Diff for /imach/src/imach.c between versions 1.7 and 1.87

version 1.7, 2001/05/02 17:50:24 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.87  2003/06/18 12:26:01  brouard
   individuals from different ages are interviewed on their health status    Version 0.96
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.86  2003/06/17 20:04:08  brouard
   Health expectancies are computed from the transistions observed between    (Module): Change position of html and gnuplot routines and added
   waves and are computed for each degree of severity of disability (number    routine fileappend.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.85  2003/06/17 13:12:43  brouard
   The simplest model is the multinomial logistic model where pij is    * imach.c (Repository): Check when date of death was earlier that
   the probabibility to be observed in state j at the second wave conditional    current date of interview. It may happen when the death was just
   to be observed in state i at the first wave. Therefore the model is:    prior to the death. In this case, dh was negative and likelihood
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    was wrong (infinity). We still send an "Error" but patch by
   is a covariate. If you want to have a more complex model than "constant and    assuming that the date of death was just one stepm after the
   age", you should modify the program where the markup    interview.
     *Covariates have to be included here again* invites you to do it.    (Repository): Because some people have very long ID (first column)
   More covariates you add, less is the speed of the convergence.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   The advantage that this computer programme claims, comes from that if the    truncation)
   delay between waves is not identical for each individual, or if some    (Repository): No more line truncation errors.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.84  2003/06/13 21:44:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Replace "freqsummary" at a correct
   observed in state i at age x+h conditional to the observed state i at age    place. It differs from routine "prevalence" which may be called
   x. The delay 'h' can be split into an exact number (nh*stepm) of    many times. Probs is memory consuming and must be used with
   unobserved intermediate  states. This elementary transition (by month or    parcimony.
   quarter trimester, semester or year) is model as a multinomial logistic.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define FILENAMELENGTH 80    model. More health states you consider, more time is necessary to reach the
 /*#define DEBUG*/    Maximum Likelihood of the parameters involved in the model.  The
 #define windows    simplest model is the multinomial logistic model where pij is the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    probability to be observed in state j at the second wave
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define NINTERVMAX 8    you to do it.  More covariates you add, slower the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    convergence.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The advantage of this computer programme, compared to a simple
 #define MAXN 20000    multinomial logistic model, is clear when the delay between waves is not
 #define YEARM 12. /* Number of months per year */    identical for each individual. Also, if a individual missed an
 #define AGESUP 130    intermediate interview, the information is lost, but taken into
 #define AGEBASE 40    account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 int nvar;    conditional to the observed state i at age x. The delay 'h' can be
 static int cptcov;    split into an exact number (nh*stepm) of unobserved intermediate
 int cptcovn, cptcovage=0, cptcoveff=0;    states. This elementary transition (by month, quarter,
 int npar=NPARMAX;    semester or year) is modelled as a multinomial logistic.  The hPx
 int nlstate=2; /* Number of live states */    matrix is simply the matrix product of nh*stepm elementary matrices
 int ndeath=1; /* Number of dead states */    and the contribution of each individual to the likelihood is simply
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    hPijx.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Also this programme outputs the covariance matrix of the parameters but also
 int maxwav; /* Maxim number of waves */    of the life expectancies. It also computes the stable prevalence. 
 int mle, weightopt;    
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */             Institut national d'études démographiques, Paris.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    This software have been partly granted by Euro-REVES, a concerted action
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    from the European Union.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficgp, *fichtm;    software can be distributed freely for non commercial use. Latest version
 FILE *ficreseij;    can be accessed at http://euroreves.ined.fr/imach .
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   char fileresv[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  FILE  *ficresvpl;    
   char fileresvpl[FILENAMELENGTH];    **********************************************************************/
   /*
 #define NR_END 1    main
 #define FREE_ARG char*    read parameterfile
 #define FTOL 1.0e-10    read datafile
     concatwav
 #define NRANSI    freqsummary
 #define ITMAX 200    if (mle >= 1)
       mlikeli
 #define TOL 2.0e-4    print results files
     if mle==1 
 #define CGOLD 0.3819660       computes hessian
 #define ZEPS 1.0e-10    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);        begin-prev-date,...
     open gnuplot file
 #define GOLD 1.618034    open html file
 #define GLIMIT 100.0    stable prevalence
 #define TINY 1.0e-20     for age prevalim()
     h Pij x
 static double maxarg1,maxarg2;    variance of p varprob
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    health expectancies
      Variance-covariance of DFLE
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    prevalence()
 #define rint(a) floor(a+0.5)     movingaverage()
     varevsij() 
 static double sqrarg;    if popbased==1 varevsij(,popbased)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    total life expectancies
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Variance of stable prevalence
    end
 int imx;  */
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  
   
 int m,nb;   
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <math.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <stdio.h>
 double **pmmij;  #include <stdlib.h>
   #include <unistd.h>
 double *weight;  
 int **s; /* Status */  #include <sys/time.h>
 double *agedc, **covar, idx;  #include <time.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include "timeval.h"
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define MAXLINE 256
 double ftolhess; /* Tolerance for computing hessian */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /**************** split *************************/  #define FILENAMELENGTH 132
 static  int split( char *path, char *dirc, char *name )  /*#define DEBUG*/
 {  /*#define windows*/
    char *s;                             /* pointer */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    int  l1, l2;                         /* length counters */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
    l1 = strlen( path );                 /* length of path */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */  #define NINTERVMAX 8
 #if     defined(__bsd__)                /* get current working directory */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       extern char       *getwd( );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
       if ( getwd( dirc ) == NULL ) {  #define MAXN 20000
 #else  #define YEARM 12. /* Number of months per year */
       extern char       *getcwd( );  #define AGESUP 130
   #define AGEBASE 40
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #ifdef unix
 #endif  #define DIRSEPARATOR '/'
          return( GLOCK_ERROR_GETCWD );  #define ODIRSEPARATOR '\\'
       }  #else
       strcpy( name, path );             /* we've got it */  #define DIRSEPARATOR '\\'
    } else {                             /* strip direcotry from path */  #define ODIRSEPARATOR '/'
       s++;                              /* after this, the filename */  #endif
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* $Id$ */
       strcpy( name, s );                /* save file name */  /* $State$ */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
    }  char fullversion[]="$Revision$ $Date$"; 
    l1 = strlen( dirc );                 /* length of directory */  int erreur; /* Error number */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int nvar;
    return( 0 );                         /* we're done */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 void replace(char *s, char*t)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int i;  int maxwav; /* Maxim number of waves */
   int lg=20;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions 
   lg=strlen(t);                     to the likelihood and the sum of weights (done by funcone)*/
   for(i=0; i<= lg; i++) {  int mle, weightopt;
     (s[i] = t[i]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (t[i]== '\\') s[i]='/';  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 int nbocc(char *s, char occ)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int i,j=0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int lg=20;  FILE *ficlog, *ficrespow;
   i=0;  int globpr; /* Global variable for printing or not */
   lg=strlen(s);  double fretone; /* Only one call to likelihood */
   for(i=0; i<= lg; i++) {  long ipmx; /* Number of contributions */
   if  (s[i] == occ ) j++;  double sw; /* Sum of weights */
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return j;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void cutv(char *u,char *v, char*t, char occ)  FILE *fichtm; /* Html File */
 {  FILE *ficreseij;
   int i,lg,j,p=0;  char filerese[FILENAMELENGTH];
   i=0;  FILE  *ficresvij;
   for(j=0; j<=strlen(t)-1; j++) {  char fileresv[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   lg=strlen(t);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(j=0; j<p; j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
     (u[j] = t[j]);  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      u[p]='\0';  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char fileregp[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  char popfile[FILENAMELENGTH];
   }  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 /********************** nrerror ********************/  #define NR_END 1
   #define FREE_ARG char*
 void nrerror(char error_text[])  #define FTOL 1.0e-10
 {  
   fprintf(stderr,"ERREUR ...\n");  #define NRANSI 
   fprintf(stderr,"%s\n",error_text);  #define ITMAX 200 
   exit(1);  
 }  #define TOL 2.0e-4 
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   double *v;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define GOLD 1.618034 
   return v-nl+NR_END;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /************************ free vector ******************/  static double maxarg1,maxarg2;
 void free_vector(double*v, int nl, int nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(v+nl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int *v;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int imx; 
   return v-nl+NR_END;  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /******************free ivector **************************/  int estepm;
 void free_ivector(int *v, long nl, long nh)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   free((FREE_ARG)(v+nl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /******************* imatrix *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double **pmmij, ***probs;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double dateintmean=0;
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double *weight;
   int **m;  int **s; /* Status */
    double *agedc, **covar, idx;
   /* allocate pointers to rows */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m -= nrl;  
    /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* allocate rows and set pointers to them */  {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
   /* return pointer to array of pointers to rows */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   return m;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /****************** free_imatrix *************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void free_imatrix(m,nrl,nrh,ncl,nch)        return( GLOCK_ERROR_GETCWD );
       int **m;      }
       long nch,ncl,nrh,nrl;      strcpy( name, path );               /* we've got it */
      /* free an int matrix allocated by imatrix() */    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG) (m+nrl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /******************* matrix *******************************/      dirc[l1-l2] = 0;                    /* add zero */
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    /*#ifdef windows
   double **m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;    */
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    strcpy(ext,ss);                       /* save extension */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1= strlen( name);
   m[nrl] += NR_END;    l2= strlen(ss)+1;
   m[nrl] -= ncl;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return( 0 );                          /* we're done */
   return m;  }
 }  
   
 /*************************free matrix ************************/  /******************************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  void replace(char *s, char*t)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i;
 }    int lg=20;
     i=0;
 /******************* ma3x *******************************/    lg=strlen(t);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if (t[i]== '\\') s[i]='/';
   double ***m;    }
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int nbocc(char *s, char occ)
   m += NR_END;  {
   m -= nrl;    int i,j=0;
     int lg=20;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(s);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;    if  (s[i] == occ ) j++;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return j;
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl][ncl] += NR_END;  {
   m[nrl][ncl] -= nll;    /* cuts string t into u and v where u is ended by char occ excluding it
   for (j=ncl+1; j<=nch; j++)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     m[nrl][j]=m[nrl][j-1]+nlay;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   for (i=nrl+1; i<=nrh; i++) {    i=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for(j=0; j<=strlen(t)-1; j++) {
     for (j=ncl+1; j<=nch; j++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       m[i][j]=m[i][j-1]+nlay;    }
   }  
   return m;    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)       u[p]='\0';
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));     for(j=0; j<= lg; j++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m+nrl-NR_END));    }
 }  }
   
 /***************** f1dim *************************/  /********************** nrerror ********************/
 extern int ncom;  
 extern double *pcom,*xicom;  void nrerror(char error_text[])
 extern double (*nrfunc)(double []);  {
      fprintf(stderr,"ERREUR ...\n");
 double f1dim(double x)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   int j;  }
   double f;  /*********************** vector *******************/
   double *xt;  double *vector(int nl, int nh)
    {
   xt=vector(1,ncom);    double *v;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   f=(*nrfunc)(xt);    if (!v) nrerror("allocation failure in vector");
   free_vector(xt,1,ncom);    return v-nl+NR_END;
   return f;  }
 }  
   /************************ free vector ******************/
 /*****************brent *************************/  void free_vector(double*v, int nl, int nh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /************************ivector *******************************/
   double ftemp;  int *ivector(long nl,long nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   a=(ax < cx ? ax : cx);    if (!v) nrerror("allocation failure in ivector");
   b=(ax > cx ? ax : cx);    return v-nl+NR_END;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /******************free ivector **************************/
     xm=0.5*(a+b);  void free_ivector(int *v, long nl, long nh)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(v+nl-NR_END));
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************lvector *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long *lvector(long nl,long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long *v;
       *xmin=x;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return fx;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /******************free lvector **************************/
       q=(x-v)*(fx-fw);  void free_lvector(long *v, long nl, long nh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(v+nl-NR_END));
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /******************* imatrix *******************************/
       e=d;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
       else {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         d=p/q;    int **m; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    /* allocate pointers to rows */ 
           d=SIGN(tol1,xm-x);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } else {    m += NR_END; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl; 
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);    /* allocate rows and set pointers to them */ 
     if (fu <= fx) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       if (u >= x) a=x; else b=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(v,w,x,u)    m[nrl] += NR_END; 
         SHFT(fv,fw,fx,fu)    m[nrl] -= ncl; 
         } else {    
           if (u < x) a=u; else b=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           if (fu <= fw || w == x) {    
             v=w;    /* return pointer to array of pointers to rows */ 
             w=u;    return m; 
             fv=fw;  } 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /****************** free_imatrix *************************/
             v=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fu;        int **m;
           }        long nch,ncl,nrh,nrl; 
         }       /* free an int matrix allocated by imatrix() */ 
   }  { 
   nrerror("Too many iterations in brent");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *xmin=x;    free((FREE_ARG) (m+nrl-NR_END)); 
   return fx;  } 
 }  
   /******************* matrix *******************************/
 /****************** mnbrak ***********************/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             double (*func)(double))    double **m;
 {  
   double ulim,u,r,q, dum;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fu;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   *fa=(*func)(*ax);    m -= nrl;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     SHFT(dum,*ax,*bx,dum)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(dum,*fb,*fa,dum)    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   while (*fb > *fc) {    return m;
     r=(*bx-*ax)*(*fb-*fc);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     q=(*bx-*cx)*(*fb-*fa);     */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*************************free matrix ************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************* ma3x *******************************/
           }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     SHFT(*ax,*bx,*cx,u)    m -= nrl;
       SHFT(*fa,*fb,*fc,fu)  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** linmin ************************/    m[nrl] -= ncl;
   
 int ncom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   double brent(double ax, double bx, double cx,    for (j=ncl+1; j<=nch; j++) 
                double (*f)(double), double tol, double *xmin);      m[nrl][j]=m[nrl][j-1]+nlay;
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for (i=nrl+1; i<=nrh; i++) {
               double *fc, double (*func)(double));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int j;      for (j=ncl+1; j<=nch; j++) 
   double xx,xmin,bx,ax;        m[i][j]=m[i][j-1]+nlay;
   double fx,fb,fa;    }
      return m; 
   ncom=n;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   pcom=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xicom=vector(1,n);    */
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /*************************free ma3x ************************/
     xicom[j]=xi[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   ax=0.0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   xx=1.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG)(m+nrl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /***************** f1dim *************************/
 #endif  extern int ncom; 
   for (j=1;j<=n;j++) {  extern double *pcom,*xicom;
     xi[j] *= xmin;  extern double (*nrfunc)(double []); 
     p[j] += xi[j];   
   }  double f1dim(double x) 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    int j; 
 }    double f;
     double *xt; 
 /*************** powell ************************/   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    xt=vector(1,ncom); 
             double (*func)(double []))    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   void linmin(double p[], double xi[], int n, double *fret,    free_vector(xt,1,ncom); 
               double (*func)(double []));    return f; 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /*****************brent *************************/
   double *xits;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   pt=vector(1,n);  { 
   ptt=vector(1,n);    int iter; 
   xit=vector(1,n);    double a,b,d,etemp;
   xits=vector(1,n);    double fu,fv,fw,fx;
   *fret=(*func)(p);    double ftemp;
   for (j=1;j<=n;j++) pt[j]=p[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (*iter=1;;++(*iter)) {    double e=0.0; 
     fp=(*fret);   
     ibig=0;    a=(ax < cx ? ax : cx); 
     del=0.0;    b=(ax > cx ? ax : cx); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    x=w=v=bx; 
     for (i=1;i<=n;i++)    fw=fv=fx=(*f)(x); 
       printf(" %d %.12f",i, p[i]);    for (iter=1;iter<=ITMAX;iter++) { 
     printf("\n");      xm=0.5*(a+b); 
     for (i=1;i<=n;i++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fptt=(*fret);      printf(".");fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,".");fflush(ficlog);
       printf("fret=%lf \n",*fret);  #ifdef DEBUG
 #endif      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("%d",i);fflush(stdout);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       linmin(p,xit,n,fret,func);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       if (fabs(fptt-(*fret)) > del) {  #endif
         del=fabs(fptt-(*fret));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         ibig=i;        *xmin=x; 
       }        return fx; 
 #ifdef DEBUG      } 
       printf("%d %.12e",i,(*fret));      ftemp=fu;
       for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        r=(x-w)*(fx-fv); 
         printf(" x(%d)=%.12e",j,xit[j]);        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       for(j=1;j<=n;j++)        q=2.0*(q-r); 
         printf(" p=%.12e",p[j]);        if (q > 0.0) p = -p; 
       printf("\n");        q=fabs(q); 
 #endif        etemp=e; 
     }        e=d; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #ifdef DEBUG          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       int k[2],l;        else { 
       k[0]=1;          d=p/q; 
       k[1]=-1;          u=x+d; 
       printf("Max: %.12e",(*func)(p));          if (u-a < tol2 || b-u < tol2) 
       for (j=1;j<=n;j++)            d=SIGN(tol1,xm-x); 
         printf(" %.12e",p[j]);        } 
       printf("\n");      } else { 
       for(l=0;l<=1;l++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {      } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fu=(*f)(u); 
         }      if (fu <= fx) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
 #endif          SHFT(fv,fw,fx,fu) 
           } else { 
             if (u < x) a=u; else b=u; 
       free_vector(xit,1,n);            if (fu <= fw || w == x) { 
       free_vector(xits,1,n);              v=w; 
       free_vector(ptt,1,n);              w=u; 
       free_vector(pt,1,n);              fv=fw; 
       return;              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              v=u; 
     for (j=1;j<=n;j++) {              fv=fu; 
       ptt[j]=2.0*p[j]-pt[j];            } 
       xit[j]=p[j]-pt[j];          } 
       pt[j]=p[j];    } 
     }    nrerror("Too many iterations in brent"); 
     fptt=(*func)(ptt);    *xmin=x; 
     if (fptt < fp) {    return fx; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  } 
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /****************** mnbrak ***********************/
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           xi[j][n]=xit[j];              double (*func)(double)) 
         }  { 
 #ifdef DEBUG    double ulim,u,r,q, dum;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double fu; 
         for(j=1;j<=n;j++)   
           printf(" %.12e",xit[j]);    *fa=(*func)(*ax); 
         printf("\n");    *fb=(*func)(*bx); 
 #endif    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /**** Prevalence limit ****************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      matrix by transitions matrix until convergence is reached */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   int i, ii,j,k;        fu=(*func)(u); 
   double min, max, maxmin, maxmax,sumnew=0.;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **matprod2();        fu=(*func)(u); 
   double **out, cov[NCOVMAX], **pmij();        if (fu < *fc) { 
   double **newm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double agefin, delaymax=50 ; /* Max number of years to converge */            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        u=ulim; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
    cov[1]=1.;        fu=(*func)(u); 
        } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        SHFT(*fa,*fb,*fc,fu) 
     newm=savm;        } 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /*************** linmin ************************/
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int ncom; 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/                double *fc, double (*func)(double)); 
     int j; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double xx,xmin,bx,ax; 
     double fx,fb,fa;
     savm=oldm;   
     oldm=newm;    ncom=n; 
     maxmax=0.;    pcom=vector(1,n); 
     for(j=1;j<=nlstate;j++){    xicom=vector(1,n); 
       min=1.;    nrfunc=func; 
       max=0.;    for (j=1;j<=n;j++) { 
       for(i=1; i<=nlstate; i++) {      pcom[j]=p[j]; 
         sumnew=0;      xicom[j]=xi[j]; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    } 
         prlim[i][j]= newm[i][j]/(1-sumnew);    ax=0.0; 
         max=FMAX(max,prlim[i][j]);    xx=1.0; 
         min=FMIN(min,prlim[i][j]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       maxmin=max-min;  #ifdef DEBUG
       maxmax=FMAX(maxmax,maxmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if(maxmax < ftolpl){  #endif
       return prlim;    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
   }      p[j] += xi[j]; 
 }    } 
     free_vector(xicom,1,n); 
 /*************** transition probabilities **********/    free_vector(pcom,1,n); 
   } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************** powell ************************/
   double s1, s2;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /*double t34;*/              double (*func)(double [])) 
   int i,j,j1, nc, ii, jj;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
     for(i=1; i<= nlstate; i++){                double (*func)(double [])); 
     for(j=1; j<i;j++){    int i,ibig,j; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double del,t,*pt,*ptt,*xit;
         /*s2 += param[i][j][nc]*cov[nc];*/    double fp,fptt;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double *xits;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    pt=vector(1,n); 
       }    ptt=vector(1,n); 
       ps[i][j]=s2;    xit=vector(1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     for(j=i+1; j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (*iter=1;;++(*iter)) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fp=(*fret); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      ibig=0; 
       }      del=0.0; 
       ps[i][j]=s2;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   for(i=1; i<= nlstate; i++){      for (i=1;i<=n;i++) {
      s1=0;        printf(" %d %.12f",i, p[i]);
     for(j=1; j<i; j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
       s1+=exp(ps[i][j]);        fprintf(ficrespow," %.12lf", p[i]);
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       s1+=exp(ps[i][j]);      printf("\n");
     ps[i][i]=1./(s1+1.);      fprintf(ficlog,"\n");
     for(j=1; j<i; j++)      fprintf(ficrespow,"\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];      for (i=1;i<=n;i++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fptt=(*fret); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
   } /* end i */        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("%d",i);fflush(stdout);
       ps[ii][jj]=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
       ps[ii][ii]=1;        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
           ibig=i; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
      printf("%lf ",ps[ii][jj]);        printf("%d %.12e",i,(*fret));
    }        fprintf(ficlog,"%d %.12e",i,(*fret));
     printf("\n ");        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     printf("\n ");printf("%lf ",cov[2]);*/          printf(" x(%d)=%.12e",j,xit[j]);
 /*          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        }
   goto end;*/        for(j=1;j<=n;j++) {
     return ps;          printf(" p=%.12e",p[j]);
 }          fprintf(ficlog," p=%.12e",p[j]);
         }
 /**************** Product of 2 matrices ******************/        printf("\n");
         fprintf(ficlog,"\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #endif
 {      } 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #ifdef DEBUG
   /* in, b, out are matrice of pointers which should have been initialized        int k[2],l;
      before: only the contents of out is modified. The function returns        k[0]=1;
      a pointer to pointers identical to out */        k[1]=-1;
   long i, j, k;        printf("Max: %.12e",(*func)(p));
   for(i=nrl; i<= nrh; i++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(k=ncolol; k<=ncoloh; k++)        for (j=1;j<=n;j++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          printf(" %.12e",p[j]);
         out[i][k] +=in[i][j]*b[j][k];          fprintf(ficlog," %.12e",p[j]);
         }
   return out;        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 /************* Higher Matrix Product ***************/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      duration (i.e. until          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  
      included manually here.        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
      */        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   int i, j, d, h, k;        return; 
   double **out, cov[NCOVMAX];      } 
   double **newm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   /* Hstepm could be zero and should return the unit matrix */        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=nlstate+ndeath;i++)        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=nlstate+ndeath;j++){        pt[j]=p[j]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for(h=1; h <=nhstepm; h++){        if (t < 0.0) { 
     for(d=1; d <=hstepm; d++){          linmin(p,xit,n,fret,func); 
       newm=savm;          for (j=1;j<=n;j++) { 
       /* Covariates have to be included here again */            xi[j][ibig]=xi[j][n]; 
       cov[1]=1.;            xi[j][n]=xit[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
 for (k=1; k<=cptcovage;k++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
    for (k=1; k<=cptcovprod;k++)          for(j=1;j<=n;j++){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
           }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          printf("\n");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          fprintf(ficlog,"\n");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;      } 
       oldm=newm;    } 
     }  } 
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /**** Prevalence limit (stable prevalence)  ****************/
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          */  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   } /* end h */       matrix by transitions matrix until convergence is reached */
   return po;  
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /*************** log-likelihood *************/    double **out, cov[NCOVMAX], **pmij();
 double func( double *x)    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (ii=1;ii<=nlstate+ndeath;ii++)
   double **out;      for (j=1;j<=nlstate+ndeath;j++){
   double sw; /* Sum of weights */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double lli; /* Individual log likelihood */      }
   long ipmx;  
   /*extern weight */     cov[1]=1.;
   /* We are differentiating ll according to initial status */   
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*for(i=1;i<imx;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 printf(" %d\n",s[4][i]);      newm=savm;
   */      /* Covariates have to be included here again */
   cov[1]=1.;       cov[2]=agefin;
     
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for (k=1; k<=cptcovn;k++) {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
        for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovprod;k++)
             for(d=0; d<dh[mi][i]; d++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               newm=savm;  
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               for (kk=1; kk<=cptcovage;kk++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                  /*printf("%d %d",kk,Tage[kk]);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
               }  
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/      savm=oldm;
               /*cov[3]=pow(cov[2],2)/1000.;*/      oldm=newm;
       maxmax=0.;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(j=1;j<=nlstate;j++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        min=1.;
           savm=oldm;        max=0.;
           oldm=newm;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       } /* end mult */          prlim[i][j]= newm[i][j]/(1-sumnew);
              max=FMAX(max,prlim[i][j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          min=FMIN(min,prlim[i][j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        maxmin=max-min;
       sw += weight[i];        maxmax=FMAX(maxmax,maxmin);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
     } /* end of wave */      if(maxmax < ftolpl){
   } /* end of individual */        return prlim;
       }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 /*********** Maximum Likelihood Estimation ***************/    double s1, s2;
     /*double t34;*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    int i,j,j1, nc, ii, jj;
 {  
   int i,j, iter;      for(i=1; i<= nlstate; i++){
   double **xi,*delti;      for(j=1; j<i;j++){
   double fret;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   xi=matrix(1,npar,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=npar;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=npar;j++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");        ps[i][j]=s2;
   powell(p,xi,npar,ftol,&iter,&fret,func);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath;j++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 /**** Computes Hessian and covariance matrix ***/        ps[i][j]=s2;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      }
 {    }
   double  **a,**y,*x,pd;      /*ps[3][2]=1;*/
   double **hess;  
   int i, j,jk;    for(i=1; i<= nlstate; i++){
   int *indx;       s1=0;
       for(j=1; j<i; j++)
   double hessii(double p[], double delta, int theta, double delti[]);        s1+=exp(ps[i][j]);
   double hessij(double p[], double delti[], int i, int j);      for(j=i+1; j<=nlstate+ndeath; j++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;        s1+=exp(ps[i][j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   hess=matrix(1,npar,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   printf("\nCalculation of the hessian matrix. Wait...\n");      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1;i<=npar;i++){    } /* end i */
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     /*printf(" %f ",p[i]);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
   }        ps[ii][jj]=0;
         ps[ii][ii]=1;
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++)  {    }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         hess[j][i]=hess[i][j];      for(jj=1; jj<= nlstate+ndeath; jj++){
       }       printf("%lf ",ps[ii][jj]);
     }     }
   }      printf("\n ");
   printf("\n");      }
       printf("\n ");printf("%lf ",cov[2]);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*
      for(i=1; i<= npar; i++) printf("%f ",x[i]);
   a=matrix(1,npar,1,npar);    goto end;*/
   y=matrix(1,npar,1,npar);      return ps;
   x=vector(1,npar);  }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /**************** Product of 2 matrices ******************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   for (j=1;j<=npar;j++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (i=1;i<=npar;i++) x[i]=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     x[j]=1;    /* in, b, out are matrice of pointers which should have been initialized 
     lubksb(a,npar,indx,x);       before: only the contents of out is modified. The function returns
     for (i=1;i<=npar;i++){       a pointer to pointers identical to out */
       matcov[i][j]=x[i];    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   printf("\n#Hessian matrix#\n");          out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    return out;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  
   }  /************* Higher Matrix Product ***************/
   
   /* Recompute Inverse */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* Computes the transition matrix starting at age 'age' over 
   ludcmp(a,npar,indx,&pd);       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   /*  printf("\n#Hessian matrix recomputed#\n");       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   for (j=1;j<=npar;j++) {       (typically every 2 years instead of every month which is too big 
     for (i=1;i<=npar;i++) x[i]=0;       for the memory).
     x[j]=1;       Model is determined by parameters x and covariates have to be 
     lubksb(a,npar,indx,x);       included manually here. 
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];       */
       printf("%.3e ",y[i][j]);  
     }    int i, j, d, h, k;
     printf("\n");    double **out, cov[NCOVMAX];
   }    double **newm;
   */  
     /* Hstepm could be zero and should return the unit matrix */
   free_matrix(a,1,npar,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   free_matrix(y,1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(x,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   free_ivector(indx,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   free_matrix(hess,1,npar,1,npar);      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 /*************** hessian matrix ****************/        /* Covariates have to be included here again */
 double hessii( double x[], double delta, int theta, double delti[])        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int l=1, lmax=20;        for (k=1; k<=cptcovage;k++)
   double k1,k2;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double p2[NPARMAX+1];        for (k=1; k<=cptcovprod;k++)
   double res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  
   int k=0,kmax=10;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double l1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fx=func(x);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) p2[i]=x[i];        savm=oldm;
   for(l=0 ; l <=lmax; l++){        oldm=newm;
     l1=pow(10,l);      }
     delts=delt;      for(i=1; i<=nlstate+ndeath; i++)
     for(k=1 ; k <kmax; k=k+1){        for(j=1;j<=nlstate+ndeath;j++) {
       delt = delta*(l1*k);          po[i][j][h]=newm[i][j];
       p2[theta]=x[theta] +delt;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       k1=func(p2)-fx;           */
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;    } /* end h */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    return po;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  }
        
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*************** log-likelihood *************/
 #endif  double func( double *x)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int i, ii, j, k, mi, d, kk;
         k=kmax;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double sw; /* Sum of weights */
         k=kmax; l=lmax*10.;    double lli; /* Individual log likelihood */
       }    int s1, s2;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double bbh, survp;
         delts=delt;    long ipmx;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   delti[theta]=delts;    /*for(i=1;i<imx;i++) 
   return res;      printf(" %d\n",s[4][i]);
      */
 }    cov[1]=1.;
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   int i;    if(mle==1){
   int l=1, l1, lmax=20;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double k1,k2,k3,k4,res,fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double p2[NPARMAX+1];        for(mi=1; mi<= wav[i]-1; mi++){
   int k;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   fx=func(x);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=2; k++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) p2[i]=x[i];            }
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(d=0; d<dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            newm=savm;
     k1=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            }
     k2=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]-delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            oldm=newm;
     k3=func(p2)-fx;          } /* end mult */
          
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     k4=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * (in months) between two waves is not a multiple of stepm, we rounded to 
 #ifdef DEBUG           * the nearest (and in case of equal distance, to the lowest) interval but now
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #endif           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   }           * probability in order to take into account the bias as a fraction of the way
   return res;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 /************** Inverse of matrix **************/           * For stepm > 1 the results are less biased than in previous versions. 
 void ludcmp(double **a, int n, int *indx, double *d)           */
 {          s1=s[mw[mi][i]][i];
   int i,imax,j,k;          s2=s[mw[mi+1][i]][i];
   double big,dum,sum,temp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *vv;          /* bias is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   vv=vector(1,n);           */
   *d=1.0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (i=1;i<=n;i++) {          if( s2 > nlstate){ 
     big=0.0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     for (j=1;j<=n;j++)               to the likelihood is the probability to die between last step unit time and current 
       if ((temp=fabs(a[i][j])) > big) big=temp;               step unit time, which is also the differences between probability to die before dh 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");               and probability to die before dh-stepm . 
     vv[i]=1.0/big;               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   for (j=1;j<=n;j++) {          health state: the date of the interview describes the actual state
     for (i=1;i<j;i++) {          and not the date of a change in health state. The former idea was
       sum=a[i][j];          to consider that at each interview the state was recorded
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          (healthy, disable or death) and IMaCh was corrected; but when we
       a[i][j]=sum;          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
     big=0.0;          contribution is smaller and very dependent of the step unit
     for (i=j;i<=n;i++) {          stepm. It is no more the probability to die between last interview
       sum=a[i][j];          and month of death but the probability to survive from last
       for (k=1;k<j;k++)          interview up to one month before death multiplied by the
         sum -= a[i][k]*a[k][j];          probability to die within a month. Thanks to Chris
       a[i][j]=sum;          Jackson for correcting this bug.  Former versions increased
       if ( (dum=vv[i]*fabs(sum)) >= big) {          mortality artificially. The bad side is that we add another loop
         big=dum;          which slows down the processing. The difference can be up to 10%
         imax=i;          lower mortality.
       }            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
     if (j != imax) {          }else{
       for (k=1;k<=n;k++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         dum=a[imax][k];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         a[imax][k]=a[j][k];          } 
         a[j][k]=dum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
       *d = -(*d);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       vv[imax]=vv[j];          ipmx +=1;
     }          sw += weight[i];
     indx[j]=imax;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (a[j][j] == 0.0) a[j][j]=TINY;        } /* end of wave */
     if (j != n) {      } /* end of individual */
       dum=1.0/(a[j][j]);    }  else if(mle==2){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(vv,1,n);  /* Doesn't work */          for (ii=1;ii<=nlstate+ndeath;ii++)
 ;            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])            }
 {          for(d=0; d<=dh[mi][i]; d++){
   int i,ii=0,ip,j;            newm=savm;
   double sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ip=indx[i];            }
     sum=b[ip];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[ip]=b[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (ii)            savm=oldm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            oldm=newm;
     else if (sum) ii=i;          } /* end mult */
     b[i]=sum;        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (i=n;i>=1;i--) {          /* But now since version 0.9 we anticipate for bias and large stepm.
     sum=b[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     b[i]=sum/a[i][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 /************ Frequencies ********************/           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)           * -stepm/2 to stepm/2 .
 {  /* Some frequencies */           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           */
   double ***freq; /* Frequencies */          s1=s[mw[mi][i]][i];
   double *pp;          s2=s[mw[mi+1][i]][i];
   double pos;          bbh=(double)bh[mi][i]/(double)stepm; 
   FILE *ficresp;          /* bias is positive if real duration
   char fileresp[FILENAMELENGTH];           * is higher than the multiple of stepm and negative otherwise.
            */
   pp=vector(1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   strcpy(fileresp,"p");          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   strcat(fileresp,fileres);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /*if(lli ==000.0)*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     exit(0);          ipmx +=1;
   }          sw += weight[i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j1=0;        } /* end of wave */
       } /* end of individual */
   j=cptcoveff;    }  else if(mle==3){  /* exponential inter-extrapolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(k1=1; k1<=j;k1++){        for(mi=1; mi<= wav[i]-1; mi++){
    for(i1=1; i1<=ncodemax[k1];i1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
        j1++;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
          for (jk=-1; jk<=nlstate+ndeath; jk++)              }
            for(m=agemin; m <= agemax+3; m++)          for(d=0; d<dh[mi][i]; d++){
              freq[i][jk][m]=0;            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        for (i=1; i<=imx; i++) {            for (kk=1; kk<=cptcovage;kk++) {
          bool=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          if  (cptcovn>0) {            }
            for (z1=1; z1<=cptcoveff; z1++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
           if (bool==1) {            oldm=newm;
            for(m=firstpass; m<=lastpass-1; m++){          } /* end mult */
              if(agev[m][i]==0) agev[m][i]=agemax+1;        
              if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /* But now since version 0.9 we anticipate for bias and large stepm.
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            }           * (in months) between two waves is not a multiple of stepm, we rounded to 
          }           * the nearest (and in case of equal distance, to the lowest) interval but now
        }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if  (cptcovn>0) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
          fprintf(ficresp, "\n#********** Variable ");           * probability in order to take into account the bias as a fraction of the way
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
        }           * -stepm/2 to stepm/2 .
        fprintf(ficresp, "**********\n#");           * For stepm=1 the results are the same as for previous versions of Imach.
        for(i=1; i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           */
        fprintf(ficresp, "\n");          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
   for(i=(int)agemin; i <= (int)agemax+3; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     if(i==(int)agemax+3)          /* bias is positive if real duration
       printf("Total");           * is higher than the multiple of stepm and negative otherwise.
     else           */
       printf("Age %d", i);          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         pp[jk] += freq[jk][m][i];          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
       for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
         pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(pp[jk]>=1.e-10)        } /* end of wave */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } /* end of individual */
       else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1,pos=0; jk <=nlstate ; jk++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       pos += pp[jk];            }
     for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
       if(pos>=1.e-5)            newm=savm;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if( i <= (int) agemax){            }
         if(pos>=1.e-5)          
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
     for(jk=-1; jk <=nlstate+ndeath; jk++)        
       for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s2=s[mw[mi+1][i]][i];
     if(i <= (int) agemax)          if( s2 > nlstate){ 
       fprintf(ficresp,"\n");            lli=log(out[s1][s2] - savm[s1][s2]);
     printf("\n");          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
  }          ipmx +=1;
            sw += weight[i];
   fclose(ficresp);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_vector(pp,1,nlstate);        } /* end of wave */
       } /* end of individual */
 }  /* End of Freq */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************* Waves Concatenation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for(d=0; d<dh[mi][i]; d++){
      and mw[mi+1][i]. dh depends on stepm.            newm=savm;
      */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int i, mi, m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
 float sum=0.;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     mi=0;            savm=oldm;
     m=firstpass;            oldm=newm;
     while(s[m][i] <= nlstate){          } /* end mult */
       if(s[m][i]>=1)        
         mw[++mi][i]=m;          s1=s[mw[mi][i]][i];
       if(m >=lastpass)          s2=s[mw[mi+1][i]][i];
         break;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       mi++;     /* Death is another wave */        } /* end of wave */
       /* if(mi==0)  never been interviewed correctly before death */      } /* end of individual */
          /* Only death is a correct wave */    } /* End of if */
       mw[mi][i]=m;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     wav[i]=mi;    return -l;
     if(mi==0)  }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }  /*************** log-likelihood *************/
   double funcone( double *x)
   for(i=1; i<=imx; i++){  {
     for(mi=1; mi<wav[i];mi++){    /* Same as likeli but slower because of a lot of printf and if */
       if (stepm <=0)    int i, ii, j, k, mi, d, kk;
         dh[mi][i]=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else{    double **out;
         if (s[mw[mi+1][i]][i] > nlstate) {    double lli; /* Individual log likelihood */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double llt;
           if(j=0) j=1;  /* Survives at least one month after exam */    int s1, s2;
         }    double bbh, survp;
         else{    /*extern weight */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* We are differentiating ll according to initial status */
           k=k+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if (j >= jmax) jmax=j;    /*for(i=1;i<imx;i++) 
           else if (j <= jmin)jmin=j;      printf(" %d\n",s[4][i]);
           sum=sum+j;    */
         }    cov[1]=1.;
         jk= j/stepm;  
         jl= j -jk*stepm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else      for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk+1;        for (ii=1;ii<=nlstate+ndeath;ii++)
         if(dh[mi][i]==0)          for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=1; /* At least one step */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
   }        for(d=0; d<dh[mi][i]; d++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          newm=savm;
 }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Tricode ****************************/          for (kk=1; kk<=cptcovage;kk++) {
 void tricode(int *Tvar, int **nbcode, int imx)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {          }
   int Ndum[20],ij=1, k, j, i;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int cptcode=0;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   cptcoveff=0;          savm=oldm;
            oldm=newm;
   for (k=0; k<19; k++) Ndum[k]=0;        } /* end mult */
   for (k=1; k<=7; k++) ncodemax[k]=0;        
         s1=s[mw[mi][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        s2=s[mw[mi+1][i]][i];
     for (i=1; i<=imx; i++) {        bbh=(double)bh[mi][i]/(double)stepm; 
       ij=(int)(covar[Tvar[j]][i]);        /* bias is positive if real duration
       Ndum[ij]++;         * is higher than the multiple of stepm and negative otherwise.
       if (ij > cptcode) cptcode=ij;         */
     }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        } else if (mle==1){
     for (i=0; i<=cptcode; i++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(Ndum[i]!=0) ncodemax[j]++;        } else if(mle==2){
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     ij=1;        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for (i=1; i<=ncodemax[j]; i++) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for (k=0; k<=19; k++) {          lli=log(out[s1][s2]); /* Original formula */
         if (Ndum[k] != 0) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           nbcode[Tvar[j]][ij]=k;          lli=log(out[s1][s2]); /* Original formula */
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/        } /* End of if */
           ij++;        ipmx +=1;
         }        sw += weight[i];
         if (ij > ncodemax[j]) break;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        if(globpr){
   }            fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
  for (i=1; i<=10; i++) {   %10.6f %10.6f %10.6f ", \
       ij=Tvar[i];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       Ndum[ij]++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  ij=1;            llt +=ll[k]*gipmx/gsw;
  for (i=1; i<=cptcovn; i++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
    if((Ndum[i]!=0) && (i<=ncov)){          }
      Tvaraff[i]=ij;          fprintf(ficresilk," %10.6f\n", -llt);
    ij++;        }
    }      } /* end of wave */
  }    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    /*printf("j=%d %d\n",j,Tvar[j]);*/    if(globpr==0){ /* First time we count the contributions and weights */
  }      gipmx=ipmx;
        gsw=sw;
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);    }
     scanf("%d",i);*/    return -l;
 }  }
   
 /*********** Health Expectancies ****************/  
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  {
 {    /* This routine should help understanding what is done with 
   /* Health expectancies */       the selection of individuals/waves and
   int i, j, nhstepm, hstepm, h;       to check the exact contribution to the likelihood.
   double age, agelim,hf;       Plotting could be done.
   double ***p3mat;     */
      int k;
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");    if(*globpri !=0){ /* Just counts and sums no printings */
   for(i=1; i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
     for(j=1; j<=nlstate;j++)      strcat(fileresilk,fileres);
       fprintf(ficreseij," %1d-%1d",i,j);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficreseij,"\n");        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   hstepm=1*YEARM; /*  Every j years of age (in month) */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
   agelim=AGESUP;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(k=1; k<=nlstate; k++) 
     /* nhstepm age range expressed in number of stepm */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     /* Typically if 20 years = 20*12/6=40 stepm */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    *fretone=(*funcone)(p);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fclose(ficresilk);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fflush(fichtm); 
     } 
     return;
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  /*********** Maximum Likelihood Estimation ***************/
           eij[i][j][(int)age] +=p3mat[i][j][h];  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      {
     hf=1;    int i,j, iter;
     if (stepm >= YEARM) hf=stepm/YEARM;    double **xi;
     fprintf(ficreseij,"%.0f",age );    double fret;
     for(i=1; i<=nlstate;i++)    double fretone; /* Only one call to likelihood */
       for(j=1; j<=nlstate;j++){    char filerespow[FILENAMELENGTH];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
     fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 }    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 /************ Variance ******************/    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      printf("Problem with resultfile: %s\n", filerespow);
 {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /* Variance of health expectancies */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double **newm;    for (i=1;i<=nlstate;i++)
   double **dnewm,**doldm;      for(j=1;j<=nlstate+ndeath;j++)
   int i, j, nhstepm, hstepm, h;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int k, cptcode;    fprintf(ficrespow,"\n");
    double *xp;  
   double **gp, **gm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double ***gradg, ***trgradg;  
   double ***p3mat;    fclose(ficrespow);
   double age,agelim;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int theta;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficresvij,"\n");  {
     double  **a,**y,*x,pd;
   xp=vector(1,npar);    double **hess;
   dnewm=matrix(1,nlstate,1,npar);    int i, j,jk;
   doldm=matrix(1,nlstate,1,nlstate);    int *indx;
    
   hstepm=1*YEARM; /* Every year of age */    double hessii(double p[], double delta, int theta, double delti[]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double hessij(double p[], double delti[], int i, int j);
   agelim = AGESUP;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    hess=matrix(1,npar,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++){
     gm=matrix(0,nhstepm,1,nlstate);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for(theta=1; theta <=npar; theta++){      hess[i][i]=hessii(p,ftolhess,i,delti);
       for(i=1; i<=npar; i++){ /* Computes gradient */      /*printf(" %f ",p[i]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*printf(" %lf ",hess[i][i]);*/
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) {
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++)  {
         for(h=0; h<=nhstepm; h++){        if (j>i) { 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          printf(".%d%d",i,j);fflush(stdout);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         }          hess[i][j]=hessij(p,delti,i,j);
       }          hess[j][i]=hess[i][j];    
              /*printf(" %lf ",hess[i][j]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    
       }    a=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++)    y=matrix(1,npar,1,npar);
         for(h=0; h<=nhstepm; h++){    x=vector(1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
     } /* End theta */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     for (j=1;j<=npar;j++) {
     for(h=0; h<=nhstepm; h++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate;j++)      x[j]=1;
         for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){    printf("\n#Hessian matrix#\n");
       for(k=0;k<=nhstepm;k++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (j=1;j<=npar;j++) { 
         for(i=1;i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
           for(j=1;j<=nlstate;j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
             vareij[i][j][(int)age] += doldm[i][j];      }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
     h=1;    }
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );    /* Recompute Inverse */
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    ludcmp(a,npar,indx,&pd);
       }  
     fprintf(ficresvij,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    for (j=1;j<=npar;j++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      x[j]=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      lubksb(a,npar,indx,x);
   } /* End age */      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   free_vector(xp,1,npar);        printf("%.3e ",y[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
       printf("\n");
 }      fprintf(ficlog,"\n");
     }
 /************ Variance of prevlim ******************/    */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    free_matrix(a,1,npar,1,npar);
   /* Variance of prevalence limit */    free_matrix(y,1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_vector(x,1,npar);
   double **newm;    free_ivector(indx,1,npar);
   double **dnewm,**doldm;    free_matrix(hess,1,npar,1,npar);
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  
   double *xp;  }
   double *gp, *gm;  
   double **gradg, **trgradg;  /*************** hessian matrix ****************/
   double age,agelim;  double hessii( double x[], double delta, int theta, double delti[])
   int theta;  {
        int i;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    int l=1, lmax=20;
   fprintf(ficresvpl,"# Age");    double k1,k2;
   for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       fprintf(ficresvpl," %1d-%1d",i,i);    double res;
   fprintf(ficresvpl,"\n");    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   xp=vector(1,npar);    int k=0,kmax=10;
   dnewm=matrix(1,nlstate,1,npar);    double l1;
   doldm=matrix(1,nlstate,1,nlstate);  
      fx=func(x);
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++) p2[i]=x[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(l=0 ; l <=lmax; l++){
   agelim = AGESUP;      l1=pow(10,l);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      delts=delt;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(k=1 ; k <kmax; k=k+1){
     if (stepm >= YEARM) hstepm=1;        delt = delta*(l1*k);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        p2[theta]=x[theta] +delt;
     gradg=matrix(1,npar,1,nlstate);        k1=func(p2)-fx;
     gp=vector(1,nlstate);        p2[theta]=x[theta]-delt;
     gm=vector(1,nlstate);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     for(theta=1; theta <=npar; theta++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(i=1; i<=npar; i++){ /* Computes gradient */        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1;i<=nlstate;i++)  #endif
         gp[i] = prlim[i][i];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
            if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(i=1; i<=npar; i++) /* Computes gradient */          k=kmax;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(i=1;i<=nlstate;i++)          k=kmax; l=lmax*10.;
         gm[i] = prlim[i][i];        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(i=1;i<=nlstate;i++)          delts=delt;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */      }
     }
     trgradg =matrix(1,nlstate,1,npar);    delti[theta]=delts;
     return res; 
     for(j=1; j<=nlstate;j++)    
       for(theta=1; theta <=npar; theta++)  }
         trgradg[j][theta]=gradg[theta][j];  
   double hessij( double x[], double delti[], int thetai,int thetaj)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    int i;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int l=1, l1, lmax=20;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double k1,k2,k3,k4,res,fx;
     for(i=1;i<=nlstate;i++)    double p2[NPARMAX+1];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int k;
   
     fprintf(ficresvpl,"%.0f ",age );    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (k=1; k<=2; k++) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvpl,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(gp,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_vector(gm,1,nlstate);      k1=func(p2)-fx;
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   } /* End age */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
 /***********************************************/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 /**************** Main Program *****************/  #ifdef DEBUG
 /***********************************************/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /*int main(int argc, char *argv[])*/  #endif
 int main()    }
 {    return res;
   }
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;  
   double agedeb, agefin,hf;  /************** Inverse of matrix **************/
   double agemin=1.e20, agemax=-1.e20;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   double fret;    int i,imax,j,k; 
   double **xi,tmp,delta;    double big,dum,sum,temp; 
     double *vv; 
   double dum; /* Dummy variable */   
   double ***p3mat;    vv=vector(1,n); 
   int *indx;    *d=1.0; 
   char line[MAXLINE], linepar[MAXLINE];    for (i=1;i<=n;i++) { 
   char title[MAXLINE];      big=0.0; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for (j=1;j<=n;j++) 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        if ((temp=fabs(a[i][j])) > big) big=temp; 
   char filerest[FILENAMELENGTH];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   char fileregp[FILENAMELENGTH];      vv[i]=1.0/big; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    } 
   int firstobs=1, lastobs=10;    for (j=1;j<=n;j++) { 
   int sdeb, sfin; /* Status at beginning and end */      for (i=1;i<j;i++) { 
   int c,  h , cpt,l;        sum=a[i][j]; 
   int ju,jl, mi;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        a[i][j]=sum; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      } 
        big=0.0; 
   int hstepm, nhstepm;      for (i=j;i<=n;i++) { 
   double bage, fage, age, agelim, agebase;        sum=a[i][j]; 
   double ftolpl=FTOL;        for (k=1;k<j;k++) 
   double **prlim;          sum -= a[i][k]*a[k][j]; 
   double *severity;        a[i][j]=sum; 
   double ***param; /* Matrix of parameters */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double  *p;          big=dum; 
   double **matcov; /* Matrix of covariance */          imax=i; 
   double ***delti3; /* Scale */        } 
   double *delti; /* Scale */      } 
   double ***eij, ***vareij;      if (j != imax) { 
   double **varpl; /* Variances of prevalence limits by age */        for (k=1;k<=n;k++) { 
   double *epj, vepp;          dum=a[imax][k]; 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";          a[imax][k]=a[j][k]; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];          a[j][k]=dum; 
         } 
   char z[1]="c", occ;        *d = -(*d); 
 #include <sys/time.h>        vv[imax]=vv[j]; 
 #include <time.h>      } 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      indx[j]=imax; 
   /* long total_usecs;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   struct timeval start_time, end_time;      if (j != n) { 
          dum=1.0/(a[j][j]); 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     } 
   printf("\nIMACH, Version 0.64a");    free_vector(vv,1,n);  /* Doesn't work */
   printf("\nEnter the parameter file name: ");  ;
   } 
 #ifdef windows  
   scanf("%s",pathtot);  void lubksb(double **a, int n, int *indx, double b[]) 
   getcwd(pathcd, size);  { 
   /*cygwin_split_path(pathtot,path,optionfile);    int i,ii=0,ip,j; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double sum; 
   /* cutv(path,optionfile,pathtot,'\\');*/   
     for (i=1;i<=n;i++) { 
 split(pathtot, path,optionfile);      ip=indx[i]; 
   chdir(path);      sum=b[ip]; 
   replace(pathc,path);      b[ip]=b[i]; 
 #endif      if (ii) 
 #ifdef unix        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   scanf("%s",optionfile);      else if (sum) ii=i; 
 #endif      b[i]=sum; 
     } 
 /*-------- arguments in the command line --------*/    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   strcpy(fileres,"r");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcat(fileres, optionfile);      b[i]=sum/a[i][i]; 
     } 
   /*---------arguments file --------*/  } 
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /************ Frequencies ********************/
     printf("Problem with optionfile %s\n",optionfile);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     goto end;  {  /* Some frequencies */
   }    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   strcpy(filereso,"o");    int first;
   strcat(filereso,fileres);    double ***freq; /* Frequencies */
   if((ficparo=fopen(filereso,"w"))==NULL) {    double *pp, **prop;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    pp=vector(1,nlstate);
     ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fgets(line, MAXLINE, ficpar);    strcpy(fileresp,"p");
     puts(line);    strcat(fileresp,fileres);
     fputs(line,ficparo);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    j1=0;
     
   covar=matrix(0,NCOVMAX,1,n);        j=cptcoveff;
   if (strlen(model)<=1) cptcovn=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else {  
     j=0;    first=1;
     j=nbocc(model,'+');  
     cptcovn=j+1;    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   ncovmodel=2+cptcovn;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          scanf("%d", i);*/
          for (i=-1; i<=nlstate+ndeath; i++)  
   /* Read guess parameters */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   /* Reads comments: lines beginning with '#' */            for(m=iagemin; m <= iagemax+3; m++)
   while((c=getc(ficpar))=='#' && c!= EOF){              freq[i][jk][m]=0;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for (i=1; i<=nlstate; i++)  
     puts(line);        for(m=iagemin; m <= iagemax+3; m++)
     fputs(line,ficparo);          prop[i][m]=0;
   }        
   ungetc(c,ficpar);        dateintsum=0;
          k2cpt=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (i=1; i<=imx; i++) {
     for(i=1; i <=nlstate; i++)          bool=1;
     for(j=1; j <=nlstate+ndeath-1; j++){          if  (cptcovn>0) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficparo,"%1d%1d",i1,j1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf("%1d%1d",i,j);                bool=0;
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar," %lf",&param[i][j][k]);          if (bool==1){
         printf(" %lf",param[i][j][k]);            for(m=firstpass; m<=lastpass; m++){
         fprintf(ficparo," %lf",param[i][j][k]);              k2=anint[m][i]+(mint[m][i]/12.);
       }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fscanf(ficpar,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       printf("\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficparo,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   p=param[1][1];                }
                  
   /* Reads comments: lines beginning with '#' */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   while((c=getc(ficpar))=='#' && c!= EOF){                  dateintsum=dateintsum+k2;
     ungetc(c,ficpar);                  k2cpt++;
     fgets(line, MAXLINE, ficpar);                }
     puts(line);                /*}*/
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);        }
          
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){        if  (cptcovn>0) {
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresp, "\n#********** Variable "); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficresp, "**********\n#");
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        for(i=1; i<=nlstate;i++) 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         printf(" %le",delti3[i][j][k]);        fprintf(ficresp, "\n");
         fprintf(ficparo," %le",delti3[i][j][k]);        
       }        for(i=iagemin; i <= iagemax+3; i++){
       fscanf(ficpar,"\n");          if(i==iagemax+3){
       printf("\n");            fprintf(ficlog,"Total");
       fprintf(ficparo,"\n");          }else{
     }            if(first==1){
   }              first=0;
   delti=delti3[1][1];              printf("See log file for details...\n");
              }
   /* Reads comments: lines beginning with '#' */            fprintf(ficlog,"Age %d", i);
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
     fgets(line, MAXLINE, ficpar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     puts(line);              pp[jk] += freq[jk][m][i]; 
     fputs(line,ficparo);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   ungetc(c,ficpar);            for(m=-1, pos=0; m <=0 ; m++)
                pos += freq[jk][m][i];
   matcov=matrix(1,npar,1,npar);            if(pp[jk]>=1.e-10){
   for(i=1; i <=npar; i++){              if(first==1){
     fscanf(ficpar,"%s",&str);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("%s",str);              }
     fprintf(ficparo,"%s",str);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(j=1; j <=i; j++){            }else{
       fscanf(ficpar," %le",&matcov[i][j]);              if(first==1)
       printf(" %.5le",matcov[i][j]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficparo," %.5le",matcov[i][j]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
     fscanf(ficpar,"\n");          }
     printf("\n");  
     fprintf(ficparo,"\n");          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for(i=1; i <=npar; i++)              pp[jk] += freq[jk][m][i];
     for(j=i+1;j<=npar;j++)          }       
       matcov[i][j]=matcov[j][i];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                pos += pp[jk];
   printf("\n");            posprop += prop[jk][i];
           }
           for(jk=1; jk <=nlstate ; jk++){
     /*-------- data file ----------*/            if(pos>=1.e-5){
     if((ficres =fopen(fileres,"w"))==NULL) {              if(first==1)
       printf("Problem with resultfile: %s\n", fileres);goto end;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficres,"#%s\n",version);            }else{
                  if(first==1)
     if((fic=fopen(datafile,"r"))==NULL)    {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("Problem with datafile: %s\n", datafile);goto end;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
             if( i <= iagemax){
     n= lastobs;              if(pos>=1.e-5){
     severity = vector(1,maxwav);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     outcome=imatrix(1,maxwav+1,1,n);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     num=ivector(1,n);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     moisnais=vector(1,n);              }
     annais=vector(1,n);              else
     moisdc=vector(1,n);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     andc=vector(1,n);            }
     agedc=vector(1,n);          }
     cod=ivector(1,n);          
     weight=vector(1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            for(m=-1; m <=nlstate+ndeath; m++)
     mint=matrix(1,maxwav,1,n);              if(freq[jk][m][i] !=0 ) {
     anint=matrix(1,maxwav,1,n);              if(first==1)
     s=imatrix(1,maxwav+1,1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     adl=imatrix(1,maxwav+1,1,n);                    fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     tab=ivector(1,NCOVMAX);              }
     ncodemax=ivector(1,8);          if(i <= iagemax)
             fprintf(ficresp,"\n");
     i=1;          if(first==1)
     while (fgets(line, MAXLINE, fic) != NULL)    {            printf("Others in log...\n");
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficlog,"\n");
                }
         for (j=maxwav;j>=1;j--){      }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    }
           strcpy(line,stra);    dateintmean=dateintsum/k2cpt; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresp);
         }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
            free_vector(pp,1,nlstate);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* End of Freq */
   }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  {  
         for (j=ncov;j>=1;j--){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
         num[i]=atol(stra);    */
    
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
         i=i+1;    double *pp, **prop;
       }    double pos,posprop; 
     }    double  y2; /* in fractional years */
     int iagemin, iagemax;
     /*scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */    iagemin= (int) agemin;
     iagemax= (int) agemax;
   /* Calculation of the number of parameter from char model*/    /*pp=vector(1,nlstate);*/
   Tvar=ivector(1,15);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   Tprod=ivector(1,15);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   Tvaraff=ivector(1,15);    j1=0;
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);          j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (strlen(model) >1){    
     j=0, j1=0, k1=1, k2=1;    for(k1=1; k1<=j;k1++){
     j=nbocc(model,'+');      for(i1=1; i1<=ncodemax[k1];i1++){
     j1=nbocc(model,'*');        j1++;
     cptcovn=j+1;        
     cptcovprod=j1;        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     strcpy(modelsav,model);            prop[i][m]=0.0;
    if (j==0) {       
       if (j1==0){        for (i=1; i<=imx; i++) { /* Each individual */
         cutv(stra,strb,modelsav,'V');          bool=1;
         Tvar[1]=atoi(strb);          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       else if (j1==1) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         cutv(stra,strb,modelsav,'*');                bool=0;
         Tage[1]=1; cptcovage++;          } 
         if (strcmp(stra,"age")==0) {          if (bool==1) { 
           cptcovprod--;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           cutv(strd,strc,strb,'V');              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           Tvar[1]=atoi(strc);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         else if (strcmp(strb,"age")==0) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           cptcovprod--;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           cutv(strd,strc,stra,'V');                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           Tvar[1]=atoi(strc);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         else {                  prop[s[m][i]][iagemax+3] += weight[i]; 
           cutv(strd,strc,strb,'V');                } 
           cutv(stre,strd,stra,'V');              }
           Tvar[1]=ncov+1;            } /* end selection of waves */
           for (k=1; k<=lastobs;k++)          }
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
         /*printf("%s %s %s\n", stra,strb,modelsav);          
 printf("%d ",Tvar[1]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 scanf("%d",i);*/            posprop += prop[jk][i]; 
       }          } 
     }  
    else {          for(jk=1; jk <=nlstate ; jk++){     
       for(i=j; i>=1;i--){            if( i <=  iagemax){ 
         cutv(stra,strb,modelsav,'+');              if(posprop>=1.e-5){ 
         /*printf("%s %s %s\n", stra,strb,modelsav);                probs[i][jk][j1]= prop[jk][i]/posprop;
           scanf("%d",i);*/              } 
         if (strchr(strb,'*')) {            } 
           cutv(strd,strc,strb,'*');          }/* end jk */ 
           if (strcmp(strc,"age")==0) {        }/* end i */ 
             cptcovprod--;      } /* end i1 */
             cutv(strb,stre,strd,'V');    } /* end k1 */
             Tvar[i+1]=atoi(stre);    
             cptcovage++;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             Tage[cptcovage]=i+1;    /*free_vector(pp,1,nlstate);*/
             printf("stre=%s ", stre);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           }  }  /* End of prevalence */
           else if (strcmp(strd,"age")==0) {  
             cptcovprod--;  /************* Waves Concatenation ***************/
             cutv(strb,stre,strc,'V');  
             Tvar[i+1]=atoi(stre);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             cptcovage++;  {
             Tage[cptcovage]=i+1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           }       Death is a valid wave (if date is known).
           else {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             cutv(strb,stre,strc,'V');       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             Tvar[i+1]=ncov+k1;       and mw[mi+1][i]. dh depends on stepm.
             cutv(strb,strc,strd,'V');       */
             Tprod[k1]=i+1;  
             Tvard[k1][1]=atoi(strc);    int i, mi, m;
             Tvard[k1][2]=atoi(stre);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             Tvar[cptcovn+k2]=Tvard[k1][1];       double sum=0., jmean=0.;*/
             Tvar[cptcovn+k2+1]=Tvard[k1][2];    int first;
             for (k=1; k<=lastobs;k++)    int j, k=0,jk, ju, jl;
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double sum=0.;
             k1++;    first=0;
             k2=k2+2;    jmin=1e+5;
           }    jmax=-1;
         }    jmean=0.;
         else {    for(i=1; i<=imx; i++){
           cutv(strd,strc,strb,'V');      mi=0;
           /* printf("%s %s %s", strd,strc,strb);*/      m=firstpass;
           Tvar[i+1]=atoi(strc);      while(s[m][i] <= nlstate){
         }        if(s[m][i]>=1)
         strcpy(modelsav,stra);            mw[++mi][i]=m;
       }        if(m >=lastpass)
       cutv(strd,strc,stra,'V');          break;
       Tvar[1]=atoi(strc);        else
     }          m++;
   }      }/* end while */
   /* for (i=1; i<=5; i++)      if (s[m][i] > nlstate){
      printf("i=%d %d ",i,Tvar[i]);*/        mi++;     /* Death is another wave */
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/        /* if(mi==0)  never been interviewed correctly before death */
  /*printf("cptcovprod=%d ", cptcovprod);*/           /* Only death is a correct wave */
   /*  scanf("%d ",i);*/        mw[mi][i]=m;
     fclose(fic);      }
   
     /*  if(mle==1){*/      wav[i]=mi;
     if (weightopt != 1) { /* Maximisation without weights*/      if(mi==0){
       for(i=1;i<=n;i++) weight[i]=1.0;        if(first==0){
     }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     /*-calculation of age at interview from date of interview and age at death -*/          first=1;
     agev=matrix(1,maxwav,1,imx);        }
            if(first==1){
     for (i=1; i<=imx; i++)  {          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }
       for(m=1; (m<= maxwav); m++){      } /* end mi==0 */
         if(s[m][i] >0){    } /* End individuals */
           if (s[m][i] == nlstate+1) {  
             if(agedc[i]>0)    for(i=1; i<=imx; i++){
               if(moisdc[i]!=99 && andc[i]!=9999)      for(mi=1; mi<wav[i];mi++){
               agev[m][i]=agedc[i];        if (stepm <=0)
             else{          dh[mi][i]=1;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        else{
               agev[m][i]=-1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             }            if (agedc[i] < 2*AGESUP) {
           }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           else if(s[m][i] !=9){ /* Should no more exist */              if(j==0) j=1;  /* Survives at least one month after exam */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              else if(j<0){
             if(mint[m][i]==99 || anint[m][i]==9999)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               agev[m][i]=1;                j=1; /* Careful Patch */
             else if(agev[m][i] <agemin){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               agemin=agev[m][i];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             }              }
             else if(agev[m][i] >agemax){              k=k+1;
               agemax=agev[m][i];              if (j >= jmax) jmax=j;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              if (j <= jmin) jmin=j;
             }              sum=sum+j;
             /*agev[m][i]=anint[m][i]-annais[i];*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             /*   agev[m][i] = age[i]+2*m;*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }            }
           else { /* =9 */          }
             agev[m][i]=1;          else{
             s[m][i]=-1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            k=k+1;
         else /*= 0 Unknown */            if (j >= jmax) jmax=j;
           agev[m][i]=1;            else if (j <= jmin)jmin=j;
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
     for (i=1; i<=imx; i++)  {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(m=1; (m<= maxwav); m++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (s[m][i] > (nlstate+ndeath)) {            }
           printf("Error: Wrong value in nlstate or ndeath\n");              sum=sum+j;
           goto end;          }
         }          jk= j/stepm;
       }          jl= j -jk*stepm;
     }          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            if(jl==0){
               dh[mi][i]=jk;
     free_vector(severity,1,maxwav);              bh[mi][i]=0;
     free_imatrix(outcome,1,maxwav+1,1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
     free_vector(moisnais,1,n);                    * at the price of an extra matrix product in likelihood */
     free_vector(annais,1,n);              dh[mi][i]=jk+1;
     free_matrix(mint,1,maxwav,1,n);              bh[mi][i]=ju;
     free_matrix(anint,1,maxwav,1,n);            }
     free_vector(moisdc,1,n);          }else{
     free_vector(andc,1,n);            if(jl <= -ju){
               dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
     wav=ivector(1,imx);                                   * is higher than the multiple of stepm and negative otherwise.
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                                   */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            }
                else{
     /* Concatenates waves */              dh[mi][i]=jk+1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
       Tcode=ivector(1,100);              dh[mi][i]=1; /* At least one step */
       nbcode=imatrix(1,nvar,1,8);              bh[mi][i]=ju; /* At least one step */
       ncodemax[1]=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                } /* end if mle */
    codtab=imatrix(1,100,1,10);        }
    h=0;      } /* end wave */
    m=pow(2,cptcoveff);    }
      jmean=sum/k;
    for(k=1;k<=cptcoveff; k++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        for(j=1; j <= ncodemax[k]; j++){   }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  /*********** Tricode ****************************/
            if (h>m) h=1;codtab[h][k]=j;  void tricode(int *Tvar, int **nbcode, int imx)
          }  {
        }    
      }    int Ndum[20],ij=1, k, j, i, maxncov=19;
    }    int cptcode=0;
     cptcoveff=0; 
    
    /*for(i=1; i <=m ;i++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for(k=1; k <=cptcovn; k++){    for (k=1; k<=7; k++) ncodemax[k]=0;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);  
      }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      printf("\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
    }                                 modality*/ 
    scanf("%d",i);*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
            Ndum[ij]++; /*store the modality */
    /* Calculates basic frequencies. Computes observed prevalence at single age        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        and prints on file fileres'p'. */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=0; i<=cptcode; i++) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
      
     /* For Powell, parameters are in a vector p[] starting at p[1]      ij=1; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for (i=1; i<=ncodemax[j]; i++) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
     if(mle==1){            nbcode[Tvar[j]][ij]=k; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
                ij++;
     /*--------- results files --------------*/          }
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          if (ij > ncodemax[j]) break; 
            }  
    jk=1;      } 
    fprintf(ficres,"# Parameters\n");    }  
    printf("# Parameters\n");  
    for(i=1,jk=1; i <=nlstate; i++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)   for (i=1; i<=ncovmodel-2; i++) { 
          {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
            printf("%d%d ",i,k);     ij=Tvar[i];
            fprintf(ficres,"%1d%1d ",i,k);     Ndum[ij]++;
            for(j=1; j <=ncovmodel; j++){   }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);   ij=1;
              jk++;   for (i=1; i<= maxncov; i++) {
            }     if((Ndum[i]!=0) && (i<=ncovcol)){
            printf("\n");       Tvaraff[ij]=i; /*For printing */
            fprintf(ficres,"\n");       ij++;
          }     }
      }   }
    }   
  if(mle==1){   cptcoveff=ij-1; /*Number of simple covariates*/
     /* Computing hessian and covariance matrix */  }
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  /*********** Health Expectancies ****************/
  }  
     fprintf(ficres,"# Scales\n");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     printf("# Scales\n");  
      for(i=1,jk=1; i <=nlstate; i++){  {
       for(j=1; j <=nlstate+ndeath; j++){    /* Health expectancies */
         if (j!=i) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           fprintf(ficres,"%1d%1d",i,j);    double age, agelim, hf;
           printf("%1d%1d",i,j);    double ***p3mat,***varhe;
           for(k=1; k<=ncovmodel;k++){    double **dnewm,**doldm;
             printf(" %.5e",delti[jk]);    double *xp;
             fprintf(ficres," %.5e",delti[jk]);    double **gp, **gm;
             jk++;    double ***gradg, ***trgradg;
           }    int theta;
           printf("\n");  
           fprintf(ficres,"\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
     k=1;    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficres,"# Covariance\n");    fprintf(ficreseij,"# Age");
     printf("# Covariance\n");    for(i=1; i<=nlstate;i++)
     for(i=1;i<=npar;i++){      for(j=1; j<=nlstate;j++)
       /*  if (k>nlstate) k=1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(ficreseij,"\n");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if(estepm < stepm){
       fprintf(ficres,"%3d",i);      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    else  hstepm=estepm;   
         fprintf(ficres," %.5e",matcov[i][j]);    /* We compute the life expectancy from trapezoids spaced every estepm months
         printf(" %.5e",matcov[i][j]);     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficres,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       printf("\n");     * progression in between and thus overestimating or underestimating according
       k++;     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     while((c=getc(ficpar))=='#' && c!= EOF){     * hypothesis. A more precise result, taking into account a more precise
       ungetc(c,ficpar);     * curvature will be obtained if estepm is as small as stepm. */
       fgets(line, MAXLINE, ficpar);  
       puts(line);    /* For example we decided to compute the life expectancy with the smallest unit */
       fputs(line,ficparo);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if (fage <= 2) {       survival function given by stepm (the optimization length). Unfortunately it
       bage = agemin;       means that if the survival funtion is printed only each two years of age and if
       fage = agemax;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
     */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     agelim=AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /*------------ gnuplot -------------*/      /* nhstepm age range expressed in number of stepm */
 chdir(pathcd);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if((ficgp=fopen("graph.plt","w"))==NULL) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with file graph.gp");goto end;      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #ifdef windows      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp,"cd \"%s\" \n",pathc);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 #endif      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 m=pow(2,cptcoveff);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
  /* 1eme*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for (cpt=1; cpt<= nlstate ; cpt ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for (k1=1; k1<= m ; k1 ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #endif  
 #ifdef unix      /* Computing Variances of health expectancies */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
 for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }    
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        cptj=0;
     for (i=1; i<= nlstate ; i ++) {        for(j=1; j<= nlstate; j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1; i<=nlstate; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            cptj=cptj+1;
 }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }         
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       
 #ifdef unix        for(i=1; i<=npar; i++) 
 fprintf(ficgp,"\nset ter gif small size 400,300");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 #endif        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        
    }        cptj=0;
   }        for(j=1; j<= nlstate; j++){
   /*2 eme*/          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   for (k1=1; k1<= m ; k1 ++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {        for(j=1; j<= nlstate*nlstate; j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(h=0; h<=nhstepm-1; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 }            }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       } 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);     
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  /* End theta */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(h=0; h<=nhstepm-1; h++)
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<=nlstate*nlstate;j++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(theta=1; theta <=npar; theta++)
       for (j=1; j<= nlstate+1 ; j ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(i=1;i<=nlstate*nlstate;i++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1;j<=nlstate*nlstate;j++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          varhe[i][j][(int)age] =0.;
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
   /*3eme*/        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   for (k1=1; k1<= m ; k1 ++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(i=1;i<=nlstate*nlstate;i++)
       k=2+nlstate*(cpt-1);            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      }
       }      /* Computing expectancies */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /* CV preval stat */            
   for (k1=1; k1<= m ; k1 ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficgp,"+$%d",k+i+1);      cptj=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for(i=1; i<=nlstate;i++)
              for(j=1; j<=nlstate;j++){
       l=3+(nlstate+ndeath)*cpt;          cptj++;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;      fprintf(ficreseij,"\n");
         fprintf(ficgp,"+$%d",l+i+1);     
       }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
   /* proba elementaires */    printf("\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"\n");
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    free_vector(xp,1,npar);
         for(j=1; j <=ncovmodel; j++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           /*fprintf(ficgp,"%s",alph[1]);*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  }
           jk++;  
           fprintf(ficgp,"\n");  /************ Variance ******************/
         }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       }  {
     }    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   for(jk=1; jk <=m; jk++) {    double **dnewm,**doldm;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    double **dnewmp,**doldmp;
    i=1;    int i, j, nhstepm, hstepm, h, nstepm ;
    for(k2=1; k2<=nlstate; k2++) {    int k, cptcode;
      k3=i;    double *xp;
      for(k=1; k<=(nlstate+ndeath); k++) {    double **gp, **gm;  /* for var eij */
        if (k != k2){    double ***gradg, ***trgradg; /*for var eij */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    double **gradgp, **trgradgp; /* for var p point j */
 ij=1;    double *gpp, *gmp; /* for var p point j */
         for(j=3; j <=ncovmodel; j++) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double ***p3mat;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double age,agelim, hf;
             ij++;    double ***mobaverage;
           }    int theta;
           else    char digit[4];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    char digitp[25];
         }  
           fprintf(ficgp,")/(1");    char fileresprobmorprev[FILENAMELENGTH];
          
         for(k1=1; k1 <=nlstate; k1++){      if(popbased==1){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      if(mobilav!=0)
 ij=1;        strcpy(digitp,"-populbased-mobilav-");
           for(j=3; j <=ncovmodel; j++){      else strcpy(digitp,"-populbased-nomobil-");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    else 
             ij++;      strcpy(digitp,"-stablbased-");
           }  
           else    if (mobilav!=0) {
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficgp,")");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
         i=i+ncovmodel;  
        }    strcpy(fileresprobmorprev,"prmorprev"); 
      }    sprintf(digit,"%-d",ij);
    }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        strcat(fileresprobmorprev,fileres);
   fclose(ficgp);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobmorprev);
 chdir(path);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     free_matrix(agev,1,maxwav,1,imx);    }
     free_ivector(wav,1,imx);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     free_imatrix(s,1,maxwav+1,1,n);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
          for(i=1; i<=nlstate;i++)
     free_ivector(num,1,n);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     free_vector(agedc,1,n);    }  
     free_vector(weight,1,n);    fprintf(ficresprobmorprev,"\n");
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     fclose(ficparo);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     fclose(ficres);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     /*  }*/      exit(0);
        }
    /*________fin mle=1_________*/    else{
          fprintf(ficgp,"\n# Routine varevsij");
     }
    /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
     /* No more information from the sample is required now */  /*     printf("Problem with html file: %s\n", optionfilehtm); */
   /* Reads comments: lines beginning with '#' */  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*     exit(0); */
     ungetc(c,ficpar);  /*   } */
     fgets(line, MAXLINE, ficpar);  /*   else{ */
     puts(line);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fputs(line,ficparo);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
   ungetc(c,ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    fprintf(ficresvij,"# Age");
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for(i=1; i<=nlstate;i++)
 /*--------- index.htm --------*/      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   if((fichtm=fopen("index.htm","w"))==NULL)    {    fprintf(ficresvij,"\n");
     printf("Problem with index.htm \n");goto end;  
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    doldm=matrix(1,nlstate,1,nlstate);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    gpp=vector(nlstate+1,nlstate+ndeath);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    gmp=vector(nlstate+1,nlstate+ndeath);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  fprintf(fichtm," <li>Graphs</li>\n<p>");    }
     else  hstepm=estepm;   
  m=cptcoveff;    /* For example we decided to compute the life expectancy with the smallest unit */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  j1=0;       nstepm is the number of stepm from age to agelin. 
  for(k1=1; k1<=m;k1++){       Look at hpijx to understand the reason of that which relies in memory size
    for(i1=1; i1<=ncodemax[k1];i1++){       and note for a fixed period like k years */
        j1++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        if (cptcovn > 0) {       survival function given by stepm (the optimization length). Unfortunately it
          fprintf(fichtm,"<hr>************ Results for covariates");       means that if the survival funtion is printed every two years of age and if
          for (cpt=1; cpt<=cptcoveff;cpt++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);       results. So we changed our mind and took the option of the best precision.
          fprintf(fichtm," ************\n<hr>");    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    agelim = AGESUP;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        for(cpt=1; cpt<nlstate;cpt++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for(cpt=1; cpt<=nlstate;cpt++) {      gp=matrix(0,nhstepm,1,nlstate);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      gm=matrix(0,nhstepm,1,nlstate);
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }      for(theta=1; theta <=npar; theta++){
      for(cpt=1; cpt<=nlstate;cpt++) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        }
      }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        if (popbased==1) {
 fprintf(fichtm,"\n</body>");          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
  }              prlim[i][i]=probs[(int)age][i][ij];
 fclose(fichtm);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /*--------------- Prevalence limit --------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);    
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(ficrespl,"#Prevalence limit\n");          }
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        /* This for computing probability of death (h=1 means
   fprintf(ficrespl,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   prlim=matrix(1,nlstate,1,nlstate);        */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /* end probability of death */
   k=0;  
   agebase=agemin;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   agelim=agemax;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ftolpl=1.e-10;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   i1=cptcoveff;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcovn < 1){i1=1;}   
         if (popbased==1) {
   for(cptcov=1;cptcov<=i1;cptcov++){          if(mobilav ==0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<=nlstate;i++)
         k=k+1;              prlim[i][i]=probs[(int)age][i][ij];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          }else{ /* mobilav */ 
         fprintf(ficrespl,"\n#******");            for(i=1; i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");        }
          
         for (age=agebase; age<=agelim; age++){        for(j=1; j<= nlstate; j++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(h=0; h<=nhstepm; h++){
           fprintf(ficrespl,"%.0f",age );            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           fprintf(ficrespl," %.5f", prlim[i][i]);          }
           fprintf(ficrespl,"\n");        }
         }        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
   fclose(ficrespl);        */
   /*------------- h Pij x at various ages ------------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }    
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        /* end probability of death */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (stepm<=24) stepsize=2;          }
   
   agelim=AGESUP;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   hstepm=stepsize*YEARM; /* Every year of age */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }
    
   k=0;      } /* End theta */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1;j<=cptcoveff;j++)        for(j=1; j<=nlstate;j++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(theta=1; theta <=npar; theta++)
         fprintf(ficrespij,"******\n");            trgradg[h][j][theta]=gradg[h][theta][j];
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          trgradgp[j][theta]=gradgp[theta][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficrespij,"# Age");      for(i=1;i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)        for(j=1;j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++)          vareij[i][j][(int)age] =0.;
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      for(h=0;h<=nhstepm;h++){
           for (h=0; h<=nhstepm; h++){        for(k=0;k<=nhstepm;k++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             for(i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               for(j=1; j<=nlstate+ndeath;j++)          for(i=1;i<=nlstate;i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            for(j=1;j<=nlstate;j++)
             fprintf(ficrespij,"\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           fprintf(ficrespij,"\n");    
         }      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fclose(ficrespij);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   /*---------- Health expectancies and variances ------------*/      /* end ppptj */
       /*  x centered again */
   strcpy(filerest,"t");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcat(filerest,fileres);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if((ficrest=fopen(filerest,"w"))==NULL) {   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      if (popbased==1) {
   }        if(mobilav ==0){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   strcpy(filerese,"e");          for(i=1; i<=nlstate;i++)
   strcat(filerese,fileres);            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
   }               
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  strcpy(fileresv,"v");         as a weighted average of prlim.
   strcat(fileresv,fileres);      */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }    
       /* end probability of death */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       k=k+1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficrest,"\n#****** ");        for(i=1; i<=nlstate;i++){
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");      } 
       fprintf(ficresprobmorprev,"\n");
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       fprintf(ficresvij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      fprintf(ficresvij,"\n");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficresvij,"******\n");      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       oldm=oldms;savm=savms;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      } /* End age */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       oldm=oldms;savm=savms;    free_vector(gmp,nlstate+1,nlstate+ndeath);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
          free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficrest,"\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
          /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       hf=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       if (stepm >= YEARM) hf=stepm/YEARM;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       epj=vector(1,nlstate+1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       for(age=bage; age <=fage ;age++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
         fprintf(ficrest," %.0f",age);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  */
           }    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           epj[nlstate+1] +=epj[j];  
         }    free_vector(xp,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)    free_matrix(doldm,1,nlstate,1,nlstate);
           for(j=1;j <=nlstate;j++)    free_matrix(dnewm,1,nlstate,1,npar);
             vepp += vareij[i][j][(int)age];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for(j=1;j <=nlstate;j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficresprobmorprev);
         fprintf(ficrest,"\n");    fclose(ficgp);
       }  /*   fclose(fichtm); */
     }  }  /* end varevsij */
   }  
          /************ Variance of prevlim ******************/
  fclose(ficreseij);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
  fclose(ficresvij);  {
   fclose(ficrest);    /* Variance of prevalence limit */
   fclose(ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_vector(epj,1,nlstate+1);    double **newm;
   /*  scanf("%d ",i); */    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   /*------- Variance limit prevalence------*/      int k, cptcode;
     double *xp;
 strcpy(fileresvpl,"vpl");    double *gp, *gm;
   strcat(fileresvpl,fileres);    double **gradg, **trgradg;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double age,agelim;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int theta;
     exit(0);     
   }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
  k=0;        fprintf(ficresvpl," %1d-%1d",i,i);
  for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvpl,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;    xp=vector(1,npar);
      fprintf(ficresvpl,"\n#****** ");    dnewm=matrix(1,nlstate,1,npar);
      for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,nlstate,1,nlstate);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
      fprintf(ficresvpl,"******\n");    hstepm=1*YEARM; /* Every year of age */
          hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    agelim = AGESUP;
      oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    }      if (stepm >= YEARM) hstepm=1;
  }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   fclose(ficresvpl);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          gp[i] = prlim[i][i];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(matcov,1,npar,1,npar);        for(i=1;i<=nlstate;i++)
   free_vector(delti,1,npar);          gm[i] = prlim[i][i];
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   printf("End of Imach\n");      } /* End theta */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
        trgradg =matrix(1,nlstate,1,npar);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(j=1; j<=nlstate;j++)
   /*------ End -----------*/        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
  end:  
 #ifdef windows      for(i=1;i<=nlstate;i++)
  chdir(pathcd);        varpl[i][(int)age] =0.;
 #endif      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
  system("wgnuplot graph.plt");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
 #ifdef windows        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   while (z[0] != 'q') {  
     chdir(pathcd);      fprintf(ficresvpl,"%.0f ",age );
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      for(i=1; i<=nlstate;i++)
     scanf("%s",z);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     if (z[0] == 'c') system("./imach");      fprintf(ficresvpl,"\n");
     else if (z[0] == 'e') {      free_vector(gp,1,nlstate);
       chdir(path);      free_vector(gm,1,nlstate);
       system("index.htm");      free_matrix(gradg,1,npar,1,nlstate);
     }      free_matrix(trgradg,1,nlstate,1,npar);
     else if (z[0] == 'q') exit(0);    } /* End age */
   }  
 #endif    free_vector(xp,1,npar);
 }    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with html file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   /*     exit(0); */
   /*   } */
   /*   else{ */
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
   /*   } */
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.7  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>