Diff for /imach/src/imach.c between versions 1.52 and 1.83

version 1.52, 2002/07/19 18:49:30 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.82  2003/06/05 15:57:20  brouard
   first survey ("cross") where individuals from different ages are    Add log in  imach.c and  fullversion number is now printed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a  */
   second wave of interviews ("longitudinal") which measure each change  /*
   (if any) in individual health status.  Health expectancies are     Interpolated Markov Chain
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Short summary of the programme:
   Maximum Likelihood of the parameters involved in the model.  The    
   simplest model is the multinomial logistic model where pij is the    This program computes Healthy Life Expectancies from
   probability to be observed in state j at the second wave    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   conditional to be observed in state i at the first wave. Therefore    first survey ("cross") where individuals from different ages are
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    interviewed on their health status or degree of disability (in the
   'age' is age and 'sex' is a covariate. If you want to have a more    case of a health survey which is our main interest) -2- at least a
   complex model than "constant and age", you should modify the program    second wave of interviews ("longitudinal") which measure each change
   where the markup *Covariates have to be included here again* invites    (if any) in individual health status.  Health expectancies are
   you to do it.  More covariates you add, slower the    computed from the time spent in each health state according to a
   convergence.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   The advantage of this computer programme, compared to a simple    simplest model is the multinomial logistic model where pij is the
   multinomial logistic model, is clear when the delay between waves is not    probability to be observed in state j at the second wave
   identical for each individual. Also, if a individual missed an    conditional to be observed in state i at the first wave. Therefore
   intermediate interview, the information is lost, but taken into    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   account using an interpolation or extrapolation.      'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   hPijx is the probability to be observed in state i at age x+h    where the markup *Covariates have to be included here again* invites
   conditional to the observed state i at age x. The delay 'h' can be    you to do it.  More covariates you add, slower the
   split into an exact number (nh*stepm) of unobserved intermediate    convergence.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    The advantage of this computer programme, compared to a simple
   matrix is simply the matrix product of nh*stepm elementary matrices    multinomial logistic model, is clear when the delay between waves is not
   and the contribution of each individual to the likelihood is simply    identical for each individual. Also, if a individual missed an
   hPijx.    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    split into an exact number (nh*stepm) of unobserved intermediate
            Institut national d'études démographiques, Paris.    states. This elementary transition (by month, quarter,
   This software have been partly granted by Euro-REVES, a concerted action    semester or year) is modelled as a multinomial logistic.  The hPx
   from the European Union.    matrix is simply the matrix product of nh*stepm elementary matrices
   It is copyrighted identically to a GNU software product, ie programme and    and the contribution of each individual to the likelihood is simply
   software can be distributed freely for non commercial use. Latest version    hPijx.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the stable prevalence. 
 #include <math.h>    
 #include <stdio.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <stdlib.h>             Institut national d'études démographiques, Paris.
 #include <unistd.h>    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
 #define GNUPLOTPROGRAM "gnuplot"    software can be distributed freely for non commercial use. Latest version
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
 #ifdef windows    open gnuplot file
 #define DIRSEPARATOR '\\'    open html file
 #define ODIRSEPARATOR '/'    stable prevalence
 #else     for age prevalim()
 #define DIRSEPARATOR '/'    h Pij x
 #define ODIRSEPARATOR '\\'    variance of p varprob
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Variance-covariance of DFLE
 int erreur; /* Error number */    prevalence()
 int nvar;     movingaverage()
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    varevsij() 
 int npar=NPARMAX;    if popbased==1 varevsij(,popbased)
 int nlstate=2; /* Number of live states */    total life expectancies
 int ndeath=1; /* Number of dead states */    Variance of stable prevalence
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */   end
 int popbased=0;  */
   
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */   
 int mle, weightopt;  #include <math.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <stdio.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <stdlib.h>
 double jmean; /* Mean space between 2 waves */  #include <unistd.h>
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define MAXLINE 256
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define GNUPLOTPROGRAM "gnuplot"
 FILE *ficlog;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define FILENAMELENGTH 80
 FILE *ficresprobmorprev;  /*#define DEBUG*/
 FILE *fichtm; /* Html File */  #define windows
 FILE *ficreseij;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char filerese[FILENAMELENGTH];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 FILE  *ficresvpl;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  #define NINTERVMAX 8
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define MAXN 20000
 char filelog[FILENAMELENGTH]; /* Log file */  #define YEARM 12. /* Number of months per year */
 char filerest[FILENAMELENGTH];  #define AGESUP 130
 char fileregp[FILENAMELENGTH];  #define AGEBASE 40
 char popfile[FILENAMELENGTH];  #ifdef windows
   #define DIRSEPARATOR '\\'
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
   #else
 #define NR_END 1  #define DIRSEPARATOR '/'
 #define FREE_ARG char*  #define ODIRSEPARATOR '\\'
 #define FTOL 1.0e-10  #endif
   
 #define NRANSI  /* $Id$ */
 #define ITMAX 200  /* $State$ */
   
 #define TOL 2.0e-4  char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 #define CGOLD 0.3819660  int erreur; /* Error number */
 #define ZEPS 1.0e-10  int nvar;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 #define GOLD 1.618034  int nlstate=2; /* Number of live states */
 #define GLIMIT 100.0  int ndeath=1; /* Number of dead states */
 #define TINY 1.0e-20  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  int *wav; /* Number of waves for this individuual 0 is possible */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int maxwav; /* Maxim number of waves */
    int jmin, jmax; /* min, max spacing between 2 waves */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int mle, weightopt;
 #define rint(a) floor(a+0.5)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 static double sqrarg;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 int imx;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int stepm;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /* Stepm, step in month: minimum step interpolation*/  FILE *ficlog, *ficrespow;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int estepm;  FILE *ficresprobmorprev;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  FILE *fichtm; /* Html File */
   FILE *ficreseij;
 int m,nb;  char filerese[FILENAMELENGTH];
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  FILE  *ficresvij;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileresv[FILENAMELENGTH];
 double **pmmij, ***probs, ***mobaverage;  FILE  *ficresvpl;
 double dateintmean=0;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 double *weight;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int **s; /* Status */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char filerest[FILENAMELENGTH];
 double ftolhess; /* Tolerance for computing hessian */  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 {  
    char *s;                             /* pointer */  #define NR_END 1
    int  l1, l2;                         /* length counters */  #define FREE_ARG char*
   #define FTOL 1.0e-10
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NRANSI 
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define ITMAX 200 
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define TOL 2.0e-4 
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */  #define CGOLD 0.3819660 
       extern char       *getwd( );  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       if ( getwd( dirc ) == NULL ) {  
 #else  #define GOLD 1.618034 
       extern char       *getcwd( );  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  static double maxarg1,maxarg2;
          return( GLOCK_ERROR_GETCWD );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       strcpy( name, path );             /* we've got it */    
    } else {                             /* strip direcotry from path */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       s++;                              /* after this, the filename */  #define rint(a) floor(a+0.5)
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  static double sqrarg;
       strcpy( name, s );                /* save file name */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       dirc[l1-l2] = 0;                  /* add zero */  
    }  int imx; 
    l1 = strlen( dirc );                 /* length of directory */  int stepm;
 #ifdef windows  /* Stepm, step in month: minimum step interpolation*/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  int estepm;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 #endif  
    s = strrchr( name, '.' );            /* find last / */  int m,nb;
    s++;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    strcpy(ext,s);                       /* save extension */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    l1= strlen( name);  double **pmmij, ***probs;
    l2= strlen( s)+1;  double dateintmean=0;
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  double *weight;
    return( 0 );                         /* we're done */  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 void replace(char *s, char*t)  
 {  /**************** split *************************/
   int i;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int lg=20;  {
   i=0;    char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1, l2;                         /* length counters */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    l1 = strlen(path );                   /* length of path */
     if (t[i]== '\\') s[i]='/';    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 int nbocc(char *s, char occ)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   int i,j=0;      /*    extern  char* getcwd ( char *buf , int len);*/
   int lg=20;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   i=0;        return( GLOCK_ERROR_GETCWD );
   lg=strlen(s);      }
   for(i=0; i<= lg; i++) {      strcpy( name, path );               /* we've got it */
   if  (s[i] == occ ) j++;    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
   return j;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 void cutv(char *u,char *v, char*t, char occ)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   /* cuts string t into u and v where u is ended by char occ excluding it    }
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    l1 = strlen( dirc );                  /* length of directory */
      gives u="abcedf" and v="ghi2j" */  #ifdef windows
   int i,lg,j,p=0;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   i=0;  #else
   for(j=0; j<=strlen(t)-1; j++) {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #endif
   }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   lg=strlen(t);    strcpy(ext,ss);                       /* save extension */
   for(j=0; j<p; j++) {    l1= strlen( name);
     (u[j] = t[j]);    l2= strlen(ss)+1;
   }    strncpy( finame, name, l1-l2);
      u[p]='\0';    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
    for(j=0; j<= lg; j++) {  }
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  
 }  /******************************************/
   
 /********************** nrerror ********************/  void replace(char *s, char*t)
   {
 void nrerror(char error_text[])    int i;
 {    int lg=20;
   fprintf(stderr,"ERREUR ...\n");    i=0;
   fprintf(stderr,"%s\n",error_text);    lg=strlen(t);
   exit(1);    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
 /*********************** vector *******************/      if (t[i]== '\\') s[i]='/';
 double *vector(int nl, int nh)    }
 {  }
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int nbocc(char *s, char occ)
   if (!v) nrerror("allocation failure in vector");  {
   return v-nl+NR_END;    int i,j=0;
 }    int lg=20;
     i=0;
 /************************ free vector ******************/    lg=strlen(s);
 void free_vector(double*v, int nl, int nh)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   free((FREE_ARG)(v+nl-NR_END));    }
 }    return j;
   }
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   int *v;    /* cuts string t into u and v where u is ended by char occ excluding it
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!v) nrerror("allocation failure in ivector");       gives u="abcedf" and v="ghi2j" */
   return v-nl+NR_END;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /******************free ivector **************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void free_ivector(int *v, long nl, long nh)    }
 {  
   free((FREE_ARG)(v+nl-NR_END));    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)       u[p]='\0';
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {     for(j=0; j<= lg; j++) {
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      if (j>=(p+1))(v[j-p-1] = t[j]);
   int **m;    }
    }
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /********************** nrerror ********************/
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  void nrerror(char error_text[])
   m -= nrl;  {
      fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   /* allocate rows and set pointers to them */    exit(EXIT_FAILURE);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*********************** vector *******************/
   m[nrl] += NR_END;  double *vector(int nl, int nh)
   m[nrl] -= ncl;  {
      double *v;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
   /* return pointer to array of pointers to rows */    return v-nl+NR_END;
   return m;  }
 }  
   /************************ free vector ******************/
 /****************** free_imatrix *************************/  void free_vector(double*v, int nl, int nh)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    free((FREE_ARG)(v+nl-NR_END));
       long nch,ncl,nrh,nrl;  }
      /* free an int matrix allocated by imatrix() */  
 {  /************************ivector *******************************/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char *cvector(long nl,long nh)
   free((FREE_ARG) (m+nrl-NR_END));  {
 }    char *v;
     v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 /******************* matrix *******************************/    if (!v) nrerror("allocation failure in cvector");
 double **matrix(long nrl, long nrh, long ncl, long nch)    return v-nl+NR_END;
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /******************free ivector **************************/
   void free_cvector(char *v, long nl, long nh)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m += NR_END;  }
   m -= nrl;  
   /************************ivector *******************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *ivector(long nl,long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int *v;
   m[nrl] -= ncl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return v-nl+NR_END;
   return m;  }
 }  
   /******************free ivector **************************/
 /*************************free matrix ************************/  void free_ivector(int *v, long nl, long nh)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /******************* ma3x *******************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int **m; 
   double ***m;    
     /* allocate pointers to rows */ 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   m += NR_END;    m += NR_END; 
   m -= nrl;    m -= nrl; 
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* allocate rows and set pointers to them */ 
   m[nrl] += NR_END;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m[nrl] -= ncl;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m[nrl] -= ncl; 
     
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    
   m[nrl][ncl] += NR_END;    /* return pointer to array of pointers to rows */ 
   m[nrl][ncl] -= nll;    return m; 
   for (j=ncl+1; j<=nch; j++)  } 
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /****************** free_imatrix *************************/
   for (i=nrl+1; i<=nrh; i++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;        int **m;
     for (j=ncl+1; j<=nch; j++)        long nch,ncl,nrh,nrl; 
       m[i][j]=m[i][j-1]+nlay;       /* free an int matrix allocated by imatrix() */ 
   }  { 
   return m;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /******************* matrix *******************************/
 {  double **matrix(long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free((FREE_ARG)(m+nrl-NR_END));    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /***************** f1dim *************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 extern int ncom;    m += NR_END;
 extern double *pcom,*xicom;    m -= nrl;
 extern double (*nrfunc)(double []);  
      m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double f1dim(double x)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   int j;    m[nrl] -= ncl;
   double f;  
   double *xt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   xt=vector(1,ncom);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     */
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*****************brent *************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   int iter;  
   double a,b,d,etemp;  /******************* ma3x *******************************/
   double fu,fv,fw,fx;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double e=0.0;    double ***m;
    
   a=(ax < cx ? ax : cx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   b=(ax > cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   x=w=v=bx;    m += NR_END;
   fw=fv=fx=(*f)(x);    m -= nrl;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl] += NR_END;
     printf(".");fflush(stdout);    m[nrl] -= ncl;
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #endif    m[nrl][ncl] += NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m[nrl][ncl] -= nll;
       *xmin=x;    for (j=ncl+1; j<=nch; j++) 
       return fx;      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     ftemp=fu;    for (i=nrl+1; i<=nrh; i++) {
     if (fabs(e) > tol1) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       r=(x-w)*(fx-fv);      for (j=ncl+1; j<=nch; j++) 
       q=(x-v)*(fx-fw);        m[i][j]=m[i][j-1]+nlay;
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);    return m; 
       if (q > 0.0) p = -p;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       q=fabs(q);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       etemp=e;    */
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*************************free ma3x ************************/
       else {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         d=p/q;  {
         u=x+d;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         if (u-a < tol2 || b-u < tol2)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           d=SIGN(tol1,xm-x);    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /***************** f1dim *************************/
     }  extern int ncom; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  extern double *pcom,*xicom;
     fu=(*f)(u);  extern double (*nrfunc)(double []); 
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;  double f1dim(double x) 
       SHFT(v,w,x,u)  { 
         SHFT(fv,fw,fx,fu)    int j; 
         } else {    double f;
           if (u < x) a=u; else b=u;    double *xt; 
           if (fu <= fw || w == x) {   
             v=w;    xt=vector(1,ncom); 
             w=u;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             fv=fw;    f=(*nrfunc)(xt); 
             fw=fu;    free_vector(xt,1,ncom); 
           } else if (fu <= fv || v == x || v == w) {    return f; 
             v=u;  } 
             fv=fu;  
           }  /*****************brent *************************/
         }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   nrerror("Too many iterations in brent");    int iter; 
   *xmin=x;    double a,b,d,etemp;
   return fx;    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /****************** mnbrak ***********************/    double e=0.0; 
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    a=(ax < cx ? ax : cx); 
             double (*func)(double))    b=(ax > cx ? ax : cx); 
 {    x=w=v=bx; 
   double ulim,u,r,q, dum;    fw=fv=fx=(*f)(x); 
   double fu;    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
   *fa=(*func)(*ax);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   *fb=(*func)(*bx);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   if (*fb > *fa) {      printf(".");fflush(stdout);
     SHFT(dum,*ax,*bx,dum)      fprintf(ficlog,".");fflush(ficlog);
       SHFT(dum,*fb,*fa,dum)  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *cx=(*bx)+GOLD*(*bx-*ax);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fc=(*func)(*cx);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   while (*fb > *fc) {  #endif
     r=(*bx-*ax)*(*fb-*fc);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     q=(*bx-*cx)*(*fb-*fa);        *xmin=x; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        return fx; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      } 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ftemp=fu;
     if ((*bx-u)*(u-*cx) > 0.0) {      if (fabs(e) > tol1) { 
       fu=(*func)(u);        r=(x-w)*(fx-fv); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        q=(x-v)*(fx-fw); 
       fu=(*func)(u);        p=(x-v)*q-(x-w)*r; 
       if (fu < *fc) {        q=2.0*(q-r); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        if (q > 0.0) p = -p; 
           SHFT(*fb,*fc,fu,(*func)(u))        q=fabs(q); 
           }        etemp=e; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        e=d; 
       u=ulim;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       fu=(*func)(u);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else {        else { 
       u=(*cx)+GOLD*(*cx-*bx);          d=p/q; 
       fu=(*func)(u);          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     SHFT(*ax,*bx,*cx,u)            d=SIGN(tol1,xm-x); 
       SHFT(*fa,*fb,*fc,fu)        } 
       }      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 /*************** linmin ************************/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 int ncom;      if (fu <= fx) { 
 double *pcom,*xicom;        if (u >= x) a=x; else b=x; 
 double (*nrfunc)(double []);        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))          } else { 
 {            if (u < x) a=u; else b=u; 
   double brent(double ax, double bx, double cx,            if (fu <= fw || w == x) { 
                double (*f)(double), double tol, double *xmin);              v=w; 
   double f1dim(double x);              w=u; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,              fv=fw; 
               double *fc, double (*func)(double));              fw=fu; 
   int j;            } else if (fu <= fv || v == x || v == w) { 
   double xx,xmin,bx,ax;              v=u; 
   double fx,fb,fa;              fv=fu; 
              } 
   ncom=n;          } 
   pcom=vector(1,n);    } 
   xicom=vector(1,n);    nrerror("Too many iterations in brent"); 
   nrfunc=func;    *xmin=x; 
   for (j=1;j<=n;j++) {    return fx; 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /****************** mnbrak ***********************/
   ax=0.0;  
   xx=1.0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);              double (*func)(double)) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  { 
 #ifdef DEBUG    double ulim,u,r,q, dum;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double fu; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif    *fa=(*func)(*ax); 
   for (j=1;j<=n;j++) {    *fb=(*func)(*bx); 
     xi[j] *= xmin;    if (*fb > *fa) { 
     p[j] += xi[j];      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
   free_vector(xicom,1,n);        } 
   free_vector(pcom,1,n);    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 /*************** powell ************************/      r=(*bx-*ax)*(*fb-*fc); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      q=(*bx-*cx)*(*fb-*fa); 
             double (*func)(double []))      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   void linmin(double p[], double xi[], int n, double *fret,      ulim=(*bx)+GLIMIT*(*cx-*bx); 
               double (*func)(double []));      if ((*bx-u)*(u-*cx) > 0.0) { 
   int i,ibig,j;        fu=(*func)(u); 
   double del,t,*pt,*ptt,*xit;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double fp,fptt;        fu=(*func)(u); 
   double *xits;        if (fu < *fc) { 
   pt=vector(1,n);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   ptt=vector(1,n);            SHFT(*fb,*fc,fu,(*func)(u)) 
   xit=vector(1,n);            } 
   xits=vector(1,n);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   *fret=(*func)(p);        u=ulim; 
   for (j=1;j<=n;j++) pt[j]=p[j];        fu=(*func)(u); 
   for (*iter=1;;++(*iter)) {      } else { 
     fp=(*fret);        u=(*cx)+GOLD*(*cx-*bx); 
     ibig=0;        fu=(*func)(u); 
     del=0.0;      } 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      SHFT(*ax,*bx,*cx,u) 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=n;i++)        } 
       printf(" %d %.12f",i, p[i]);  } 
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  /*************** linmin ************************/
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {  int ncom; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double *pcom,*xicom;
       fptt=(*fret);  double (*nrfunc)(double []); 
 #ifdef DEBUG   
       printf("fret=%lf \n",*fret);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       fprintf(ficlog,"fret=%lf \n",*fret);  { 
 #endif    double brent(double ax, double bx, double cx, 
       printf("%d",i);fflush(stdout);                 double (*f)(double), double tol, double *xmin); 
       fprintf(ficlog,"%d",i);fflush(ficlog);    double f1dim(double x); 
       linmin(p,xit,n,fret,func);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       if (fabs(fptt-(*fret)) > del) {                double *fc, double (*func)(double)); 
         del=fabs(fptt-(*fret));    int j; 
         ibig=i;    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
 #ifdef DEBUG   
       printf("%d %.12e",i,(*fret));    ncom=n; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    pcom=vector(1,n); 
       for (j=1;j<=n;j++) {    xicom=vector(1,n); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    nrfunc=func; 
         printf(" x(%d)=%.12e",j,xit[j]);    for (j=1;j<=n;j++) { 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
       for(j=1;j<=n;j++) {    } 
         printf(" p=%.12e",p[j]);    ax=0.0; 
         fprintf(ficlog," p=%.12e",p[j]);    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       printf("\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       fprintf(ficlog,"\n");  #ifdef DEBUG
 #endif    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #endif
 #ifdef DEBUG    for (j=1;j<=n;j++) { 
       int k[2],l;      xi[j] *= xmin; 
       k[0]=1;      p[j] += xi[j]; 
       k[1]=-1;    } 
       printf("Max: %.12e",(*func)(p));    free_vector(xicom,1,n); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));    free_vector(pcom,1,n); 
       for (j=1;j<=n;j++) {  } 
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       printf("\n");              double (*func)(double [])) 
       fprintf(ficlog,"\n");  { 
       for(l=0;l<=1;l++) {    void linmin(double p[], double xi[], int n, double *fret, 
         for (j=1;j<=n;j++) {                double (*func)(double [])); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int i,ibig,j; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double del,t,*pt,*ptt,*xit;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double fp,fptt;
         }    double *xits;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    pt=vector(1,n); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ptt=vector(1,n); 
       }    xit=vector(1,n); 
 #endif    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
       free_vector(xit,1,n);    for (*iter=1;;++(*iter)) { 
       free_vector(xits,1,n);      fp=(*fret); 
       free_vector(ptt,1,n);      ibig=0; 
       free_vector(pt,1,n);      del=0.0; 
       return;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for (j=1;j<=n;j++) {      for (i=1;i<=n;i++) {
       ptt[j]=2.0*p[j]-pt[j];        printf(" %d %.12f",i, p[i]);
       xit[j]=p[j]-pt[j];        fprintf(ficlog," %d %.12lf",i, p[i]);
       pt[j]=p[j];        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     fptt=(*func)(ptt);      printf("\n");
     if (fptt < fp) {      fprintf(ficlog,"\n");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      fprintf(ficrespow,"\n");
       if (t < 0.0) {      for (i=1;i<=n;i++) { 
         linmin(p,xit,n,fret,func);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         for (j=1;j<=n;j++) {        fptt=(*fret); 
           xi[j][ibig]=xi[j][n];  #ifdef DEBUG
           xi[j][n]=xit[j];        printf("fret=%lf \n",*fret);
         }        fprintf(ficlog,"fret=%lf \n",*fret);
 #ifdef DEBUG  #endif
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"%d",i);fflush(ficlog);
         for(j=1;j<=n;j++){        linmin(p,xit,n,fret,func); 
           printf(" %.12e",xit[j]);        if (fabs(fptt-(*fret)) > del) { 
           fprintf(ficlog," %.12e",xit[j]);          del=fabs(fptt-(*fret)); 
         }          ibig=i; 
         printf("\n");        } 
         fprintf(ficlog,"\n");  #ifdef DEBUG
 #endif        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /**** Prevalence limit ****************/        }
         for(j=1;j<=n;j++) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        }
      matrix by transitions matrix until convergence is reached */        printf("\n");
         fprintf(ficlog,"\n");
   int i, ii,j,k;  #endif
   double min, max, maxmin, maxmax,sumnew=0.;      } 
   double **matprod2();      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double **out, cov[NCOVMAX], **pmij();  #ifdef DEBUG
   double **newm;        int k[2],l;
   double agefin, delaymax=50 ; /* Max number of years to converge */        k[0]=1;
         k[1]=-1;
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
    cov[1]=1.;        }
          printf("\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        for(l=0;l<=1;l++) {
     newm=savm;          for (j=1;j<=n;j++) {
     /* Covariates have to be included here again */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      cov[2]=agefin;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1; k<=cptcovn;k++) {          }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
         free_vector(xit,1,n); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        free_vector(xits,1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        free_vector(ptt,1,n); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        free_vector(pt,1,n); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        return; 
       } 
     savm=oldm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     oldm=newm;      for (j=1;j<=n;j++) { 
     maxmax=0.;        ptt[j]=2.0*p[j]-pt[j]; 
     for(j=1;j<=nlstate;j++){        xit[j]=p[j]-pt[j]; 
       min=1.;        pt[j]=p[j]; 
       max=0.;      } 
       for(i=1; i<=nlstate; i++) {      fptt=(*func)(ptt); 
         sumnew=0;      if (fptt < fp) { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        if (t < 0.0) { 
         max=FMAX(max,prlim[i][j]);          linmin(p,xit,n,fret,func); 
         min=FMIN(min,prlim[i][j]);          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
       maxmin=max-min;            xi[j][n]=xit[j]; 
       maxmax=FMAX(maxmax,maxmin);          }
     }  #ifdef DEBUG
     if(maxmax < ftolpl){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       return prlim;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /*************** transition probabilities ***************/          printf("\n");
           fprintf(ficlog,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {        }
   double s1, s2;      } 
   /*double t34;*/    } 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /**** Prevalence limit (stable prevalence)  ****************/
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/       matrix by transitions matrix until convergence is reached */
       }  
       ps[i][j]=s2;    int i, ii,j,k;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     for(j=i+1; j<=nlstate+ndeath;j++){    double **out, cov[NCOVMAX], **pmij();
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double **newm;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double agefin, delaymax=50 ; /* Max number of years to converge */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
       ps[i][j]=s2;      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
     /*ps[3][2]=1;*/  
      cov[1]=1.;
   for(i=1; i<= nlstate; i++){   
      s1=0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(j=1; j<i; j++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       s1+=exp(ps[i][j]);      newm=savm;
     for(j=i+1; j<=nlstate+ndeath; j++)      /* Covariates have to be included here again */
       s1+=exp(ps[i][j]);       cov[2]=agefin;
     ps[i][i]=1./(s1+1.);    
     for(j=1; j<i; j++)        for (k=1; k<=cptcovn;k++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(j=i+1; j<=nlstate+ndeath; j++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   } /* end i */        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       ps[ii][jj]=0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       ps[ii][ii]=1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
       savm=oldm;
       oldm=newm;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      maxmax=0.;
     for(jj=1; jj<= nlstate+ndeath; jj++){      for(j=1;j<=nlstate;j++){
      printf("%lf ",ps[ii][jj]);        min=1.;
    }        max=0.;
     printf("\n ");        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     printf("\n ");printf("%lf ",cov[2]);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*          prlim[i][j]= newm[i][j]/(1-sumnew);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          max=FMAX(max,prlim[i][j]);
   goto end;*/          min=FMIN(min,prlim[i][j]);
     return ps;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 /**************** Product of 2 matrices ******************/      }
       if(maxmax < ftolpl){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        return prlim;
 {      }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** transition probabilities ***************/ 
      a pointer to pointers identical to out */  
   long i, j, k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    double s1, s2;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /*double t34;*/
         out[i][k] +=in[i][j]*b[j][k];    int i,j,j1, nc, ii, jj;
   
   return out;      for(i=1; i<= nlstate; i++){
 }      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
 /************* Higher Matrix Product ***************/          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        }
 {        ps[i][j]=s2;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
      duration (i.e. until      }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for(j=i+1; j<=nlstate+ndeath;j++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      (typically every 2 years instead of every month which is too big).          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      Model is determined by parameters x and covariates have to be          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
      included manually here.        }
         ps[i][j]=s2;
      */      }
     }
   int i, j, d, h, k;      /*ps[3][2]=1;*/
   double **out, cov[NCOVMAX];  
   double **newm;    for(i=1; i<= nlstate; i++){
        s1=0;
   /* Hstepm could be zero and should return the unit matrix */      for(j=1; j<i; j++)
   for (i=1;i<=nlstate+ndeath;i++)        s1+=exp(ps[i][j]);
     for (j=1;j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath; j++)
       oldm[i][j]=(i==j ? 1.0 : 0.0);        s1+=exp(ps[i][j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      ps[i][i]=1./(s1+1.);
     }      for(j=1; j<i; j++)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(h=1; h <=nhstepm; h++){      for(j=i+1; j<=nlstate+ndeath; j++)
     for(d=1; d <=hstepm; d++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
       newm=savm;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /* Covariates have to be included here again */    } /* end i */
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1; k<=cptcovage;k++)        ps[ii][jj]=0;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        ps[ii][ii]=1;
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
   
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       printf("%lf ",ps[ii][jj]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));     }
       savm=oldm;      printf("\n ");
       oldm=newm;      }
     }      printf("\n ");printf("%lf ",cov[2]);*/
     for(i=1; i<=nlstate+ndeath; i++)  /*
       for(j=1;j<=nlstate+ndeath;j++) {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         po[i][j][h]=newm[i][j];    goto end;*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      return ps;
          */  }
       }  
   } /* end h */  /**************** Product of 2 matrices ******************/
   return po;  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /*************** log-likelihood *************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 double func( double *x)    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   int i, ii, j, k, mi, d, kk;       a pointer to pointers identical to out */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    long i, j, k;
   double **out;    for(i=nrl; i<= nrh; i++)
   double sw; /* Sum of weights */      for(k=ncolol; k<=ncoloh; k++)
   double lli; /* Individual log likelihood */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   long ipmx;          out[i][k] +=in[i][j]*b[j][k];
   /*extern weight */  
   /* We are differentiating ll according to initial status */    return out;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  
   */  /************* Higher Matrix Product ***************/
   cov[1]=1.;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /* Computes the transition matrix starting at age 'age' over 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       'nhstepm*hstepm*stepm' months (i.e. until
     for(mi=1; mi<= wav[i]-1; mi++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (ii=1;ii<=nlstate+ndeath;ii++)       nhstepm*hstepm matrices. 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(d=0; d<dh[mi][i]; d++){       (typically every 2 years instead of every month which is too big 
         newm=savm;       for the memory).
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       Model is determined by parameters x and covariates have to be 
         for (kk=1; kk<=cptcovage;kk++) {       included manually here. 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }       */
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int i, j, d, h, k;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **out, cov[NCOVMAX];
         savm=oldm;    double **newm;
         oldm=newm;  
            /* Hstepm could be zero and should return the unit matrix */
            for (i=1;i<=nlstate+ndeath;i++)
       } /* end mult */      for (j=1;j<=nlstate+ndeath;j++){
              oldm[i][j]=(i==j ? 1.0 : 0.0);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       sw += weight[i];    for(h=1; h <=nhstepm; h++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(d=1; d <=hstepm; d++){
     } /* end of wave */        newm=savm;
   } /* end of individual */        /* Covariates have to be included here again */
         cov[1]=1.;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (k=1; k<=cptcovage;k++)
   return -l;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /*********** Maximum Likelihood Estimation ***************/  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int i,j, iter;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **xi,*delti;        savm=oldm;
   double fret;        oldm=newm;
   xi=matrix(1,npar,1,npar);      }
   for (i=1;i<=npar;i++)      for(i=1; i<=nlstate+ndeath; i++)
     for (j=1;j<=npar;j++)        for(j=1;j<=nlstate+ndeath;j++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);          po[i][j][h]=newm[i][j];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   powell(p,xi,npar,ftol,&iter,&fret,func);           */
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    } /* end h */
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return po;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  
   /*************** log-likelihood *************/
 /**** Computes Hessian and covariance matrix ***/  double func( double *x)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    int i, ii, j, k, mi, d, kk;
   double  **a,**y,*x,pd;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **hess;    double **out;
   int i, j,jk;    double sw; /* Sum of weights */
   int *indx;    double lli; /* Individual log likelihood */
     int s1, s2;
   double hessii(double p[], double delta, int theta, double delti[]);    double bbh, survp;
   double hessij(double p[], double delti[], int i, int j);    long ipmx;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /*extern weight */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hess=matrix(1,npar,1,npar);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   printf("\nCalculation of the hessian matrix. Wait...\n");    */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    cov[1]=1.;
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    if(mle==1){
     /*printf(" %f ",p[i]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /*printf(" %lf ",hess[i][i]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++)  {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (j>i) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);            }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for(d=0; d<dh[mi][i]; d++){
         hess[i][j]=hessij(p,delti,i,j);            newm=savm;
         hess[j][i]=hess[i][j];                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         /*printf(" %lf ",hess[i][j]);*/            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n");            savm=oldm;
             oldm=newm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          } /* end mult */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   a=matrix(1,npar,1,npar);          /* But now since version 0.9 we anticipate for bias and large stepm.
   y=matrix(1,npar,1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   x=vector(1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   indx=ivector(1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=1;i<=npar;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   ludcmp(a,npar,indx,&pd);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (j=1;j<=npar;j++) {           * -stepm/2 to stepm/2 .
     for (i=1;i<=npar;i++) x[i]=0;           * For stepm=1 the results are the same as for previous versions of Imach.
     x[j]=1;           * For stepm > 1 the results are less biased than in previous versions. 
     lubksb(a,npar,indx,x);           */
     for (i=1;i<=npar;i++){          s1=s[mw[mi][i]][i];
       matcov[i][j]=x[i];          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   printf("\n#Hessian matrix#\n");           */
   fprintf(ficlog,"\n#Hessian matrix#\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (i=1;i<=npar;i++) {          if( s2 > nlstate){ 
     for (j=1;j<=npar;j++) {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       printf("%.3e ",hess[i][j]);               to the likelihood is the probability to die between last step unit time and current 
       fprintf(ficlog,"%.3e ",hess[i][j]);               step unit time, which is also the differences between probability to die before dh 
     }               and probability to die before dh-stepm . 
     printf("\n");               In version up to 0.92 likelihood was computed
     fprintf(ficlog,"\n");          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   /* Recompute Inverse */          to consider that at each interview the state was recorded
   for (i=1;i<=npar;i++)          (healthy, disable or death) and IMaCh was corrected; but when we
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          introduced the exact date of death then we should have modified
   ludcmp(a,npar,indx,&pd);          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   /*  printf("\n#Hessian matrix recomputed#\n");          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   for (j=1;j<=npar;j++) {          interview up to one month before death multiplied by the
     for (i=1;i<=npar;i++) x[i]=0;          probability to die within a month. Thanks to Chris
     x[j]=1;          Jackson for correcting this bug.  Former versions increased
     lubksb(a,npar,indx,x);          mortality artificially. The bad side is that we add another loop
     for (i=1;i<=npar;i++){          which slows down the processing. The difference can be up to 10%
       y[i][j]=x[i];          lower mortality.
       printf("%.3e ",y[i][j]);            */
       fprintf(ficlog,"%.3e ",y[i][j]);            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
     printf("\n");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficlog,"\n");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          } 
   */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   free_matrix(a,1,npar,1,npar);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_matrix(y,1,npar,1,npar);          ipmx +=1;
   free_vector(x,1,npar);          sw += weight[i];
   free_ivector(indx,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(hess,1,npar,1,npar);        } /* end of wave */
       } /* end of individual */
     }  else if(mle==2){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*************** hessian matrix ****************/        for(mi=1; mi<= wav[i]-1; mi++){
 double hessii( double x[], double delta, int theta, double delti[])          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int l=1, lmax=20;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double k1,k2;            }
   double p2[NPARMAX+1];          for(d=0; d<=dh[mi][i]; d++){
   double res;            newm=savm;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double fx;            for (kk=1; kk<=cptcovage;kk++) {
   int k=0,kmax=10;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double l1;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fx=func(x);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) p2[i]=x[i];            savm=oldm;
   for(l=0 ; l <=lmax; l++){            oldm=newm;
     l1=pow(10,l);          } /* end mult */
     delts=delt;        
     for(k=1 ; k <kmax; k=k+1){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       delt = delta*(l1*k);          /* But now since version 0.9 we anticipate for bias and large stepm.
       p2[theta]=x[theta] +delt;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       k1=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       p2[theta]=x[theta]-delt;           * the nearest (and in case of equal distance, to the lowest) interval but now
       k2=func(p2)-fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * probability in order to take into account the bias as a fraction of the way
                 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 #ifdef DEBUG           * -stepm/2 to stepm/2 .
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * For stepm=1 the results are the same as for previous versions of Imach.
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * For stepm > 1 the results are less biased than in previous versions. 
 #endif           */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          s1=s[mw[mi][i]][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          s2=s[mw[mi+1][i]][i];
         k=kmax;          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * is higher than the multiple of stepm and negative otherwise.
         k=kmax; l=lmax*10.;           */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         delts=delt;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   delti[theta]=delts;          ipmx +=1;
   return res;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 double hessij( double x[], double delti[], int thetai,int thetaj)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int l=1, l1, lmax=20;        for(mi=1; mi<= wav[i]-1; mi++){
   double k1,k2,k3,k4,res,fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double p2[NPARMAX+1];            for (j=1;j<=nlstate+ndeath;j++){
   int k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);            }
   for (k=1; k<=2; k++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++) p2[i]=x[i];            newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k1=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]+delti[thetai]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     k2=func(p2)-fx;            savm=oldm;
              oldm=newm;
     p2[thetai]=x[thetai]-delti[thetai]/k;          } /* end mult */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        
     k3=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     k4=func(p2)-fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #ifdef DEBUG           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * probability in order to take into account the bias as a fraction of the way
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 #endif           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   return res;           * For stepm > 1 the results are less biased than in previous versions. 
 }           */
           s1=s[mw[mi][i]][i];
 /************** Inverse of matrix **************/          s2=s[mw[mi+1][i]][i];
 void ludcmp(double **a, int n, int *indx, double *d)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          /* bias is positive if real duration
   int i,imax,j,k;           * is higher than the multiple of stepm and negative otherwise.
   double big,dum,sum,temp;           */
   double *vv;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   vv=vector(1,n);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   *d=1.0;          /*if(lli ==000.0)*/
   for (i=1;i<=n;i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     big=0.0;          ipmx +=1;
     for (j=1;j<=n;j++)          sw += weight[i];
       if ((temp=fabs(a[i][j])) > big) big=temp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        } /* end of wave */
     vv[i]=1.0/big;      } /* end of individual */
   }    }else{  /* ml=4 no inter-extrapolation */
   for (j=1;j<=n;j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<j;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       sum=a[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       a[i][j]=sum;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     big=0.0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=j;i<=n;i++) {            }
       sum=a[i][j];          for(d=0; d<dh[mi][i]; d++){
       for (k=1;k<j;k++)            newm=savm;
         sum -= a[i][k]*a[k][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       a[i][j]=sum;            for (kk=1; kk<=cptcovage;kk++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         big=dum;            }
         imax=i;          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (j != imax) {            savm=oldm;
       for (k=1;k<=n;k++) {            oldm=newm;
         dum=a[imax][k];          } /* end mult */
         a[imax][k]=a[j][k];        
         a[j][k]=dum;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       *d = -(*d);          sw += weight[i];
       vv[imax]=vv[j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     indx[j]=imax;      } /* end of individual */
     if (a[j][j] == 0.0) a[j][j]=TINY;    } /* End of if */
     if (j != n) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       dum=1.0/(a[j][j]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
   }  }
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  
 }  /*********** Maximum Likelihood Estimation ***************/
   
 void lubksb(double **a, int n, int *indx, double b[])  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,ii=0,ip,j;    int i,j, iter;
   double sum;    double **xi;
      double fret;
   for (i=1;i<=n;i++) {    char filerespow[FILENAMELENGTH];
     ip=indx[i];    xi=matrix(1,npar,1,npar);
     sum=b[ip];    for (i=1;i<=npar;i++)
     b[ip]=b[i];      for (j=1;j<=npar;j++)
     if (ii)        xi[i][j]=(i==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     else if (sum) ii=i;    strcpy(filerespow,"pow"); 
     b[i]=sum;    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (i=n;i>=1;i--) {      printf("Problem with resultfile: %s\n", filerespow);
     sum=b[i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    }
     b[i]=sum/a[i][i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
 }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /************ Frequencies ********************/    fprintf(ficrespow,"\n");
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    powell(p,xi,npar,ftol,&iter,&fret,func);
 {  /* Some frequencies */  
      fclose(ficrespow);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int first;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***freq; /* Frequencies */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double  **a,**y,*x,pd;
   strcpy(fileresp,"p");    double **hess;
   strcat(fileresp,fileres);    int i, j,jk;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int *indx;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double hessii(double p[], double delta, int theta, double delti[]);
     exit(0);    double hessij(double p[], double delti[], int i, int j);
   }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   j1=0;  
      hess=matrix(1,npar,1,npar);
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   first=1;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   for(k1=1; k1<=j;k1++){      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i1=1; i1<=ncodemax[k1];i1++){      hess[i][i]=hessii(p,ftolhess,i,delti);
       j1++;      /*printf(" %f ",p[i]);*/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      /*printf(" %lf ",hess[i][i]);*/
         scanf("%d", i);*/    }
       for (i=-1; i<=nlstate+ndeath; i++)      
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for (i=1;i<=npar;i++) {
           for(m=agemin; m <= agemax+3; m++)      for (j=1;j<=npar;j++)  {
             freq[i][jk][m]=0;        if (j>i) { 
                printf(".%d%d",i,j);fflush(stdout);
       dateintsum=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       k2cpt=0;          hess[i][j]=hessij(p,delti,i,j);
       for (i=1; i<=imx; i++) {          hess[j][i]=hess[i][j];    
         bool=1;          /*printf(" %lf ",hess[i][j]);*/
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }
               bool=0;    printf("\n");
         }    fprintf(ficlog,"\n");
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             k2=anint[m][i]+(mint[m][i]/12.);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    
               if(agev[m][i]==0) agev[m][i]=agemax+1;    a=matrix(1,npar,1,npar);
               if(agev[m][i]==1) agev[m][i]=agemax+2;    y=matrix(1,npar,1,npar);
               if (m<lastpass) {    x=vector(1,npar);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    indx=ivector(1,npar);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (i=1;i<=npar;i++)
               }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                  ludcmp(a,npar,indx,&pd);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    for (j=1;j<=npar;j++) {
                 k2cpt++;      for (i=1;i<=npar;i++) x[i]=0;
               }      x[j]=1;
             }      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
       }      }
            }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     printf("\n#Hessian matrix#\n");
       if  (cptcovn>0) {    fprintf(ficlog,"\n#Hessian matrix#\n");
         fprintf(ficresp, "\n#********** Variable ");    for (i=1;i<=npar;i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=npar;j++) { 
         fprintf(ficresp, "**********\n#");        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=nlstate;i++)      }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      printf("\n");
       fprintf(ficresp, "\n");      fprintf(ficlog,"\n");
          }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){    /* Recompute Inverse */
           fprintf(ficlog,"Total");    for (i=1;i<=npar;i++)
         }else{      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           if(first==1){    ludcmp(a,npar,indx,&pd);
             first=0;  
             printf("See log file for details...\n");    /*  printf("\n#Hessian matrix recomputed#\n");
           }  
           fprintf(ficlog,"Age %d", i);    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
         for(jk=1; jk <=nlstate ; jk++){      x[j]=1;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      lubksb(a,npar,indx,x);
             pp[jk] += freq[jk][m][i];      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
         for(jk=1; jk <=nlstate ; jk++){        printf("%.3e ",y[i][j]);
           for(m=-1, pos=0; m <=0 ; m++)        fprintf(ficlog,"%.3e ",y[i][j]);
             pos += freq[jk][m][i];      }
           if(pp[jk]>=1.e-10){      printf("\n");
             if(first==1){      fprintf(ficlog,"\n");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    }
             }    */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{    free_matrix(a,1,npar,1,npar);
             if(first==1)    free_matrix(y,1,npar,1,npar);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    free_vector(x,1,npar);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    free_ivector(indx,1,npar);
           }    free_matrix(hess,1,npar,1,npar);
         }  
   
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  /*************** hessian matrix ****************/
         }  double hessii( double x[], double delta, int theta, double delti[])
   {
         for(jk=1,pos=0; jk <=nlstate ; jk++)    int i;
           pos += pp[jk];    int l=1, lmax=20;
         for(jk=1; jk <=nlstate ; jk++){    double k1,k2;
           if(pos>=1.e-5){    double p2[NPARMAX+1];
             if(first==1)    double res;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double fx;
           }else{    int k=0,kmax=10;
             if(first==1)    double l1;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fx=func(x);
           }    for (i=1;i<=npar;i++) p2[i]=x[i];
           if( i <= (int) agemax){    for(l=0 ; l <=lmax; l++){
             if(pos>=1.e-5){      l1=pow(10,l);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      delts=delt;
               probs[i][jk][j1]= pp[jk]/pos;      for(k=1 ; k <kmax; k=k+1){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        delt = delta*(l1*k);
             }        p2[theta]=x[theta] +delt;
             else        k1=func(p2)-fx;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        p2[theta]=x[theta]-delt;
           }        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
                res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        
           for(m=-1; m <=nlstate+ndeath; m++)  #ifdef DEBUG
             if(freq[jk][m][i] !=0 ) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             if(first==1)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  #endif
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         if(i <= (int) agemax)          k=kmax;
           fprintf(ficresp,"\n");        }
         if(first==1)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           printf("Others in log...\n");          k=kmax; l=lmax*10.;
         fprintf(ficlog,"\n");        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
   }        }
   dateintmean=dateintsum/k2cpt;      }
      }
   fclose(ficresp);    delti[theta]=delts;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return res; 
   free_vector(pp,1,nlstate);    
    }
   /* End of Freq */  
 }  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
 /************ Prevalence ********************/    int i;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    int l=1, l1, lmax=20;
 {  /* Some frequencies */    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int k;
   double ***freq; /* Frequencies */  
   double *pp;    fx=func(x);
   double pos, k2;    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   pp=vector(1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    
   j1=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   j=cptcoveff;      k2=func(p2)-fx;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   for(k1=1; k1<=j;k1++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i1=1; i1<=ncodemax[k1];i1++){      k3=func(p2)-fx;
       j1++;    
            p2[thetai]=x[thetai]-delti[thetai]/k;
       for (i=-1; i<=nlstate+ndeath; i++)        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        k4=func(p2)-fx;
           for(m=agemin; m <= agemax+3; m++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             freq[i][jk][m]=0;  #ifdef DEBUG
            printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for (i=1; i<=imx; i++) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         bool=1;  #endif
         if  (cptcovn>0) {    }
           for (z1=1; z1<=cptcoveff; z1++)    return res;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
               bool=0;  
         }  /************** Inverse of matrix **************/
         if (bool==1) {  void ludcmp(double **a, int n, int *indx, double *d) 
           for(m=firstpass; m<=lastpass; m++){  { 
             k2=anint[m][i]+(mint[m][i]/12.);    int i,imax,j,k; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double big,dum,sum,temp; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double *vv; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;   
               if (m<lastpass) {    vv=vector(1,n); 
                 if (calagedate>0)    *d=1.0; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for (i=1;i<=n;i++) { 
                 else      big=0.0; 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (j=1;j<=n;j++) 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
               }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             }      vv[i]=1.0/big; 
           }    } 
         }    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        sum=a[i][j]; 
         for(jk=1; jk <=nlstate ; jk++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        a[i][j]=sum; 
             pp[jk] += freq[jk][m][i];      } 
         }      big=0.0; 
         for(jk=1; jk <=nlstate ; jk++){      for (i=j;i<=n;i++) { 
           for(m=-1, pos=0; m <=0 ; m++)        sum=a[i][j]; 
             pos += freq[jk][m][i];        for (k=1;k<j;k++) 
         }          sum -= a[i][k]*a[k][j]; 
                a[i][j]=sum; 
         for(jk=1; jk <=nlstate ; jk++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          big=dum; 
             pp[jk] += freq[jk][m][i];          imax=i; 
         }        } 
              } 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      if (j != imax) { 
                for (k=1;k<=n;k++) { 
         for(jk=1; jk <=nlstate ; jk++){              dum=a[imax][k]; 
           if( i <= (int) agemax){          a[imax][k]=a[j][k]; 
             if(pos>=1.e-5){          a[j][k]=dum; 
               probs[i][jk][j1]= pp[jk]/pos;        } 
             }        *d = -(*d); 
           }        vv[imax]=vv[j]; 
         }/* end jk */      } 
       }/* end i */      indx[j]=imax; 
     } /* end i1 */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   } /* end k1 */      if (j != n) { 
         dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } 
   free_vector(pp,1,nlstate);    } 
      free_vector(vv,1,n);  /* Doesn't work */
 }  /* End of Freq */  ;
   } 
 /************* Waves Concatenation ***************/  
   void lubksb(double **a, int n, int *indx, double b[]) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  { 
 {    int i,ii=0,ip,j; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double sum; 
      Death is a valid wave (if date is known).   
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for (i=1;i<=n;i++) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      ip=indx[i]; 
      and mw[mi+1][i]. dh depends on stepm.      sum=b[ip]; 
      */      b[ip]=b[i]; 
       if (ii) 
   int i, mi, m;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      else if (sum) ii=i; 
      double sum=0., jmean=0.;*/      b[i]=sum; 
   int first;    } 
   int j, k=0,jk, ju, jl;    for (i=n;i>=1;i--) { 
   double sum=0.;      sum=b[i]; 
   first=0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   jmin=1e+5;      b[i]=sum/a[i][i]; 
   jmax=-1;    } 
   jmean=0.;  } 
   for(i=1; i<=imx; i++){  
     mi=0;  /************ Frequencies ********************/
     m=firstpass;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
     while(s[m][i] <= nlstate){  {  /* Some frequencies */
       if(s[m][i]>=1)    
         mw[++mi][i]=m;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       if(m >=lastpass)    int first;
         break;    double ***freq; /* Frequencies */
       else    double *pp, **prop;
         m++;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }/* end while */    FILE *ficresp;
     if (s[m][i] > nlstate){    char fileresp[FILENAMELENGTH];
       mi++;     /* Death is another wave */    
       /* if(mi==0)  never been interviewed correctly before death */    pp=vector(1,nlstate);
          /* Only death is a correct wave */    prop=matrix(1,nlstate,iagemin,iagemax+3);
       mw[mi][i]=m;    strcpy(fileresp,"p");
     }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     wav[i]=mi;      printf("Problem with prevalence resultfile: %s\n", fileresp);
     if(mi==0){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       if(first==0){      exit(0);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    }
         first=1;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       }    j1=0;
       if(first==1){    
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     } /* end mi==0 */  
   }    first=1;
   
   for(i=1; i<=imx; i++){    for(k1=1; k1<=j;k1++){
     for(mi=1; mi<wav[i];mi++){      for(i1=1; i1<=ncodemax[k1];i1++){
       if (stepm <=0)        j1++;
         dh[mi][i]=1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       else{          scanf("%d", i);*/
         if (s[mw[mi+1][i]][i] > nlstate) {        for (i=-1; i<=nlstate+ndeath; i++)  
           if (agedc[i] < 2*AGESUP) {          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            for(m=iagemin; m <= iagemax+3; m++)
           if(j==0) j=1;  /* Survives at least one month after exam */              freq[i][jk][m]=0;
           k=k+1;  
           if (j >= jmax) jmax=j;      for (i=1; i<=nlstate; i++)  
           if (j <= jmin) jmin=j;        for(m=iagemin; m <= iagemax+3; m++)
           sum=sum+j;          prop[i][m]=0;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }        dateintsum=0;
         }        k2cpt=0;
         else{        for (i=1; i<=imx; i++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          bool=1;
           k=k+1;          if  (cptcovn>0) {
           if (j >= jmax) jmax=j;            for (z1=1; z1<=cptcoveff; z1++) 
           else if (j <= jmin)jmin=j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                bool=0;
           sum=sum+j;          }
         }          if (bool==1){
         jk= j/stepm;            for(m=firstpass; m<=lastpass; m++){
         jl= j -jk*stepm;              k2=anint[m][i]+(mint[m][i]/12.);
         ju= j -(jk+1)*stepm;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
         if(jl <= -ju)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           dh[mi][i]=jk;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         else                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           dh[mi][i]=jk+1;                if (m<lastpass) {
         if(dh[mi][i]==0)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           dh[mi][i]=1; /* At least one step */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
     }                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   jmean=sum/k;                  dateintsum=dateintsum+k2;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                  k2cpt++;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                }
  }              }
             }
 /*********** Tricode ****************************/          }
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {         
   int Ndum[20],ij=1, k, j, i;        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   int cptcode=0;  
   cptcoveff=0;        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   for (k=0; k<19; k++) Ndum[k]=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          fprintf(ficresp, "**********\n#");
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(i=1; i<=nlstate;i++) 
     for (i=1; i<=imx; i++) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       ij=(int)(covar[Tvar[j]][i]);        fprintf(ficresp, "\n");
       Ndum[ij]++;        
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(i=iagemin; i <= iagemax+3; i++){
       if (ij > cptcode) cptcode=ij;          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
           }else{
     for (i=0; i<=cptcode; i++) {            if(first==1){
       if(Ndum[i]!=0) ncodemax[j]++;              first=0;
     }              printf("See log file for details...\n");
     ij=1;            }
             fprintf(ficlog,"Age %d", i);
           }
     for (i=1; i<=ncodemax[j]; i++) {          for(jk=1; jk <=nlstate ; jk++){
       for (k=0; k<=19; k++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         if (Ndum[k] != 0) {              pp[jk] += freq[jk][m][i]; 
           nbcode[Tvar[j]][ij]=k;          }
                    for(jk=1; jk <=nlstate ; jk++){
           ij++;            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
         if (ij > ncodemax[j]) break;            if(pp[jk]>=1.e-10){
       }                if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }                }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  for (k=0; k<19; k++) Ndum[k]=0;            }else{
               if(first==1)
  for (i=1; i<=ncovmodel-2; i++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    ij=Tvar[i];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    Ndum[ij]++;            }
  }          }
   
  ij=1;          for(jk=1; jk <=nlstate ; jk++){
  for (i=1; i<=10; i++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    if((Ndum[i]!=0) && (i<=ncovcol)){              pp[jk] += freq[jk][m][i];
      Tvaraff[ij]=i;          }       
      ij++;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    }            pos += pp[jk];
  }            posprop += prop[jk][i];
            }
  cptcoveff=ij-1;          for(jk=1; jk <=nlstate ; jk++){
 }            if(pos>=1.e-5){
               if(first==1)
 /*********** Health Expectancies ****************/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            }else{
               if(first==1)
 {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Health expectancies */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;            if( i <= iagemax){
   double ***p3mat,***varhe;              if(pos>=1.e-5){
   double **dnewm,**doldm;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double *xp;                probs[i][jk][j1]= pp[jk]/pos;
   double **gp, **gm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double ***gradg, ***trgradg;              }
   int theta;              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            }
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate*2,1,npar);          
   doldm=matrix(1,nlstate*2,1,nlstate*2);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficreseij,"# Health expectancies\n");              if(freq[jk][m][i] !=0 ) {
   fprintf(ficreseij,"# Age");              if(first==1)
   for(i=1; i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(j=1; j<=nlstate;j++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              }
   fprintf(ficreseij,"\n");          if(i <= iagemax)
             fprintf(ficresp,"\n");
   if(estepm < stepm){          if(first==1)
     printf ("Problem %d lower than %d\n",estepm, stepm);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    dateintmean=dateintsum/k2cpt; 
    * we are calculating an estimate of the Life Expectancy assuming a linear   
    * progression inbetween and thus overestimating or underestimating according    fclose(ficresp);
    * to the curvature of the survival function. If, for the same date, we    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    free_vector(pp,1,nlstate);
    * to compare the new estimate of Life expectancy with the same linear    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    * hypothesis. A more precise result, taking into account a more precise    /* End of Freq */
    * curvature will be obtained if estepm is as small as stepm. */  }
   
   /* For example we decided to compute the life expectancy with the smallest unit */  /************ Prevalence ********************/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      nhstepm is the number of hstepm from age to agelim  {  
      nstepm is the number of stepm from age to agelin.    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      Look at hpijx to understand the reason of that which relies in memory size       in each health status at the date of interview (if between dateprev1 and dateprev2).
      and note for a fixed period like estepm months */       We still use firstpass and lastpass as another selection.
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    */
      survival function given by stepm (the optimization length). Unfortunately it   
      means that if the survival funtion is printed only each two years of age and if    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double ***freq; /* Frequencies */
      results. So we changed our mind and took the option of the best precision.    double *pp, **prop;
   */    double pos,posprop; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double  y2; /* in fractional years */
     int iagemin, iagemax;
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    iagemin= (int) agemin;
     /* nhstepm age range expressed in number of stepm */    iagemax= (int) agemax;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    /*pp=vector(1,nlstate);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /* if (stepm >= YEARM) hstepm=1;*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    j1=0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    j=cptcoveff;
     gp=matrix(0,nhstepm,1,nlstate*2);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     gm=matrix(0,nhstepm,1,nlstate*2);    
     for(k1=1; k1<=j;k1++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for(i1=1; i1<=ncodemax[k1];i1++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        j1++;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          
          for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            prop[i][m]=0.0;
        
     /* Computing Variances of health expectancies */        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
      for(theta=1; theta <=npar; theta++){          if  (cptcovn>0) {
       for(i=1; i<=npar; i++){            for (z1=1; z1<=cptcoveff; z1++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } 
            if (bool==1) { 
       cptj=0;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<= nlstate; j++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(i=1; i<=nlstate; i++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           cptj=cptj+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                        prop[s[m][i]][iagemax+3] += weight[i]; 
                      } 
       for(i=1; i<=npar; i++)              }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            } /* end selection of waves */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
              }
       cptj=0;        for(i=iagemin; i <= iagemax+3; i++){  
       for(j=1; j<= nlstate; j++){          
         for(i=1;i<=nlstate;i++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           cptj=cptj+1;            posprop += prop[jk][i]; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          } 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }          for(jk=1; jk <=nlstate ; jk++){     
         }            if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
       for(j=1; j<= nlstate*2; j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(h=0; h<=nhstepm-1; h++){              } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            } 
         }          }/* end jk */ 
      }        }/* end i */ 
          } /* end i1 */
 /* End theta */    } /* end k1 */
     
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
      for(h=0; h<=nhstepm-1; h++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(j=1; j<=nlstate*2;j++)  }  /* End of prevalence */
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /************* Waves Concatenation ***************/
        
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      for(i=1;i<=nlstate*2;i++)  {
       for(j=1;j<=nlstate*2;j++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         varhe[i][j][(int)age] =0.;       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      printf("%d|",(int)age);fflush(stdout);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       and mw[mi+1][i]. dh depends on stepm.
      for(h=0;h<=nhstepm-1;h++){       */
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int i, mi, m;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(i=1;i<=nlstate*2;i++)       double sum=0., jmean=0.;*/
           for(j=1;j<=nlstate*2;j++)    int first;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    int j, k=0,jk, ju, jl;
       }    double sum=0.;
     }    first=0;
     /* Computing expectancies */    jmin=1e+5;
     for(i=1; i<=nlstate;i++)    jmax=-1;
       for(j=1; j<=nlstate;j++)    jmean=0.;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for(i=1; i<=imx; i++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      mi=0;
                m=firstpass;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
         }          mw[++mi][i]=m;
         if(m >=lastpass)
     fprintf(ficreseij,"%3.0f",age );          break;
     cptj=0;        else
     for(i=1; i<=nlstate;i++)          m++;
       for(j=1; j<=nlstate;j++){      }/* end while */
         cptj++;      if (s[m][i] > nlstate){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
     fprintf(ficreseij,"\n");           /* Only death is a correct wave */
            mw[mi][i]=m;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      wav[i]=mi;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      if(mi==0){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==0){
   }          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
   printf("\n");          first=1;
   fprintf(ficlog,"\n");        }
         if(first==1){
   free_vector(xp,1,npar);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
   free_matrix(dnewm,1,nlstate*2,1,npar);        }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      } /* end mi==0 */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    } /* End individuals */
 }  
     for(i=1; i<=imx; i++){
 /************ Variance ******************/      for(mi=1; mi<wav[i];mi++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        if (stepm <=0)
 {          dh[mi][i]=1;
   /* Variance of health expectancies */        else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* double **newm;*/            if (agedc[i] < 2*AGESUP) {
   double **dnewm,**doldm;            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double **dnewmp,**doldmp;            if(j==0) j=1;  /* Survives at least one month after exam */
   int i, j, nhstepm, hstepm, h, nstepm ;            k=k+1;
   int k, cptcode;            if (j >= jmax) jmax=j;
   double *xp;            if (j <= jmin) jmin=j;
   double **gp, **gm;  /* for var eij */            sum=sum+j;
   double ***gradg, ***trgradg; /*for var eij */            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double **gradgp, **trgradgp; /* for var p point j */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double *gpp, *gmp; /* for var p point j */            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            }
   double ***p3mat;          }
   double age,agelim, hf;          else{
   int theta;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   char digit[4];            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   char digitp[16];            k=k+1;
             if (j >= jmax) jmax=j;
   char fileresprobmorprev[FILENAMELENGTH];            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if(popbased==1)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     strcpy(digitp,"-populbased-");            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else            sum=sum+j;
     strcpy(digitp,"-stablbased-");          }
           jk= j/stepm;
   strcpy(fileresprobmorprev,"prmorprev");          jl= j -jk*stepm;
   sprintf(digit,"%-d",ij);          ju= j -(jk+1)*stepm;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          if(mle <=1){ 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            if(jl==0){
   strcat(fileresprobmorprev,digitp); /* Popbased or not */              dh[mi][i]=jk;
   strcat(fileresprobmorprev,fileres);              bh[mi][i]=0;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            }else{ /* We want a negative bias in order to only have interpolation ie
     printf("Problem with resultfile: %s\n", fileresprobmorprev);                    * at the price of an extra matrix product in likelihood */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          }else{
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            if(jl <= -ju){
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              dh[mi][i]=jk;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficresprobmorprev," p.%-d SE",j);                                   * is higher than the multiple of stepm and negative otherwise.
     for(i=1; i<=nlstate;i++)                                   */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            }
   }              else{
   fprintf(ficresprobmorprev,"\n");              dh[mi][i]=jk+1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              bh[mi][i]=ju;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            if(dh[mi][i]==0){
     exit(0);              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
   else{              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"\n# Routine varevsij");            }
   }          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        } /* end if mle */
     printf("Problem with html file: %s\n", optionfilehtm);      } /* end wave */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    }
     exit(0);    jmean=sum/k;
   }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   else{    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");   }
   }  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  {
   fprintf(ficresvij,"# Age");    
   for(i=1; i<=nlstate;i++)    int Ndum[20],ij=1, k, j, i, maxncov=19;
     for(j=1; j<=nlstate;j++)    int cptcode=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    cptcoveff=0; 
   fprintf(ficresvij,"\n");   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
   xp=vector(1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        Ndum[ij]++; /*store the modality */
   gpp=vector(nlstate+1,nlstate+ndeath);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   gmp=vector(nlstate+1,nlstate+ndeath);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   if(estepm < stepm){      }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }      for (i=0; i<=cptcode; i++) {
   else  hstepm=estepm;          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim      ij=1; 
      nstepm is the number of stepm from age to agelin.      for (i=1; i<=ncodemax[j]; i++) {
      Look at hpijx to understand the reason of that which relies in memory size        for (k=0; k<= maxncov; k++) {
      and note for a fixed period like k years */          if (Ndum[k] != 0) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            nbcode[Tvar[j]][ij]=k; 
      survival function given by stepm (the optimization length). Unfortunately it            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      means that if the survival funtion is printed only each two years of age and if            
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            ij++;
      results. So we changed our mind and took the option of the best precision.          }
   */          if (ij > ncodemax[j]) break; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }  
   agelim = AGESUP;      } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   for (k=0; k< maxncov; k++) Ndum[k]=0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);   for (i=1; i<=ncovmodel-2; i++) { 
     gp=matrix(0,nhstepm,1,nlstate);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     gm=matrix(0,nhstepm,1,nlstate);     ij=Tvar[i];
      Ndum[ij]++;
    }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */   ij=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Tvaraff[ij]=i; /*For printing */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       ij++;
      }
       if (popbased==1) {   }
         for(i=1; i<=nlstate;i++)   
           prlim[i][i]=probs[(int)age][i][ij];   cptcoveff=ij-1; /*Number of simple covariates*/
       }  }
    
       for(j=1; j<= nlstate; j++){  /*********** Health Expectancies ****************/
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  {
       }    /* Health expectancies */
       /* This for computing forces of mortality (h=1)as a weighted average */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    double age, agelim, hf;
         for(i=1; i<= nlstate; i++)    double ***p3mat,***varhe;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    double **dnewm,**doldm;
       }        double *xp;
       /* end force of mortality */    double **gp, **gm;
     double ***gradg, ***trgradg;
       for(i=1; i<=npar; i++) /* Computes gradient */    int theta;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (popbased==1) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficreseij,"# Health expectancies\n");
       }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<= nlstate; j++){      for(j=1; j<=nlstate;j++)
         for(h=0; h<=nhstepm; h++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fprintf(ficreseij,"\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
       /* This for computing force of mortality (h=1)as a weighted average */    }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    else  hstepm=estepm;   
         for(i=1; i<= nlstate; i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
           gmp[j] += prlim[i][i]*p3mat[i][j][1];     * This is mainly to measure the difference between two models: for example
       }         * if stepm=24 months pijx are given only every 2 years and by summing them
       /* end force of mortality */     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
       for(j=1; j<= nlstate; j++) /* vareij */     * to the curvature of the survival function. If, for the same date, we 
         for(h=0; h<=nhstepm; h++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     * to compare the new estimate of Life expectancy with the same linear 
         }     * hypothesis. A more precise result, taking into account a more precise
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */     * curvature will be obtained if estepm is as small as stepm. */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     } /* End theta */       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     for(h=0; h<=nhstepm; h++) /* veij */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate;j++)       survival function given by stepm (the optimization length). Unfortunately it
         for(theta=1; theta <=npar; theta++)       means that if the survival funtion is printed only each two years of age and if
           trgradg[h][j][theta]=gradg[h][theta][j];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    */
       for(theta=1; theta <=npar; theta++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         trgradgp[j][theta]=gradgp[theta][j];  
     agelim=AGESUP;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i=1;i<=nlstate;i++)      /* nhstepm age range expressed in number of stepm */
       for(j=1;j<=nlstate;j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         vareij[i][j][(int)age] =0.;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
     for(h=0;h<=nhstepm;h++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(k=0;k<=nhstepm;k++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(i=1;i<=nlstate;i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      /* Computing Variances of health expectancies */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];       for(theta=1; theta <=npar; theta++){
     /* end ppptj */        for(i=1; i<=npar; i++){ 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if (popbased==1) {    
       for(i=1; i<=nlstate;i++)        cptj=0;
         prlim[i][i]=probs[(int)age][i][ij];        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
     /* This for computing force of mortality (h=1)as a weighted average */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       for(i=1; i<= nlstate; i++)            }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          }
     }            }
     /* end force of mortality */       
        
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        for(i=1; i<=npar; i++) 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(i=1; i<=nlstate;i++){        
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        cptj=0;
       }        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
     fprintf(ficresprobmorprev,"\n");            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }        }
     fprintf(ficresvij,"\n");        for(j=1; j<= nlstate*nlstate; j++)
     free_matrix(gp,0,nhstepm,1,nlstate);          for(h=0; h<=nhstepm-1; h++){
     free_matrix(gm,0,nhstepm,1,nlstate);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
   } /* End age */  /* End theta */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       for(h=0; h<=nhstepm-1; h++)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        for(j=1; j<=nlstate*nlstate;j++)
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          for(theta=1; theta <=npar; theta++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);       
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);       for(i=1;i<=nlstate*nlstate;i++)
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        for(j=1;j<=nlstate*nlstate;j++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);          varhe[i][j][(int)age] =0.;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */       printf("%d|",(int)age);fflush(stdout);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   free_vector(xp,1,npar);        for(k=0;k<=nhstepm-1;k++){
   free_matrix(doldm,1,nlstate,1,nlstate);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   free_matrix(dnewm,1,nlstate,1,npar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(i=1;i<=nlstate*nlstate;i++)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            for(j=1;j<=nlstate*nlstate;j++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   fclose(ficresprobmorprev);        }
   fclose(ficgp);      }
   fclose(fichtm);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /************ Variance of prevlim ******************/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            
 {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;  
   double **dnewm,**doldm;      fprintf(ficreseij,"%3.0f",age );
   int i, j, nhstepm, hstepm;      cptj=0;
   int k, cptcode;      for(i=1; i<=nlstate;i++)
   double *xp;        for(j=1; j<=nlstate;j++){
   double *gp, *gm;          cptj++;
   double **gradg, **trgradg;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   double age,agelim;        }
   int theta;      fprintf(ficreseij,"\n");
         
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresvpl,"# Age");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   for(i=1; i<=nlstate;i++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficresvpl," %1d-%1d",i,i);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fprintf(ficresvpl,"\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
   xp=vector(1,npar);    printf("\n");
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate,1,nlstate);  
      free_vector(xp,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   agelim = AGESUP;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /************ Variance ******************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    /* Variance of health expectancies */
     gm=vector(1,nlstate);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     for(theta=1; theta <=npar; theta++){    double **dnewm,**doldm;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double **dnewmp,**doldmp;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, j, nhstepm, hstepm, h, nstepm ;
       }    int k, cptcode;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double *xp;
       for(i=1;i<=nlstate;i++)    double **gp, **gm;  /* for var eij */
         gp[i] = prlim[i][i];    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
       for(i=1; i<=npar; i++) /* Computes gradient */    double *gpp, *gmp; /* for var p point j */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double ***p3mat;
       for(i=1;i<=nlstate;i++)    double age,agelim, hf;
         gm[i] = prlim[i][i];    double ***mobaverage;
     int theta;
       for(i=1;i<=nlstate;i++)    char digit[4];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    char digitp[25];
     } /* End theta */  
     char fileresprobmorprev[FILENAMELENGTH];
     trgradg =matrix(1,nlstate,1,npar);  
     if(popbased==1){
     for(j=1; j<=nlstate;j++)      if(mobilav!=0)
       for(theta=1; theta <=npar; theta++)        strcpy(digitp,"-populbased-mobilav-");
         trgradg[j][theta]=gradg[theta][j];      else strcpy(digitp,"-populbased-nomobil-");
     }
     for(i=1;i<=nlstate;i++)    else 
       varpl[i][(int)age] =0.;      strcpy(digitp,"-stablbased-");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if (mobilav!=0) {
     for(i=1;i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficresvpl,"%.0f ",age );        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    strcpy(fileresprobmorprev,"prmorprev"); 
     free_vector(gm,1,nlstate);    sprintf(digit,"%-d",ij);
     free_matrix(gradg,1,npar,1,nlstate);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     free_matrix(trgradg,1,nlstate,1,npar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   } /* End age */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   free_vector(xp,1,npar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   free_matrix(doldm,1,nlstate,1,npar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
 }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /************ Variance of one-step probabilities  ******************/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int i, j=0,  i1, k1, l1, t, tj;      fprintf(ficresprobmorprev," p.%-d SE",j);
   int k2, l2, j1,  z1;      for(i=1; i<=nlstate;i++)
   int k=0,l, cptcode;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   int first=1, first1;    }  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    fprintf(ficresprobmorprev,"\n");
   double **dnewm,**doldm;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   double *xp;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   double *gp, *gm;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   double **gradg, **trgradg;      exit(0);
   double **mu;    }
   double age,agelim, cov[NCOVMAX];    else{
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      fprintf(ficgp,"\n# Routine varevsij");
   int theta;    }
   char fileresprob[FILENAMELENGTH];    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   char fileresprobcov[FILENAMELENGTH];      printf("Problem with html file: %s\n", optionfilehtm);
   char fileresprobcor[FILENAMELENGTH];      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   double ***varpij;    }
     else{
   strcpy(fileresprob,"prob");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   strcat(fileresprob,fileres);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   strcpy(fileresprobcov,"probcov");    fprintf(ficresvij,"# Age");
   strcat(fileresprobcov,fileres);    for(i=1; i<=nlstate;i++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprobcov);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficresvij,"\n");
   }  
   strcpy(fileresprobcor,"probcor");    xp=vector(1,npar);
   strcat(fileresprobcor,fileres);    dnewm=matrix(1,nlstate,1,npar);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprobcor);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    gpp=vector(nlstate+1,nlstate+ndeath);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    gmp=vector(nlstate+1,nlstate+ndeath);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    }
   fprintf(ficresprob,"# Age");    else  hstepm=estepm;   
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficresprobcov,"# Age");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficresprobcov,"# Age");       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(j=1; j<=(nlstate+ndeath);j++){       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);       means that if the survival funtion is printed every two years of age and if
       fprintf(ficresprobcov," p%1d-%1d ",i,j);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);       results. So we changed our mind and took the option of the best precision.
     }      */
   fprintf(ficresprob,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficresprobcov,"\n");    agelim = AGESUP;
   fprintf(ficresprobcor,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   xp=vector(1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      gp=matrix(0,nhstepm,1,nlstate);
   first=1;      gm=matrix(0,nhstepm,1,nlstate);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      for(theta=1; theta <=npar; theta++){
     exit(0);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   else{        }
     fprintf(ficgp,"\n# Routine varprob");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);        if (popbased==1) {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          if(mobilav ==0){
     exit(0);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   else{          }else{ /* mobilav */ 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            for(i=1; i<=nlstate;i++)
     fprintf(fichtm,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        }
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   cov[1]=1;        }
   tj=cptcoveff;        /* This for computing probability of death (h=1 means
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}           computed over hstepm matrices product = hstepm*stepm months) 
   j1=0;           as a weighted average of prlim.
   for(t=1; t<=tj;t++){        */
     for(i1=1; i1<=ncodemax[t];i1++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       j1++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                  gpp[j] += prlim[i][i]*p3mat[i][j][1];
       if  (cptcovn>0) {        }    
         fprintf(ficresprob, "\n#********** Variable ");        /* end probability of death */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficresprobcov, "\n#********** Variable ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprobcov, "**********\n#");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           
         fprintf(ficgp, "\n#********** Variable ");        if (popbased==1) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if(mobilav ==0){
         fprintf(ficgp, "**********\n#");            for(i=1; i<=nlstate;i++)
                      prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          }
                }
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficgp, "**********\n#");              for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (age=bage; age<=fage; age ++){          }
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {        /* This for computing probability of death (h=1 means
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        */
         for (k=1; k<=cptcovprod;k++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   gmp[j] += prlim[i][i]*p3mat[i][j][1];
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        }    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        /* end probability of death */
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));        for(j=1; j<= nlstate; j++) /* vareij */
              for(h=0; h<=nhstepm; h++){
         for(theta=1; theta <=npar; theta++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
                  for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                  }
           k=0;  
           for(i=1; i<= (nlstate); i++){      } /* End theta */
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               gp[k]=pmmij[i][j];  
             }      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
                    for(theta=1; theta <=npar; theta++)
           for(i=1; i<=npar; i++)            trgradg[h][j][theta]=gradg[h][theta][j];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(theta=1; theta <=npar; theta++)
           k=0;          trgradgp[j][theta]=gradgp[theta][j];
           for(i=1; i<=(nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               gm[k]=pmmij[i][j];      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
           }          vareij[i][j][(int)age] =0.;
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for(h=0;h<=nhstepm;h++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for(i=1;i<=nlstate;i++)
           for(theta=1; theta <=npar; theta++)            for(j=1;j<=nlstate;j++)
             trgradg[j][theta]=gradg[theta][j];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    
              /* pptj */
         pmij(pmmij,cov,ncovmodel,x,nlstate);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         k=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=1; i<=(nlstate); i++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           for(j=1; j<=(nlstate+ndeath);j++){          varppt[j][i]=doldmp[j][i];
             k=k+1;      /* end ppptj */
             mu[k][(int) age]=pmmij[i][j];      /*  x centered again */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)   
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      if (popbased==1) {
             varpij[i][j][(int)age] = doldm[i][j];        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
         /*printf("\n%d ",(int)age);            prlim[i][i]=probs[(int)age][i][ij];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }else{ /* mobilav */ 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(i=1; i<=nlstate;i++)
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            prlim[i][i]=mobaverage[(int)age][i][ij];
      }*/        }
       }
         fprintf(ficresprob,"\n%d ",(int)age);               
         fprintf(ficresprobcov,"\n%d ",(int)age);      /* This for computing probability of death (h=1 means
         fprintf(ficresprobcor,"\n%d ",(int)age);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      }    
         }      /* end probability of death */
         i=0;  
         for (k=1; k<=(nlstate);k++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           for (l=1; l<=(nlstate+ndeath);l++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             i=i++;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        for(i=1; i<=nlstate;i++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             for (j=1; j<=i;j++){        }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      } 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      fprintf(ficresprobmorprev,"\n");
             }  
           }      fprintf(ficresvij,"%.0f ",age );
         }/* end of loop for state */      for(i=1; i<=nlstate;i++)
       } /* end of loop for age */        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       /* Confidence intervalle of pij  */        }
       /*      fprintf(ficresvij,"\n");
       fprintf(ficgp,"\nset noparametric;unset label");      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    } /* End age */
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       */    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       first1=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (k2=1; k2<=(nlstate);k2++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for (l2=1; l2<=(nlstate+ndeath);l2++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           if(l2==k2) continue;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           j=(k2-1)*(nlstate+ndeath)+l2;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           for (k1=1; k1<=(nlstate);k1++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for (l1=1; l1<=(nlstate+ndeath);l1++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
               if(l1==k1) continue;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
               i=(k1-1)*(nlstate+ndeath)+l1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
               if(i<=j) continue;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
               for (age=bage; age<=fage; age ++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
                 if ((int)age %5==0){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;    free_vector(xp,1,npar);
                   mu2=mu[j][(int) age]/stepm*YEARM;    free_matrix(doldm,1,nlstate,1,nlstate);
                   c12=cv12/sqrt(v1*v2);    free_matrix(dnewm,1,nlstate,1,npar);
                   /* Computing eigen value of matrix of covariance */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   /* Eigen vectors */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fclose(ficresprobmorprev);
                   /*v21=sqrt(1.-v11*v11); *//* error */    fclose(ficgp);
                   v21=(lc1-v1)/cv12*v11;    fclose(fichtm);
                   v12=-v21;  }  
                   v22=v11;  
                   tnalp=v21/v11;  /************ Variance of prevlim ******************/
                   if(first1==1){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                     first1=0;  {
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    /* Variance of prevalence limit */
                   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double **newm;
                   /*printf(fignu*/    double **dnewm,**doldm;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int i, j, nhstepm, hstepm;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    int k, cptcode;
                   if(first==1){    double *xp;
                     first=0;    double *gp, *gm;
                     fprintf(ficgp,"\nset parametric;unset label");    double **gradg, **trgradg;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    double age,agelim;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    int theta;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);     
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    fprintf(ficresvpl,"# Age");
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        fprintf(ficresvpl," %1d-%1d",i,i);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficresvpl,"\n");
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    xp=vector(1,npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    dnewm=matrix(1,nlstate,1,npar);
                   }else{    doldm=matrix(1,nlstate,1,nlstate);
                     first=0;    
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    hstepm=1*YEARM; /* Every year of age */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    agelim = AGESUP;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      if (stepm >= YEARM) hstepm=1;
                   }/* if first */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                 } /* age mod 5 */      gradg=matrix(1,npar,1,nlstate);
               } /* end loop age */      gp=vector(1,nlstate);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      gm=vector(1,nlstate);
               first=1;  
             } /*l12 */      for(theta=1; theta <=npar; theta++){
           } /* k12 */        for(i=1; i<=npar; i++){ /* Computes gradient */
         } /*l1 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }/* k1 */        }
     } /* loop covariates */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        for(i=1;i<=nlstate;i++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          gp[i] = prlim[i][i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        for(i=1; i<=npar; i++) /* Computes gradient */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   free_vector(xp,1,npar);          gm[i] = prlim[i][i];
   fclose(ficresprob);  
   fclose(ficresprobcov);        for(i=1;i<=nlstate;i++)
   fclose(ficresprobcor);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fclose(ficgp);      } /* End theta */
   fclose(fichtm);  
 }      trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
 /******************* Printing html file ***********/        for(theta=1; theta <=npar; theta++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          trgradg[j][theta]=gradg[theta][j];
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      for(i=1;i<=nlstate;i++)
                   int popforecast, int estepm ,\        varpl[i][(int)age] =0.;
                   double jprev1, double mprev1,double anprev1, \      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   double jprev2, double mprev2,double anprev2){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int jj1, k1, i1, cpt;      for(i=1;i<=nlstate;i++)
   /*char optionfilehtm[FILENAMELENGTH];*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficresvpl,"%.0f ",age );
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      free_vector(gp,1,nlstate);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      free_vector(gm,1,nlstate);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      free_matrix(gradg,1,npar,1,nlstate);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      free_matrix(trgradg,1,nlstate,1,npar);
  - Life expectancies by age and initial health status (estepm=%2d months):    } /* End age */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    free_matrix(dnewm,1,nlstate,1,nlstate);
   
  m=cptcoveff;  }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   /************ Variance of one-step probabilities  ******************/
  jj1=0;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
  for(k1=1; k1<=m;k1++){  {
    for(i1=1; i1<=ncodemax[k1];i1++){    int i, j=0,  i1, k1, l1, t, tj;
      jj1++;    int k2, l2, j1,  z1;
      if (cptcovn > 0) {    int k=0,l, cptcode;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    int first=1, first1;
        for (cpt=1; cpt<=cptcoveff;cpt++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double **dnewm,**doldm;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double *xp;
      }    double *gp, *gm;
      /* Pij */    double **gradg, **trgradg;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    double **mu;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double age,agelim, cov[NCOVMAX];
      /* Quasi-incidences */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    int theta;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    char fileresprob[FILENAMELENGTH];
        /* Stable prevalence in each health state */    char fileresprobcov[FILENAMELENGTH];
        for(cpt=1; cpt<nlstate;cpt++){    char fileresprobcor[FILENAMELENGTH];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***varpij;
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {    strcpy(fileresprob,"prob"); 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    strcat(fileresprob,fileres);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprob);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 health expectancies in states (1) and (2): e%s%d.png<br>    }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    strcpy(fileresprobcov,"probcov"); 
    } /* end i1 */    strcat(fileresprobcov,fileres);
  }/* End k1 */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  fprintf(fichtm,"</ul>");      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    strcpy(fileresprobcor,"probcor"); 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    strcat(fileresprobcor,fileres);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      printf("Problem with resultfile: %s\n", fileresprobcor);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  if(popforecast==1) fprintf(fichtm,"\n    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         <br>",fileres,fileres,fileres,fileres);    
  else    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    fprintf(ficresprob,"# Age");
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
  m=cptcoveff;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficresprobcov,"# Age");
   
  jj1=0;  
  for(k1=1; k1<=m;k1++){    for(i=1; i<=nlstate;i++)
    for(i1=1; i1<=ncodemax[k1];i1++){      for(j=1; j<=(nlstate+ndeath);j++){
      jj1++;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      if (cptcovn > 0) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        for (cpt=1; cpt<=cptcoveff;cpt++)      }  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   /* fprintf(ficresprob,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprobcov,"\n");
      }    fprintf(ficresprobcor,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {   */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident   xp=vector(1,npar);
 interval) in state (%d): v%s%d%d.png <br>    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    } /* end i1 */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  }/* End k1 */    first=1;
  fprintf(fichtm,"</ul>");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 fclose(fichtm);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
 /******************* Gnuplot file **************/    }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    else{
       fprintf(ficgp,"\n# Routine varprob");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
   int ng;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      printf("Problem with html file: %s\n", optionfilehtm);
     printf("Problem with file %s",optionfilegnuplot);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      exit(0);
   }    }
     else{
 #ifdef windows      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(fichtm,"\n");
 #endif  
 m=pow(2,cptcoveff);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  /* 1eme*/      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    }
   
 #ifdef windows    cov[1]=1;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    tj=cptcoveff;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 #endif    j1=0;
 #ifdef unix    for(t=1; t<=tj;t++){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(i1=1; i1<=ncodemax[t];i1++){ 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        j1++;
 #endif        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
 for (i=1; i<= nlstate ; i ++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprob, "**********\n#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobcov, "\n#********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficresprobcov, "**********\n#\n");
     for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficgp, "\n#********** Variable "); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficgp, "**********\n#\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          
      for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }            fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          
 #ifdef unix          fprintf(ficresprobcor, "\n#********** Variable ");    
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 #endif          fprintf(ficresprobcor, "**********\n#");    
    }        }
   }        
   /*2 eme*/        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   for (k1=1; k1<= m ; k1 ++) {          for (k=1; k<=cptcovn;k++) {
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1; i<= nlstate+1 ; i ++) {          for (k=1; k<=cptcovprod;k++)
       k=2*i;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          
       for (j=1; j<= nlstate+1 ; j ++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          gp=vector(1,(nlstate)*(nlstate+ndeath));
 }            gm=vector(1,(nlstate)*(nlstate+ndeath));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(theta=1; theta <=npar; theta++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=npar; i++)
       for (j=1; j<= nlstate+1 ; j ++) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            
         else fprintf(ficgp," \%%*lf (\%%*lf)");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 }              
       fprintf(ficgp,"\" t\"\" w l 0,");            k=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<= (nlstate); i++){
       for (j=1; j<= nlstate+1 ; j ++) {              for(j=1; j<=(nlstate+ndeath);j++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                gp[k]=pmmij[i][j];
 }                }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }
       else fprintf(ficgp,"\" t\"\" w l 0,");            
     }            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   /*3eme*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   for (k1=1; k1<= m ; k1 ++) {            for(i=1; i<=(nlstate); i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              for(j=1; j<=(nlstate+ndeath);j++){
       k=2+nlstate*(2*cpt-2);                k=k+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                gm[k]=pmmij[i][j];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 */            for(theta=1; theta <=npar; theta++)
       for (i=1; i< nlstate ; i ++) {              trgradg[j][theta]=gradg[theta][j];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /* CV preval stat */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
       k=3;          
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          k=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
       for (i=1; i< nlstate ; i ++)              k=k+1;
         fprintf(ficgp,"+$%d",k+i+1);              mu[k][(int) age]=pmmij[i][j];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                }
       l=3+(nlstate+ndeath)*cpt;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for (i=1; i< nlstate ; i ++) {              varpij[i][j][(int)age] = doldm[i][j];
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);          /*printf("\n%d ",(int)age);
       }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }              }*/
    
   /* proba elementaires */          fprintf(ficresprob,"\n%d ",(int)age);
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprobcov,"\n%d ",(int)age);
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprobcor,"\n%d ",(int)age);
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           jk++;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficgp,"\n");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
     }          i=0;
    }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              i=i++;
      for(jk=1; jk <=m; jk++) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        if (ng==2)              for (j=1; j<=i;j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        else                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
          fprintf(ficgp,"\nset title \"Probability\"\n");              }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }
        i=1;          }/* end of loop for state */
        for(k2=1; k2<=nlstate; k2++) {        } /* end of loop for age */
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {        /* Confidence intervalle of pij  */
            if (k != k2){        /*
              if(ng==2)          fprintf(ficgp,"\nset noparametric;unset label");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              else          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              ij=1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              for(j=3; j <=ncovmodel; j++) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        */
                  ij++;  
                }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                else        first1=1;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (k2=1; k2<=(nlstate);k2++){
              }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              fprintf(ficgp,")/(1");            if(l2==k2) continue;
                          j=(k2-1)*(nlstate+ndeath)+l2;
              for(k1=1; k1 <=nlstate; k1++){              for (k1=1; k1<=(nlstate);k1++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                ij=1;                if(l1==k1) continue;
                for(j=3; j <=ncovmodel; j++){                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                if(i<=j) continue;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                for (age=bage; age<=fage; age ++){ 
                    ij++;                  if ((int)age %5==0){
                  }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                  else                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                fprintf(ficgp,")");                    mu2=mu[j][(int) age]/stepm*YEARM;
              }                    c12=cv12/sqrt(v1*v2);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                    /* Computing eigen value of matrix of covariance */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              i=i+ncovmodel;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
            }                    /* Eigen vectors */
          } /* end k */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        } /* end k2 */                    /*v21=sqrt(1.-v11*v11); *//* error */
      } /* end jk */                    v21=(lc1-v1)/cv12*v11;
    } /* end ng */                    v12=-v21;
    fclose(ficgp);                    v22=v11;
 }  /* end gnuplot */                    tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
 /*************** Moving average **************/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   int i, cpt, cptcod;                    /*printf(fignu*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       for (i=1; i<=nlstate;i++)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                    if(first==1){
           mobaverage[(int)agedeb][i][cptcod]=0.;                      first=0;
                          fprintf(ficgp,"\nset parametric;unset label");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       for (i=1; i<=nlstate;i++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
           for (cpt=0;cpt<=4;cpt++){                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }                    }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
 /************** Forecasting ******************/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   int *popage;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                    }/* if first */
   double *popeffectif,*popcount;                  } /* age mod 5 */
   double ***p3mat;                } /* end loop age */
   char fileresf[FILENAMELENGTH];                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
  agelim=AGESUP;              } /*l12 */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            } /* k12 */
           } /*l1 */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }/* k1 */
        } /* loop covariates */
      }
   strcpy(fileresf,"f");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   strcat(fileresf,fileres);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fclose(ficresprob);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fclose(ficgp);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fclose(fichtm);
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   
   if (mobilav==1) {  /******************* Printing html file ***********/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     movingaverage(agedeb, fage, ageminpar, mobaverage);                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    double jprev1, double mprev1,double anprev1, \
   if (stepm<=12) stepsize=1;                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
   agelim=AGESUP;    /*char optionfilehtm[FILENAMELENGTH];*/
      if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   hstepm=1;      printf("Problem with %s \n",optionfilehtm), exit(0);
   hstepm=hstepm/stepm;      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   yp1=modf(dateintmean,&yp);    }
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   mprojmean=yp;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   yp1=modf((yp2*30.5),&yp);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   jprojmean=yp;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   if(jprojmean==0) jprojmean=1;   - Life expectancies by age and initial health status (estepm=%2d months): 
   if(mprojmean==0) jprojmean=1;     <a href=\"e%s\">e%s</a> <br>\n</li>", \
      jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   m=cptcoveff;
       k=k+1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {   jj1=0;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   for(k1=1; k1<=m;k1++){
       }     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresf,"******\n");       jj1++;
       fprintf(ficresf,"# StartingAge FinalAge");       if (cptcovn > 0) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               for (cpt=1; cpt<=cptcoveff;cpt++) 
                 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficresf,"\n");       }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       /* Quasi-incidences */
           nhstepm = nhstepm/hstepm;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
            <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         /* Stable prevalence in each health state */
           oldm=oldms;savm=savms;         for(cpt=1; cpt<nlstate;cpt++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
          <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           for (h=0; h<=nhstepm; h++){         }
             if (h==(int) (calagedate+YEARM*cpt)) {       for(cpt=1; cpt<=nlstate;cpt++) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
             }  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
             for(j=1; j<=nlstate+ndeath;j++) {       }
               kk1=0.;kk2=0;       fprintf(fichtm,"\n<br>- Total life expectancy by age and
               for(i=1; i<=nlstate;i++) {                health expectancies in states (1) and (2): e%s%d.png<br>
                 if (mobilav==1)  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     } /* end i1 */
                 else {   }/* End k1 */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   fprintf(fichtm,"</ul>");
                 }  
                  
               }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
               if (h==(int)(calagedate+12*cpt)){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
                 fprintf(ficresf," %.3f", kk1);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
                           - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
               }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
             }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
           }   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
         }  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
          /*      <br>",fileres,fileres,fileres,fileres); */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficresf);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 }  
 /************** Forecasting ******************/   m=cptcoveff;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   jj1=0;
   int *popage;   for(k1=1; k1<=m;k1++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     for(i1=1; i1<=ncodemax[k1];i1++){
   double *popeffectif,*popcount;       jj1++;
   double ***p3mat,***tabpop,***tabpopprev;       if (cptcovn > 0) {
   char filerespop[FILENAMELENGTH];         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   agelim=AGESUP;       }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  interval) in state (%d): v%s%d%d.png <br>
    <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         }
   strcpy(filerespop,"pop");     } /* end i1 */
   strcat(filerespop,fileres);   }/* End k1 */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with forecast resultfile: %s\n", filerespop);  fclose(fichtm);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  /******************* Gnuplot file **************/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   if (mobilav==1) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with file %s",optionfilegnuplot);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   }    }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*#ifdef windows */
   if (stepm<=12) stepsize=1;      fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
   agelim=AGESUP;  m=pow(2,cptcoveff);
      
   hstepm=1;   /* 1eme*/
   hstepm=hstepm/stepm;    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
   if (popforecast==1) {       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     if((ficpop=fopen(popfile,"r"))==NULL) {       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     popage=ivector(0,AGESUP);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     popeffectif=vector(0,AGESUP);       }
     popcount=vector(0,AGESUP);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
     i=1;           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           } 
     imx=i;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(cptcov=1;cptcov<=i2;cptcov++){       }  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       k=k+1;     }
       fprintf(ficrespop,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    /*2 eme*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficrespop,"******\n");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficrespop,"# Age");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for (i=1; i<= nlstate+1 ; i ++) {
              k=2*i;
       for (cpt=0; cpt<=0;cpt++) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }   
           nhstepm = nhstepm/hstepm;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                  else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
           oldm=oldms;savm=savms;        for (j=1; j<= nlstate+1 ; j ++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
           for (h=0; h<=nhstepm; h++){        }   
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficgp,"\" t\"\" w l 0,");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
             }        for (j=1; j<= nlstate+1 ; j ++) {
             for(j=1; j<=nlstate+ndeath;j++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               kk1=0.;kk2=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(i=1; i<=nlstate;i++) {                      }   
                 if (mobilav==1)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        else fprintf(ficgp,"\" t\"\" w l 0,");
                 else {      }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }    
               }    /*3eme*/
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    for (k1=1; k1<= m ; k1 ++) { 
                   /*fprintf(ficrespop," %.3f", kk1);      for (cpt=1; cpt<= nlstate ; cpt ++) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        k=2+nlstate*(2*cpt-2);
               }        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
             }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
             for(i=1; i<=nlstate;i++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               kk1=0.;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                 for(j=1; j<=nlstate;j++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             }          
         */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for (i=1; i< nlstate ; i ++) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } 
         }      }
       }    }
      
   /******/    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          k=3;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
           nhstepm = nhstepm/hstepm;        
                  for (i=1; i< nlstate ; i ++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"+$%d",k+i+1);
           oldm=oldms;savm=savms;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
           for (h=0; h<=nhstepm; h++){        l=3+(nlstate+ndeath)*cpt;
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for (i=1; i< nlstate ; i ++) {
             }          l=3+(nlstate+ndeath)*cpt;
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficgp,"+$%d",l+i+1);
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          } 
               }    }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    
             }    /* proba elementaires */
           }    for(i=1,jk=1; i <=nlstate; i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
       }          for(j=1; j <=ncovmodel; j++){
    }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
              fprintf(ficgp,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
         }
   if (popforecast==1) {      }
     free_ivector(popage,0,AGESUP);     }
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         if (ng==2)
   fclose(ficrespop);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 }         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
 /***********************************************/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 /**************** Main Program *****************/         i=1;
 /***********************************************/         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
 int main(int argc, char *argv[])           for(k=1; k<=(nlstate+ndeath); k++) {
 {             if (k != k2){
                if(ng==2)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   double agedeb, agefin,hf;               else
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   double fret;               for(j=3; j <=ncovmodel; j++) {
   double **xi,tmp,delta;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   double dum; /* Dummy variable */                   ij++;
   double ***p3mat;                 }
   int *indx;                 else
   char line[MAXLINE], linepar[MAXLINE];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];               }
   int firstobs=1, lastobs=10;               fprintf(ficgp,")/(1");
   int sdeb, sfin; /* Status at beginning and end */               
   int c,  h , cpt,l;               for(k1=1; k1 <=nlstate; k1++){   
   int ju,jl, mi;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                 ij=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                 for(j=3; j <=ncovmodel; j++){
   int mobilav=0,popforecast=0;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   int hstepm, nhstepm;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                     ij++;
                    }
   double bage, fage, age, agelim, agebase;                   else
   double ftolpl=FTOL;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   double **prlim;                 }
   double *severity;                 fprintf(ficgp,")");
   double ***param; /* Matrix of parameters */               }
   double  *p;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   double **matcov; /* Matrix of covariance */               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   double ***delti3; /* Scale */               i=i+ncovmodel;
   double *delti; /* Scale */             }
   double ***eij, ***vareij;           } /* end k */
   double **varpl; /* Variances of prevalence limits by age */         } /* end k2 */
   double *epj, vepp;       } /* end jk */
   double kk1, kk2;     } /* end ng */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     fclose(ficgp); 
    }  /* end gnuplot */
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   char z[1]="c", occ;  
 #include <sys/time.h>    int i, cpt, cptcod;
 #include <time.h>    int modcovmax =1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int mobilavrange, mob;
      double age;
   /* long total_usecs;  
   struct timeval start_time, end_time;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   getcwd(pathcd, size);  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   printf("\n%s",version);      if(mobilav==1) mobilavrange=5; /* default */
   if(argc <=1){      else mobilavrange=mobilav;
     printf("\nEnter the parameter file name: ");      for (age=bage; age<=fage; age++)
     scanf("%s",pathtot);        for (i=1; i<=nlstate;i++)
   }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   else{            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     strcpy(pathtot,argv[1]);      /* We keep the original values on the extreme ages bage, fage and for 
   }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/         we use a 5 terms etc. until the borders are no more concerned. 
   /*cygwin_split_path(pathtot,path,optionfile);      */ 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
   /* cutv(path,optionfile,pathtot,'\\');*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   chdir(path);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   replace(pathc,path);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 /*-------- arguments in the command line --------*/                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   /* Log file */            }
   strcat(filelog, optionfilefiname);          }
   strcat(filelog,".log");    /* */        }/* end age */
   if((ficlog=fopen(filelog,"w"))==NULL)    {      }/* end mob */
     printf("Problem with logfile %s\n",filelog);    }else return -1;
     goto end;    return 0;
   }  }/* End movingaverage */
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");  /************** Forecasting ******************/
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fflush(ficlog);    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   /* */       dateprev1 dateprev2 range of dates during which prevalence is computed
   strcpy(fileres,"r");       anproj2 year of en of projection (same day and month as proj1).
   strcat(fileres, optionfilefiname);    */
   strcat(fileres,".txt");    /* Other files have txt extension */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   /*---------arguments file --------*/    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double *popeffectif,*popcount;
     printf("Problem with optionfile %s\n",optionfile);    double ***p3mat;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    double ***mobaverage;
     goto end;    char fileresf[FILENAMELENGTH];
   }  
     agelim=AGESUP;
   strcpy(filereso,"o");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   strcat(filereso,fileres);   
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcpy(fileresf,"f"); 
     printf("Problem with Output resultfile: %s\n", filereso);    strcat(fileresf,fileres);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     goto end;      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   /* Reads comments: lines beginning with '#' */    printf("Computing forecasting: result on file '%s' \n", fileresf);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     puts(line);  
     fputs(line,ficparo);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fgets(line, MAXLINE, ficpar);    if (stepm<=12) stepsize=1;
     puts(line);    if(estepm < stepm){
     fputs(line,ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   ungetc(c,ficpar);    else  hstepm=estepm;   
    
        hstepm=hstepm/stepm; 
   covar=matrix(0,NCOVMAX,1,n);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   cptcovn=0;                                 fractional in yp1 */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   ncovmodel=2+cptcovn;    mprojmean=yp;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
   /* Read guess parameters */    if(jprojmean==0) jprojmean=1;
   /* Reads comments: lines beginning with '#' */    if(mprojmean==0) jprojmean=1;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    i1=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn < 1){i1=1;}
     puts(line);    
     fputs(line,ficparo);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   }    
   ungetc(c,ficpar);    fprintf(ficresf,"#****** Routine prevforecast **\n");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*            if (h==(int)(YEARM*yearp)){ */
     for(i=1; i <=nlstate; i++)    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     for(j=1; j <=nlstate+ndeath-1; j++){      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        k=k+1;
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficresf,"\n#******");
       if(mle==1)        for(j=1;j<=cptcoveff;j++) {
         printf("%1d%1d",i,j);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficlog,"%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresf,"******\n");
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         if(mle==1){        for(j=1; j<=nlstate+ndeath;j++){ 
           printf(" %lf",param[i][j][k]);          for(i=1; i<=nlstate;i++)              
           fprintf(ficlog," %lf",param[i][j][k]);            fprintf(ficresf," p%d%d",i,j);
         }          fprintf(ficresf," p.%d",j);
         else        }
           fprintf(ficlog," %lf",param[i][j][k]);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficresf,"\n");
       }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       fscanf(ficpar,"\n");  
       if(mle==1)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         printf("\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       fprintf(ficlog,"\n");            nhstepm = nhstepm/hstepm; 
       fprintf(ficparo,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          
             for (h=0; h<=nhstepm; h++){
   p=param[1][1];              if (h*hstepm/YEARM*stepm ==yearp) {
                  fprintf(ficresf,"\n");
   /* Reads comments: lines beginning with '#' */                for(j=1;j<=cptcoveff;j++) 
   while((c=getc(ficpar))=='#' && c!= EOF){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     ungetc(c,ficpar);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     fgets(line, MAXLINE, ficpar);              } 
     puts(line);              for(j=1; j<=nlstate+ndeath;j++) {
     fputs(line,ficparo);                ppij=0.;
   }                for(i=1; i<=nlstate;i++) {
   ungetc(c,ficpar);                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  else {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   for(i=1; i <=nlstate; i++){                  }
     for(j=1; j <=nlstate+ndeath-1; j++){                  if (h*hstepm/YEARM*stepm== yearp) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       printf("%1d%1d",i,j);                  }
       fprintf(ficparo,"%1d%1d",i1,j1);                } /* end i */
       for(k=1; k<=ncovmodel;k++){                if (h*hstepm/YEARM*stepm==yearp) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);                  fprintf(ficresf," %.3f", ppij);
         printf(" %le",delti3[i][j][k]);                }
         fprintf(ficparo," %le",delti3[i][j][k]);              }/* end j */
       }            } /* end h */
       fscanf(ficpar,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");          } /* end agec */
       fprintf(ficparo,"\n");        } /* end yearp */
     }      } /* end cptcod */
   }    } /* end  cptcov */
   delti=delti3[1][1];         
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresf);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************** Forecasting *****not tested NB*************/
     fputs(line,ficparo);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   ungetc(c,ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   matcov=matrix(1,npar,1,npar);    double calagedatem, agelim, kk1, kk2;
   for(i=1; i <=npar; i++){    double *popeffectif,*popcount;
     fscanf(ficpar,"%s",&str);    double ***p3mat,***tabpop,***tabpopprev;
     if(mle==1)    double ***mobaverage;
       printf("%s",str);    char filerespop[FILENAMELENGTH];
     fprintf(ficlog,"%s",str);  
     fprintf(ficparo,"%s",str);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j <=i; j++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fscanf(ficpar," %le",&matcov[i][j]);    agelim=AGESUP;
       if(mle==1){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         printf(" %.5le",matcov[i][j]);    
         fprintf(ficlog," %.5le",matcov[i][j]);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }    
       else    
         fprintf(ficlog," %.5le",matcov[i][j]);    strcpy(filerespop,"pop"); 
       fprintf(ficparo," %.5le",matcov[i][j]);    strcat(filerespop,fileres);
     }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     fscanf(ficpar,"\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
     if(mle==1)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       printf("\n");    }
     fprintf(ficlog,"\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficparo,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   }  
   for(i=1; i <=npar; i++)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(mle==1)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     printf("\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficlog,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */    stepsize=(int) (stepm+YEARM-1)/YEARM;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    if (stepm<=12) stepsize=1;
      strcat(rfileres,".");    /* */    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    agelim=AGESUP;
     if((ficres =fopen(rfileres,"w"))==NULL) {    
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    hstepm=1;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    hstepm=hstepm/stepm; 
     }    
     fprintf(ficres,"#%s\n",version);    if (popforecast==1) {
          if((ficpop=fopen(popfile,"r"))==NULL) {
     /*-------- data file ----------*/        printf("Problem with population file : %s\n",popfile);exit(0);
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       printf("Problem with datafile: %s\n", datafile);goto end;      } 
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;      popage=ivector(0,AGESUP);
     }      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
     n= lastobs;      
     severity = vector(1,maxwav);      i=1;   
     outcome=imatrix(1,maxwav+1,1,n);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     num=ivector(1,n);     
     moisnais=vector(1,n);      imx=i;
     annais=vector(1,n);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     moisdc=vector(1,n);    }
     andc=vector(1,n);  
     agedc=vector(1,n);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     cod=ivector(1,n);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     weight=vector(1,n);        k=k+1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficrespop,"\n#******");
     mint=matrix(1,maxwav,1,n);        for(j=1;j<=cptcoveff;j++) {
     anint=matrix(1,maxwav,1,n);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     s=imatrix(1,maxwav+1,1,n);        }
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficrespop,"******\n");
     tab=ivector(1,NCOVMAX);        fprintf(ficrespop,"# Age");
     ncodemax=ivector(1,8);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
     i=1;        
     while (fgets(line, MAXLINE, fic) != NULL)    {        for (cpt=0; cpt<=0;cpt++) { 
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                  
         for (j=maxwav;j>=1;j--){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           strcpy(line,stra);            nhstepm = nhstepm/hstepm; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }            oldm=oldms;savm=savms;
                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                kk1=0.;kk2=0;
         for (j=ncovcol;j>=1;j--){                for(i=1; i<=nlstate;i++) {              
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                  if (mobilav==1) 
         }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         num[i]=atol(stra);                  else {
                            kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                  }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                }
                 if (h==(int)(calagedatem+12*cpt)){
         i=i+1;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       }                    /*fprintf(ficrespop," %.3f", kk1);
     }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     /* printf("ii=%d", ij);                }
        scanf("%d",i);*/              }
   imx=i-1; /* Number of individuals */              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   /* for (i=1; i<=imx; i++){                  for(j=1; j<=nlstate;j++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                  }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     }*/              }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);    /******/
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);              for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   if (strlen(model) >1){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     j=0, j1=0, k1=1, k2=1;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     j=nbocc(model,'+');            nhstepm = nhstepm/hstepm; 
     j1=nbocc(model,'*');            
     cptcovn=j+1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     cptcovprod=j1;            oldm=oldms;savm=savms;
                hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     strcpy(modelsav,model);            for (h=0; h<=nhstepm; h++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              if (h==(int) (calagedatem+YEARM*cpt)) {
       printf("Error. Non available option model=%s ",model);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       fprintf(ficlog,"Error. Non available option model=%s ",model);              } 
       goto end;              for(j=1; j<=nlstate+ndeath;j++) {
     }                kk1=0.;kk2=0;
                    for(i=1; i<=nlstate;i++) {              
     for(i=(j+1); i>=1;i--){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              }
       /*scanf("%d",i);*/            }
       if (strchr(strb,'*')) {  /* Model includes a product */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          }
         if (strcmp(strc,"age")==0) { /* Vn*age */        }
           cptcovprod--;     } 
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/   
           cptcovage++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    if (popforecast==1) {
         }      free_ivector(popage,0,AGESUP);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      free_vector(popeffectif,0,AGESUP);
           cptcovprod--;      free_vector(popcount,0,AGESUP);
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=atoi(stre);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           cptcovage++;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tage[cptcovage]=i;    fclose(ficrespop);
         }  }
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  /***********************************************/
           Tvar[i]=ncovcol+k1;  /**************** Main Program *****************/
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  /***********************************************/
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/  int main(int argc, char *argv[])
           Tvard[k1][2]=atoi(stre); /* n */  {
           Tvar[cptcovn+k2]=Tvard[k1][1];    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           for (k=1; k<=lastobs;k++)    double agedeb, agefin,hf;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           k1++;  
           k2=k2+2;    double fret;
         }    double **xi,tmp,delta;
       }  
       else { /* no more sum */    double dum; /* Dummy variable */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double ***p3mat;
        /*  scanf("%d",i);*/    double ***mobaverage;
       cutv(strd,strc,strb,'V');    int *indx;
       Tvar[i]=atoi(strc);    char line[MAXLINE], linepar[MAXLINE];
       }    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
       strcpy(modelsav,stra);      int firstobs=1, lastobs=10;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int sdeb, sfin; /* Status at beginning and end */
         scanf("%d",i);*/    int c,  h , cpt,l;
     } /* end of loop + */    int ju,jl, mi;
   } /* end model */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
      int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   printf("cptcovprod=%d ", cptcovprod);    int mobilav=0,popforecast=0;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    int hstepm, nhstepm;
   scanf("%d ",i);*/    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     fclose(fic);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     /*  if(mle==1){*/    double bage, fage, age, agelim, agebase;
     if (weightopt != 1) { /* Maximisation without weights*/    double ftolpl=FTOL;
       for(i=1;i<=n;i++) weight[i]=1.0;    double **prlim;
     }    double *severity;
     /*-calculation of age at interview from date of interview and age at death -*/    double ***param; /* Matrix of parameters */
     agev=matrix(1,maxwav,1,imx);    double  *p;
     double **matcov; /* Matrix of covariance */
     for (i=1; i<=imx; i++) {    double ***delti3; /* Scale */
       for(m=2; (m<= maxwav); m++) {    double *delti; /* Scale */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double ***eij, ***vareij;
          anint[m][i]=9999;    double **varpl; /* Variances of prevalence limits by age */
          s[m][i]=-1;    double *epj, vepp;
        }    double kk1, kk2;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }  
     }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    char z[1]="c", occ;
       for(m=1; (m<= maxwav); m++){  #include <sys/time.h>
         if(s[m][i] >0){  #include <time.h>
           if (s[m][i] >= nlstate+1) {    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
             if(agedc[i]>0)   
               if(moisdc[i]!=99 && andc[i]!=9999)    /* long total_usecs;
                 agev[m][i]=agedc[i];       struct timeval start_time, end_time;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    
            else {       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
               if (andc[i]!=9999){    getcwd(pathcd, size);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    printf("\n%s\n%s",version,fullversion);
               agev[m][i]=-1;    if(argc <=1){
               }      printf("\nEnter the parameter file name: ");
             }      scanf("%s",pathtot);
           }    }
           else if(s[m][i] !=9){ /* Should no more exist */    else{
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      strcpy(pathtot,argv[1]);
             if(mint[m][i]==99 || anint[m][i]==9999)    }
               agev[m][i]=1;    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
             else if(agev[m][i] <agemin){    /*cygwin_split_path(pathtot,path,optionfile);
               agemin=agev[m][i];      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /* cutv(path,optionfile,pathtot,'\\');*/
             }  
             else if(agev[m][i] >agemax){    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
               agemax=agev[m][i];    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    chdir(path);
             }    replace(pathc,path);
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    /*-------- arguments in the command line --------*/
           }  
           else { /* =9 */    /* Log file */
             agev[m][i]=1;    strcat(filelog, optionfilefiname);
             s[m][i]=-1;    strcat(filelog,".log");    /* */
           }    if((ficlog=fopen(filelog,"w"))==NULL)    {
         }      printf("Problem with logfile %s\n",filelog);
         else /*= 0 Unknown */      goto end;
           agev[m][i]=1;    }
       }    fprintf(ficlog,"Log filename:%s\n",filelog);
        fprintf(ficlog,"\n%s",version);
     }    fprintf(ficlog,"\nEnter the parameter file name: ");
     for (i=1; i<=imx; i++)  {    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       for(m=1; (m<= maxwav); m++){    fflush(ficlog);
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      /* */
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      strcpy(fileres,"r");
           goto end;    strcat(fileres, optionfilefiname);
         }    strcat(fileres,".txt");    /* Other files have txt extension */
       }  
     }    /*---------arguments file --------*/
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     free_vector(severity,1,maxwav);      goto end;
     free_imatrix(outcome,1,maxwav+1,1,n);    }
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);    strcpy(filereso,"o");
     /* free_matrix(mint,1,maxwav,1,n);    strcat(filereso,fileres);
        free_matrix(anint,1,maxwav,1,n);*/    if((ficparo=fopen(filereso,"w"))==NULL) {
     free_vector(moisdc,1,n);      printf("Problem with Output resultfile: %s\n", filereso);
     free_vector(andc,1,n);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
        }
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* Reads comments: lines beginning with '#' */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    while((c=getc(ficpar))=='#' && c!= EOF){
          ungetc(c,ficpar);
     /* Concatenates waves */      fgets(line, MAXLINE, ficpar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      puts(line);
       fputs(line,ficparo);
     }
       Tcode=ivector(1,100);    ungetc(c,ficpar);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
          fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
    codtab=imatrix(1,100,1,10);    while((c=getc(ficpar))=='#' && c!= EOF){
    h=0;      ungetc(c,ficpar);
    m=pow(2,cptcoveff);      fgets(line, MAXLINE, ficpar);
        puts(line);
    for(k=1;k<=cptcoveff; k++){      fputs(line,ficparo);
      for(i=1; i <=(m/pow(2,k));i++){    }
        for(j=1; j <= ncodemax[k]; j++){    ungetc(c,ficpar);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    
            h++;     
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    covar=matrix(0,NCOVMAX,1,n); 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
          }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
        }  
      }    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
    }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    
       codtab[1][2]=1;codtab[2][2]=2; */    /* Read guess parameters */
    /* for(i=1; i <=m ;i++){    /* Reads comments: lines beginning with '#' */
       for(k=1; k <=cptcovn; k++){    while((c=getc(ficpar))=='#' && c!= EOF){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      ungetc(c,ficpar);
       }      fgets(line, MAXLINE, ficpar);
       printf("\n");      puts(line);
       }      fputs(line,ficparo);
       scanf("%d",i);*/    }
        ungetc(c,ficpar);
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
          for(j=1; j <=nlstate+ndeath-1; j++){
            fscanf(ficpar,"%1d%1d",&i1,&j1);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficparo,"%1d%1d",i1,j1);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(mle==1)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          printf("%1d%1d",i,j);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog,"%1d%1d",i,j);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(k=1; k<=ncovmodel;k++){
                fscanf(ficpar," %lf",&param[i][j][k]);
     /* For Powell, parameters are in a vector p[] starting at p[1]          if(mle==1){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            printf(" %lf",param[i][j][k]);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            fprintf(ficlog," %lf",param[i][j][k]);
           }
     if(mle==1){          else
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            fprintf(ficlog," %lf",param[i][j][k]);
     }          fprintf(ficparo," %lf",param[i][j][k]);
            }
     /*--------- results files --------------*/        fscanf(ficpar,"\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        if(mle==1)
            printf("\n");
         fprintf(ficlog,"\n");
    jk=1;        fprintf(ficparo,"\n");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    p=param[1][1];
        if (k != i)    
          {    /* Reads comments: lines beginning with '#' */
            printf("%d%d ",i,k);    while((c=getc(ficpar))=='#' && c!= EOF){
            fprintf(ficlog,"%d%d ",i,k);      ungetc(c,ficpar);
            fprintf(ficres,"%1d%1d ",i,k);      fgets(line, MAXLINE, ficpar);
            for(j=1; j <=ncovmodel; j++){      puts(line);
              printf("%f ",p[jk]);      fputs(line,ficparo);
              fprintf(ficlog,"%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);    ungetc(c,ficpar);
              jk++;  
            }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
            printf("\n");    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
            fprintf(ficlog,"\n");    for(i=1; i <=nlstate; i++){
            fprintf(ficres,"\n");      for(j=1; j <=nlstate+ndeath-1; j++){
          }        fscanf(ficpar,"%1d%1d",&i1,&j1);
      }        printf("%1d%1d",i,j);
    }        fprintf(ficparo,"%1d%1d",i1,j1);
    if(mle==1){        for(k=1; k<=ncovmodel;k++){
      /* Computing hessian and covariance matrix */          fscanf(ficpar,"%le",&delti3[i][j][k]);
      ftolhess=ftol; /* Usually correct */          printf(" %le",delti3[i][j][k]);
      hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficparo," %le",delti3[i][j][k]);
    }        }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fscanf(ficpar,"\n");
    printf("# Scales (for hessian or gradient estimation)\n");        printf("\n");
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficparo,"\n");
    for(i=1,jk=1; i <=nlstate; i++){      }
      for(j=1; j <=nlstate+ndeath; j++){    }
        if (j!=i) {    delti=delti3[1][1];
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);  
          fprintf(ficlog,"%1d%1d",i,j);    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
          for(k=1; k<=ncovmodel;k++){    
            printf(" %.5e",delti[jk]);    /* Reads comments: lines beginning with '#' */
            fprintf(ficlog," %.5e",delti[jk]);    while((c=getc(ficpar))=='#' && c!= EOF){
            fprintf(ficres," %.5e",delti[jk]);      ungetc(c,ficpar);
            jk++;      fgets(line, MAXLINE, ficpar);
          }      puts(line);
          printf("\n");      fputs(line,ficparo);
          fprintf(ficlog,"\n");    }
          fprintf(ficres,"\n");    ungetc(c,ficpar);
        }    
      }    matcov=matrix(1,npar,1,npar);
    }    for(i=1; i <=npar; i++){
          fscanf(ficpar,"%s",&str);
    k=1;      if(mle==1)
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        printf("%s",str);
    if(mle==1)      fprintf(ficlog,"%s",str);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficparo,"%s",str);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(j=1; j <=i; j++){
    for(i=1;i<=npar;i++){        fscanf(ficpar," %le",&matcov[i][j]);
      /*  if (k>nlstate) k=1;        if(mle==1){
          i1=(i-1)/(ncovmodel*nlstate)+1;          printf(" %.5le",matcov[i][j]);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficlog," %.5le",matcov[i][j]);
          printf("%s%d%d",alph[k],i1,tab[i]);*/        }
      fprintf(ficres,"%3d",i);        else
      if(mle==1)          fprintf(ficlog," %.5le",matcov[i][j]);
        printf("%3d",i);        fprintf(ficparo," %.5le",matcov[i][j]);
      fprintf(ficlog,"%3d",i);      }
      for(j=1; j<=i;j++){      fscanf(ficpar,"\n");
        fprintf(ficres," %.5e",matcov[i][j]);      if(mle==1)
        if(mle==1)        printf("\n");
          printf(" %.5e",matcov[i][j]);      fprintf(ficlog,"\n");
        fprintf(ficlog," %.5e",matcov[i][j]);      fprintf(ficparo,"\n");
      }    }
      fprintf(ficres,"\n");    for(i=1; i <=npar; i++)
      if(mle==1)      for(j=i+1;j<=npar;j++)
        printf("\n");        matcov[i][j]=matcov[j][i];
      fprintf(ficlog,"\n");     
      k++;    if(mle==1)
    }      printf("\n");
        fprintf(ficlog,"\n");
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);    /*-------- Rewriting paramater file ----------*/
      puts(line);    strcpy(rfileres,"r");    /* "Rparameterfile */
      fputs(line,ficparo);    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
    }    strcat(rfileres,".");    /* */
    ungetc(c,ficpar);    strcat(rfileres,optionfilext);    /* Other files have txt extension */
    estepm=0;    if((ficres =fopen(rfileres,"w"))==NULL) {
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      printf("Problem writing new parameter file: %s\n", fileres);goto end;
    if (estepm==0 || estepm < stepm) estepm=stepm;      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
    if (fage <= 2) {    }
      bage = ageminpar;    fprintf(ficres,"#%s\n",version);
      fage = agemaxpar;      
    }    /*-------- data file ----------*/
        if((fic=fopen(datafile,"r"))==NULL)    {
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      printf("Problem with datafile: %s\n", datafile);goto end;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    }
      
    while((c=getc(ficpar))=='#' && c!= EOF){    n= lastobs;
      ungetc(c,ficpar);    severity = vector(1,maxwav);
      fgets(line, MAXLINE, ficpar);    outcome=imatrix(1,maxwav+1,1,n);
      puts(line);    num=ivector(1,n);
      fputs(line,ficparo);    moisnais=vector(1,n);
    }    annais=vector(1,n);
    ungetc(c,ficpar);    moisdc=vector(1,n);
      andc=vector(1,n);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    agedc=vector(1,n);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    cod=ivector(1,n);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    weight=vector(1,n);
        for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
    while((c=getc(ficpar))=='#' && c!= EOF){    mint=matrix(1,maxwav,1,n);
      ungetc(c,ficpar);    anint=matrix(1,maxwav,1,n);
      fgets(line, MAXLINE, ficpar);    s=imatrix(1,maxwav+1,1,n);
      puts(line);    tab=ivector(1,NCOVMAX);
      fputs(line,ficparo);    ncodemax=ivector(1,8);
    }  
    ungetc(c,ficpar);    i=1;
      while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);          strcpy(line,stra);
   fprintf(ficparo,"pop_based=%d\n",popbased);            cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
   fprintf(ficres,"pop_based=%d\n",popbased);            cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
     fgets(line, MAXLINE, ficpar);        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
     puts(line);  
     fputs(line,ficparo);        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
   }        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   ungetc(c,ficpar);  
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for (j=ncovcol;j>=1;j--){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        } 
         num[i]=atol(stra);
           
 while((c=getc(ficpar))=='#' && c!= EOF){        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     ungetc(c,ficpar);          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);        i=i+1;
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);    /* printf("ii=%d", ij);
        scanf("%d",i);*/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    imx=i-1; /* Number of individuals */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 /*------------ gnuplot -------------*/      }*/
   strcpy(optionfilegnuplot,optionfilefiname);     /*  for (i=1; i<=imx; i++){
   strcat(optionfilegnuplot,".gp");       if (s[4][i]==9)  s[4][i]=-1; 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     printf("Problem with file %s",optionfilegnuplot);    
   }   for (i=1; i<=imx; i++)
   fclose(ficgp);   
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 /*--------- index.htm --------*/       else weight[i]=1;*/
   
   strcpy(optionfilehtm,optionfile);    /* Calculation of the number of parameter from char model*/
   strcat(optionfilehtm,".htm");    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    Tprod=ivector(1,15); 
     printf("Problem with %s \n",optionfilehtm), exit(0);    Tvaraff=ivector(1,15); 
   }    Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n     
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    if (strlen(model) >1){ /* If there is at least 1 covariate */
 \n      j=0, j1=0, k1=1, k2=1;
 Total number of observations=%d <br>\n      j=nbocc(model,'+'); /* j=Number of '+' */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      j1=nbocc(model,'*'); /* j1=Number of '*' */
 <hr  size=\"2\" color=\"#EC5E5E\">      cptcovn=j+1; 
  <ul><li><h4>Parameter files</h4>\n      cptcovprod=j1; /*Number of products */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      strcpy(modelsav,model); 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   fclose(fichtm);        printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        goto end;
        }
 /*------------ free_vector  -------------*/      
  chdir(path);      /* This loop fills the array Tvar from the string 'model'.*/
    
  free_ivector(wav,1,imx);      for(i=(j+1); i>=1;i--){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
  free_ivector(num,1,n);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
  free_vector(agedc,1,n);        /*scanf("%d",i);*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        if (strchr(strb,'*')) {  /* Model includes a product */
  fclose(ficparo);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
  fclose(ficres);          if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
   /*--------------- Prevalence limit --------------*/            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
              cptcovage++;
   strcpy(filerespl,"pl");              Tage[cptcovage]=i;
   strcat(filerespl,fileres);              /*printf("stre=%s ", stre);*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            cptcovprod--;
   }            cutv(strb,stre,strc,'V');
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            Tvar[i]=atoi(stre);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);            cptcovage++;
   fprintf(ficrespl,"#Prevalence limit\n");            Tage[cptcovage]=i;
   fprintf(ficrespl,"#Age ");          }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          else {  /* Age is not in the model */
   fprintf(ficrespl,"\n");            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
              Tvar[i]=ncovcol+k1;
   prlim=matrix(1,nlstate,1,nlstate);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tprod[k1]=i;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvard[k1][1]=atoi(strc); /* m*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvard[k1][2]=atoi(stre); /* n */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvar[cptcovn+k2]=Tvard[k1][1];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
   k=0;            for (k=1; k<=lastobs;k++) 
   agebase=ageminpar;              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   agelim=agemaxpar;            k1++;
   ftolpl=1.e-10;            k2=k2+2;
   i1=cptcoveff;          }
   if (cptcovn < 1){i1=1;}        }
         else { /* no more sum */
   for(cptcov=1;cptcov<=i1;cptcov++){          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         /*  scanf("%d",i);*/
         k=k+1;        cutv(strd,strc,strb,'V');
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        Tvar[i]=atoi(strc);
         fprintf(ficrespl,"\n#******");        }
         printf("\n#******");        strcpy(modelsav,stra);  
         fprintf(ficlog,"\n#******");        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         for(j=1;j<=cptcoveff;j++) {          scanf("%d",i);*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* end of loop + */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } /* end model */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         }    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         fprintf(ficrespl,"******\n");      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
         printf("******\n");  
         fprintf(ficlog,"******\n");    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
            printf("cptcovprod=%d ", cptcovprod);
         for (age=agebase; age<=agelim; age++){    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    scanf("%d ",i);
           for(i=1; i<=nlstate;i++)    fclose(fic);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");      /*  if(mle==1){*/
         }    if (weightopt != 1) { /* Maximisation without weights*/
       }      for(i=1;i<=n;i++) weight[i]=1.0;
     }    }
   fclose(ficrespl);      /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   /*------------- h Pij x at various ages ------------*/  
      for (i=1; i<=imx; i++) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(m=2; (m<= maxwav); m++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          anint[m][i]=9999;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          s[m][i]=-1;
   }        }
   printf("Computing pij: result on file '%s' \n", filerespij);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
            fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          s[m][i]=-1;
   /*if (stepm<=24) stepsize=2;*/        }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   agelim=AGESUP;          printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
   hstepm=stepsize*YEARM; /* Every year of age */          fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          s[m][i]=-1;
         }
   /* hstepm=1;   aff par mois*/      }
     }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    for (i=1; i<=imx; i++)  {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       k=k+1;      for(m=firstpass; (m<= lastpass); m++){
         fprintf(ficrespij,"\n#****** ");        if(s[m][i] >0){
         for(j=1;j<=cptcoveff;j++)          if (s[m][i] >= nlstate+1) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(agedc[i]>0)
         fprintf(ficrespij,"******\n");              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                        agev[m][i]=agedc[i];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              else {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                  fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                }
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");          else if(s[m][i] !=9){ /* Standard case, age in fractional
           for(i=1; i<=nlstate;i++)                                   years but with the precision of a
             for(j=1; j<=nlstate+ndeath;j++)                                   month */
               fprintf(ficrespij," %1d-%1d",i,j);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
           fprintf(ficrespij,"\n");            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
            for (h=0; h<=nhstepm; h++){              agev[m][i]=1;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            else if(agev[m][i] <agemin){ 
             for(i=1; i<=nlstate;i++)              agemin=agev[m][i];
               for(j=1; j<=nlstate+ndeath;j++)              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            }
             fprintf(ficrespij,"\n");            else if(agev[m][i] >agemax){
              }              agemax=agev[m][i];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
           fprintf(ficrespij,"\n");            }
         }            /*agev[m][i]=anint[m][i]-annais[i];*/
     }            /*     agev[m][i] = age[i]+2*m;*/
   }          }
           else { /* =9 */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            agev[m][i]=1;
             s[m][i]=-1;
   fclose(ficrespij);          }
         }
         else /*= 0 Unknown */
   /*---------- Forecasting ------------------*/          agev[m][i]=1;
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    }
   }    for (i=1; i<=imx; i++)  {
   else{      for(m=firstpass; (m<=lastpass); m++){
     erreur=108;        if (s[m][i] > (nlstate+ndeath)) {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   }          goto end;
          }
       }
   /*---------- Health expectancies and variances ------------*/    }
   
   strcpy(filerest,"t");    /*for (i=1; i<=imx; i++){
   strcat(filerest,fileres);    for (m=firstpass; (m<lastpass); m++){
   if((ficrest=fopen(filerest,"w"))==NULL) {       printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }  }*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
   strcpy(filerese,"e");    free_vector(severity,1,maxwav);
   strcat(filerese,fileres);    free_imatrix(outcome,1,maxwav+1,1,n);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    free_vector(moisnais,1,n);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_vector(annais,1,n);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* free_matrix(mint,1,maxwav,1,n);
   }       free_matrix(anint,1,maxwav,1,n);*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_vector(moisdc,1,n);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    free_vector(andc,1,n);
   
   strcpy(fileresv,"v");     
   strcat(fileresv,fileres);    wav=ivector(1,imx);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   }     
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* Concatenates waves */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   calagedate=-1;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
   k=0;    Tcode=ivector(1,100);
   for(cptcov=1;cptcov<=i1;cptcov++){    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    ncodemax[1]=1;
       k=k+1;    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       fprintf(ficrest,"\n#****** ");        
       for(j=1;j<=cptcoveff;j++)    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                                   the estimations*/
       fprintf(ficrest,"******\n");    h=0;
     m=pow(2,cptcoveff);
       fprintf(ficreseij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    for(k=1;k<=cptcoveff; k++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i <=(m/pow(2,k));i++){
       fprintf(ficreseij,"******\n");        for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
       fprintf(ficresvij,"\n#****** ");            h++;
       for(j=1;j<=cptcoveff;j++)            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
       fprintf(ficresvij,"******\n");          } 
         }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    } 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
         codtab[1][2]=1;codtab[2][2]=2; */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* for(i=1; i <=m ;i++){ 
       oldm=oldms;savm=savms;       for(k=1; k <=cptcovn; k++){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
       if(popbased==1){       }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);       printf("\n");
        }       }
        scanf("%d",i);*/
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* Calculates basic frequencies. Computes observed prevalence at single age
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       and prints on file fileres'p'. */
       fprintf(ficrest,"\n");  
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       epj=vector(1,nlstate+1);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       for(age=bage; age <=fage ;age++){      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         if (popbased==1) {      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
           for(i=1; i<=nlstate;i++)      
             prlim[i][i]=probs[(int)age][i][k];     
         }    /* For Powell, parameters are in a vector p[] starting at p[1]
               so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         fprintf(ficrest," %4.0f",age);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if(mle>=1){ /* Could be 1 or 2 */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    }
           }      
           epj[nlstate+1] +=epj[j];    /*--------- results files --------------*/
         }    fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    jk=1;
             vepp += vareij[i][j][(int)age];    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         for(j=1;j <=nlstate;j++){    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    for(i=1,jk=1; i <=nlstate; i++){
         }      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrest,"\n");        if (k != i) 
       }          {
     }            printf("%d%d ",i,k);
   }            fprintf(ficlog,"%d%d ",i,k);
 free_matrix(mint,1,maxwav,1,n);            fprintf(ficres,"%1d%1d ",i,k);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            for(j=1; j <=ncovmodel; j++){
     free_vector(weight,1,n);              printf("%f ",p[jk]);
   fclose(ficreseij);              fprintf(ficlog,"%f ",p[jk]);
   fclose(ficresvij);              fprintf(ficres,"%f ",p[jk]);
   fclose(ficrest);              jk++; 
   fclose(ficpar);            }
   free_vector(epj,1,nlstate+1);            printf("\n");
              fprintf(ficlog,"\n");
   /*------- Variance limit prevalence------*/              fprintf(ficres,"\n");
           }
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if(mle==1){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      /* Computing hessian and covariance matrix */
     exit(0);      ftolhess=ftol; /* Usually correct */
   }      hesscov(matcov, p, npar, delti, ftolhess, func);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
   k=0;    printf("# Scales (for hessian or gradient estimation)\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1,jk=1; i <=nlstate; i++){
       k=k+1;      for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficresvpl,"\n#****** ");        if (j!=i) {
       for(j=1;j<=cptcoveff;j++)          fprintf(ficres,"%1d%1d",i,j);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf("%1d%1d",i,j);
       fprintf(ficresvpl,"******\n");          fprintf(ficlog,"%1d%1d",i,j);
                for(k=1; k<=ncovmodel;k++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            printf(" %.5e",delti[jk]);
       oldm=oldms;savm=savms;            fprintf(ficlog," %.5e",delti[jk]);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            fprintf(ficres," %.5e",delti[jk]);
     }            jk++;
  }          }
           printf("\n");
   fclose(ficresvpl);          fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
   /*---------- End : free ----------------*/        }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      }
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
      if(mle==1)
        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(i=1,k=1;i<=npar;i++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*  if (k>nlstate) k=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          i1=(i-1)/(ncovmodel*nlstate)+1; 
            fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
   free_matrix(matcov,1,npar,1,npar);          printf("%s%d%d",alph[k],i1,tab[i]);
   free_vector(delti,1,npar);      */
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficres,"%3d",i);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      if(mle==1)
         printf("%3d",i);
   fprintf(fichtm,"\n</body>");      fprintf(ficlog,"%3d",i);
   fclose(fichtm);      for(j=1; j<=i;j++){
   fclose(ficgp);        fprintf(ficres," %.5e",matcov[i][j]);
          if(mle==1)
           printf(" %.5e",matcov[i][j]);
   if(erreur >0){        fprintf(ficlog," %.5e",matcov[i][j]);
     printf("End of Imach with error or warning %d\n",erreur);      }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      fprintf(ficres,"\n");
   }else{      if(mle==1)
    printf("End of Imach\n");        printf("\n");
    fprintf(ficlog,"End of Imach\n");      fprintf(ficlog,"\n");
   }      k++;
   printf("See log file on %s\n",filelog);    }
   fclose(ficlog);     
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fgets(line, MAXLINE, ficpar);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      puts(line);
   /*------ End -----------*/      fputs(line,ficparo);
     }
     ungetc(c,ficpar);
  end:  
 #ifdef windows    estepm=0;
   /* chdir(pathcd);*/    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 #endif    if (estepm==0 || estepm < stepm) estepm=stepm;
  /*system("wgnuplot graph.plt");*/    if (fage <= 2) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/      bage = ageminpar;
  /*system("cd ../gp37mgw");*/      fage = agemaxpar;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }
  strcpy(plotcmd,GNUPLOTPROGRAM);     
  strcat(plotcmd," ");    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
  strcat(plotcmd,optionfilegnuplot);    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
  system(plotcmd);    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
 #ifdef windows    while((c=getc(ficpar))=='#' && c!= EOF){
   while (z[0] != 'q') {      ungetc(c,ficpar);
     /* chdir(path); */      fgets(line, MAXLINE, ficpar);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      puts(line);
     scanf("%s",z);      fputs(line,ficparo);
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);    ungetc(c,ficpar);
     else if (z[0] == 'g') system(plotcmd);    
     else if (z[0] == 'q') exit(0);    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   }    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 #endif    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 }    printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.52  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>