1;i<=n;i++) { 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      big=0.0; 
        }      for (j=1;j<=n;j++) 
        fprintf(ficresp, "**********\n#");        if ((temp=fabs(a[i][j])) > big) big=temp; 
        for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      vv[i]=1.0/big; 
        fprintf(ficresp, "\n");    } 
            for (j=1;j<=n;j++) { 
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1;i<j;i++) { 
     if(i==(int)agemax+3)        sum=a[i][j]; 
       printf("Total");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     else        a[i][j]=sum; 
       printf("Age %d", i);      } 
     for(jk=1; jk <=nlstate ; jk++){      big=0.0; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=j;i<=n;i++) { 
         pp[jk] += freq[jk][m][i];        sum=a[i][j]; 
     }        for (k=1;k<j;k++) 
     for(jk=1; jk <=nlstate ; jk++){          sum -= a[i][k]*a[k][j]; 
       for(m=-1, pos=0; m <=0 ; m++)        a[i][j]=sum; 
         pos += freq[jk][m][i];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       if(pp[jk]>=1.e-10)          big=dum; 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          imax=i; 
       else        } 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      } 
     }      if (j != imax) { 
     for(jk=1; jk <=nlstate ; jk++){        for (k=1;k<=n;k++) { 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          dum=a[imax][k]; 
         pp[jk] += freq[jk][m][i];          a[imax][k]=a[j][k]; 
     }          a[j][k]=dum; 
     for(jk=1,pos=0; jk <=nlstate ; jk++)        } 
       pos += pp[jk];        *d = -(*d); 
     for(jk=1; jk <=nlstate ; jk++){        vv[imax]=vv[j]; 
       if(pos>=1.e-5)      } 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      indx[j]=imax; 
       else      if (a[j][j] == 0.0) a[j][j]=TINY; 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      if (j != n) { 
       if( i <= (int) agemax){        dum=1.0/(a[j][j]); 
         if(pos>=1.e-5)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } 
       else    } 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
     }  } 
     for(jk=-1; jk <=nlstate+ndeath; jk++)  
       for(m=-1; m <=nlstate+ndeath; m++)  void lubksb(double **a, int n, int *indx, double b[]) 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  { 
     if(i <= (int) agemax)    int i,ii=0,ip,j; 
       fprintf(ficresp,"\n");    double sum; 
     printf("\n");   
     }    for (i=1;i<=n;i++) { 
     }      ip=indx[i]; 
  }      sum=b[ip]; 
        b[ip]=b[i]; 
   fclose(ficresp);      if (ii) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   free_vector(pp,1,nlstate);      else if (sum) ii=i; 
       b[i]=sum; 
 }  /* End of Freq */    } 
     for (i=n;i>=1;i--) { 
 /************* Waves Concatenation ***************/      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      b[i]=sum/a[i][i]; 
 {    } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  } 
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /************ Frequencies ********************/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
      and mw[mi+1][i]. dh depends on stepm.  {  /* Some frequencies */
      */    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int i, mi, m;    int first;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double ***freq; /* Frequencies */
 float sum=0.;    double *pp;
     double pos, k2, dateintsum=0,k2cpt=0;
   for(i=1; i<=imx; i++){    FILE *ficresp;
     mi=0;    char fileresp[FILENAMELENGTH];
     m=firstpass;    
     while(s[m][i] <= nlstate){    pp=vector(1,nlstate);
       if(s[m][i]>=1)    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
         mw[++mi][i]=m;    strcpy(fileresp,"p");
       if(m >=lastpass)    strcat(fileresp,fileres);
         break;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       else      printf("Problem with prevalence resultfile: %s\n", fileresp);
         m++;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     }/* end while */      exit(0);
     if (s[m][i] > nlstate){    }
       mi++;     /* Death is another wave */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
       /* if(mi==0)  never been interviewed correctly before death */    j1=0;
          /* Only death is a correct wave */    
       mw[mi][i]=m;    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     wav[i]=mi;    first=1;
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   for(i=1; i<=imx; i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(mi=1; mi<wav[i];mi++){          scanf("%d", i);*/
       if (stepm <=0)        for (i=-1; i<=nlstate+ndeath; i++)  
         dh[mi][i]=1;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       else{            for(m=agemin; m <= agemax+3; m++)
         if (s[mw[mi+1][i]][i] > nlstate) {              freq[i][jk][m]=0;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        
           if(j=0) j=1;  /* Survives at least one month after exam */        dateintsum=0;
         }        k2cpt=0;
         else{        for (i=1; i<=imx; i++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          bool=1;
           k=k+1;          if  (cptcovn>0) {
           if (j >= jmax) jmax=j;            for (z1=1; z1<=cptcoveff; z1++) 
           else if (j <= jmin)jmin=j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           sum=sum+j;                bool=0;
         }          }
         jk= j/stepm;          if (bool==1){
         jl= j -jk*stepm;            for(m=firstpass; m<=lastpass; m++){
         ju= j -(jk+1)*stepm;              k2=anint[m][i]+(mint[m][i]/12.);
         if(jl <= -ju)              if ((k2>=dateprev1) && (k2<=dateprev2)) {
           dh[mi][i]=jk;                if(agev[m][i]==0) agev[m][i]=agemax+1;
         else                if(agev[m][i]==1) agev[m][i]=agemax+2;
           dh[mi][i]=jk+1;                if (m<lastpass) {
         if(dh[mi][i]==0)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           dh[mi][i]=1; /* At least one step */                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
       }                }
     }                
   }                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);                  dateintsum=dateintsum+k2;
 }                  k2cpt++;
 /*********** Tricode ****************************/                }
 void tricode(int *Tvar, int **nbcode, int imx)              }
 {            }
   int Ndum[20],ij=1, k, j, i;          }
   int cptcode=0;        }
   cptcoveff=0;         
          fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<=imx; i++) {          fprintf(ficresp, "**********\n#");
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;        for(i=1; i<=nlstate;i++) 
       if (ij > cptcode) cptcode=ij;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
         
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        for(i=(int)agemin; i <= (int)agemax+3; i++){
     for (i=0; i<=cptcode; i++) {          if(i==(int)agemax+3){
       if(Ndum[i]!=0) ncodemax[j]++;            fprintf(ficlog,"Total");
     }          }else{
     ij=1;            if(first==1){
               first=0;
     for (i=1; i<=ncodemax[j]; i++) {              printf("See log file for details...\n");
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {            fprintf(ficlog,"Age %d", i);
           nbcode[Tvar[j]][ij]=k;          }
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/          for(jk=1; jk <=nlstate ; jk++){
           ij++;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
         if (ij > ncodemax[j]) break;          }
       }            for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pos=0; m <=0 ; m++)
   }                pos += freq[jk][m][i];
  for (i=1; i<=10; i++) {            if(pp[jk]>=1.e-10){
       ij=Tvar[i];              if(first==1){
       Ndum[ij]++;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
  ij=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  for (i=1; i<=cptcovn; i++) {            }else{
    if((Ndum[i]!=0) && (i<=ncov)){              if(first==1)
      Tvaraff[i]=ij;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    ij++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    }            }
  }          }
    
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for(jk=1; jk <=nlstate ; jk++){
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    /*printf("j=%d %d\n",j,Tvar[j]);*/              pp[jk] += freq[jk][m][i];
  }          }
    
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);          for(jk=1,pos=0; jk <=nlstate ; jk++)
     scanf("%d",i);*/            pos += pp[jk];
 }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
 /*********** Health Expectancies ****************/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 {            }else{
   /* Health expectancies */              if(first==1)
   int i, j, nhstepm, hstepm, h;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double age, agelim,hf;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***p3mat;            }
              if( i <= (int) agemax){
   fprintf(ficreseij,"# Health expectancies\n");              if(pos>=1.e-5){
   fprintf(ficreseij,"# Age");                fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
   for(i=1; i<=nlstate;i++)                probs[i][jk][j1]= pp[jk]/pos;
     for(j=1; j<=nlstate;j++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficreseij," %1d-%1d",i,j);              }
   fprintf(ficreseij,"\n");              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
   hstepm=1*YEARM; /*  Every j years of age (in month) */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
           
   agelim=AGESUP;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for(m=-1; m <=nlstate+ndeath; m++)
     /* nhstepm age range expressed in number of stepm */              if(freq[jk][m][i] !=0 ) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);              if(first==1)
     /* Typically if 20 years = 20*12/6=40 stepm */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     if (stepm >= YEARM) hstepm=1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */              }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(i <= (int) agemax)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            fprintf(ficresp,"\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if(first==1)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              printf("Others in log...\n");
           fprintf(ficlog,"\n");
         }
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    dateintmean=dateintsum/k2cpt; 
           eij[i][j][(int)age] +=p3mat[i][j][h];   
         }    fclose(ficresp);
        free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
     hf=1;    free_vector(pp,1,nlstate);
     if (stepm >= YEARM) hf=stepm/YEARM;    
     fprintf(ficreseij,"%.0f",age );    /* End of Freq */
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  /************ Prevalence ********************/
       }  void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
     fprintf(ficreseij,"\n");  {  /* Some frequencies */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }    double ***freq; /* Frequencies */
     double *pp;
 /************ Variance ******************/    double pos, k2;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    pp=vector(1,nlstate);
   /* Variance of health expectancies */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
   double **newm;    j1=0;
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm, h;    j=cptcoveff;
   int k, cptcode;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    double *xp;    
   double **gp, **gm;    for(k1=1; k1<=j;k1++){
   double ***gradg, ***trgradg;      for(i1=1; i1<=ncodemax[k1];i1++){
   double ***p3mat;        j1++;
   double age,agelim;        
   int theta;        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
    fprintf(ficresvij,"# Covariances of life expectancies\n");            for(m=agemin; m <= agemax+3; m++)
   fprintf(ficresvij,"# Age");              freq[i][jk][m]=0;
   for(i=1; i<=nlstate;i++)       
     for(j=1; j<=nlstate;j++)        for (i=1; i<=imx; i++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          bool=1;
   fprintf(ficresvij,"\n");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   xp=vector(1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   dnewm=matrix(1,nlstate,1,npar);                bool=0;
   doldm=matrix(1,nlstate,1,nlstate);          } 
            if (bool==1) { 
   hstepm=1*YEARM; /* Every year of age */            for(m=firstpass; m<=lastpass; m++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              k2=anint[m][i]+(mint[m][i]/12.);
   agelim = AGESUP;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==0) agev[m][i]=agemax+1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(agev[m][i]==1) agev[m][i]=agemax+2;
     if (stepm >= YEARM) hstepm=1;                if (m<lastpass) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  if (calagedate>0) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                  else
     gp=matrix(0,nhstepm,1,nlstate);                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
                 }
     for(theta=1; theta <=npar; theta++){              }
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(i=(int)agemin; i <= (int)agemax+3; i++){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for(h=0; h<=nhstepm; h++){              pp[jk] += freq[jk][m][i]; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              pp[jk] += freq[jk][m][i];
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          
         }          for(jk=1; jk <=nlstate ; jk++){    
       }            if( i <= (int) agemax){
       for(j=1; j<= nlstate; j++)              if(pos>=1.e-5){
         for(h=0; h<=nhstepm; h++){                probs[i][jk][j1]= pp[jk]/pos;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              }
         }            }
     } /* End theta */          }/* end jk */
         }/* end i */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      } /* end i1 */
     } /* end k1 */
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    
         for(theta=1; theta <=npar; theta++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
           trgradg[h][j][theta]=gradg[h][theta][j];    free_vector(pp,1,nlstate);
     
     for(i=1;i<=nlstate;i++)  }  /* End of Freq */
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  /************* Waves Concatenation ***************/
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for(i=1;i<=nlstate;i++)       Death is a valid wave (if date is known).
           for(j=1;j<=nlstate;j++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             vareij[i][j][(int)age] += doldm[i][j];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
     }       */
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;    int i, mi, m;
     fprintf(ficresvij,"%.0f ",age );    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for(i=1; i<=nlstate;i++)       double sum=0., jmean=0.;*/
       for(j=1; j<=nlstate;j++){    int first;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    int j, k=0,jk, ju, jl;
       }    double sum=0.;
     fprintf(ficresvij,"\n");    first=0;
     free_matrix(gp,0,nhstepm,1,nlstate);    jmin=1e+5;
     free_matrix(gm,0,nhstepm,1,nlstate);    jmax=-1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    jmean=0.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(i=1; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      mi=0;
   } /* End age */      m=firstpass;
        while(s[m][i] <= nlstate){
   free_vector(xp,1,npar);        if(s[m][i]>=1)
   free_matrix(doldm,1,nlstate,1,npar);          mw[++mi][i]=m;
   free_matrix(dnewm,1,nlstate,1,nlstate);        if(m >=lastpass)
           break;
 }        else
           m++;
 /************ Variance of prevlim ******************/      }/* end while */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      if (s[m][i] > nlstate){
 {        mi++;     /* Death is another wave */
   /* Variance of prevalence limit */        /* if(mi==0)  never been interviewed correctly before death */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           /* Only death is a correct wave */
   double **newm;        mw[mi][i]=m;
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;      wav[i]=mi;
   double *xp;      if(mi==0){
   double *gp, *gm;        if(first==0){
   double **gradg, **trgradg;          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
   double age,agelim;          first=1;
   int theta;        }
            if(first==1){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      } /* end mi==0 */
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     for(i=1; i<=imx; i++){
   xp=vector(1,npar);      for(mi=1; mi<wav[i];mi++){
   dnewm=matrix(1,nlstate,1,npar);        if (stepm <=0)
   doldm=matrix(1,nlstate,1,nlstate);          dh[mi][i]=1;
          else{
   hstepm=1*YEARM; /* Every year of age */          if (s[mw[mi+1][i]][i] > nlstate) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            if (agedc[i] < 2*AGESUP) {
   agelim = AGESUP;            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(j==0) j=1;  /* Survives at least one month after exam */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            k=k+1;
     if (stepm >= YEARM) hstepm=1;            if (j >= jmax) jmax=j;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if (j <= jmin) jmin=j;
     gradg=matrix(1,npar,1,nlstate);            sum=sum+j;
     gp=vector(1,nlstate);            /*if (j<0) printf("j=%d num=%d \n",j,i); */
     gm=vector(1,nlstate);            }
           }
     for(theta=1; theta <=npar; theta++){          else{
       for(i=1; i<=npar; i++){ /* Computes gradient */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            k=k+1;
       }            if (j >= jmax) jmax=j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            else if (j <= jmin)jmin=j;
       for(i=1;i<=nlstate;i++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         gp[i] = prlim[i][i];            sum=sum+j;
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          jk= j/stepm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          jl= j -jk*stepm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ju= j -(jk+1)*stepm;
       for(i=1;i<=nlstate;i++)          if(jl <= -ju){
         gm[i] = prlim[i][i];            dh[mi][i]=jk;
             bh[mi][i]=jl;
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          else{
     } /* End theta */            dh[mi][i]=jk+1;
             bh[mi][i]=ju;
     trgradg =matrix(1,nlstate,1,npar);          }
           if(dh[mi][i]==0){
     for(j=1; j<=nlstate;j++)            dh[mi][i]=1; /* At least one step */
       for(theta=1; theta <=npar; theta++)            bh[mi][i]=ju; /* At least one step */
         trgradg[j][theta]=gradg[theta][j];            printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
           }
     for(i=1;i<=nlstate;i++)          if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
       varpl[i][(int)age] =0.;        }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)    jmean=sum/k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficresvpl,"%.0f ",age );   }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*********** Tricode ****************************/
     fprintf(ficresvpl,"\n");  void tricode(int *Tvar, int **nbcode, int imx)
     free_vector(gp,1,nlstate);  {
     free_vector(gm,1,nlstate);    
     free_matrix(gradg,1,npar,1,nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_matrix(trgradg,1,nlstate,1,npar);    int cptcode=0;
   } /* End age */    cptcoveff=0; 
    
   free_vector(xp,1,npar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   free_matrix(doldm,1,nlstate,1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
 /***********************************************/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 /**************** Main Program *****************/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 /***********************************************/                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
 /*int main(int argc, char *argv[])*/      }
 int main()  
 {      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      }
   double agedeb, agefin,hf;  
   double agemin=1.e20, agemax=-1.e20;      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   double fret;        for (k=0; k<= maxncov; k++) {
   double **xi,tmp,delta;          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
   double dum; /* Dummy variable */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double ***p3mat;            
   int *indx;            ij++;
   char line[MAXLINE], linepar[MAXLINE];          }
   char title[MAXLINE];          if (ij > ncodemax[j]) break; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      } 
   char filerest[FILENAMELENGTH];    }  
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];   for (k=0; k< maxncov; k++) Ndum[k]=0;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */   for (i=1; i<=ncovmodel-2; i++) { 
   int c,  h , cpt,l;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int ju,jl, mi;     ij=Tvar[i];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     Ndum[ij]++;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   }
    
   int hstepm, nhstepm;   ij=1;
   double bage, fage, age, agelim, agebase;   for (i=1; i<= maxncov; i++) {
   double ftolpl=FTOL;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double **prlim;       Tvaraff[ij]=i; /*For printing */
   double *severity;       ij++;
   double ***param; /* Matrix of parameters */     }
   double  *p;   }
   double **matcov; /* Matrix of covariance */   
   double ***delti3; /* Scale */   cptcoveff=ij-1; /*Number of simple covariates*/
   double *delti; /* Scale */  }
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  /*********** Health Expectancies ****************/
   double *epj, vepp;  
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   {
   char z[1]="c", occ;    /* Health expectancies */
 #include <sys/time.h>    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 #include <time.h>    double age, agelim, hf;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double ***p3mat,***varhe;
   /* long total_usecs;    double **dnewm,**doldm;
   struct timeval start_time, end_time;    double *xp;
      double **gp, **gm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double ***gradg, ***trgradg;
     int theta;
   
   printf("\nIMACH, Version 0.64a");    varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
   printf("\nEnter the parameter file name: ");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*2,1,npar);
 #ifdef windows    doldm=matrix(1,nlstate*2,1,nlstate*2);
   scanf("%s",pathtot);    
   getcwd(pathcd, size);    fprintf(ficreseij,"# Health expectancies\n");
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficreseij,"# Age");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
 split(pathtot, path,optionfile);    fprintf(ficreseij,"\n");
   chdir(path);  
   replace(pathc,path);    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
 #ifdef unix    }
   scanf("%s",optionfile);    else  hstepm=estepm;   
 #endif    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
 /*-------- arguments in the command line --------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcpy(fileres,"r");     * progression inbetween and thus overestimating or underestimating according
   strcat(fileres, optionfile);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /*---------arguments file --------*/     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   if((ficpar=fopen(optionfile,"r"))==NULL)    {     * curvature will be obtained if estepm is as small as stepm. */
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   strcpy(filereso,"o");       nstepm is the number of stepm from age to agelin. 
   strcat(filereso,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficparo=fopen(filereso,"w"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   /* Reads comments: lines beginning with '#' */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   while((c=getc(ficpar))=='#' && c!= EOF){       results. So we changed our mind and took the option of the best precision.
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     puts(line);  
     fputs(line,ficparo);    agelim=AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   ungetc(c,ficpar);      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   covar=matrix(0,NCOVMAX,1,n);          gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
   if (strlen(model)<=1) cptcovn=0;      gp=matrix(0,nhstepm,1,nlstate*2);
   else {      gm=matrix(0,nhstepm,1,nlstate*2);
     j=0;  
     j=nbocc(model,'+');      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     cptcovn=j+1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   /* Read guess parameters */      /* Computing Variances of health expectancies */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){       for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);        for(i=1; i<=npar; i++){ 
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     puts(line);        }
     fputs(line,ficparo);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }    
   ungetc(c,ficpar);        cptj=0;
          for(j=1; j<= nlstate; j++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(i=1; i<=nlstate; i++){
     for(i=1; i <=nlstate; i++)            cptj=cptj+1;
     for(j=1; j <=nlstate+ndeath-1; j++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       printf("%1d%1d",i,j);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);       
         printf(" %lf",param[i][j][k]);       
         fprintf(ficparo," %lf",param[i][j][k]);        for(i=1; i<=npar; i++) 
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fscanf(ficpar,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       printf("\n");        
       fprintf(ficparo,"\n");        cptj=0;
     }        for(j=1; j<= nlstate; j++){
            for(i=1;i<=nlstate;i++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            cptj=cptj+1;
   p=param[1][1];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate*2; j++)
     puts(line);          for(h=0; h<=nhstepm-1; h++){
     fputs(line,ficparo);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   ungetc(c,ficpar);       } 
      
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /* End theta */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){       trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);       for(h=0; h<=nhstepm-1; h++)
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate*2;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);          for(theta=1; theta <=npar; theta++)
       for(k=1; k<=ncovmodel;k++){            trgradg[h][j][theta]=gradg[h][theta][j];
         fscanf(ficpar,"%le",&delti3[i][j][k]);       
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);       for(i=1;i<=nlstate*2;i++)
       }        for(j=1;j<=nlstate*2;j++)
       fscanf(ficpar,"\n");          varhe[i][j][(int)age] =0.;
       printf("\n");  
       fprintf(ficparo,"\n");       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }       for(h=0;h<=nhstepm-1;h++){
   delti=delti3[1][1];        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=nlstate*2;i++)
     ungetc(c,ficpar);            for(j=1;j<=nlstate*2;j++)
     fgets(line, MAXLINE, ficpar);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     puts(line);        }
     fputs(line,ficparo);      }
   }      /* Computing expectancies */
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   matcov=matrix(1,npar,1,npar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   for(i=1; i <=npar; i++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fscanf(ficpar,"%s",&str);            
     printf("%s",str);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){          }
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficparo," %.5le",matcov[i][j]);      cptj=0;
     }      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");        for(j=1; j<=nlstate;j++){
     printf("\n");          cptj++;
     fprintf(ficparo,"\n");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   }        }
   for(i=1; i <=npar; i++)      fprintf(ficreseij,"\n");
     for(j=i+1;j<=npar;j++)     
       matcov[i][j]=matcov[j][i];      free_matrix(gm,0,nhstepm,1,nlstate*2);
          free_matrix(gp,0,nhstepm,1,nlstate*2);
   printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*-------- data file ----------*/    }
     if((ficres =fopen(fileres,"w"))==NULL) {    printf("\n");
       printf("Problem with resultfile: %s\n", fileres);goto end;    fprintf(ficlog,"\n");
     }  
     fprintf(ficres,"#%s\n",version);    free_vector(xp,1,npar);
        free_matrix(dnewm,1,nlstate*2,1,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    free_matrix(doldm,1,nlstate*2,1,nlstate*2);
       printf("Problem with datafile: %s\n", datafile);goto end;    free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
     }  }
   
     n= lastobs;  /************ Variance ******************/
     severity = vector(1,maxwav);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     outcome=imatrix(1,maxwav+1,1,n);  {
     num=ivector(1,n);    /* Variance of health expectancies */
     moisnais=vector(1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     annais=vector(1,n);    /* double **newm;*/
     moisdc=vector(1,n);    double **dnewm,**doldm;
     andc=vector(1,n);    double **dnewmp,**doldmp;
     agedc=vector(1,n);    int i, j, nhstepm, hstepm, h, nstepm ;
     cod=ivector(1,n);    int k, cptcode;
     weight=vector(1,n);    double *xp;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double **gp, **gm;  /* for var eij */
     mint=matrix(1,maxwav,1,n);    double ***gradg, ***trgradg; /*for var eij */
     anint=matrix(1,maxwav,1,n);    double **gradgp, **trgradgp; /* for var p point j */
     s=imatrix(1,maxwav+1,1,n);    double *gpp, *gmp; /* for var p point j */
     adl=imatrix(1,maxwav+1,1,n);        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     tab=ivector(1,NCOVMAX);    double ***p3mat;
     ncodemax=ivector(1,8);    double age,agelim, hf;
     double ***mobaverage;
     i=1;    int theta;
     while (fgets(line, MAXLINE, fic) != NULL)    {    char digit[4];
       if ((i >= firstobs) && (i <=lastobs)) {    char digitp[25];
          
         for (j=maxwav;j>=1;j--){    char fileresprobmorprev[FILENAMELENGTH];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    if(popbased==1){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if(mobilav!=0)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        strcpy(digitp,"-populbased-mobilav-");
         }      else strcpy(digitp,"-populbased-nomobil-");
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    else 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      strcpy(digitp,"-stablbased-");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav!=0) {
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         for (j=ncov;j>=1;j--){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         }    }
         num[i]=atol(stra);  
     strcpy(fileresprobmorprev,"prmorprev"); 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         i=i+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     /*scanf("%d",i);*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   imx=i-1; /* Number of individuals */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   /* Calculation of the number of parameter from char model*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   Tvar=ivector(1,15);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   Tprod=ivector(1,15);    fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");
   Tvaraff=ivector(1,15);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   Tvard=imatrix(1,15,1,2);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   Tage=ivector(1,15);            fprintf(ficresprobmorprev," p.%-d SE",j);
          for(i=1; i<=nlstate;i++)
   if (strlen(model) >1){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     j=0, j1=0, k1=1, k2=1;    }  
     j=nbocc(model,'+');    fprintf(ficresprobmorprev,"\n");
     j1=nbocc(model,'*');    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     cptcovn=j+1;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     cptcovprod=j1;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
          exit(0);
     strcpy(modelsav,model);    }
    if (j==0) {    else{
       if (j1==0){      fprintf(ficgp,"\n# Routine varevsij");
         cutv(stra,strb,modelsav,'V');    }
         Tvar[1]=atoi(strb);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       }      printf("Problem with html file: %s\n", optionfilehtm);
       else if (j1==1) {      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         cutv(stra,strb,modelsav,'*');      exit(0);
         Tage[1]=1; cptcovage++;    }
         if (strcmp(stra,"age")==0) {    else{
           cptcovprod--;      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           cutv(strd,strc,strb,'V');      fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
           Tvar[1]=atoi(strc);    }
         }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         else if (strcmp(strb,"age")==0) {  
           cptcovprod--;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           cutv(strd,strc,stra,'V');    fprintf(ficresvij,"# Age");
           Tvar[1]=atoi(strc);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++)
         else {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           cutv(strd,strc,strb,'V');    fprintf(ficresvij,"\n");
           cutv(stre,strd,stra,'V');  
           Tvar[1]=ncov+1;    xp=vector(1,npar);
           for (k=1; k<=lastobs;k++)    dnewm=matrix(1,nlstate,1,npar);
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];    doldm=matrix(1,nlstate,1,nlstate);
         }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         /*printf("%s %s %s\n", stra,strb,modelsav);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 printf("%d ",Tvar[1]);  
 scanf("%d",i);*/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
    else {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(i=j; i>=1;i--){    
         cutv(stra,strb,modelsav,'+');    if(estepm < stepm){
         /*printf("%s %s %s\n", stra,strb,modelsav);      printf ("Problem %d lower than %d\n",estepm, stepm);
           scanf("%d",i);*/    }
         if (strchr(strb,'*')) {    else  hstepm=estepm;   
           cutv(strd,strc,strb,'*');    /* For example we decided to compute the life expectancy with the smallest unit */
           if (strcmp(strc,"age")==0) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             cptcovprod--;       nhstepm is the number of hstepm from age to agelim 
             cutv(strb,stre,strd,'V');       nstepm is the number of stepm from age to agelin. 
             Tvar[i+1]=atoi(stre);       Look at hpijx to understand the reason of that which relies in memory size
             cptcovage++;       and note for a fixed period like k years */
             Tage[cptcovage]=i+1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             printf("stre=%s ", stre);       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           else if (strcmp(strd,"age")==0) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             cptcovprod--;       results. So we changed our mind and took the option of the best precision.
             cutv(strb,stre,strc,'V');    */
             Tvar[i+1]=atoi(stre);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             cptcovage++;    agelim = AGESUP;
             Tage[cptcovage]=i+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           else {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             cutv(strb,stre,strc,'V');      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             Tvar[i+1]=ncov+k1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             cutv(strb,strc,strd,'V');      gp=matrix(0,nhstepm,1,nlstate);
             Tprod[k1]=i+1;      gm=matrix(0,nhstepm,1,nlstate);
             Tvard[k1][1]=atoi(strc);  
             Tvard[k1][2]=atoi(stre);  
             Tvar[cptcovn+k2]=Tvard[k1][1];      for(theta=1; theta <=npar; theta++){
             Tvar[cptcovn+k2+1]=Tvard[k1][2];        for(i=1; i<=npar; i++){ /* Computes gradient */
             for (k=1; k<=lastobs;k++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }
             k1++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             k2=k2+2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }  
         }        if (popbased==1) {
         else {          if(mobilav ==0){
           cutv(strd,strc,strb,'V');            for(i=1; i<=nlstate;i++)
           /* printf("%s %s %s", strd,strc,strb);*/              prlim[i][i]=probs[(int)age][i][ij];
           Tvar[i+1]=atoi(strc);          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
         strcpy(modelsav,stra);                prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       cutv(strd,strc,stra,'V');        }
       Tvar[1]=atoi(strc);    
     }        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   /* for (i=1; i<=5; i++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
      printf("i=%d %d ",i,Tvar[i]);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/          }
  /*printf("cptcovprod=%d ", cptcovprod);*/        }
   /*  scanf("%d ",i);*/        /* This for computing forces of mortality (h=1)as a weighted average */
     fclose(fic);        for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
           for(i=1; i<= nlstate; i++)
     /*  if(mle==1){*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     if (weightopt != 1) { /* Maximisation without weights*/        }    
       for(i=1;i<=n;i++) weight[i]=1.0;        /* end force of mortality */
     }  
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1; i<=npar; i++) /* Computes gradient */
     agev=matrix(1,maxwav,1,imx);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for (i=1; i<=imx; i++)  {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   
       for(m=1; (m<= maxwav); m++){        if (popbased==1) {
         if(s[m][i] >0){          if(mobilav ==0){
           if (s[m][i] == nlstate+1) {            for(i=1; i<=nlstate;i++)
             if(agedc[i]>0)              prlim[i][i]=probs[(int)age][i][ij];
               if(moisdc[i]!=99 && andc[i]!=9999)          }else{ /* mobilav */ 
               agev[m][i]=agedc[i];            for(i=1; i<=nlstate;i++)
             else{              prlim[i][i]=mobaverage[(int)age][i][ij];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;        }
             }  
           }        for(j=1; j<= nlstate; j++){
           else if(s[m][i] !=9){ /* Should no more exist */          for(h=0; h<=nhstepm; h++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             if(mint[m][i]==99 || anint[m][i]==9999)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];        /* This for computing force of mortality (h=1)as a weighted average */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
             }          for(i=1; i<= nlstate; i++)
             else if(agev[m][i] >agemax){            gmp[j] += prlim[i][i]*p3mat[i][j][1];
               agemax=agev[m][i];        }    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        /* end force of mortality */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(j=1; j<= nlstate; j++) /* vareij */
             /*   agev[m][i] = age[i]+2*m;*/          for(h=0; h<=nhstepm; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           else { /* =9 */          }
             agev[m][i]=1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             s[m][i]=-1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           }        }
         }  
         else /*= 0 Unknown */      } /* End theta */
           agev[m][i]=1;  
       }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      
     }      for(h=0; h<=nhstepm; h++) /* veij */
     for (i=1; i<=imx; i++)  {        for(j=1; j<=nlstate;j++)
       for(m=1; (m<= maxwav); m++){          for(theta=1; theta <=npar; theta++)
         if (s[m][i] > (nlstate+ndeath)) {            trgradg[h][j][theta]=gradg[h][theta][j];
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
     }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
     free_vector(severity,1,maxwav);          vareij[i][j][(int)age] =0.;
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);      for(h=0;h<=nhstepm;h++){
     free_vector(annais,1,n);        for(k=0;k<=nhstepm;k++){
     free_matrix(mint,1,maxwav,1,n);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     free_matrix(anint,1,maxwav,1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     free_vector(moisdc,1,n);          for(i=1;i<=nlstate;i++)
     free_vector(andc,1,n);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     /* Concatenates waves */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       Tcode=ivector(1,100);      /* end ppptj */
       nbcode=imatrix(1,nvar,1,8);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       ncodemax[1]=1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   
            if (popbased==1) {
    codtab=imatrix(1,100,1,10);        if(mobilav ==0){
    h=0;          for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
    for(k=1;k<=cptcoveff; k++){          for(i=1; i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
        for(j=1; j <= ncodemax[k]; j++){        }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      }
            h++;      
            if (h>m) h=1;codtab[h][k]=j;      /* This for computing force of mortality (h=1)as a weighted average */
          }      for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
        }        for(i=1; i<= nlstate; i++)
      }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
    }      }    
       /* end force of mortality */
   
    /*for(i=1; i <=m ;i++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      for(k=1; k <=cptcovn; k++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      }        for(i=1; i<=nlstate;i++){
      printf("\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    }        }
    scanf("%d",i);*/      } 
          fprintf(ficresprobmorprev,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */      fprintf(ficresvij,"%.0f ",age );
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficresvij,"\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_matrix(gp,0,nhstepm,1,nlstate);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      free_matrix(gm,0,nhstepm,1,nlstate);
          free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     /* For Powell, parameters are in a vector p[] starting at p[1]      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     if(mle==1){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /*--------- results files --------------*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
    jk=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
    fprintf(ficres,"# Parameters\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
    printf("# Parameters\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);
      for(k=1; k <=(nlstate+ndeath); k++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
        if (k != i)  */
          {    fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    free_vector(xp,1,npar);
            for(j=1; j <=ncovmodel; j++){    free_matrix(doldm,1,nlstate,1,nlstate);
              printf("%f ",p[jk]);    free_matrix(dnewm,1,nlstate,1,npar);
              fprintf(ficres,"%f ",p[jk]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              jk++;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
            }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            printf("\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficres,"\n");    fclose(ficresprobmorprev);
          }    fclose(ficgp);
      }    fclose(fichtm);
    }  }
  if(mle==1){  
     /* Computing hessian and covariance matrix */  /************ Variance of prevlim ******************/
     ftolhess=ftol; /* Usually correct */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     hesscov(matcov, p, npar, delti, ftolhess, func);  {
  }    /* Variance of prevalence limit */
     fprintf(ficres,"# Scales\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("# Scales\n");    double **newm;
      for(i=1,jk=1; i <=nlstate; i++){    double **dnewm,**doldm;
       for(j=1; j <=nlstate+ndeath; j++){    int i, j, nhstepm, hstepm;
         if (j!=i) {    int k, cptcode;
           fprintf(ficres,"%1d%1d",i,j);    double *xp;
           printf("%1d%1d",i,j);    double *gp, *gm;
           for(k=1; k<=ncovmodel;k++){    double **gradg, **trgradg;
             printf(" %.5e",delti[jk]);    double age,agelim;
             fprintf(ficres," %.5e",delti[jk]);    int theta;
             jk++;     
           }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           printf("\n");    fprintf(ficresvpl,"# Age");
           fprintf(ficres,"\n");    for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %1d-%1d",i,i);
       }    fprintf(ficresvpl,"\n");
       }  
        xp=vector(1,npar);
     k=1;    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficres,"# Covariance\n");    doldm=matrix(1,nlstate,1,nlstate);
     printf("# Covariance\n");    
     for(i=1;i<=npar;i++){    hstepm=1*YEARM; /* Every year of age */
       /*  if (k>nlstate) k=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       i1=(i-1)/(ncovmodel*nlstate)+1;    agelim = AGESUP;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("%s%d%d",alph[k],i1,tab[i]);*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficres,"%3d",i);      if (stepm >= YEARM) hstepm=1;
       printf("%3d",i);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       for(j=1; j<=i;j++){      gradg=matrix(1,npar,1,nlstate);
         fprintf(ficres," %.5e",matcov[i][j]);      gp=vector(1,nlstate);
         printf(" %.5e",matcov[i][j]);      gm=vector(1,nlstate);
       }  
       fprintf(ficres,"\n");      for(theta=1; theta <=npar; theta++){
       printf("\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
       k++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
       ungetc(c,ficpar);          gp[i] = prlim[i][i];
       fgets(line, MAXLINE, ficpar);      
       puts(line);        for(i=1; i<=npar; i++) /* Computes gradient */
       fputs(line,ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
            for(i=1;i<=nlstate;i++)
     if (fage <= 2) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       bage = agemin;      } /* End theta */
       fage = agemax;  
     }      trgradg =matrix(1,nlstate,1,npar);
   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(j=1; j<=nlstate;j++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
      
 /*------------ gnuplot -------------*/      for(i=1;i<=nlstate;i++)
 chdir(pathcd);        varpl[i][(int)age] =0.;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with file graph.gp");goto end;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
 #ifdef windows        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      fprintf(ficresvpl,"%.0f ",age );
 m=pow(2,cptcoveff);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
  /* 1eme*/      fprintf(ficresvpl,"\n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {      free_vector(gp,1,nlstate);
    for (k1=1; k1<= m ; k1 ++) {      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
 #ifdef windows      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    } /* End age */
 #endif  
 #ifdef unix    free_vector(xp,1,npar);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    free_matrix(doldm,1,nlstate,1,npar);
 #endif    free_matrix(dnewm,1,nlstate,1,nlstate);
   
 for (i=1; i<= nlstate ; i ++) {  }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************ Variance of one-step probabilities  ******************/
 }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
     for (i=1; i<= nlstate ; i ++) {    int i, j=0,  i1, k1, l1, t, tj;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int k2, l2, j1,  z1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int k=0,l, cptcode;
 }    int first=1, first1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      for (i=1; i<= nlstate ; i ++) {    double **dnewm,**doldm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *gp, *gm;
 }      double **gradg, **trgradg;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double **mu;
 #ifdef unix    double age,agelim, cov[NCOVMAX];
 fprintf(ficgp,"\nset ter gif small size 400,300");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 #endif    int theta;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    char fileresprob[FILENAMELENGTH];
    }    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   /*2 eme*/  
     double ***varpij;
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     for (i=1; i<= nlstate+1 ; i ++) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       k=2*i;      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresprobcov,"probcov"); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobcov,fileres);
 }      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      printf("Problem with resultfile: %s\n", fileresprobcov);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    strcpy(fileresprobcor,"probcor"); 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobcor,fileres);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 }      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   }    fprintf(ficresprob,"# Age");
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /*3eme*/    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobcov,"# Age");
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
   }    fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   /* CV preval stat */    fprintf(ficresprobcor,"\n");
   for (k1=1; k1<= m ; k1 ++) {    xp=vector(1,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       k=3;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       for (i=1; i< nlstate ; i ++)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficgp,"+$%d",k+i+1);    first=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
            printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       l=3+(nlstate+ndeath)*cpt;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      exit(0);
       for (i=1; i< nlstate ; i ++) {    }
         l=3+(nlstate+ndeath)*cpt;    else{
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(ficgp,"\n# Routine varprob");
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      printf("Problem with html file: %s\n", optionfilehtm);
     }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   }      exit(0);
     }
   /* proba elementaires */    else{
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     for(k=1; k <=(nlstate+ndeath); k++){      fprintf(fichtm,"\n");
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           /*fprintf(ficgp,"%s",alph[1]);*/      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    }
           fprintf(ficgp,"\n");  
         }    cov[1]=1;
       }    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
     for(t=1; t<=tj;t++){
   for(jk=1; jk <=m; jk++) {      for(i1=1; i1<=ncodemax[t];i1++){ 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        j1++;
    i=1;        if  (cptcovn>0) {
    for(k2=1; k2<=nlstate; k2++) {          fprintf(ficresprob, "\n#********** Variable "); 
      k3=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for(k=1; k<=(nlstate+ndeath); k++) {          fprintf(ficresprob, "**********\n#");
        if (k != k2){          fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 ij=1;          fprintf(ficresprobcov, "**********\n#");
         for(j=3; j <=ncovmodel; j++) {          
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficgp, "\n#********** Variable "); 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             ij++;          fprintf(ficgp, "**********\n#");
           }          
           else          
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp,")/(1");          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                  
         for(k1=1; k1 <=nlstate; k1++){            fprintf(ficresprobcor, "\n#********** Variable ");    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 ij=1;          fprintf(ficgp, "**********\n#");    
           for(j=3; j <=ncovmodel; j++){        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (age=bage; age<=fage; age ++){ 
             ij++;          cov[2]=age;
           }          for (k=1; k<=cptcovn;k++) {
           else            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
           }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           fprintf(ficgp,")");          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         i=i+ncovmodel;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        }          gp=vector(1,(nlstate)*(nlstate+ndeath));
      }          gm=vector(1,(nlstate)*(nlstate+ndeath));
    }      
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficgp);            
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
 chdir(path);            
     free_matrix(agev,1,maxwav,1,imx);            k=0;
     free_ivector(wav,1,imx);            for(i=1; i<= (nlstate); i++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              for(j=1; j<=(nlstate+ndeath);j++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                k=k+1;
                    gp[k]=pmmij[i][j];
     free_imatrix(s,1,maxwav+1,1,n);              }
                }
                
     free_ivector(num,1,n);            for(i=1; i<=npar; i++)
     free_vector(agedc,1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(weight,1,n);      
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fclose(ficparo);            k=0;
     fclose(ficres);            for(i=1; i<=(nlstate); i++){
     /*  }*/              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
    /*________fin mle=1_________*/                gm[k]=pmmij[i][j];
                  }
             }
         
     /* No more information from the sample is required now */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /* Reads comments: lines beginning with '#' */              gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     puts(line);            for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);              trgradg[j][theta]=gradg[theta][j];
   }          
   ungetc(c,ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*--------- index.htm --------*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   if((fichtm=fopen("index.htm","w"))==NULL)    {          pmij(pmmij,cov,ncovmodel,x,nlstate);
     printf("Problem with index.htm \n");goto end;          
   }          k=0;
           for(i=1; i<=(nlstate); i++){
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n            for(j=1; j<=(nlstate+ndeath);j++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              k=k+1;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              mu[k][(int) age]=pmmij[i][j];
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              varpij[i][j][(int)age] = doldm[i][j];
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  fprintf(fichtm," <li>Graphs</li>\n<p>");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  m=cptcoveff;            }*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
           fprintf(ficresprob,"\n%d ",(int)age);
  j1=0;          fprintf(ficresprobcov,"\n%d ",(int)age);
  for(k1=1; k1<=m;k1++){          fprintf(ficresprobcor,"\n%d ",(int)age);
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
        if (cptcovn > 0) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          fprintf(fichtm,"<hr>************ Results for covariates");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          for (cpt=1; cpt<=cptcoveff;cpt++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          fprintf(fichtm," ************\n<hr>");          }
        }          i=0;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          for (k=1; k<=(nlstate);k++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                for (l=1; l<=(nlstate+ndeath);l++){ 
        for(cpt=1; cpt<nlstate;cpt++){              i=i++;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        }              for (j=1; j<=i;j++){
     for(cpt=1; cpt<=nlstate;cpt++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 interval) in state (%d): v%s%d%d.gif <br>              }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              }
      }          }/* end of loop for state */
      for(cpt=1; cpt<=nlstate;cpt++) {        } /* end of loop for age */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        /* Confidence intervalle of pij  */
      }        /*
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          fprintf(ficgp,"\nset noparametric;unset label");
 health expectancies in states (1) and (2): e%s%d.gif<br>          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 fprintf(fichtm,"\n</body>");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 fclose(fichtm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   /*--------------- Prevalence limit --------------*/  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(filerespl,"pl");        first1=1;
   strcat(filerespl,fileres);        for (k2=1; k2<=(nlstate);k2++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            if(l2==k2) continue;
   }            j=(k2-1)*(nlstate+ndeath)+l2;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for (k1=1; k1<=(nlstate);k1++){
   fprintf(ficrespl,"#Prevalence limit\n");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fprintf(ficrespl,"#Age ");                if(l1==k1) continue;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficrespl,"\n");                if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){ 
   prlim=matrix(1,nlstate,1,nlstate);                  if ((int)age %5==0){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    mu2=mu[j][(int) age]/stepm*YEARM;
   k=0;                    c12=cv12/sqrt(v1*v2);
   agebase=agemin;                    /* Computing eigen value of matrix of covariance */
   agelim=agemax;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   ftolpl=1.e-10;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   i1=cptcoveff;                    /* Eigen vectors */
   if (cptcovn < 1){i1=1;}                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   for(cptcov=1;cptcov<=i1;cptcov++){                    v21=(lc1-v1)/cv12*v11;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    v12=-v21;
         k=k+1;                    v22=v11;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    tnalp=v21/v11;
         fprintf(ficrespl,"\n#******");                    if(first1==1){
         for(j=1;j<=cptcoveff;j++)                      first1=0;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrespl,"******\n");                    }
                            fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for (age=agebase; age<=agelim; age++){                    /*printf(fignu*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficrespl,"%.0f",age );                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           for(i=1; i<=nlstate;i++)                    if(first==1){
           fprintf(ficrespl," %.5f", prlim[i][i]);                      first=0;
           fprintf(ficrespl,"\n");                      fprintf(ficgp,"\nset parametric;unset label");
         }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   fclose(ficrespl);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   /*------------- h Pij x at various ages ------------*/                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   printf("Computing pij: result on file '%s' \n", filerespij);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      first=0;
   if (stepm<=24) stepsize=2;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   agelim=AGESUP;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   k=0;                    }/* if first */
   for(cptcov=1;cptcov<=i1;cptcov++){                  } /* age mod 5 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                } /* end loop age */
       k=k+1;                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespij,"\n#****** ");                first=1;
         for(j=1;j<=cptcoveff;j++)              } /*l12 */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            } /* k12 */
         fprintf(ficrespij,"******\n");          } /*l1 */
                }/* k1 */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      } /* loop covariates */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           oldm=oldms;savm=savms;    free_vector(xp,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprob);
           fprintf(ficrespij,"# Age");    fclose(ficresprobcov);
           for(i=1; i<=nlstate;i++)    fclose(ficresprobcor);
             for(j=1; j<=nlstate+ndeath;j++)    fclose(ficgp);
               fprintf(ficrespij," %1d-%1d",i,j);    fclose(fichtm);
           fprintf(ficrespij,"\n");  }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  /******************* Printing html file ***********/
               for(j=1; j<=nlstate+ndeath;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    int lastpass, int stepm, int weightopt, char model[],\
             fprintf(ficrespij,"\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           }                    int popforecast, int estepm ,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    double jprev1, double mprev1,double anprev1, \
           fprintf(ficrespij,"\n");                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
     }    /*char optionfilehtm[FILENAMELENGTH];*/
   }    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
   fclose(ficrespij);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   /*---------- Health expectancies and variances ------------*/  
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   strcpy(filerest,"t");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   strcat(filerest,fileres);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   - Life expectancies by age and initial health status (estepm=%2d months): 
   }     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcpy(filerese,"e");  
   strcat(filerese,fileres);   m=cptcoveff;
   if((ficreseij=fopen(filerese,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }   jj1=0;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
  strcpy(fileresv,"v");       jj1++;
   strcat(fileresv,fileres);       if (cptcovn > 0) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   k=0;       /* Pij */
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       k=k+1;       /* Quasi-incidences */
       fprintf(ficrest,"\n#****** ");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
       for(j=1;j<=cptcoveff;j++)  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         /* Stable prevalence in each health state */
       fprintf(ficrest,"******\n");         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       fprintf(ficreseij,"\n#****** ");  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       for(j=1;j<=cptcoveff;j++)         }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficreseij,"******\n");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       fprintf(ficresvij,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  health expectancies in states (1) and (2): e%s%d.png<br>
       fprintf(ficresvij,"******\n");  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   }/* End k1 */
       oldm=oldms;savm=savms;   fprintf(fichtm,"</ul>");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
         - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
       fprintf(ficrest,"\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
           - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
       hf=1;   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);   if(popforecast==1) fprintf(fichtm,"\n
       for(age=bage; age <=fage ;age++){   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
         fprintf(ficrest," %.0f",age);          <br>",fileres,fileres,fileres,fileres);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   else 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           }  
           epj[nlstate+1] +=epj[j];   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)   jj1=0;
             vepp += vareij[i][j][(int)age];   for(k1=1; k1<=m;k1++){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));     for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1;j <=nlstate;j++){       jj1++;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       if (cptcovn > 0) {
         }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficrest,"\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
               for(cpt=1; cpt<=nlstate;cpt++) {
  fclose(ficreseij);         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
  fclose(ficresvij);  interval) in state (%d): v%s%d%d.png <br>
   fclose(ficrest);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   fclose(ficpar);       }
   free_vector(epj,1,nlstate+1);     } /* end i1 */
   /*  scanf("%d ",i); */   }/* End k1 */
    fprintf(fichtm,"</ul>");
   /*------- Variance limit prevalence------*/    fclose(fichtm);
   }
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  /******************* Gnuplot file **************/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
  k=0;      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
  for(cptcov=1;cptcov<=i1;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;    /*#ifdef windows */
      fprintf(ficresvpl,"\n#****** ");      fprintf(ficgp,"cd \"%s\" \n",pathc);
      for(j=1;j<=cptcoveff;j++)      /*#endif */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  m=pow(2,cptcoveff);
      fprintf(ficresvpl,"******\n");    
         /* 1eme*/
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      oldm=oldms;savm=savms;     for (k1=1; k1<= m ; k1 ++) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
    }       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
  }  
        for (i=1; i<= nlstate ; i ++) {
   fclose(ficresvpl);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*---------- End : free ----------------*/       }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
         fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       }  
         fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   free_matrix(matcov,1,npar,1,npar);     }
   free_vector(delti,1,npar);    }
      /*2 eme*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     for (k1=1; k1<= m ; k1 ++) { 
   printf("End of Imach\n");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (i=1; i<= nlstate+1 ; i ++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/        k=2*i;
   /*------ End -----------*/        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
  end:          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows          else fprintf(ficgp," \%%*lf (\%%*lf)");
  chdir(pathcd);        }   
 #endif        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  system("wgnuplot graph.plt");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 #ifdef windows        for (j=1; j<= nlstate+1 ; j ++) {
   while (z[0] != 'q') {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     chdir(pathcd);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        }   
     scanf("%s",z);        fprintf(ficgp,"\" t\"\" w l 0,");
     if (z[0] == 'c') system("./imach");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
     else if (z[0] == 'e') {        for (j=1; j<= nlstate+1 ; j ++) {
       chdir(path);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       system("index.htm");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
     else if (z[0] == 'q') exit(0);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   }        else fprintf(ficgp,"\" t\"\" w l 0,");
 #endif      }
 }    }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stat */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
    agelim=AGESUP;
    calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
    
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     
     fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
     
     for(cptcov=1;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# StartingAge FinalAge");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
         
         
         for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                   
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   fprintf(ficresf," %.3f", kk1);
                           
                 }
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
       }
     }
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   /************** Forecasting ******************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); 
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   
     int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
     /*int *movingaverage; */
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=1; (m<= maxwav); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Should no more exist */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=1; (m<= maxwav); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle==1){
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+mprev1/12.+jprev1/365.;
     dateprev2=anprev2+mprev2/12.+jprev2/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
     fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
     fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f",age );
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Age");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     if((stepm == 1) && (strcmp(model,".")==0)){
       prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
       if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
     } 
     else{
       erreur=108;
       printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     calagedate=-1;
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
    
     free_matrix(matcov,1,npar,1,npar);
     free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting: %s\n",plotcmd);fflush(stdout);
     system(plotcmd);
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.7  
changed lines
  Added in v.1.59


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>