Diff for /imach/src/imach.c between versions 1.84 and 1.125

version 1.84, 2003/06/13 21:44:43 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   * imach.c (Repository): Replace "freqsummary" at a correct    Errors in calculation of health expectancies. Age was not initialized.
   place. It differs from routine "prevalence" which may be called    Forecasting file added.
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.124  2006/03/22 17:13:53  lievre
   Version 0.95a2 (should output exactly the same maximization than 0.8a2)    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Revision 1.82  2003/06/05 15:57:20  brouard    name. <head> headers where missing.
   Add log in  imach.c and  fullversion number is now printed.  
     * imach.c (Module): Weights can have a decimal point as for
 */    English (a comma might work with a correct LC_NUMERIC environment,
 /*    otherwise the weight is truncated).
    Interpolated Markov Chain    Modification of warning when the covariates values are not 0 or
     1.
   Short summary of the programme:    Version 0.98g
     
   This program computes Healthy Life Expectancies from    Revision 1.122  2006/03/20 09:45:41  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Weights can have a decimal point as for
   first survey ("cross") where individuals from different ages are    English (a comma might work with a correct LC_NUMERIC environment,
   interviewed on their health status or degree of disability (in the    otherwise the weight is truncated).
   case of a health survey which is our main interest) -2- at least a    Modification of warning when the covariates values are not 0 or
   second wave of interviews ("longitudinal") which measure each change    1.
   (if any) in individual health status.  Health expectancies are    Version 0.98g
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.121  2006/03/16 17:45:01  lievre
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): Comments concerning covariates added
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    * imach.c (Module): refinements in the computation of lli if
   conditional to be observed in state i at the first wave. Therefore    status=-2 in order to have more reliable computation if stepm is
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    not 1 month. Version 0.98f
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.120  2006/03/16 15:10:38  lievre
   where the markup *Covariates have to be included here again* invites    (Module): refinements in the computation of lli if
   you to do it.  More covariates you add, slower the    status=-2 in order to have more reliable computation if stepm is
   convergence.    not 1 month. Version 0.98f
   
   The advantage of this computer programme, compared to a simple    Revision 1.119  2006/03/15 17:42:26  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): Bug if status = -2, the loglikelihood was
   identical for each individual. Also, if a individual missed an    computed as likelihood omitting the logarithm. Version O.98e
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   hPijx is the probability to be observed in state i at age x+h    table of variances if popbased=1 .
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Function pstamp added
   states. This elementary transition (by month, quarter,    (Module): Version 0.98d
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.117  2006/03/14 17:16:22  brouard
   and the contribution of each individual to the likelihood is simply    (Module): varevsij Comments added explaining the second
   hPijx.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Function pstamp added
   of the life expectancies. It also computes the stable prevalence.     (Module): Version 0.98d
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.116  2006/03/06 10:29:27  brouard
            Institut national d'études démographiques, Paris.    (Module): Variance-covariance wrong links and
   This software have been partly granted by Euro-REVES, a concerted action    varian-covariance of ej. is needed (Saito).
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.115  2006/02/27 12:17:45  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): One freematrix added in mlikeli! 0.98c
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Some improvements in processing parameter
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    filename with strsep.
     
   **********************************************************************/    Revision 1.113  2006/02/24 14:20:24  brouard
 /*    (Module): Memory leaks checks with valgrind and:
   main    datafile was not closed, some imatrix were not freed and on matrix
   read parameterfile    allocation too.
   read datafile  
   concatwav    Revision 1.112  2006/01/30 09:55:26  brouard
   freqsummary    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   if (mle >= 1)  
     mlikeli    Revision 1.111  2006/01/25 20:38:18  brouard
   print results files    (Module): Lots of cleaning and bugs added (Gompertz)
   if mle==1     (Module): Comments can be added in data file. Missing date values
      computes hessian    can be a simple dot '.'.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.110  2006/01/25 00:51:50  brouard
   open gnuplot file    (Module): Lots of cleaning and bugs added (Gompertz)
   open html file  
   stable prevalence    Revision 1.109  2006/01/24 19:37:15  brouard
    for age prevalim()    (Module): Comments (lines starting with a #) are allowed in data.
   h Pij x  
   variance of p varprob    Revision 1.108  2006/01/19 18:05:42  lievre
   forecasting if prevfcast==1 prevforecast call prevalence()    Gnuplot problem appeared...
   health expectancies    To be fixed
   Variance-covariance of DFLE  
   prevalence()    Revision 1.107  2006/01/19 16:20:37  brouard
    movingaverage()    Test existence of gnuplot in imach path
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.106  2006/01/19 13:24:36  brouard
   total life expectancies    Some cleaning and links added in html output
   Variance of stable prevalence  
  end    Revision 1.105  2006/01/05 20:23:19  lievre
 */    *** empty log message ***
   
     Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
 #include <math.h>    that the person is alive, then we can code his/her status as -2
 #include <stdio.h>    (instead of missing=-1 in earlier versions) and his/her
 #include <stdlib.h>    contributions to the likelihood is 1 - Prob of dying from last
 #include <unistd.h>    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.103  2005/09/30 15:54:49  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.102  2004/09/15 17:31:30  brouard
 #define windows    Add the possibility to read data file including tab characters.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    *** empty log message ***
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.98  2004/05/16 15:05:56  brouard
 #define YEARM 12. /* Number of months per year */    New version 0.97 . First attempt to estimate force of mortality
 #define AGESUP 130    directly from the data i.e. without the need of knowing the health
 #define AGEBASE 40    state at each age, but using a Gompertz model: log u =a + b*age .
 #ifdef windows    This is the basic analysis of mortality and should be done before any
 #define DIRSEPARATOR '\\'    other analysis, in order to test if the mortality estimated from the
 #define ODIRSEPARATOR '/'    cross-longitudinal survey is different from the mortality estimated
 #else    from other sources like vital statistic data.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    The same imach parameter file can be used but the option for mle should be -3.
 #endif  
     Agnès, who wrote this part of the code, tried to keep most of the
 /* $Id$ */    former routines in order to include the new code within the former code.
 /* $State$ */  
     The output is very simple: only an estimate of the intercept and of
 char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";    the slope with 95% confident intervals.
 char fullversion[]="$Revision$ $Date$";   
 int erreur; /* Error number */    Current limitations:
 int nvar;    A) Even if you enter covariates, i.e. with the
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int npar=NPARMAX;    B) There is no computation of Life Expectancy nor Life Table.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.97  2004/02/20 13:25:42  lievre
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.96d. Population forecasting command line is (temporarily)
 int popbased=0;    suppressed.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.96  2003/07/15 15:38:55  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int jmin, jmax; /* min, max spacing between 2 waves */    rewritten within the same printf. Workaround: many printfs.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.95  2003/07/08 07:54:34  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository):
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    (Repository): Using imachwizard code to output a more meaningful covariance
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    matrix (cov(a12,c31) instead of numbers.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.94  2003/06/27 13:00:02  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Just cleaning
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficresprobmorprev;    exist so I changed back to asctime which exists.
 FILE *fichtm; /* Html File */    (Module): Version 0.96b
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
 FILE  *ficresvij;    (Module): On windows (cygwin) function asctime_r doesn't
 char fileresv[FILENAMELENGTH];    exist so I changed back to asctime which exists.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
 char title[MAXLINE];    * imach.c (Repository): Duplicated warning errors corrected.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.90  2003/06/24 12:34:15  brouard
 char fileregp[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 char popfile[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define NR_END 1    (Module): Some bugs corrected for windows. Also, when
 #define FREE_ARG char*    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FTOL 1.0e-10    of the covariance matrix to be input.
   
 #define NRANSI     Revision 1.88  2003/06/23 17:54:56  brouard
 #define ITMAX 200     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define TOL 2.0e-4     Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 #define CGOLD 0.3819660   
 #define ZEPS 1.0e-10     Revision 1.86  2003/06/17 20:04:08  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define GOLD 1.618034   
 #define GLIMIT 100.0     Revision 1.85  2003/06/17 13:12:43  brouard
 #define TINY 1.0e-20     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 static double maxarg1,maxarg2;    prior to the death. In this case, dh was negative and likelihood
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    was wrong (infinity). We still send an "Error" but patch by
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
       interview.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): Because some people have very long ID (first column)
 #define rint(a) floor(a+0.5)    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 static double sqrarg;    truncation)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Repository): No more line truncation errors.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
     Revision 1.84  2003/06/13 21:44:43  brouard
 int imx;     * imach.c (Repository): Replace "freqsummary" at a correct
 int stepm;    place. It differs from routine "prevalence" which may be called
 /* Stepm, step in month: minimum step interpolation*/    many times. Probs is memory consuming and must be used with
     parcimony.
 int estepm;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.83  2003/06/10 13:39:11  lievre
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.82  2003/06/05 15:57:20  brouard
 double **pmmij, ***probs;    Add log in  imach.c and  fullversion number is now printed.
 double dateintmean=0;  
   */
 double *weight;  /*
 int **s; /* Status */     Interpolated Markov Chain
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Short summary of the programme:
    
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This program computes Healthy Life Expectancies from
 double ftolhess; /* Tolerance for computing hessian */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /**************** split *************************/    interviewed on their health status or degree of disability (in the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   char  *ss;                            /* pointer */    (if any) in individual health status.  Health expectancies are
   int   l1, l2;                         /* length counters */    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   l1 = strlen(path );                   /* length of path */    Maximum Likelihood of the parameters involved in the model.  The
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    simplest model is the multinomial logistic model where pij is the
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    probability to be observed in state j at the second wave
   if ( ss == NULL ) {                   /* no directory, so use current */    conditional to be observed in state i at the first wave. Therefore
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    'age' is age and 'sex' is a covariate. If you want to have a more
     /* get current working directory */    complex model than "constant and age", you should modify the program
     /*    extern  char* getcwd ( char *buf , int len);*/    where the markup *Covariates have to be included here again* invites
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    you to do it.  More covariates you add, slower the
       return( GLOCK_ERROR_GETCWD );    convergence.
     }  
     strcpy( name, path );               /* we've got it */    The advantage of this computer programme, compared to a simple
   } else {                              /* strip direcotry from path */    multinomial logistic model, is clear when the delay between waves is not
     ss++;                               /* after this, the filename */    identical for each individual. Also, if a individual missed an
     l2 = strlen( ss );                  /* length of filename */    intermediate interview, the information is lost, but taken into
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    account using an interpolation or extrapolation.  
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    hPijx is the probability to be observed in state i at age x+h
     dirc[l1-l2] = 0;                    /* add zero */    conditional to the observed state i at age x. The delay 'h' can be
   }    split into an exact number (nh*stepm) of unobserved intermediate
   l1 = strlen( dirc );                  /* length of directory */    states. This elementary transition (by month, quarter,
 #ifdef windows    semester or year) is modelled as a multinomial logistic.  The hPx
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    matrix is simply the matrix product of nh*stepm elementary matrices
 #else    and the contribution of each individual to the likelihood is simply
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    hPijx.
 #endif  
   ss = strrchr( name, '.' );            /* find last / */    Also this programme outputs the covariance matrix of the parameters but also
   ss++;    of the life expectancies. It also computes the period (stable) prevalence.
   strcpy(ext,ss);                       /* save extension */   
   l1= strlen( name);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   l2= strlen(ss)+1;             Institut national d'études démographiques, Paris.
   strncpy( finame, name, l1-l2);    This software have been partly granted by Euro-REVES, a concerted action
   finame[l1-l2]= 0;    from the European Union.
   return( 0 );                          /* we're done */    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   
 /******************************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void replace(char *s, char*t)   
 {    **********************************************************************/
   int i;  /*
   int lg=20;    main
   i=0;    read parameterfile
   lg=strlen(t);    read datafile
   for(i=0; i<= lg; i++) {    concatwav
     (s[i] = t[i]);    freqsummary
     if (t[i]== '\\') s[i]='/';    if (mle >= 1)
   }      mlikeli
 }    print results files
     if mle==1
 int nbocc(char *s, char occ)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   int i,j=0;        begin-prev-date,...
   int lg=20;    open gnuplot file
   i=0;    open html file
   lg=strlen(s);    period (stable) prevalence
   for(i=0; i<= lg; i++) {     for age prevalim()
   if  (s[i] == occ ) j++;    h Pij x
   }    variance of p varprob
   return j;    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 void cutv(char *u,char *v, char*t, char occ)    prevalence()
 {     movingaverage()
   /* cuts string t into u and v where u is ended by char occ excluding it    varevsij()
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    if popbased==1 varevsij(,popbased)
      gives u="abcedf" and v="ghi2j" */    total life expectancies
   int i,lg,j,p=0;    Variance of period (stable) prevalence
   i=0;   end
   for(j=0; j<=strlen(t)-1; j++) {  */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  
   
   lg=strlen(t);   
   for(j=0; j<p; j++) {  #include <math.h>
     (u[j] = t[j]);  #include <stdio.h>
   }  #include <stdlib.h>
      u[p]='\0';  #include <string.h>
   #include <unistd.h>
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <limits.h>
   }  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /********************** nrerror ********************/  extern int errno;
   
 void nrerror(char error_text[])  /* #include <sys/time.h> */
 {  #include <time.h>
   fprintf(stderr,"ERREUR ...\n");  #include "timeval.h"
   fprintf(stderr,"%s\n",error_text);  
   exit(EXIT_FAILURE);  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define MAXLINE 256
 {  
   double *v;  #define GNUPLOTPROGRAM "gnuplot"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!v) nrerror("allocation failure in vector");  #define FILENAMELENGTH 132
   return v-nl+NR_END;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /************************ivector *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char *cvector(long nl,long nh)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   char *v;  #define YEARM 12. /* Number of months per year */
   v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));  #define AGESUP 130
   if (!v) nrerror("allocation failure in cvector");  #define AGEBASE 40
   return v-nl+NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************free ivector **************************/  #define CHARSEPARATOR "/"
 void free_cvector(char *v, long nl, long nh)  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /************************ivector *******************************/  #endif
 int *ivector(long nl,long nh)  
 {  /* $Id$ */
   int *v;  /* $State$ */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   return v-nl+NR_END;  char fullversion[]="$Revision$ $Date$";
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /******************free ivector **************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_ivector(int *v, long nl, long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(v+nl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* imatrix *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **imatrix(long nrl, long nrh, long ncl, long nch)   int popbased=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   
 {   int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   int maxwav; /* Maxim number of waves */
   int **m;   int jmin, jmax; /* min, max spacing between 2 waves */
     int ijmin, ijmax; /* Individuals having jmin and jmax */
   /* allocate pointers to rows */   int gipmx, gsw; /* Global variables on the number of contributions
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));                      to the likelihood and the sum of weights (done by funcone)*/
   if (!m) nrerror("allocation failure 1 in matrix()");   int mle, weightopt;
   m += NR_END;   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m -= nrl;   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /* allocate rows and set pointers to them */   double jmean; /* Mean space between 2 waves */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl] += NR_END;   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] -= ncl;   FILE *ficlog, *ficrespow;
     int globpr; /* Global variable for printing or not */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   double fretone; /* Only one call to likelihood */
     long ipmx; /* Number of contributions */
   /* return pointer to array of pointers to rows */   double sw; /* Sum of weights */
   return m;   char filerespow[FILENAMELENGTH];
 }   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /****************** free_imatrix *************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 void free_imatrix(m,nrl,nrh,ncl,nch)  FILE *ficresprobmorprev;
       int **m;  FILE *fichtm, *fichtmcov; /* Html File */
       long nch,ncl,nrh,nrl;   FILE *ficreseij;
      /* free an int matrix allocated by imatrix() */   char filerese[FILENAMELENGTH];
 {   FILE *ficresstdeij;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   char fileresstde[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));   FILE *ficrescveij;
 }   char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /******************* matrix *******************************/  char fileresv[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char title[MAXLINE];
   double **m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char command[FILENAMELENGTH];
   m += NR_END;  int  outcmd=0;
   m -= nrl;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl] += NR_END;  char filerest[FILENAMELENGTH];
   m[nrl] -= ncl;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1])   
    */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /*************************free matrix ************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  long time_value;
 {  extern long time();
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char strcurr[80], strfor[80];
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char *endptr;
   long lval;
 /******************* ma3x *******************************/  double dval;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define NR_END 1
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define FREE_ARG char*
   double ***m;  #define FTOL 1.0e-10
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NRANSI
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CGOLD 0.3819660
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ZEPS 1.0e-10
   m[nrl] += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   m[nrl] -= ncl;  
   #define GOLD 1.618034
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLIMIT 100.0
   #define TINY 1.0e-20
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static double maxarg1,maxarg2;
   m[nrl][ncl] += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl][ncl] -= nll;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=ncl+1; j<=nch; j++)    
     m[nrl][j]=m[nrl][j-1]+nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     #define rint(a) floor(a+0.5)
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  static double sqrarg;
     for (j=ncl+1; j<=nch; j++)   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       m[i][j]=m[i][j-1]+nlay;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   }  int agegomp= AGEGOMP;
   return m;   
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  int imx;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  int stepm=1;
   */  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /*************************free ma3x ************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int m,nb;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long *num;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free((FREE_ARG)(m+nrl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /***************** f1dim *************************/  double dateintmean=0;
 extern int ncom;   
 extern double *pcom,*xicom;  double *weight;
 extern double (*nrfunc)(double []);   int **s; /* Status */
    double *agedc, **covar, idx;
 double f1dim(double x)   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {   double *lsurv, *lpop, *tpop;
   int j;   
   double f;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double *xt;   double ftolhess; /* Tolerance for computing hessian */
    
   xt=vector(1,ncom);   /**************** split *************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   f=(*nrfunc)(xt);   {
   free_vector(xt,1,ncom);     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return f;        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }     */
     char  *ss;                            /* pointer */
 /*****************brent *************************/    int   l1, l2;                         /* length counters */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {     l1 = strlen(path );                   /* length of path */
   int iter;     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double a,b,d,etemp;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fu,fv,fw,fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double ftemp;      strcpy( name, path );               /* we got the fullname name because no directory */
   double p,q,r,tol1,tol2,u,v,w,x,xm;       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double e=0.0;         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
   a=(ax < cx ? ax : cx);       /*    extern  char* getcwd ( char *buf , int len);*/
   b=(ax > cx ? ax : cx);       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   x=w=v=bx;         return( GLOCK_ERROR_GETCWD );
   fw=fv=fx=(*f)(x);       }
   for (iter=1;iter<=ITMAX;iter++) {       /* got dirc from getcwd*/
     xm=0.5*(a+b);       printf(" DIRC = %s \n",dirc);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     } else {                              /* strip direcotry from path */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      ss++;                               /* after this, the filename */
     printf(".");fflush(stdout);      l2 = strlen( ss );                  /* length of filename */
     fprintf(ficlog,".");fflush(ficlog);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG      strcpy( name, ss );         /* save file name */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      dirc[l1-l2] = 0;                    /* add zero */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      printf(" DIRC2 = %s \n",dirc);
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     /* We add a separator at the end of dirc if not exists */
       *xmin=x;     l1 = strlen( dirc );                  /* length of directory */
       return fx;     if( dirc[l1-1] != DIRSEPARATOR ){
     }       dirc[l1] =  DIRSEPARATOR;
     ftemp=fu;      dirc[l1+1] = 0;
     if (fabs(e) > tol1) {       printf(" DIRC3 = %s \n",dirc);
       r=(x-w)*(fx-fv);     }
       q=(x-v)*(fx-fw);     ss = strrchr( name, '.' );            /* find last / */
       p=(x-v)*q-(x-w)*r;     if (ss >0){
       q=2.0*(q-r);       ss++;
       if (q > 0.0) p = -p;       strcpy(ext,ss);                     /* save extension */
       q=fabs(q);       l1= strlen( name);
       etemp=e;       l2= strlen(ss)+1;
       e=d;       strncpy( finame, name, l1-l2);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       finame[l1-l2]= 0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     }
       else {   
         d=p/q;     return( 0 );                          /* we're done */
         u=x+d;   }
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);   
       }   /******************************************/
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   void replace_back_to_slash(char *s, char*t)
     }   {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     int i;
     fu=(*f)(u);     int lg=0;
     if (fu <= fx) {     i=0;
       if (u >= x) a=x; else b=x;     lg=strlen(t);
       SHFT(v,w,x,u)     for(i=0; i<= lg; i++) {
         SHFT(fv,fw,fx,fu)       (s[i] = t[i]);
         } else {       if (t[i]== '\\') s[i]='/';
           if (u < x) a=u; else b=u;     }
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   int nbocc(char *s, char occ)
             fv=fw;   {
             fw=fu;     int i,j=0;
           } else if (fu <= fv || v == x || v == w) {     int lg=20;
             v=u;     i=0;
             fv=fu;     lg=strlen(s);
           }     for(i=0; i<= lg; i++) {
         }     if  (s[i] == occ ) j++;
   }     }
   nrerror("Too many iterations in brent");     return j;
   *xmin=x;   }
   return fx;   
 }   void cutv(char *u,char *v, char*t, char occ)
   {
 /****************** mnbrak ***********************/    /* cuts string t into u and v where u ends before first occurence of char 'occ'
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,        gives u="abcedf" and v="ghi2j" */
             double (*func)(double))     int i,lg,j,p=0;
 {     i=0;
   double ulim,u,r,q, dum;    for(j=0; j<=strlen(t)-1; j++) {
   double fu;       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);     lg=strlen(t);
   if (*fb > *fa) {     for(j=0; j<p; j++) {
     SHFT(dum,*ax,*bx,dum)       (u[j] = t[j]);
       SHFT(dum,*fb,*fa,dum)     }
       }        u[p]='\0';
   *cx=(*bx)+GOLD*(*bx-*ax);   
   *fc=(*func)(*cx);      for(j=0; j<= lg; j++) {
   while (*fb > *fc) {       if (j>=(p+1))(v[j-p-1] = t[j]);
     r=(*bx-*ax)*(*fb-*fc);     }
     q=(*bx-*cx)*(*fb-*fa);   }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   /********************** nrerror ********************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {   void nrerror(char error_text[])
       fu=(*func)(u);   {
     } else if ((*cx-u)*(u-ulim) > 0.0) {     fprintf(stderr,"ERREUR ...\n");
       fu=(*func)(u);     fprintf(stderr,"%s\n",error_text);
       if (fu < *fc) {     exit(EXIT_FAILURE);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   }
           SHFT(*fb,*fc,fu,(*func)(u))   /*********************** vector *******************/
           }   double *vector(int nl, int nh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   {
       u=ulim;     double *v;
       fu=(*func)(u);     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     } else {     if (!v) nrerror("allocation failure in vector");
       u=(*cx)+GOLD*(*cx-*bx);     return v-nl+NR_END;
       fu=(*func)(u);   }
     }   
     SHFT(*ax,*bx,*cx,u)   /************************ free vector ******************/
       SHFT(*fa,*fb,*fc,fu)   void free_vector(double*v, int nl, int nh)
       }   {
 }     free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** linmin ************************/  
   /************************ivector *******************************/
 int ncom;   int *ivector(long nl,long nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);     int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     if (!v) nrerror("allocation failure in ivector");
 {     return v-nl+NR_END;
   double brent(double ax, double bx, double cx,   }
                double (*f)(double), double tol, double *xmin);   
   double f1dim(double x);   /******************free ivector **************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   void free_ivector(int *v, long nl, long nh)
               double *fc, double (*func)(double));   {
   int j;     free((FREE_ARG)(v+nl-NR_END));
   double xx,xmin,bx,ax;   }
   double fx,fb,fa;  
    /************************lvector *******************************/
   ncom=n;   long *lvector(long nl,long nh)
   pcom=vector(1,n);   {
   xicom=vector(1,n);     long *v;
   nrfunc=func;     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (j=1;j<=n;j++) {     if (!v) nrerror("allocation failure in ivector");
     pcom[j]=p[j];     return v-nl+NR_END;
     xicom[j]=xi[j];   }
   }   
   ax=0.0;   /******************free lvector **************************/
   xx=1.0;   void free_lvector(long *v, long nl, long nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************* imatrix *******************************/
 #endif  int **imatrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) {        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
     xi[j] *= xmin;   {
     p[j] += xi[j];     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   }     int **m;
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);     /* allocate pointers to rows */
 }     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** powell ************************/    m += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     m -= nrl;
             double (*func)(double []))    
 {    
   void linmin(double p[], double xi[], int n, double *fret,     /* allocate rows and set pointers to them */
               double (*func)(double []));     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   int i,ibig,j;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double del,t,*pt,*ptt,*xit;    m[nrl] += NR_END;
   double fp,fptt;    m[nrl] -= ncl;
   double *xits;   
   pt=vector(1,n);     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   ptt=vector(1,n);    
   xit=vector(1,n);     /* return pointer to array of pointers to rows */
   xits=vector(1,n);     return m;
   *fret=(*func)(p);   }
   for (j=1;j<=n;j++) pt[j]=p[j];   
   for (*iter=1;;++(*iter)) {   /****************** free_imatrix *************************/
     fp=(*fret);   void free_imatrix(m,nrl,nrh,ncl,nch)
     ibig=0;         int **m;
     del=0.0;         long nch,ncl,nrh,nrl;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);       /* free an int matrix allocated by imatrix() */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    free((FREE_ARG) (m[nrl]+ncl-NR_END));
     for (i=1;i<=n;i++) {    free((FREE_ARG) (m+nrl-NR_END));
       printf(" %d %.12f",i, p[i]);  }
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     printf("\n");  {
     fprintf(ficlog,"\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     fprintf(ficrespow,"\n");    double **m;
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fptt=(*fret);     if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
       printf("fret=%lf \n",*fret);    m -= nrl;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"%d",i);fflush(ficlog);    m[nrl] += NR_END;
       linmin(p,xit,n,fret,func);     m[nrl] -= ncl;
       if (fabs(fptt-(*fret)) > del) {   
         del=fabs(fptt-(*fret));     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         ibig=i;     return m;
       }     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
 #ifdef DEBUG     */
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /*************************free matrix ************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         printf(" x(%d)=%.12e",j,xit[j]);  {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for(j=1;j<=n;j++) {  }
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       printf("\n");  {
       fprintf(ficlog,"\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #endif    double ***m;
     }   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       int k[2],l;    m += NR_END;
       k[0]=1;    m -= nrl;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (j=1;j<=n;j++) {    m[nrl] += NR_END;
         printf(" %.12e",p[j]);    m[nrl] -= ncl;
         fprintf(ficlog," %.12e",p[j]);  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("\n");  
       fprintf(ficlog,"\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(l=0;l<=1;l++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl][ncl] += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl][ncl] -= nll;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=ncl+1; j<=nch; j++)
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
         }   
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (i=nrl+1; i<=nrh; i++) {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++)
 #endif        m[i][j]=m[i][j-1]+nlay;
     }
     return m;
       free_vector(xit,1,n);     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       free_vector(xits,1,n);              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       free_vector(ptt,1,n);     */
       free_vector(pt,1,n);   }
       return;   
     }   /*************************free ma3x ************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=n;j++) {   {
       ptt[j]=2.0*p[j]-pt[j];     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       xit[j]=p[j]-pt[j];     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       pt[j]=p[j];     free((FREE_ARG)(m+nrl-NR_END));
     }   }
     fptt=(*func)(ptt);   
     if (fptt < fp) {   /*************** function subdirf ***********/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   char *subdirf(char fileres[])
       if (t < 0.0) {   {
         linmin(p,xit,n,fret,func);     /* Caution optionfilefiname is hidden */
         for (j=1;j<=n;j++) {     strcpy(tmpout,optionfilefiname);
           xi[j][ibig]=xi[j][n];     strcat(tmpout,"/"); /* Add to the right */
           xi[j][n]=xit[j];     strcat(tmpout,fileres);
         }    return tmpout;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*************** function subdirf2 ***********/
         for(j=1;j<=n;j++){  char *subdirf2(char fileres[], char *preop)
           printf(" %.12e",xit[j]);  {
           fprintf(ficlog," %.12e",xit[j]);   
         }    /* Caution optionfilefiname is hidden */
         printf("\n");    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog,"\n");    strcat(tmpout,"/");
 #endif    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
     }     return tmpout;
   }   }
 }   
   /*************** function subdirf3 ***********/
 /**** Prevalence limit (stable prevalence)  ****************/  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)   
 {    /* Caution optionfilefiname is hidden */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcpy(tmpout,optionfilefiname);
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,"/");
     strcat(tmpout,preop);
   int i, ii,j,k;    strcat(tmpout,preop2);
   double min, max, maxmin, maxmax,sumnew=0.;    strcat(tmpout,fileres);
   double **matprod2();    return tmpout;
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /***************** f1dim *************************/
   extern int ncom;
   for (ii=1;ii<=nlstate+ndeath;ii++)  extern double *pcom,*xicom;
     for (j=1;j<=nlstate+ndeath;j++){  extern double (*nrfunc)(double []);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);   
     }  double f1dim(double x)
   {
    cov[1]=1.;    int j;
      double f;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double *xt;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;    xt=vector(1,ncom);
     /* Covariates have to be included here again */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
      cov[2]=agefin;    f=(*nrfunc)(xt);
       free_vector(xt,1,ncom);
       for (k=1; k<=cptcovn;k++) {    return f;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /*****************brent *************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int iter;
     double a,b,d,etemp;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double fu,fv,fw,fx;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double ftemp;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double p,q,r,tol1,tol2,u,v,w,x,xm;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double e=0.0;
    
     savm=oldm;    a=(ax < cx ? ax : cx);
     oldm=newm;    b=(ax > cx ? ax : cx);
     maxmax=0.;    x=w=v=bx;
     for(j=1;j<=nlstate;j++){    fw=fv=fx=(*f)(x);
       min=1.;    for (iter=1;iter<=ITMAX;iter++) {
       max=0.;      xm=0.5*(a+b);
       for(i=1; i<=nlstate; i++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
         sumnew=0;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      printf(".");fflush(stdout);
         prlim[i][j]= newm[i][j]/(1-sumnew);      fprintf(ficlog,".");fflush(ficlog);
         max=FMAX(max,prlim[i][j]);  #ifdef DEBUG
         min=FMIN(min,prlim[i][j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       maxmin=max-min;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       maxmax=FMAX(maxmax,maxmin);  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
     if(maxmax < ftolpl){        *xmin=x;
       return prlim;        return fx;
     }      }
   }      ftemp=fu;
 }      if (fabs(e) > tol1) {
         r=(x-w)*(fx-fv);
 /*************** transition probabilities ***************/         q=(x-v)*(fx-fw);
         p=(x-v)*q-(x-w)*r;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        q=2.0*(q-r);
 {        if (q > 0.0) p = -p;
   double s1, s2;        q=fabs(q);
   /*double t34;*/        etemp=e;
   int i,j,j1, nc, ii, jj;        e=d;
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     for(i=1; i<= nlstate; i++){          d=CGOLD*(e=(x >= xm ? a-x : b-x));
     for(j=1; j<i;j++){        else {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          d=p/q;
         /*s2 += param[i][j][nc]*cov[nc];*/          u=x+d;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          if (u-a < tol2 || b-u < tol2)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            d=SIGN(tol1,xm-x);
       }        }
       ps[i][j]=s2;      } else {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x));
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fu=(*f)(u);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fu <= fx) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        if (u >= x) a=x; else b=x;
       }        SHFT(v,w,x,u)
       ps[i][j]=s2;          SHFT(fv,fw,fx,fu)
     }          } else {
   }            if (u < x) a=u; else b=u;
     /*ps[3][2]=1;*/            if (fu <= fw || w == x) {
               v=w;
   for(i=1; i<= nlstate; i++){              w=u;
      s1=0;              fv=fw;
     for(j=1; j<i; j++)              fw=fu;
       s1+=exp(ps[i][j]);            } else if (fu <= fv || v == x || v == w) {
     for(j=i+1; j<=nlstate+ndeath; j++)              v=u;
       s1+=exp(ps[i][j]);              fv=fu;
     ps[i][i]=1./(s1+1.);            }
     for(j=1; j<i; j++)          }
       ps[i][j]= exp(ps[i][j])*ps[i][i];    }
     for(j=i+1; j<=nlstate+ndeath; j++)    nrerror("Too many iterations in brent");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *xmin=x;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return fx;
   } /* end i */  }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /****************** mnbrak ***********************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       ps[ii][ii]=1;              double (*func)(double))
     }  {
   }    double ulim,u,r,q, dum;
     double fu;
    
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    *fa=(*func)(*ax);
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fb=(*func)(*bx);
      printf("%lf ",ps[ii][jj]);    if (*fb > *fa) {
    }      SHFT(dum,*ax,*bx,dum)
     printf("\n ");        SHFT(dum,*fb,*fa,dum)
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/    *cx=(*bx)+GOLD*(*bx-*ax);
 /*    *fc=(*func)(*cx);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    while (*fb > *fc) {
   goto end;*/      r=(*bx-*ax)*(*fb-*fc);
     return ps;      q=(*bx-*cx)*(*fb-*fa);
 }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
 /**************** Product of 2 matrices ******************/      ulim=(*bx)+GLIMIT*(*cx-*bx);
       if ((*bx-u)*(u-*cx) > 0.0) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fu=(*func)(u);
 {      } else if ((*cx-u)*(u-ulim) > 0.0) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fu=(*func)(u);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        if (fu < *fc) {
   /* in, b, out are matrice of pointers which should have been initialized           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
      before: only the contents of out is modified. The function returns            SHFT(*fb,*fc,fu,(*func)(u))
      a pointer to pointers identical to out */            }
   long i, j, k;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   for(i=nrl; i<= nrh; i++)        u=ulim;
     for(k=ncolol; k<=ncoloh; k++)        fu=(*func)(u);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } else {
         out[i][k] +=in[i][j]*b[j][k];        u=(*cx)+GOLD*(*cx-*bx);
         fu=(*func)(u);
   return out;      }
 }      SHFT(*ax,*bx,*cx,u)
         SHFT(*fa,*fb,*fc,fu)
         }
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*************** linmin ************************/
 {  
   /* Computes the transition matrix starting at age 'age' over   int ncom;
      'nhstepm*hstepm*stepm' months (i.e. until  double *pcom,*xicom;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   double (*nrfunc)(double []);
      nhstepm*hstepm matrices.    
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
      (typically every 2 years instead of every month which is too big   {
      for the memory).    double brent(double ax, double bx, double cx,
      Model is determined by parameters x and covariates have to be                  double (*f)(double), double tol, double *xmin);
      included manually here.     double f1dim(double x);
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
      */                double *fc, double (*func)(double));
     int j;
   int i, j, d, h, k;    double xx,xmin,bx,ax;
   double **out, cov[NCOVMAX];    double fx,fb,fa;
   double **newm;   
     ncom=n;
   /* Hstepm could be zero and should return the unit matrix */    pcom=vector(1,n);
   for (i=1;i<=nlstate+ndeath;i++)    xicom=vector(1,n);
     for (j=1;j<=nlstate+ndeath;j++){    nrfunc=func;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);      pcom[j]=p[j];
     }      xicom[j]=xi[j];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(h=1; h <=nhstepm; h++){    ax=0.0;
     for(d=1; d <=hstepm; d++){    xx=1.0;
       newm=savm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       /* Covariates have to be included here again */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       cov[1]=1.;  #ifdef DEBUG
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovage;k++)  #endif
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovprod;k++)      xi[j] *= xmin;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      p[j] += xi[j];
     }
     free_vector(xicom,1,n);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free_vector(pcom,1,n);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  char *asc_diff_time(long time_sec, char ascdiff[])
       savm=oldm;  {
       oldm=newm;    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
     for(i=1; i<=nlstate+ndeath; i++)    sec_left = (time_sec) % (60*60*24);
       for(j=1;j<=nlstate+ndeath;j++) {    hours = (sec_left) / (60*60) ;
         po[i][j][h]=newm[i][j];    sec_left = (sec_left) %(60*60);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    minutes = (sec_left) /60;
          */    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   } /* end h */    return ascdiff;
   return po;  }
 }  
   /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
 /*************** log-likelihood *************/              double (*func)(double []))
 double func( double *x)  {
 {    void linmin(double p[], double xi[], int n, double *fret,
   int i, ii, j, k, mi, d, kk;                double (*func)(double []));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int i,ibig,j;
   double **out;    double del,t,*pt,*ptt,*xit;
   double sw; /* Sum of weights */    double fp,fptt;
   double lli; /* Individual log likelihood */    double *xits;
   int s1, s2;    int niterf, itmp;
   double bbh, survp;  
   long ipmx;    pt=vector(1,n);
   /*extern weight */    ptt=vector(1,n);
   /* We are differentiating ll according to initial status */    xit=vector(1,n);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    xits=vector(1,n);
   /*for(i=1;i<imx;i++)     *fret=(*func)(p);
     printf(" %d\n",s[4][i]);    for (j=1;j<=n;j++) pt[j]=p[j];
   */    for (*iter=1;;++(*iter)) {
   cov[1]=1.;      fp=(*fret);
       ibig=0;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      del=0.0;
       last_time=curr_time;
   if(mle==1){      (void) gettimeofday(&curr_time,&tzp);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       for(mi=1; mi<= wav[i]-1; mi++){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         for (ii=1;ii<=nlstate+ndeath;ii++)     for (i=1;i<=n;i++) {
           for (j=1;j<=nlstate+ndeath;j++){        printf(" %d %.12f",i, p[i]);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog," %d %.12lf",i, p[i]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficrespow," %.12lf", p[i]);
           }      }
         for(d=0; d<dh[mi][i]; d++){      printf("\n");
           newm=savm;      fprintf(ficlog,"\n");
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fprintf(ficrespow,"\n");fflush(ficrespow);
           for (kk=1; kk<=cptcovage;kk++) {      if(*iter <=3){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        tm = *localtime(&curr_time.tv_sec);
           }        strcpy(strcurr,asctime(&tm));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*       asctime_r(&tm,strcurr); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        forecast_time=curr_time;
           savm=oldm;        itmp = strlen(strcurr);
           oldm=newm;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         } /* end mult */          strcurr[itmp-1]='\0';
               printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /* But now since version 0.9 we anticipate for bias and large stepm.        for(niterf=10;niterf<=30;niterf+=10){
          * If stepm is larger than one month (smallest stepm) and if the exact delay           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
          * (in months) between two waves is not a multiple of stepm, we rounded to           tmf = *localtime(&forecast_time.tv_sec);
          * the nearest (and in case of equal distance, to the lowest) interval but now  /*      asctime_r(&tmf,strfor); */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          strcpy(strfor,asctime(&tmf));
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          itmp = strlen(strfor);
          * probability in order to take into account the bias as a fraction of the way          if(strfor[itmp-1]=='\n')
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          strfor[itmp-1]='\0';
          * -stepm/2 to stepm/2 .          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          * For stepm=1 the results are the same as for previous versions of Imach.          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          * For stepm > 1 the results are less biased than in previous versions.         }
          */      }
         s1=s[mw[mi][i]][i];      for (i=1;i<=n;i++) {
         s2=s[mw[mi+1][i]][i];        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         bbh=(double)bh[mi][i]/(double)stepm;         fptt=(*fret);
         /* bias is positive if real duration  #ifdef DEBUG
          * is higher than the multiple of stepm and negative otherwise.        printf("fret=%lf \n",*fret);
          */        fprintf(ficlog,"fret=%lf \n",*fret);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  #endif
         if( s2 > nlstate){         printf("%d",i);fflush(stdout);
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        fprintf(ficlog,"%d",i);fflush(ficlog);
              to the likelihood is the probability to die between last step unit time and current         linmin(p,xit,n,fret,func);
              step unit time, which is also the differences between probability to die before dh         if (fabs(fptt-(*fret)) > del) {
              and probability to die before dh-stepm .           del=fabs(fptt-(*fret));
              In version up to 0.92 likelihood was computed          ibig=i;
         as if date of death was unknown. Death was treated as any other        }
         health state: the date of the interview describes the actual state  #ifdef DEBUG
         and not the date of a change in health state. The former idea was        printf("%d %.12e",i,(*fret));
         to consider that at each interview the state was recorded        fprintf(ficlog,"%d %.12e",i,(*fret));
         (healthy, disable or death) and IMaCh was corrected; but when we        for (j=1;j<=n;j++) {
         introduced the exact date of death then we should have modified          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         the contribution of an exact death to the likelihood. This new          printf(" x(%d)=%.12e",j,xit[j]);
         contribution is smaller and very dependent of the step unit          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         stepm. It is no more the probability to die between last interview        }
         and month of death but the probability to survive from last        for(j=1;j<=n;j++) {
         interview up to one month before death multiplied by the          printf(" p=%.12e",p[j]);
         probability to die within a month. Thanks to Chris          fprintf(ficlog," p=%.12e",p[j]);
         Jackson for correcting this bug.  Former versions increased        }
         mortality artificially. The bad side is that we add another loop        printf("\n");
         which slows down the processing. The difference can be up to 10%        fprintf(ficlog,"\n");
         lower mortality.  #endif
           */      }
           lli=log(out[s1][s2] - savm[s1][s2]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         }else{  #ifdef DEBUG
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        int k[2],l;
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        k[0]=1;
         }         k[1]=-1;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        printf("Max: %.12e",(*func)(p));
         /*if(lli ==000.0)*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        for (j=1;j<=n;j++) {
         ipmx +=1;          printf(" %.12e",p[j]);
         sw += weight[i];          fprintf(ficlog," %.12e",p[j]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
       } /* end of wave */        printf("\n");
     } /* end of individual */        fprintf(ficlog,"\n");
   }  else if(mle==2){        for(l=0;l<=1;l++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(mi=1; mi<= wav[i]-1; mi++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           }        }
         for(d=0; d<=dh[mi][i]; d++){  #endif
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {        free_vector(xit,1,n);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        free_vector(xits,1,n);
           }        free_vector(ptt,1,n);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        free_vector(pt,1,n);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        return;
           savm=oldm;      }
           oldm=newm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         } /* end mult */      for (j=1;j<=n;j++) {
               ptt[j]=2.0*p[j]-pt[j];
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        xit[j]=p[j]-pt[j];
         /* But now since version 0.9 we anticipate for bias and large stepm.        pt[j]=p[j];
          * If stepm is larger than one month (smallest stepm) and if the exact delay       }
          * (in months) between two waves is not a multiple of stepm, we rounded to       fptt=(*func)(ptt);
          * the nearest (and in case of equal distance, to the lowest) interval but now      if (fptt < fp) {
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        if (t < 0.0) {
          * probability in order to take into account the bias as a fraction of the way          linmin(p,xit,n,fret,func);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          for (j=1;j<=n;j++) {
          * -stepm/2 to stepm/2 .            xi[j][ibig]=xi[j][n];
          * For stepm=1 the results are the same as for previous versions of Imach.            xi[j][n]=xit[j];
          * For stepm > 1 the results are less biased than in previous versions.           }
          */  #ifdef DEBUG
         s1=s[mw[mi][i]][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         s2=s[mw[mi+1][i]][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         bbh=(double)bh[mi][i]/(double)stepm;           for(j=1;j<=n;j++){
         /* bias is positive if real duration            printf(" %.12e",xit[j]);
          * is higher than the multiple of stepm and negative otherwise.            fprintf(ficlog," %.12e",xit[j]);
          */          }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          printf("\n");
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          fprintf(ficlog,"\n");
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */  #endif
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    }
         ipmx +=1;  }
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /**** Prevalence limit (stable or period prevalence)  ****************/
       } /* end of wave */  
     } /* end of individual */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  else if(mle==3){  /* exponential inter-extrapolation */  {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       matrix by transitions matrix until convergence is reached */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    int i, ii,j,k;
           for (j=1;j<=nlstate+ndeath;j++){    double min, max, maxmin, maxmax,sumnew=0.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **matprod2();
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX], **pmij();
           }    double **newm;
         for(d=0; d<dh[mi][i]; d++){    double agefin, delaymax=50 ; /* Max number of years to converge */
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (ii=1;ii<=nlstate+ndeath;ii++)
           for (kk=1; kk<=cptcovage;kk++) {      for (j=1;j<=nlstate+ndeath;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }      }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));     cov[1]=1.;
           savm=oldm;   
           oldm=newm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         } /* end mult */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             newm=savm;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      /* Covariates have to be included here again */
         /* But now since version 0.9 we anticipate for bias and large stepm.       cov[2]=agefin;
          * If stepm is larger than one month (smallest stepm) and if the exact delay    
          * (in months) between two waves is not a multiple of stepm, we rounded to         for (k=1; k<=cptcovn;k++) {
          * the nearest (and in case of equal distance, to the lowest) interval but now          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        }
          * probability in order to take into account the bias as a fraction of the way        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        for (k=1; k<=cptcovprod;k++)
          * -stepm/2 to stepm/2 .          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          * For stepm=1 the results are the same as for previous versions of Imach.  
          * For stepm > 1 the results are less biased than in previous versions.         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         s1=s[mw[mi][i]][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         s2=s[mw[mi+1][i]][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration      savm=oldm;
          * is higher than the multiple of stepm and negative otherwise.      oldm=newm;
          */      maxmax=0.;
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */      for(j=1;j<=nlstate;j++){
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        min=1.;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        max=0.;
         /*if(lli ==000.0)*/        for(i=1; i<=nlstate; i++) {
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          sumnew=0;
         ipmx +=1;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         sw += weight[i];          prlim[i][j]= newm[i][j]/(1-sumnew);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          max=FMAX(max,prlim[i][j]);
       } /* end of wave */          min=FMIN(min,prlim[i][j]);
     } /* end of individual */        }
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        maxmin=max-min;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        maxmax=FMAX(maxmax,maxmin);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){      if(maxmax < ftolpl){
         for (ii=1;ii<=nlstate+ndeath;ii++)        return prlim;
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
           }  
         for(d=0; d<dh[mi][i]; d++){  /*************** transition probabilities ***************/
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           for (kk=1; kk<=cptcovage;kk++) {  {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double s1, s2;
           }    /*double t34;*/
             int i,j,j1, nc, ii, jj;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(i=1; i<= nlstate; i++){
           savm=oldm;        for(j=1; j<i;j++){
           oldm=newm;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         } /* end mult */            /*s2 += param[i][j][nc]*cov[nc];*/
                   s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         s1=s[mw[mi][i]][i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         s2=s[mw[mi+1][i]][i];          }
         if( s2 > nlstate){           ps[i][j]=s2;
           lli=log(out[s1][s2] - savm[s1][s2]);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }else{        }
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        for(j=i+1; j<=nlstate+ndeath;j++){
         }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         ipmx +=1;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         sw += weight[i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          ps[i][j]=s2;
       } /* end of wave */        }
     } /* end of individual */      }
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      /*ps[3][2]=1;*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){     
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(i=1; i<= nlstate; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        s1=0;
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=1; j<i; j++)
           for (j=1;j<=nlstate+ndeath;j++){          s1+=exp(ps[i][j]);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath; j++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          s1+=exp(ps[i][j]);
           }        ps[i][i]=1./(s1+1.);
         for(d=0; d<dh[mi][i]; d++){        for(j=1; j<i; j++)
           newm=savm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(j=i+1; j<=nlstate+ndeath; j++)
           for (kk=1; kk<=cptcovage;kk++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }      } /* end i */
              
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(jj=1; jj<= nlstate+ndeath; jj++){
           savm=oldm;          ps[ii][jj]=0;
           oldm=newm;          ps[ii][ii]=1;
         } /* end mult */        }
             }
         s1=s[mw[mi][i]][i];     
         s2=s[mw[mi+1][i]][i];  
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         ipmx +=1;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         sw += weight[i];  /*         printf("ddd %lf ",ps[ii][jj]); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*       } */
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  /*       printf("\n "); */
       } /* end of wave */  /*        } */
     } /* end of individual */  /*        printf("\n ");printf("%lf ",cov[2]); */
   } /* End of if */         /*
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        goto end;*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      return ps;
   /*exit(0); */  }
   return -l;  
 }  /**************** Product of 2 matrices ******************/
   
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 /*********** Maximum Likelihood Estimation ***************/  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 {    /* in, b, out are matrice of pointers which should have been initialized
   int i,j, iter;       before: only the contents of out is modified. The function returns
   double **xi;       a pointer to pointers identical to out */
   double fret;    long i, j, k;
   char filerespow[FILENAMELENGTH];    for(i=nrl; i<= nrh; i++)
   xi=matrix(1,npar,1,npar);      for(k=ncolol; k<=ncoloh; k++)
   for (i=1;i<=npar;i++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (j=1;j<=npar;j++)          out[i][k] +=in[i][j]*b[j][k];
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    return out;
   strcpy(filerespow,"pow");   }
   strcat(filerespow,fileres);  
   if((ficrespow=fopen(filerespow,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", filerespow);  /************* Higher Matrix Product ***************/
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   fprintf(ficrespow,"# Powell\n# iter -2*LL");  {
   for (i=1;i<=nlstate;i++)    /* Computes the transition matrix starting at age 'age' over
     for(j=1;j<=nlstate+ndeath;j++)       'nhstepm*hstepm*stepm' months (i.e. until
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   fprintf(ficrespow,"\n");       nhstepm*hstepm matrices.
   powell(p,xi,npar,ftol,&iter,&fret,func);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
   fclose(ficrespow);       for the memory).
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       Model is determined by parameters x and covariates have to be
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       included manually here.
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
        */
 }  
     int i, j, d, h, k;
 /**** Computes Hessian and covariance matrix ***/    double **out, cov[NCOVMAX];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double **newm;
 {  
   double  **a,**y,*x,pd;    /* Hstepm could be zero and should return the unit matrix */
   double **hess;    for (i=1;i<=nlstate+ndeath;i++)
   int i, j,jk;      for (j=1;j<=nlstate+ndeath;j++){
   int *indx;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(h=1; h <=nhstepm; h++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(d=1; d <=hstepm; d++){
         newm=savm;
   hess=matrix(1,npar,1,npar);        /* Covariates have to be included here again */
         cov[1]=1.;
   printf("\nCalculation of the hessian matrix. Wait...\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++){        for (k=1; k<=cptcovage;k++)
     printf("%d",i);fflush(stdout);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fprintf(ficlog,"%d",i);fflush(ficlog);        for (k=1; k<=cptcovprod;k++)
     hess[i][i]=hessii(p,ftolhess,i,delti);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++)  {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (j>i) {         savm=oldm;
         printf(".%d%d",i,j);fflush(stdout);        oldm=newm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      }
         hess[i][j]=hessij(p,delti,i,j);      for(i=1; i<=nlstate+ndeath; i++)
         hess[j][i]=hess[i][j];            for(j=1;j<=nlstate+ndeath;j++) {
         /*printf(" %lf ",hess[i][j]);*/          po[i][j][h]=newm[i][j];
       }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     }           */
   }        }
   printf("\n");    } /* end h */
   fprintf(ficlog,"\n");    return po;
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
     /*************** log-likelihood *************/
   a=matrix(1,npar,1,npar);  double func( double *x)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    int i, ii, j, k, mi, d, kk;
   indx=ivector(1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double sw; /* Sum of weights */
   ludcmp(a,npar,indx,&pd);    double lli; /* Individual log likelihood */
     int s1, s2;
   for (j=1;j<=npar;j++) {    double bbh, survp;
     for (i=1;i<=npar;i++) x[i]=0;    long ipmx;
     x[j]=1;    /*extern weight */
     lubksb(a,npar,indx,x);    /* We are differentiating ll according to initial status */
     for (i=1;i<=npar;i++){     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       matcov[i][j]=x[i];    /*for(i=1;i<imx;i++)
     }      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {     if(mle==1){
       printf("%.3e ",hess[i][j]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficlog,"%.3e ",hess[i][j]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     printf("\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"\n");            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Recompute Inverse */            }
   for (i=1;i<=npar;i++)          for(d=0; d<dh[mi][i]; d++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            newm=savm;
   ludcmp(a,npar,indx,&pd);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   /*  printf("\n#Hessian matrix recomputed#\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   for (j=1;j<=npar;j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1;i<=npar;i++) x[i]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     x[j]=1;            savm=oldm;
     lubksb(a,npar,indx,x);            oldm=newm;
     for (i=1;i<=npar;i++){           } /* end mult */
       y[i][j]=x[i];       
       printf("%.3e ",y[i][j]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficlog,"%.3e ",y[i][j]);          /* But now since version 0.9 we anticipate for bias at large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay
     printf("\n");           * (in months) between two waves is not a multiple of stepm, we rounded to
     fprintf(ficlog,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   free_matrix(a,1,npar,1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   free_matrix(y,1,npar,1,npar);           * -stepm/2 to stepm/2 .
   free_vector(x,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_ivector(indx,1,npar);           * For stepm > 1 the results are less biased than in previous versions.
   free_matrix(hess,1,npar,1,npar);           */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm;
           /* bias bh is positive if real duration
 /*************** hessian matrix ****************/           * is higher than the multiple of stepm and negative otherwise.
 double hessii( double x[], double delta, int theta, double delti[])           */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i;          if( s2 > nlstate){
   int l=1, lmax=20;            /* i.e. if s2 is a death state and if the date of death is known
   double k1,k2;               then the contribution to the likelihood is the probability to
   double p2[NPARMAX+1];               die between last step unit time and current  step unit time,
   double res;               which is also equal to probability to die before dh
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;               minus probability to die before dh-stepm .
   double fx;               In version up to 0.92 likelihood was computed
   int k=0,kmax=10;          as if date of death was unknown. Death was treated as any other
   double l1;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   fx=func(x);          to consider that at each interview the state was recorded
   for (i=1;i<=npar;i++) p2[i]=x[i];          (healthy, disable or death) and IMaCh was corrected; but when we
   for(l=0 ; l <=lmax; l++){          introduced the exact date of death then we should have modified
     l1=pow(10,l);          the contribution of an exact death to the likelihood. This new
     delts=delt;          contribution is smaller and very dependent of the step unit
     for(k=1 ; k <kmax; k=k+1){          stepm. It is no more the probability to die between last interview
       delt = delta*(l1*k);          and month of death but the probability to survive from last
       p2[theta]=x[theta] +delt;          interview up to one month before death multiplied by the
       k1=func(p2)-fx;          probability to die within a month. Thanks to Chris
       p2[theta]=x[theta]-delt;          Jackson for correcting this bug.  Former versions increased
       k2=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
       /*res= (k1-2.0*fx+k2)/delt/delt; */          which slows down the processing. The difference can be up to 10%
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          lower mortality.
                   */
 #ifdef DEBUG            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif          } else if  (s2==-2) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            for (j=1,survp=0. ; j<=nlstate; j++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         k=kmax;            /*survp += out[s1][j]; */
       }            lli= log(survp);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          }
         k=kmax; l=lmax*10.;         
       }          else if  (s2==-4) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){             for (j=3,survp=0. ; j<=nlstate; j++)  
         delts=delt;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            lli= log(survp);
     }          }
   }  
   delti[theta]=delts;          else if  (s2==-5) {
   return res;             for (j=1,survp=0. ; j<=2; j++)  
                 survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }            lli= log(survp);
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)         
 {          else{
   int i;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int l=1, l1, lmax=20;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double k1,k2,k3,k4,res,fx;          }
   double p2[NPARMAX+1];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int k;          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fx=func(x);          ipmx +=1;
   for (k=1; k<=2; k++) {          sw += weight[i];
     for (i=1;i<=npar;i++) p2[i]=x[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]+delti[thetai]/k;        } /* end of wave */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } /* end of individual */
     k1=func(p2)-fx;    }  else if(mle==2){
         for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     k2=func(p2)-fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
               for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;            }
             for(d=0; d<=dh[mi][i]; d++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            newm=savm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     k4=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #ifdef DEBUG            }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #endif            savm=oldm;
   }            oldm=newm;
   return res;          } /* end mult */
 }       
           s1=s[mw[mi][i]][i];
 /************** Inverse of matrix **************/          s2=s[mw[mi+1][i]][i];
 void ludcmp(double **a, int n, int *indx, double *d)           bbh=(double)bh[mi][i]/(double)stepm;
 {           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i,imax,j,k;           ipmx +=1;
   double big,dum,sum,temp;           sw += weight[i];
   double *vv;           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   vv=vector(1,n);       } /* end of individual */
   *d=1.0;     }  else if(mle==3){  /* exponential inter-extrapolation */
   for (i=1;i<=n;i++) {       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     big=0.0;         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=n;j++)         for(mi=1; mi<= wav[i]-1; mi++){
       if ((temp=fabs(a[i][j])) > big) big=temp;           for (ii=1;ii<=nlstate+ndeath;ii++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");             for (j=1;j<=nlstate+ndeath;j++){
     vv[i]=1.0/big;               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=n;j++) {             }
     for (i=1;i<j;i++) {           for(d=0; d<dh[mi][i]; d++){
       sum=a[i][j];             newm=savm;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       a[i][j]=sum;             for (kk=1; kk<=cptcovage;kk++) {
     }               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     big=0.0;             }
     for (i=j;i<=n;i++) {             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       sum=a[i][j];                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1;k<j;k++)             savm=oldm;
         sum -= a[i][k]*a[k][j];             oldm=newm;
       a[i][j]=sum;           } /* end mult */
       if ( (dum=vv[i]*fabs(sum)) >= big) {        
         big=dum;           s1=s[mw[mi][i]][i];
         imax=i;           s2=s[mw[mi+1][i]][i];
       }           bbh=(double)bh[mi][i]/(double)stepm;
     }           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (j != imax) {           ipmx +=1;
       for (k=1;k<=n;k++) {           sw += weight[i];
         dum=a[imax][k];           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         a[imax][k]=a[j][k];         } /* end of wave */
         a[j][k]=dum;       } /* end of individual */
       }     }else if (mle==4){  /* ml=4 no inter-extrapolation */
       *d = -(*d);       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       vv[imax]=vv[j];         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }         for(mi=1; mi<= wav[i]-1; mi++){
     indx[j]=imax;           for (ii=1;ii<=nlstate+ndeath;ii++)
     if (a[j][j] == 0.0) a[j][j]=TINY;             for (j=1;j<=nlstate+ndeath;j++){
     if (j != n) {               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       dum=1.0/(a[j][j]);               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;             }
     }           for(d=0; d<dh[mi][i]; d++){
   }             newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 ;            for (kk=1; kk<=cptcovage;kk++) {
 }               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void lubksb(double **a, int n, int *indx, double b[])          
 {             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,ii=0,ip,j;                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum;             savm=oldm;
              oldm=newm;
   for (i=1;i<=n;i++) {           } /* end mult */
     ip=indx[i];        
     sum=b[ip];           s1=s[mw[mi][i]][i];
     b[ip]=b[i];           s2=s[mw[mi+1][i]][i];
     if (ii)           if( s2 > nlstate){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];             lli=log(out[s1][s2] - savm[s1][s2]);
     else if (sum) ii=i;           }else{
     b[i]=sum;             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }           }
   for (i=n;i>=1;i--) {           ipmx +=1;
     sum=b[i];           sw += weight[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum/a[i][i];   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }         } /* end of wave */
 }       } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 /************ Frequencies ********************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {  /* Some frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
             for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            for (j=1;j<=nlstate+ndeath;j++){
   int first;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp, **prop;            }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          for(d=0; d<dh[mi][i]; d++){
   FILE *ficresp;            newm=savm;
   char fileresp[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   prop=matrix(1,nlstate,iagemin,iagemax+3);            }
   strcpy(fileresp,"p");         
   strcat(fileresp,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficresp=fopen(fileresp,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with prevalence resultfile: %s\n", fileresp);            savm=oldm;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            oldm=newm;
     exit(0);          } /* end mult */
   }       
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);          s1=s[mw[mi][i]][i];
   j1=0;          s2=s[mw[mi+1][i]][i];
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   first=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    } /* End of if */
       j1++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         scanf("%d", i);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (i=-1; i<=nlstate+ndeath; i++)      return -l;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=iagemin; m <= iagemax+3; m++)  
             freq[i][jk][m]=0;  /*************** log-likelihood *************/
   double funcone( double *x)
     for (i=1; i<=nlstate; i++)    {
       for(m=iagemin; m <= iagemax+3; m++)    /* Same as likeli but slower because of a lot of printf and if */
         prop[i][m]=0;    int i, ii, j, k, mi, d, kk;
           double l, ll[NLSTATEMAX], cov[NCOVMAX];
       dateintsum=0;    double **out;
       k2cpt=0;    double lli; /* Individual log likelihood */
       for (i=1; i<=imx; i++) {    double llt;
         bool=1;    int s1, s2;
         if  (cptcovn>0) {    double bbh, survp;
           for (z1=1; z1<=cptcoveff; z1++)     /*extern weight */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     /* We are differentiating ll according to initial status */
               bool=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++)
         if (bool==1){      printf(" %d\n",s[4][i]);
           for(m=firstpass; m<=lastpass; m++){    */
             k2=anint[m][i]+(mint[m][i]/12.);    cov[1]=1.;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];        for (ii=1;ii<=nlstate+ndeath;ii++)
               }          for (j=1;j<=nlstate+ndeath;j++){
                           oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;          }
                 k2cpt++;        for(d=0; d<dh[mi][i]; d++){
               }          newm=savm;
               /*}*/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
       if  (cptcovn>0) {          oldm=newm;
         fprintf(ficresp, "\n#********** Variable ");         } /* end mult */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       
         fprintf(ficresp, "**********\n#");        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
       for(i=1; i<=nlstate;i++)         bbh=(double)bh[mi][i]/(double)stepm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /* bias is positive if real duration
       fprintf(ficresp, "\n");         * is higher than the multiple of stepm and negative otherwise.
                */
       for(i=iagemin; i <= iagemax+3; i++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if(i==iagemax+3){          lli=log(out[s1][s2] - savm[s1][s2]);
           fprintf(ficlog,"Total");        } else if  (s2==-2) {
         }else{          for (j=1,survp=0. ; j<=nlstate; j++)
           if(first==1){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             first=0;          lli= log(survp);
             printf("See log file for details...\n");        }else if (mle==1){
           }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           fprintf(ficlog,"Age %d", i);        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){        } else if(mle==3){  /* exponential inter-extrapolation */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             pp[jk] += freq[jk][m][i];         } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           for(m=-1, pos=0; m <=0 ; m++)          lli=log(out[s1][s2]); /* Original formula */
             pos += freq[jk][m][i];        } /* End of if */
           if(pp[jk]>=1.e-10){        ipmx +=1;
             if(first==1){        sw += weight[i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        if(globpr){
           }else{          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
             if(first==1)   %11.6f %11.6f %11.6f ", \
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          fprintf(ficresilk," %10.6f\n", -llt);
             pp[jk] += freq[jk][m][i];        }
         }             } /* end of wave */
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    } /* end of individual */
           pos += pp[jk];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           posprop += prop[jk][i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=1; jk <=nlstate ; jk++){    if(globpr==0){ /* First time we count the contributions and weights */
           if(pos>=1.e-5){      gipmx=ipmx;
             if(first==1)      gsw=sw;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return -l;
           }else{  }
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** function likelione ***********/
           }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           if( i <= iagemax){  {
             if(pos>=1.e-5){    /* This routine should help understanding what is done with
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);       the selection of individuals/waves and
               /*probs[i][jk][j1]= pp[jk]/pos;*/       to check the exact contribution to the likelihood.
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       Plotting could be done.
             }     */
             else    int k;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  
           }    if(*globpri !=0){ /* Just counts and sums, no printings */
         }      strcpy(fileresilk,"ilk");
               strcat(fileresilk,fileres);
         for(jk=-1; jk <=nlstate+ndeath; jk++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           for(m=-1; m <=nlstate+ndeath; m++)        printf("Problem with resultfile: %s\n", fileresilk);
             if(freq[jk][m][i] !=0 ) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             if(first==1)      }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         if(i <= iagemax)      for(k=1; k<=nlstate; k++)
           fprintf(ficresp,"\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         if(first==1)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           printf("Others in log...\n");    }
         fprintf(ficlog,"\n");  
       }    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
   }      fclose(ficresilk);
   dateintmean=dateintsum/k2cpt;       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm);
   fclose(ficresp);    }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);    return;
   free_vector(pp,1,nlstate);  }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);  
   /* End of Freq */  
 }  /*********** Maximum Likelihood Estimation ***************/
   
 /************ Prevalence ********************/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  {
 {      int i,j, iter;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    double **xi;
      in each health status at the date of interview (if between dateprev1 and dateprev2).    double fret;
      We still use firstpass and lastpass as another selection.    double fretone; /* Only one call to likelihood */
   */    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (i=1;i<=npar;i++)
   double ***freq; /* Frequencies */      for (j=1;j<=npar;j++)
   double *pp, **prop;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double pos,posprop;     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double  y2; /* in fractional years */    strcpy(filerespow,"pow");
   int iagemin, iagemax;    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   iagemin= (int) agemin;      printf("Problem with resultfile: %s\n", filerespow);
   iagemax= (int) agemax;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /*pp=vector(1,nlstate);*/    }
   prop=matrix(1,nlstate,iagemin,iagemax+3);     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    for (i=1;i<=nlstate;i++)
   j1=0;      for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   j=cptcoveff;    fprintf(ficrespow,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
       powell(p,xi,npar,ftol,&iter,&fret,func);
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(xi,1,npar,1,npar);
       j1++;    fclose(ficrespow);
           printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for (i=1; i<=nlstate; i++)      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(m=iagemin; m <= iagemax+3; m++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           prop[i][m]=0.0;  
        }
       for (i=1; i<=imx; i++) { /* Each individual */  
         bool=1;  /**** Computes Hessian and covariance matrix ***/
         if  (cptcovn>0) {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for (z1=1; z1<=cptcoveff; z1++)   {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     double  **a,**y,*x,pd;
               bool=0;    double **hess;
         }     int i, j,jk;
         if (bool==1) {     int *indx;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/  
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    void ludcmp(double **a, int npar, int *indx, double *d) ;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     double gompertz(double p[]);
               if (s[m][i]>0 && s[m][i]<=nlstate) {     hess=matrix(1,npar,1,npar);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    printf("\nCalculation of the hessian matrix. Wait...\n");
                 prop[s[m][i]][iagemax+3] += weight[i];     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               }     for (i=1;i<=npar;i++){
             }      printf("%d",i);fflush(stdout);
           } /* end selection of waves */      fprintf(ficlog,"%d",i);fflush(ficlog);
         }     
       }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(i=iagemin; i <= iagemax+3; i++){       
               /*  printf(" %f ",p[i]);
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           posprop += prop[jk][i];     }
         }    
     for (i=1;i<=npar;i++) {
         for(jk=1; jk <=nlstate ; jk++){           for (j=1;j<=npar;j++)  {
           if( i <=  iagemax){         if (j>i) {
             if(posprop>=1.e-5){           printf(".%d%d",i,j);fflush(stdout);
               probs[i][jk][j1]= prop[jk][i]/posprop;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             }           hess[i][j]=hessij(p,delti,i,j,func,npar);
           }          
         }/* end jk */           hess[j][i]=hess[i][j];    
       }/* end i */           /*printf(" %lf ",hess[i][j]);*/
     } /* end i1 */        }
   } /* end k1 */      }
       }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    printf("\n");
   /*free_vector(pp,1,nlstate);*/    fprintf(ficlog,"\n");
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  
 }  /* End of prevalence */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 /************* Waves Concatenation ***************/   
     a=matrix(1,npar,1,npar);
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    y=matrix(1,npar,1,npar);
 {    x=vector(1,npar);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    indx=ivector(1,npar);
      Death is a valid wave (if date is known).    for (i=1;i<=npar;i++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    ludcmp(a,npar,indx,&pd);
      and mw[mi+1][i]. dh depends on stepm.  
      */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   int i, mi, m;      x[j]=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      lubksb(a,npar,indx,x);
      double sum=0., jmean=0.;*/      for (i=1;i<=npar;i++){
   int first;        matcov[i][j]=x[i];
   int j, k=0,jk, ju, jl;      }
   double sum=0.;    }
   first=0;  
   jmin=1e+5;    printf("\n#Hessian matrix#\n");
   jmax=-1;    fprintf(ficlog,"\n#Hessian matrix#\n");
   jmean=0.;    for (i=1;i<=npar;i++) {
   for(i=1; i<=imx; i++){      for (j=1;j<=npar;j++) {
     mi=0;        printf("%.3e ",hess[i][j]);
     m=firstpass;        fprintf(ficlog,"%.3e ",hess[i][j]);
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)      printf("\n");
         mw[++mi][i]=m;      fprintf(ficlog,"\n");
       if(m >=lastpass)    }
         break;  
       else    /* Recompute Inverse */
         m++;    for (i=1;i<=npar;i++)
     }/* end while */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if (s[m][i] > nlstate){    ludcmp(a,npar,indx,&pd);
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    /*  printf("\n#Hessian matrix recomputed#\n");
          /* Only death is a correct wave */  
       mw[mi][i]=m;    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     wav[i]=mi;      lubksb(a,npar,indx,x);
     if(mi==0){      for (i=1;i<=npar;i++){
       if(first==0){        y[i][j]=x[i];
         printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);        printf("%.3e ",y[i][j]);
         first=1;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       if(first==1){      printf("\n");
         fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);      fprintf(ficlog,"\n");
       }    }
     } /* end mi==0 */    */
   } /* End individuals */  
     free_matrix(a,1,npar,1,npar);
   for(i=1; i<=imx; i++){    free_matrix(y,1,npar,1,npar);
     for(mi=1; mi<wav[i];mi++){    free_vector(x,1,npar);
       if (stepm <=0)    free_ivector(indx,1,npar);
         dh[mi][i]=1;    free_matrix(hess,1,npar,1,npar);
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */  
           if (agedc[i] < 2*AGESUP) {  }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);   
           if(j==0) j=1;  /* Survives at least one month after exam */  /*************** hessian matrix ****************/
           k=k+1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           if (j >= jmax) jmax=j;  {
           if (j <= jmin) jmin=j;    int i;
           sum=sum+j;    int l=1, lmax=20;
           /*if (j<0) printf("j=%d num=%d \n",j,i);*/    double k1,k2;
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    double p2[NPARMAX+1];
           if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    double res;
           }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
         else{    int k=0,kmax=10;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double l1;
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/  
           k=k+1;    fx=func(x);
           if (j >= jmax) jmax=j;    for (i=1;i<=npar;i++) p2[i]=x[i];
           else if (j <= jmin)jmin=j;    for(l=0 ; l <=lmax; l++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      l1=pow(10,l);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      delts=delt;
           if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      for(k=1 ; k <kmax; k=k+1){
           sum=sum+j;        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
         jk= j/stepm;        k1=func(p2)-fx;
         jl= j -jk*stepm;        p2[theta]=x[theta]-delt;
         ju= j -(jk+1)*stepm;        k2=func(p2)-fx;
         if(mle <=1){         /*res= (k1-2.0*fx+k2)/delt/delt; */
           if(jl==0){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             dh[mi][i]=jk;       
             bh[mi][i]=0;  #ifdef DEBUG
           }else{ /* We want a negative bias in order to only have interpolation ie        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   * at the price of an extra matrix product in likelihood */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             dh[mi][i]=jk+1;  #endif
             bh[mi][i]=ju;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }else{          k=kmax;
           if(jl <= -ju){        }
             dh[mi][i]=jk;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             bh[mi][i]=jl;       /* bias is positive if real duration          k=kmax; l=lmax*10.;
                                  * is higher than the multiple of stepm and negative otherwise.        }
                                  */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           }          delts=delt;
           else{        }
             dh[mi][i]=jk+1;      }
             bh[mi][i]=ju;    }
           }    delti[theta]=delts;
           if(dh[mi][i]==0){    return res;
             dh[mi][i]=1; /* At least one step */   
             bh[mi][i]=ju; /* At least one step */  }
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/  
           }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }  {
       } /* end if mle */    int i;
     } /* end wave */    int l=1, l1, lmax=20;
   }    double k1,k2,k3,k4,res,fx;
   jmean=sum/k;    double p2[NPARMAX+1];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    int k;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    fx=func(x);
     for (k=1; k<=2; k++) {
 /*********** Tricode ****************************/      for (i=1;i<=npar;i++) p2[i]=x[i];
 void tricode(int *Tvar, int **nbcode, int imx)      p2[thetai]=x[thetai]+delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         k1=func(p2)-fx;
   int Ndum[20],ij=1, k, j, i, maxncov=19;   
   int cptcode=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
   cptcoveff=0;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   for (k=0; k<maxncov; k++) Ndum[k]=0;   
   for (k=1; k<=7; k++) ncodemax[k]=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      k3=func(p2)-fx;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    
                                modality*/       p2[thetai]=x[thetai]-delti[thetai]/k;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       Ndum[ij]++; /*store the modality */      k4=func(p2)-fx;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable   #ifdef DEBUG
                                        Tvar[j]. If V=sex and male is 0 and       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                                        female is 1, then  cptcode=1.*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }  #endif
     }
     for (i=0; i<=cptcode; i++) {    return res;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */  }
     }  
   /************** Inverse of matrix **************/
     ij=1;   void ludcmp(double **a, int n, int *indx, double *d)
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<= maxncov; k++) {    int i,imax,j,k;
         if (Ndum[k] != 0) {    double big,dum,sum,temp;
           nbcode[Tvar[j]][ij]=k;     double *vv;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */   
               vv=vector(1,n);
           ij++;    *d=1.0;
         }    for (i=1;i<=n;i++) {
         if (ij > ncodemax[j]) break;       big=0.0;
       }        for (j=1;j<=n;j++)
     }         if ((temp=fabs(a[i][j])) > big) big=temp;
   }        if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       vv[i]=1.0/big;
  for (k=0; k< maxncov; k++) Ndum[k]=0;    }
     for (j=1;j<=n;j++) {
  for (i=1; i<=ncovmodel-2; i++) {       for (i=1;i<j;i++) {
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/        sum=a[i][j];
    ij=Tvar[i];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
    Ndum[ij]++;        a[i][j]=sum;
  }      }
       big=0.0;
  ij=1;      for (i=j;i<=n;i++) {
  for (i=1; i<= maxncov; i++) {        sum=a[i][j];
    if((Ndum[i]!=0) && (i<=ncovcol)){        for (k=1;k<j;k++)
      Tvaraff[ij]=i; /*For printing */          sum -= a[i][k]*a[k][j];
      ij++;        a[i][j]=sum;
    }        if ( (dum=vv[i]*fabs(sum)) >= big) {
  }          big=dum;
            imax=i;
  cptcoveff=ij-1; /*Number of simple covariates*/        }
 }      }
       if (j != imax) {
 /*********** Health Expectancies ****************/        for (k=1;k<=n;k++) {
           dum=a[imax][k];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          a[imax][k]=a[j][k];
           a[j][k]=dum;
 {        }
   /* Health expectancies */        *d = -(*d);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        vv[imax]=vv[j];
   double age, agelim, hf;      }
   double ***p3mat,***varhe;      indx[j]=imax;
   double **dnewm,**doldm;      if (a[j][j] == 0.0) a[j][j]=TINY;
   double *xp;      if (j != n) {
   double **gp, **gm;        dum=1.0/(a[j][j]);
   double ***gradg, ***trgradg;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
   int theta;      }
     }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    free_vector(vv,1,n);  /* Doesn't work */
   xp=vector(1,npar);  ;
   dnewm=matrix(1,nlstate*nlstate,1,npar);  }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  
     void lubksb(double **a, int n, int *indx, double b[])
   fprintf(ficreseij,"# Health expectancies\n");  {
   fprintf(ficreseij,"# Age");    int i,ii=0,ip,j;
   for(i=1; i<=nlstate;i++)    double sum;
     for(j=1; j<=nlstate;j++)   
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for (i=1;i<=n;i++) {
   fprintf(ficreseij,"\n");      ip=indx[i];
       sum=b[ip];
   if(estepm < stepm){      b[ip]=b[i];
     printf ("Problem %d lower than %d\n",estepm, stepm);      if (ii)
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   else  hstepm=estepm;         else if (sum) ii=i;
   /* We compute the life expectancy from trapezoids spaced every estepm months      b[i]=sum;
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    for (i=n;i>=1;i--) {
    * we are calculating an estimate of the Life Expectancy assuming a linear       sum=b[i];
    * progression in between and thus overestimating or underestimating according      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
    * to the curvature of the survival function. If, for the same date, we       b[i]=sum/a[i][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear   }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  void pstamp(FILE *fichier)
   {
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   }
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.   /************ Frequencies ********************/
      Look at hpijx to understand the reason of that which relies in memory size  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      and note for a fixed period like estepm months */  {  /* Some frequencies */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      means that if the survival funtion is printed only each two years of age and if    int first;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     double ***freq; /* Frequencies */
      results. So we changed our mind and took the option of the best precision.    double *pp, **prop;
   */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     char fileresp[FILENAMELENGTH];
    
   agelim=AGESUP;    pp=vector(1,nlstate);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     /* nhstepm age range expressed in number of stepm */    strcpy(fileresp,"p");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);     strcat(fileresp,fileres);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     if((ficresp=fopen(fileresp,"w"))==NULL) {
     /* if (stepm >= YEARM) hstepm=1;*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      exit(0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);    j1=0;
    
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    j=cptcoveff;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      first=1;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     /* Computing Variances of health expectancies */        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      for(theta=1; theta <=npar; theta++){          scanf("%d", i);*/
       for(i=1; i<=npar; i++){         for (i=-5; i<=nlstate+ndeath; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       }            for(m=iagemin; m <= iagemax+3; m++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                freq[i][jk][m]=0;
     
       cptj=0;      for (i=1; i<=nlstate; i++)  
       for(j=1; j<= nlstate; j++){        for(m=iagemin; m <= iagemax+3; m++)
         for(i=1; i<=nlstate; i++){          prop[i][m]=0;
           cptj=cptj+1;       
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        dateintsum=0;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        k2cpt=0;
           }        for (i=1; i<=imx; i++) {
         }          bool=1;
       }          if  (cptcovn>0) {
                  for (z1=1; z1<=cptcoveff; z1++)
                    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       for(i=1; i<=npar; i++)                 bool=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if (bool==1){
                   for(m=firstpass; m<=lastpass; m++){
       cptj=0;              k2=anint[m][i]+(mint[m][i]/12.);
       for(j=1; j<= nlstate; j++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for(i=1;i<=nlstate;i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cptj=cptj+1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         }                }
       }               
       for(j=1; j<= nlstate*nlstate; j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for(h=0; h<=nhstepm-1; h++){                  dateintsum=dateintsum+k2;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                  k2cpt++;
         }                }
      }                 /*}*/
                }
 /* End theta */          }
         }
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      for(h=0; h<=nhstepm-1; h++)        pstamp(ficresp);
       for(j=1; j<=nlstate*nlstate;j++)        if  (cptcovn>0) {
         for(theta=1; theta <=npar; theta++)          fprintf(ficresp, "\n#********** Variable ");
           trgradg[h][j][theta]=gradg[h][theta][j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficresp, "**********\n#");
         }
      for(i=1;i<=nlstate*nlstate;i++)        for(i=1; i<=nlstate;i++)
       for(j=1;j<=nlstate*nlstate;j++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         varhe[i][j][(int)age] =0.;        fprintf(ficresp, "\n");
        
      printf("%d|",(int)age);fflush(stdout);        for(i=iagemin; i <= iagemax+3; i++){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          if(i==iagemax+3){
      for(h=0;h<=nhstepm-1;h++){            fprintf(ficlog,"Total");
       for(k=0;k<=nhstepm-1;k++){          }else{
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);            if(first==1){
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);              first=0;
         for(i=1;i<=nlstate*nlstate;i++)              printf("See log file for details...\n");
           for(j=1;j<=nlstate*nlstate;j++)            }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            fprintf(ficlog,"Age %d", i);
       }          }
     }          for(jk=1; jk <=nlstate ; jk++){
     /* Computing expectancies */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i];
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for(jk=1; jk <=nlstate ; jk++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            for(m=-1, pos=0; m <=0 ; m++)
                         pos += freq[jk][m][i];
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            if(pp[jk]>=1.e-10){
               if(first==1){
         }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     fprintf(ficreseij,"%3.0f",age );              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     cptj=0;            }else{
     for(i=1; i<=nlstate;i++)              if(first==1)
       for(j=1; j<=nlstate;j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         cptj++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            }
       }          }
     fprintf(ficreseij,"\n");  
              for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);              pp[jk] += freq[jk][m][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          }      
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            pos += pp[jk];
   }            posprop += prop[jk][i];
   printf("\n");          }
   fprintf(ficlog,"\n");          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   free_vector(xp,1,npar);              if(first==1)
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            }else{
 }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance ******************/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)            }
 {            if( i <= iagemax){
   /* Variance of health expectancies */              if(pos>=1.e-5){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /* double **newm;*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double **dnewm,**doldm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double **dnewmp,**doldmp;              }
   int i, j, nhstepm, hstepm, h, nstepm ;              else
   int k, cptcode;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double *xp;            }
   double **gp, **gm;  /* for var eij */          }
   double ***gradg, ***trgradg; /*for var eij */         
   double **gradgp, **trgradgp; /* for var p point j */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double *gpp, *gmp; /* for var p point j */            for(m=-1; m <=nlstate+ndeath; m++)
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              if(freq[jk][m][i] !=0 ) {
   double ***p3mat;              if(first==1)
   double age,agelim, hf;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double ***mobaverage;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int theta;              }
   char digit[4];          if(i <= iagemax)
   char digitp[25];            fprintf(ficresp,"\n");
           if(first==1)
   char fileresprobmorprev[FILENAMELENGTH];            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   if(popbased==1){        }
     if(mobilav!=0)      }
       strcpy(digitp,"-populbased-mobilav-");    }
     else strcpy(digitp,"-populbased-nomobil-");    dateintmean=dateintsum/k2cpt;
   }   
   else     fclose(ficresp);
     strcpy(digitp,"-stablbased-");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   if (mobilav!=0) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* End of Freq */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  /************ Prevalence ********************/
     }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(fileresprobmorprev,"prmorprev");        in each health status at the date of interview (if between dateprev1 and dateprev2).
   sprintf(digit,"%-d",ij);       We still use firstpass and lastpass as another selection.
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */   
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   strcat(fileresprobmorprev,fileres);    double ***freq; /* Frequencies */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double *pp, **prop;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double pos,posprop;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    iagemin= (int) agemin;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    iagemax= (int) agemax;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /*pp=vector(1,nlstate);*/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficresprobmorprev," p.%-d SE",j);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(i=1; i<=nlstate;i++)    j1=0;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);   
   }      j=cptcoveff;
   fprintf(ficresprobmorprev,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    for(k1=1; k1<=j;k1++){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      for(i1=1; i1<=ncodemax[k1];i1++){
     exit(0);        j1++;
   }       
   else{        for (i=1; i<=nlstate; i++)  
     fprintf(ficgp,"\n# Routine varevsij");          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0.0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       
     printf("Problem with html file: %s\n", optionfilehtm);        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          bool=1;
     exit(0);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++)
   else{              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");                bool=0;
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);          }
   }          if (bool==1) {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficresvij,"# Age");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for(i=1; i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=1; j<=nlstate;j++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                if (s[m][i]>0 && s[m][i]<=nlstate) {
   fprintf(ficresvij,"\n");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   xp=vector(1,npar);                  prop[s[m][i]][iagemax+3] += weight[i];
   dnewm=matrix(1,nlstate,1,npar);                }
   doldm=matrix(1,nlstate,1,nlstate);              }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);            } /* end selection of waves */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
         }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        for(i=iagemin; i <= iagemax+3; i++){  
   gpp=vector(nlstate+1,nlstate+ndeath);         
   gmp=vector(nlstate+1,nlstate+ndeath);          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            posprop += prop[jk][i];
             }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);          for(jk=1; jk <=nlstate ; jk++){    
   }            if( i <=  iagemax){
   else  hstepm=estepm;                 if(posprop>=1.e-5){
   /* For example we decided to compute the life expectancy with the smallest unit */                probs[i][jk][j1]= prop[jk][i]/posprop;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               }
      nhstepm is the number of hstepm from age to agelim             }
      nstepm is the number of stepm from age to agelin.           }/* end jk */
      Look at hpijx to understand the reason of that which relies in memory size        }/* end i */
      and note for a fixed period like k years */      } /* end i1 */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    } /* end k1 */
      survival function given by stepm (the optimization length). Unfortunately it   
      means that if the survival funtion is printed every two years of age and if    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /*free_vector(pp,1,nlstate);*/
      results. So we changed our mind and took the option of the best precision.    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   */  }  /* End of prevalence */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;  /************* Waves Concatenation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       Death is a valid wave (if date is known).
     gp=matrix(0,nhstepm,1,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     gm=matrix(0,nhstepm,1,nlstate);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    int i, mi, m;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int first;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int j, k=0,jk, ju, jl;
     double sum=0.;
       if (popbased==1) {    first=0;
         if(mobilav ==0){    jmin=1e+5;
           for(i=1; i<=nlstate;i++)    jmax=-1;
             prlim[i][i]=probs[(int)age][i][ij];    jmean=0.;
         }else{ /* mobilav */     for(i=1; i<=imx; i++){
           for(i=1; i<=nlstate;i++)      mi=0;
             prlim[i][i]=mobaverage[(int)age][i][ij];      m=firstpass;
         }      while(s[m][i] <= nlstate){
       }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             mw[++mi][i]=m;
       for(j=1; j<= nlstate; j++){        if(m >=lastpass)
         for(h=0; h<=nhstepm; h++){          break;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        else
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          m++;
         }      }/* end while */
       }      if (s[m][i] > nlstate){
       /* This for computing probability of death (h=1 means        mi++;     /* Death is another wave */
          computed over hstepm matrices product = hstepm*stepm months)         /* if(mi==0)  never been interviewed correctly before death */
          as a weighted average of prlim.           /* Only death is a correct wave */
       */        mw[mi][i]=m;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      wav[i]=mi;
       }          if(mi==0){
       /* end probability of death */        nbwarn++;
         if(first==0){
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          first=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       if (popbased==1) {        }
         if(mobilav ==0){      } /* end mi==0 */
           for(i=1; i<=nlstate;i++)    } /* End individuals */
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */     for(i=1; i<=imx; i++){
           for(i=1; i<=nlstate;i++)      for(mi=1; mi<wav[i];mi++){
             prlim[i][i]=mobaverage[(int)age][i][ij];        if (stepm <=0)
         }          dh[mi][i]=1;
       }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j<= nlstate; j++){            if (agedc[i] < 2*AGESUP) {
         for(h=0; h<=nhstepm; h++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              if(j==0) j=1;  /* Survives at least one month after exam */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              else if(j<0){
         }                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /* This for computing probability of death (h=1 means                j=1; /* Temporary Dangerous patch */
          computed over hstepm matrices product = hstepm*stepm months)                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
          as a weighted average of prlim.                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              }
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              k=k+1;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];              if (j >= jmax){
       }                    jmax=j;
       /* end probability of death */                ijmax=i;
               }
       for(j=1; j<= nlstate; j++) /* vareij */              if (j <= jmin){
         for(h=0; h<=nhstepm; h++){                jmin=j;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                ijmin=i;
         }              }
               sum=sum+j;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
           }
     } /* End theta */          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
     for(h=0; h<=nhstepm; h++) /* veij */            k=k+1;
       for(j=1; j<=nlstate;j++)            if (j >= jmax) {
         for(theta=1; theta <=npar; theta++)              jmax=j;
           trgradg[h][j][theta]=gradg[h][theta][j];              ijmax=i;
             }
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            else if (j <= jmin){
       for(theta=1; theta <=npar; theta++)              jmin=j;
         trgradgp[j][theta]=gradgp[theta][j];              ijmin=i;
               }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=1;i<=nlstate;i++)            if(j<0){
       for(j=1;j<=nlstate;j++)              nberr++;
         vareij[i][j][(int)age] =0.;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(h=0;h<=nhstepm;h++){            }
       for(k=0;k<=nhstepm;k++){            sum=sum+j;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          jk= j/stepm;
         for(i=1;i<=nlstate;i++)          jl= j -jk*stepm;
           for(j=1;j<=nlstate;j++)          ju= j -(jk+1)*stepm;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
     }              dh[mi][i]=jk;
                 bh[mi][i]=0;
     /* pptj */            }else{ /* We want a negative bias in order to only have interpolation ie
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                    * at the price of an extra matrix product in likelihood */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);              dh[mi][i]=jk+1;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)              bh[mi][i]=ju;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            }
         varppt[j][i]=doldmp[j][i];          }else{
     /* end ppptj */            if(jl <= -ju){
     /*  x centered again */              dh[mi][i]=jk;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                bh[mi][i]=jl;       /* bias is positive if real duration
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
     if (popbased==1) {            }
       if(mobilav ==0){            else{
         for(i=1; i<=nlstate;i++)              dh[mi][i]=jk+1;
           prlim[i][i]=probs[(int)age][i][ij];              bh[mi][i]=ju;
       }else{ /* mobilav */             }
         for(i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
           prlim[i][i]=mobaverage[(int)age][i][ij];              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                          }
     /* This for computing probability of death (h=1 means          } /* end if mle */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)         }
        as a weighted average of prlim.      } /* end wave */
     */    }
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    jmean=sum/k;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }       }
     /* end probability of death */  
   /*********** Tricode ****************************/
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  void tricode(int *Tvar, int **nbcode, int imx)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  {
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));   
       for(i=1; i<=nlstate;i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int cptcode=0;
       }    cptcoveff=0;
     }    
     fprintf(ficresprobmorprev,"\n");    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for(j=1; j<=nlstate;j++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);                                 modality*/
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     fprintf(ficresvij,"\n");        Ndum[ij]++; /*store the modality */
     free_matrix(gp,0,nhstepm,1,nlstate);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_matrix(gm,0,nhstepm,1,nlstate);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                                         Tvar[j]. If V=sex and male is 0 and
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                                         female is 1, then  cptcode=1.*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);      for (i=0; i<=cptcode; i++) {
   free_vector(gmp,nlstate+1,nlstate+ndeath);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      ij=1;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        for (k=0; k<= maxncov; k++) {
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          if (Ndum[k] != 0) {
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */            nbcode[Tvar[j]][ij]=k;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);           
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);            ij++;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);          }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          if (ij > ncodemax[j]) break;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);        }  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      }
 */    }  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);   for (i=1; i<=ncovmodel-2; i++) {
   free_matrix(dnewm,1,nlstate,1,npar);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     ij=Tvar[i];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);     Ndum[ij]++;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);   ij=1;
   fclose(ficgp);   for (i=1; i<= maxncov; i++) {
   fclose(fichtm);     if((Ndum[i]!=0) && (i<=ncovcol)){
 }  /* end varevsij */       Tvaraff[ij]=i; /*For printing */
        ij++;
 /************ Variance of prevlim ******************/     }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)   }
 {   
   /* Variance of prevalence limit */   cptcoveff=ij-1; /*Number of simple covariates*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  /*********** Health Expectancies ****************/
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *xp;  
   double *gp, *gm;  {
   double **gradg, **trgradg;    /* Health expectancies, no variances */
   double age,agelim;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   int theta;    double age, agelim, hf;
        double ***p3mat;
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    double eip;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    pstamp(ficreseij);
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficresvpl,"\n");    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   xp=vector(1,npar);      for(j=1; j<=nlstate;j++){
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficreseij," e%1d%1d ",i,j);
   doldm=matrix(1,nlstate,1,nlstate);      }
         fprintf(ficreseij," e%1d. ",i);
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     fprintf(ficreseij,"\n");
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     if(estepm < stepm){
     if (stepm >= YEARM) hstepm=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);    else  hstepm=estepm;  
     gp=vector(1,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
     gm=vector(1,nlstate);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
     for(theta=1; theta <=npar; theta++){     * we are calculating an estimate of the Life Expectancy assuming a linear
       for(i=1; i<=npar; i++){ /* Computes gradient */     * progression in between and thus overestimating or underestimating according
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     * to the curvature of the survival function. If, for the same date, we
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * to compare the new estimate of Life expectancy with the same linear
       for(i=1;i<=nlstate;i++)     * hypothesis. A more precise result, taking into account a more precise
         gp[i] = prlim[i][i];     * curvature will be obtained if estepm is as small as stepm. */
       
       for(i=1; i<=npar; i++) /* Computes gradient */    /* For example we decided to compute the life expectancy with the smallest unit */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       nhstepm is the number of hstepm from age to agelim
       for(i=1;i<=nlstate;i++)       nstepm is the number of stepm from age to agelin.
         gm[i] = prlim[i][i];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       for(i=1;i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       survival function given by stepm (the optimization length). Unfortunately it
     } /* End theta */       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
     trgradg =matrix(1,nlstate,1,npar);       results. So we changed our mind and took the option of the best precision.
     */
     for(j=1; j<=nlstate;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    agelim=AGESUP;
     /* If stepm=6 months */
     for(i=1;i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       varpl[i][(int)age] =0.;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);     
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /* nhstepm age range expressed in number of stepm */
     for(i=1;i<=nlstate;i++)    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficresvpl,"%.0f ",age );    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1; i<=nlstate;i++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    for (age=bage; age<=fage; age ++){
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_matrix(trgradg,1,nlstate,1,npar);     
   } /* End age */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
   free_vector(xp,1,npar);      printf("%d|",(int)age);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);     
   
 }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
 /************ Variance of one-step probabilities  ******************/        for(j=1; j<=nlstate;j++)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   int i, j=0,  i1, k1, l1, t, tj;           
   int k2, l2, j1,  z1;            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int k=0,l, cptcode;  
   int first=1, first1;          }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;     
   double **dnewm,**doldm;      fprintf(ficreseij,"%3.0f",age );
   double *xp;      for(i=1; i<=nlstate;i++){
   double *gp, *gm;        eip=0;
   double **gradg, **trgradg;        for(j=1; j<=nlstate;j++){
   double **mu;          eip +=eij[i][j][(int)age];
   double age,agelim, cov[NCOVMAX];          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        }
   int theta;        fprintf(ficreseij,"%9.4f", eip );
   char fileresprob[FILENAMELENGTH];      }
   char fileresprobcov[FILENAMELENGTH];      fprintf(ficreseij,"\n");
   char fileresprobcor[FILENAMELENGTH];     
     }
   double ***varpij;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   strcpy(fileresprob,"prob");     fprintf(ficlog,"\n");
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   strcpy(fileresprobcov,"probcov");   {
   strcat(fileresprobcov,fileres);    /* Covariances of health expectancies eij and of total life expectancies according
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {     to initial status i, ei. .
     printf("Problem with resultfile: %s\n", fileresprobcov);    */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    double age, agelim, hf;
   strcpy(fileresprobcor,"probcor");     double ***p3matp, ***p3matm, ***varhe;
   strcat(fileresprobcor,fileres);    double **dnewm,**doldm;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double *xp, *xm;
     printf("Problem with resultfile: %s\n", fileresprobcor);    double **gp, **gm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    double ***gradg, ***trgradg;
   }    int theta;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double eip, vip;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    xp=vector(1,npar);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    xm=vector(1,npar);
       dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresprob,"# Age");   
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    pstamp(ficresstdeij);
   fprintf(ficresprobcov,"# Age");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    fprintf(ficresstdeij,"# Age");
   fprintf(ficresprobcov,"# Age");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   for(i=1; i<=nlstate;i++)      fprintf(ficresstdeij," e%1d. ",i);
     for(j=1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficresstdeij,"\n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    pstamp(ficrescveij);
     }      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
  /* fprintf(ficresprob,"\n");    fprintf(ficrescveij,"# Age");
   fprintf(ficresprobcov,"\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcor,"\n");      for(j=1; j<=nlstate;j++){
  */        cptj= (j-1)*nlstate+i;
  xp=vector(1,npar);        for(i2=1; i2<=nlstate;i2++)
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for(j2=1; j2<=nlstate;j2++){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            cptj2= (j2-1)*nlstate+i2;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            if(cptj2 <= cptj)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   first=1;          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    fprintf(ficrescveij,"\n");
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   
     exit(0);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   else{    }
     fprintf(ficgp,"\n# Routine varprob");    else  hstepm=estepm;  
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {     * This is mainly to measure the difference between two models: for example
     printf("Problem with html file: %s\n", optionfilehtm);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);     * we are calculating an estimate of the Life Expectancy assuming a linear
     exit(0);     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we
   else{     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");     * to compare the new estimate of Life expectancy with the same linear
     fprintf(fichtm,"\n");     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
   }       nstepm is the number of stepm from age to agelin.
        Look at hpijx to understand the reason of that which relies in memory size
   cov[1]=1;       and note for a fixed period like estepm months */
   tj=cptcoveff;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}       survival function given by stepm (the optimization length). Unfortunately it
   j1=0;       means that if the survival funtion is printed only each two years of age and if
   for(t=1; t<=tj;t++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(i1=1; i1<=ncodemax[t];i1++){        results. So we changed our mind and took the option of the best precision.
       j1++;    */
       if  (cptcovn>0) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         fprintf(ficresprob, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* If stepm=6 months */
         fprintf(ficresprob, "**********\n#\n");    /* nhstepm age range expressed in number of stepm */
         fprintf(ficresprobcov, "\n#********** Variable ");     agelim=AGESUP;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         fprintf(ficresprobcov, "**********\n#\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
             /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp, "\n#********** Variable ");     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficgp, "**********\n#\n");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           
         fprintf(ficresprobcor, "\n#********** Variable ");        for (age=bage; age<=fage; age ++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcor, "**********\n#");          /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          
       for (age=bage; age<=fage; age ++){       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {      /* Computing  Variances of health expectancies */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         }         decrease memory allocation */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(theta=1; theta <=npar; theta++){
         for (k=1; k<=cptcovprod;k++)        for(i=1; i<=npar; i++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   xm[i] = x[i] - (i==theta ?delti[theta]:0);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         gm=vector(1,(nlstate)*(nlstate+ndeath));   
             for(j=1; j<= nlstate; j++){
         for(theta=1; theta <=npar; theta++){          for(i=1; i<=nlstate; i++){
           for(i=1; i<=npar; i++)            for(h=0; h<=nhstepm-1; h++){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                         gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
                     }
           k=0;        }
           for(i=1; i<= (nlstate); i++){       
             for(j=1; j<=(nlstate+ndeath);j++){        for(ij=1; ij<= nlstate*nlstate; ij++)
               k=k+1;          for(h=0; h<=nhstepm-1; h++){
               gp[k]=pmmij[i][j];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             }          }
           }      }/* End theta */
                
           for(i=1; i<=npar; i++)     
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);      for(h=0; h<=nhstepm-1; h++)
             for(j=1; j<=nlstate*nlstate;j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(theta=1; theta <=npar; theta++)
           k=0;            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1; i<=(nlstate); i++){     
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;       for(ij=1;ij<=nlstate*nlstate;ij++)
               gm[k]=pmmij[i][j];        for(ji=1;ji<=nlstate*nlstate;ji++)
             }          varhe[ij][ji][(int)age] =0.;
           }  
             printf("%d|",(int)age);fflush(stdout);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];         for(h=0;h<=nhstepm-1;h++){
         }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(theta=1; theta <=npar; theta++)          for(ij=1;ij<=nlstate*nlstate;ij++)
             trgradg[j][theta]=gradg[theta][j];            for(ji=1;ji<=nlstate*nlstate;ji++)
                       varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      }
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      /* Computing expectancies */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         k=0;           
         for(i=1; i<=(nlstate); i++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;          }
             mu[k][(int) age]=pmmij[i][j];  
           }      fprintf(ficresstdeij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        eip=0.;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        vip=0.;
             varpij[i][j][(int)age] = doldm[i][j];        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
         /*printf("\n%d ",(int)age);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
           }*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
         fprintf(ficresprob,"\n%d ",(int)age);      fprintf(ficresstdeij,"\n");
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        for(j=1; j<=nlstate;j++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          cptj= (j-1)*nlstate+i;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i2=1; i2<=nlstate;i2++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            for(j2=1; j2<=nlstate;j2++){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              cptj2= (j2-1)*nlstate+i2;
         }              if(cptj2 <= cptj)
         i=0;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         for (k=1; k<=(nlstate);k++){            }
           for (l=1; l<=(nlstate+ndeath);l++){         }
             i=i++;      fprintf(ficrescveij,"\n");
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);     
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    }
             for (j=1; j<=i;j++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }/* end of loop for state */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       } /* end of loop for age */    printf("\n");
     fprintf(ficlog,"\n");
       /* Confidence intervalle of pij  */  
       /*    free_vector(xm,1,npar);
         fprintf(ficgp,"\nset noparametric;unset label");    free_vector(xp,1,npar);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  /************ Variance ******************/
       */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    /* Variance of health expectancies */
       first1=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for (k2=1; k2<=(nlstate);k2++){    /* double **newm;*/
         for (l2=1; l2<=(nlstate+ndeath);l2++){     double **dnewm,**doldm;
           if(l2==k2) continue;    double **dnewmp,**doldmp;
           j=(k2-1)*(nlstate+ndeath)+l2;    int i, j, nhstepm, hstepm, h, nstepm ;
           for (k1=1; k1<=(nlstate);k1++){    int k, cptcode;
             for (l1=1; l1<=(nlstate+ndeath);l1++){     double *xp;
               if(l1==k1) continue;    double **gp, **gm;  /* for var eij */
               i=(k1-1)*(nlstate+ndeath)+l1;    double ***gradg, ***trgradg; /*for var eij */
               if(i<=j) continue;    double **gradgp, **trgradgp; /* for var p point j */
               for (age=bage; age<=fage; age ++){     double *gpp, *gmp; /* for var p point j */
                 if ((int)age %5==0){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double ***p3mat;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    double age,agelim, hf;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double ***mobaverage;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    int theta;
                   mu2=mu[j][(int) age]/stepm*YEARM;    char digit[4];
                   c12=cv12/sqrt(v1*v2);    char digitp[25];
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    char fileresprobmorprev[FILENAMELENGTH];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   /* Eigen vectors */    if(popbased==1){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      if(mobilav!=0)
                   /*v21=sqrt(1.-v11*v11); *//* error */        strcpy(digitp,"-populbased-mobilav-");
                   v21=(lc1-v1)/cv12*v11;      else strcpy(digitp,"-populbased-nomobil-");
                   v12=-v21;    }
                   v22=v11;    else
                   tnalp=v21/v11;      strcpy(digitp,"-stablbased-");
                   if(first1==1){  
                     first1=0;    if (mobilav!=0) {
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   /*printf(fignu*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    }
                   if(first==1){  
                     first=0;    strcpy(fileresprobmorprev,"prmorprev");
                     fprintf(ficgp,"\nset parametric;unset label");    sprintf(digit,"%-d",ij);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    strcat(fileresprobmorprev,fileres);
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\   
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   }else{    pstamp(ficresprobmorprev);
                     first=0;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      fprintf(ficresprobmorprev," p.%-d SE",j);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    }  
                   }/* if first */    fprintf(ficresprobmorprev,"\n");
                 } /* age mod 5 */    fprintf(ficgp,"\n# Routine varevsij");
               } /* end loop age */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               first=1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             } /*l12 */  /*   } */
           } /* k12 */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         } /*l1 */    pstamp(ficresvij);
       }/* k1 */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     } /* loop covariates */    if(popbased==1)
   }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    else
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   free_vector(xp,1,npar);    fprintf(ficresvij,"# Age");
   fclose(ficresprob);    for(i=1; i<=nlstate;i++)
   fclose(ficresprobcov);      for(j=1; j<=nlstate;j++)
   fclose(ficresprobcor);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fclose(ficgp);    fprintf(ficresvij,"\n");
   fclose(fichtm);  
 }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
 /******************* Printing html file ***********/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   int popforecast, int estepm ,\    gpp=vector(nlstate+1,nlstate+ndeath);
                   double jprev1, double mprev1,double anprev1, \    gmp=vector(nlstate+1,nlstate+ndeath);
                   double jprev2, double mprev2,double anprev2){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int jj1, k1, i1, cpt;   
   /*char optionfilehtm[FILENAMELENGTH];*/    if(estepm < stepm){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    else  hstepm=estepm;  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       nhstepm is the number of hstepm from age to agelim
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       nstepm is the number of stepm from age to agelin.
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       and note for a fixed period like k years */
  - Life expectancies by age and initial health status (estepm=%2d months):     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       survival function given by stepm (the optimization length). Unfortunately it
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");       results. So we changed our mind and took the option of the best precision.
     */
  m=cptcoveff;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  jj1=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
  for(k1=1; k1<=m;k1++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(i1=1; i1<=ncodemax[k1];i1++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      jj1++;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      if (cptcovn > 0) {      gp=matrix(0,nhstepm,1,nlstate);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      gm=matrix(0,nhstepm,1,nlstate);
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(theta=1; theta <=npar; theta++){
      }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      /* Pij */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>        }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);             hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      /* Quasi-incidences */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         if (popbased==1) {
        /* Stable prevalence in each health state */          if(mobilav ==0){
        for(cpt=1; cpt<nlstate;cpt++){            for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }else{ /* mobilav */
        }            for(i=1; i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }   
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(j=1; j<= nlstate; j++){
 health expectancies in states (1) and (2): e%s%d.png<br>          for(h=0; h<=nhstepm; h++){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    } /* end i1 */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  }/* End k1 */          }
  fprintf(fichtm,"</ul>");        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n           as a weighted average of prlim.
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n         }    
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        /* end probability of death */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 /*  if(popforecast==1) fprintf(fichtm,"\n */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*      <br>",fileres,fileres,fileres,fileres); */   
 /*  else  */        if (popbased==1) {
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          if(mobilav ==0){
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
  m=cptcoveff;          }else{ /* mobilav */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
  jj1=0;          }
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;        for(j=1; j<= nlstate; j++){
      if (cptcovn > 0) {          for(h=0; h<=nhstepm; h++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        for (cpt=1; cpt<=cptcoveff;cpt++)               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
      }        /* This for computing probability of death (h=1 means
      for(cpt=1; cpt<=nlstate;cpt++) {           computed over hstepm matrices product = hstepm*stepm months)
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident           as a weighted average of prlim.
 interval) in state (%d): v%s%d%d.png <br>        */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
      }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    } /* end i1 */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  }/* End k1 */        }    
  fprintf(fichtm,"</ul>");        /* end probability of death */
 fclose(fichtm);  
 }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
 /******************* Gnuplot file **************/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   int ng;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with file %s",optionfilegnuplot);  
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      } /* End theta */
   }  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   /*#ifdef windows */  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for(h=0; h<=nhstepm; h++) /* veij */
     /*#endif */        for(j=1; j<=nlstate;j++)
 m=pow(2,cptcoveff);          for(theta=1; theta <=npar; theta++)
               trgradg[h][j][theta]=gradg[h][theta][j];
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
    for (k1=1; k1<= m ; k1 ++) {        for(theta=1; theta <=npar; theta++)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          trgradgp[j][theta]=gradgp[theta][j];
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);   
   
      for (i=1; i<= nlstate ; i ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1;i<=nlstate;i++)
        else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1;j<=nlstate;j++)
      }          vareij[i][j][(int)age] =0.;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      for(h=0;h<=nhstepm;h++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(k=0;k<=nhstepm;k++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      }           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);           for(i=1;i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {            for(j=1;j<=nlstate;j++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
        else fprintf(ficgp," \%%*lf (\%%*lf)");        }
      }        }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   
    }      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   /*2 eme*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(j=nlstate+1;j<=nlstate+ndeath;j++)
   for (k1=1; k1<= m ; k1 ++) {         for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          varppt[j][i]=doldmp[j][i];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      /* end ppptj */
           /*  x centered again */
     for (i=1; i<= nlstate+1 ; i ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       k=2*i;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {      if (popbased==1) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(mobilav ==0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1; i<=nlstate;i++)
       }               prlim[i][i]=probs[(int)age][i][ij];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }else{ /* mobilav */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            prlim[i][i]=mobaverage[(int)age][i][ij];
       for (j=1; j<= nlstate+1 ; j ++) {        }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
         else fprintf(ficgp," \%%*lf (\%%*lf)");               
       }         /* This for computing probability of death (h=1 means
       fprintf(ficgp,"\" t\"\" w l 0,");         computed over hstepm (estepm) matrices product = hstepm*stepm months)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);         as a weighted average of prlim.
       for (j=1; j<= nlstate+1 ; j ++) {      */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1,gmp[j]=0.;i<= nlstate; i++)
       }             gmp[j] += prlim[i][i]*p3mat[i][j][1];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }    
       else fprintf(ficgp,"\" t\"\" w l 0,");      /* end probability of death */
     }  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /*3eme*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           for(i=1; i<=nlstate;i++){
   for (k1=1; k1<= m ; k1 ++) {           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(2*cpt-2);      }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fprintf(ficresvij,"%.0f ",age );
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(j=1; j<=nlstate;j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficresvij,"\n");
               free_matrix(gp,0,nhstepm,1,nlstate);
       */      free_matrix(gm,0,nhstepm,1,nlstate);
       for (i=1; i< nlstate ; i ++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }     } /* End age */
     }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
       free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   /* CV preval stable (period) */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (k1=1; k1<= m ; k1 ++) {     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     for (cpt=1; cpt<=nlstate ; cpt ++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       k=3;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (i=1; i< nlstate ; i ++)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       l=3+(nlstate+ndeath)*cpt;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       for (i=1; i< nlstate ; i ++) {  */
         l=3+(nlstate+ndeath)*cpt;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       free_vector(xp,1,npar);
     }     free_matrix(doldm,1,nlstate,1,nlstate);
   }      free_matrix(dnewm,1,nlstate,1,npar);
       free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* proba elementaires */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   for(i=1,jk=1; i <=nlstate; i++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(k=1; k <=(nlstate+ndeath); k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (k != i) {    fclose(ficresprobmorprev);
         for(j=1; j <=ncovmodel; j++){    fflush(ficgp);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fflush(fichtm);
           jk++;   }  /* end varevsij */
           fprintf(ficgp,"\n");  
         }  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     }  {
    }    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double **newm;
      for(jk=1; jk <=m; jk++) {    double **dnewm,**doldm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);     int i, j, nhstepm, hstepm;
        if (ng==2)    int k, cptcode;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double *xp;
        else    double *gp, *gm;
          fprintf(ficgp,"\nset title \"Probability\"\n");    double **gradg, **trgradg;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double age,agelim;
        i=1;    int theta;
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;    pstamp(ficresvpl);
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
            if (k != k2){    fprintf(ficresvpl,"# Age");
              if(ng==2)    for(i=1; i<=nlstate;i++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        fprintf(ficresvpl," %1d-%1d",i,i);
              else    fprintf(ficresvpl,"\n");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;    xp=vector(1,npar);
              for(j=3; j <=ncovmodel; j++) {    dnewm=matrix(1,nlstate,1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    doldm=matrix(1,nlstate,1,nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   
                  ij++;    hstepm=1*YEARM; /* Every year of age */
                }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                else    agelim = AGESUP;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
              fprintf(ficgp,")/(1");      if (stepm >= YEARM) hstepm=1;
                    nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              for(k1=1; k1 <=nlstate; k1++){         gradg=matrix(1,npar,1,nlstate);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      gp=vector(1,nlstate);
                ij=1;      gm=vector(1,nlstate);
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(theta=1; theta <=npar; theta++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=1; i<=npar; i++){ /* Computes gradient */
                    ij++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }        }
                  else        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(i=1;i<=nlstate;i++)
                }          gp[i] = prlim[i][i];
                fprintf(ficgp,")");     
              }        for(i=1; i<=npar; i++) /* Computes gradient */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              i=i+ncovmodel;        for(i=1;i<=nlstate;i++)
            }          gm[i] = prlim[i][i];
          } /* end k */  
        } /* end k2 */        for(i=1;i<=nlstate;i++)
      } /* end jk */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    } /* end ng */      } /* End theta */
    fclose(ficgp);   
 }  /* end gnuplot */      trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/        for(theta=1; theta <=npar; theta++)
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          trgradg[j][theta]=gradg[theta][j];
   
   int i, cpt, cptcod;      for(i=1;i<=nlstate;i++)
   int modcovmax =1;        varpl[i][(int)age] =0.;
   int mobilavrange, mob;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double age;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                            a covariate has 2 modalities */  
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     if(mobilav==1) mobilavrange=5; /* default */      fprintf(ficresvpl,"\n");
     else mobilavrange=mobilav;      free_vector(gp,1,nlstate);
     for (age=bage; age<=fage; age++)      free_vector(gm,1,nlstate);
       for (i=1; i<=nlstate;i++)      free_matrix(gradg,1,npar,1,nlstate);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)      free_matrix(trgradg,1,nlstate,1,npar);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    } /* End age */
     /* We keep the original values on the extreme ages bage, fage and for   
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    free_vector(xp,1,npar);
        we use a 5 terms etc. until the borders are no more concerned.     free_matrix(doldm,1,nlstate,1,npar);
     */     free_matrix(dnewm,1,nlstate,1,nlstate);
     for (mob=3;mob <=mobilavrange;mob=mob+2){  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  }
         for (i=1; i<=nlstate;i++){  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  /************ Variance of one-step probabilities  ******************/
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  {
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    int i, j=0,  i1, k1, l1, t, tj;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    int k2, l2, j1,  z1;
               }    int k=0,l, cptcode;
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    int first=1, first1;
           }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         }    double **dnewm,**doldm;
       }/* end age */    double *xp;
     }/* end mob */    double *gp, *gm;
   }else return -1;    double **gradg, **trgradg;
   return 0;    double **mu;
 }/* End movingaverage */    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
 /************** Forecasting ******************/    char fileresprob[FILENAMELENGTH];
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    char fileresprobcov[FILENAMELENGTH];
   /* proj1, year, month, day of starting projection     char fileresprobcor[FILENAMELENGTH];
      agemin, agemax range of age  
      dateprev1 dateprev2 range of dates during which prevalence is computed    double ***varpij;
      anproj2 year of en of projection (same day and month as proj1).  
   */    strcpy(fileresprob,"prob");
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    strcat(fileresprob,fileres);
   int *popage;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   double agec; /* generic age */      printf("Problem with resultfile: %s\n", fileresprob);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   double *popeffectif,*popcount;    }
   double ***p3mat;    strcpy(fileresprobcov,"probcov");
   double ***mobaverage;    strcat(fileresprobcov,fileres);
   char fileresf[FILENAMELENGTH];    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   agelim=AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    }
      strcpy(fileresprobcor,"probcor");
   strcpy(fileresf,"f");     strcat(fileresprobcor,fileres);
   strcat(fileresf,fileres);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     printf("Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (mobilav!=0) {    pstamp(ficresprob);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    fprintf(ficresprob,"# Age");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    pstamp(ficresprobcov);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     }    fprintf(ficresprobcov,"# Age");
   }    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresprobcor,"# Age");
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
   else  hstepm=estepm;           fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   hstepm=hstepm/stepm;         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and      }  
                                fractional in yp1 */   /* fprintf(ficresprob,"\n");
   anprojmean=yp;    fprintf(ficresprobcov,"\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficresprobcor,"\n");
   mprojmean=yp;   */
   yp1=modf((yp2*30.5),&yp);   xp=vector(1,npar);
   jprojmean=yp;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if(jprojmean==0) jprojmean=1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   if(mprojmean==0) jprojmean=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   i1=cptcoveff;    first=1;
   if (cptcovn < 1){i1=1;}    fprintf(ficgp,"\n# Routine varprob");
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     fprintf(fichtm,"\n");
     
   fprintf(ficresf,"#****** Routine prevforecast **\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 /*            if (h==(int)(YEARM*yearp)){ */    file %s<br>\n",optionfilehtmcov);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  and drawn. It helps understanding how is the covariance between two incidences.\
       k=k+1;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficresf,"\n#******");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       for(j=1;j<=cptcoveff;j++) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       }  standard deviations wide on each axis. <br>\
       fprintf(ficresf,"******\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for(j=1; j<=nlstate+ndeath;j++){   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         for(i=1; i<=nlstate;i++)                
           fprintf(ficresf," p%d%d",i,j);    cov[1]=1;
         fprintf(ficresf," p.%d",j);    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     j1=0;
         fprintf(ficresf,"\n");    for(t=1; t<=tj;t++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);         for(i1=1; i1<=ncodemax[t];i1++){
         j1++;
         for (agec=fage; agec>=(ageminpar-1); agec--){         if  (cptcovn>0) {
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           fprintf(ficresprob, "\n#********** Variable ");
           nhstepm = nhstepm/hstepm;           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprob, "**********\n#\n");
           oldm=oldms;savm=savms;          fprintf(ficresprobcov, "\n#********** Variable ");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   fprintf(ficresprobcov, "**********\n#\n");
           for (h=0; h<=nhstepm; h++){         
             if (h*hstepm/YEARM*stepm ==yearp) {          fprintf(ficgp, "\n#********** Variable ");
               fprintf(ficresf,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               for(j=1;j<=cptcoveff;j++)           fprintf(ficgp, "**********\n#\n");
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);         
             }           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
             for(j=1; j<=nlstate+ndeath;j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               ppij=0.;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
               for(i=1; i<=nlstate;i++) {         
                 if (mobilav==1)           fprintf(ficresprobcor, "\n#********** Variable ");    
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 else {          fprintf(ficresprobcor, "**********\n#");    
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        }
                 }       
                 if (h*hstepm/YEARM*stepm== yearp) {        for (age=bage; age<=fage; age ++){
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);          cov[2]=age;
                 }          for (k=1; k<=cptcovn;k++) {
               } /* end i */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
               if (h*hstepm/YEARM*stepm==yearp) {          }
                 fprintf(ficresf," %.3f", ppij);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               }          for (k=1; k<=cptcovprod;k++)
             }/* end j */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           } /* end h */         
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         } /* end agec */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       } /* end yearp */          gp=vector(1,(nlstate)*(nlstate+ndeath));
     } /* end cptcod */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   } /* end  cptcov */     
                  for(theta=1; theta <=npar; theta++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fclose(ficresf);           
 }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            
 /************** Forecasting *****not tested NB*************/            k=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            for(i=1; i<= (nlstate); i++){
                 for(j=1; j<=(nlstate+ndeath);j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                k=k+1;
   int *popage;                gp[k]=pmmij[i][j];
   double calagedatem, agelim, kk1, kk2;              }
   double *popeffectif,*popcount;            }
   double ***p3mat,***tabpop,***tabpopprev;           
   double ***mobaverage;            for(i=1; i<=npar; i++)
   char filerespop[FILENAMELENGTH];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            k=0;
   agelim=AGESUP;            for(i=1; i<=(nlstate); i++){
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              for(j=1; j<=(nlstate+ndeath);j++){
                   k=k+1;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                gm[k]=pmmij[i][j];
                 }
               }
   strcpy(filerespop,"pop");        
   strcat(filerespop,fileres);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     printf("Problem with forecast resultfile: %s\n", filerespop);          }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);            for(theta=1; theta <=npar; theta++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);              trgradg[j][theta]=gradg[theta][j];
          
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if (mobilav!=0) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   }         
           k=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(i=1; i<=(nlstate); i++){
   if (stepm<=12) stepsize=1;            for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   agelim=AGESUP;              mu[k][(int) age]=pmmij[i][j];
               }
   hstepm=1;          }
   hstepm=hstepm/stepm;           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
               for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if (popforecast==1) {              varpij[i][j][(int)age] = doldm[i][j];
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);          /*printf("\n%d ",(int)age);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     popage=ivector(0,AGESUP);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     popeffectif=vector(0,AGESUP);            }*/
     popcount=vector(0,AGESUP);  
               fprintf(ficresprob,"\n%d ",(int)age);
     i=1;             fprintf(ficresprobcov,"\n%d ",(int)age);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficresprobcor,"\n%d ",(int)age);
      
     imx=i;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;          i=0;
       fprintf(ficrespop,"\n#******");          for (k=1; k<=(nlstate);k++){
       for(j=1;j<=cptcoveff;j++) {            for (l=1; l<=(nlstate+ndeath);l++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficrespop,"******\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficrespop,"# Age");              for (j=1; j<=i;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       if (popforecast==1)  fprintf(ficrespop," [Population]");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                     }
       for (cpt=0; cpt<=0;cpt++) {             }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             }/* end of loop for state */
                 } /* end of loop for age */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         /* Confidence intervalle of pij  */
           nhstepm = nhstepm/hstepm;         /*
                     fprintf(ficgp,"\nset noparametric;unset label");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           oldm=oldms;savm=savms;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        */
             }   
             for(j=1; j<=nlstate+ndeath;j++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               kk1=0.;kk2=0;        first1=1;
               for(i=1; i<=nlstate;i++) {                      for (k2=1; k2<=(nlstate);k2++){
                 if (mobilav==1)           for (l2=1; l2<=(nlstate+ndeath);l2++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            if(l2==k2) continue;
                 else {            j=(k2-1)*(nlstate+ndeath)+l2;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for (k1=1; k1<=(nlstate);k1++){
                 }              for (l1=1; l1<=(nlstate+ndeath);l1++){
               }                if(l1==k1) continue;
               if (h==(int)(calagedatem+12*cpt)){                i=(k1-1)*(nlstate+ndeath)+l1;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                if(i<=j) continue;
                   /*fprintf(ficrespop," %.3f", kk1);                for (age=bage; age<=fage; age ++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                  if ((int)age %5==0){
               }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             for(i=1; i<=nlstate;i++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               kk1=0.;                    mu1=mu[i][(int) age]/stepm*YEARM ;
                 for(j=1; j<=nlstate;j++){                    mu2=mu[j][(int) age]/stepm*YEARM;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                     c12=cv12/sqrt(v1*v2);
                 }                    /* Computing eigen value of matrix of covariance */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    /*v21=sqrt(1.-v11*v11); *//* error */
           }                    v21=(lc1-v1)/cv12*v11;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    v12=-v21;
         }                    v22=v11;
       }                    tnalp=v21/v11;
                      if(first1==1){
   /******/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                     }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                       fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                     /*printf(fignu*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           nhstepm = nhstepm/hstepm;                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                               if(first==1){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      first=0;
           oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset parametric;unset label");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             if (h==(int) (calagedatem+YEARM*cpt)) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             }   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             for(j=1; j<=nlstate+ndeath;j++) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               kk1=0.;kk2=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               for(i=1; i<=nlstate;i++) {                                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                          fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
    }                       first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   if (popforecast==1) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     free_ivector(popage,0,AGESUP);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_vector(popeffectif,0,AGESUP);                    }/* if first */
     free_vector(popcount,0,AGESUP);                  } /* age mod 5 */
   }                } /* end loop age */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                first=1;
   fclose(ficrespop);              } /*l12 */
 } /* End of popforecast */            } /* k12 */
           } /*l1 */
 /***********************************************/        }/* k1 */
 /**************** Main Program *****************/      } /* loop covariates */
 /***********************************************/    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 int main(int argc, char *argv[])    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    free_vector(xp,1,npar);
   double agedeb, agefin,hf;    fclose(ficresprob);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    fclose(ficresprobcov);
     fclose(ficresprobcor);
   double fret;    fflush(ficgp);
   double **xi,tmp,delta;    fflush(fichtmcov);
   }
   double dum; /* Dummy variable */  
   double ***p3mat;  
   double ***mobaverage;  /******************* Printing html file ***********/
   int *indx;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   char line[MAXLINE], linepar[MAXLINE];                    int lastpass, int stepm, int weightopt, char model[],\
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   int firstobs=1, lastobs=10;                    int popforecast, int estepm ,\
   int sdeb, sfin; /* Status at beginning and end */                    double jprev1, double mprev1,double anprev1, \
   int c,  h , cpt,l;                    double jprev2, double mprev2,double anprev2){
   int ju,jl, mi;    int jj1, k1, i1, cpt;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   int mobilav=0,popforecast=0;  </ul>");
   int hstepm, nhstepm;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   double bage, fage, age, agelim, agebase;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   double ftolpl=FTOL;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   double **prlim;     fprintf(fichtm,"\
   double *severity;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   double ***param; /* Matrix of parameters */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   double  *p;     fprintf(fichtm,"\
   double **matcov; /* Matrix of covariance */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   double ***delti3; /* Scale */     <a href=\"%s\">%s</a> <br>\n",
   double *delti; /* Scale */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   double ***eij, ***vareij;     fprintf(fichtm,"\
   double **varpl; /* Variances of prevalence limits by age */   - Population projections by age and states: \
   double *epj, vepp;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   char z[1]="c", occ;   jj1=0;
 #include <sys/time.h>   for(k1=1; k1<=m;k1++){
 #include <time.h>     for(i1=1; i1<=ncodemax[k1];i1++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       jj1++;
         if (cptcovn > 0) {
   /* long total_usecs;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      struct timeval start_time, end_time;         for (cpt=1; cpt<=cptcoveff;cpt++)
              fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   getcwd(pathcd, size);       }
        /* Pij */
   printf("\n%s\n%s",version,fullversion);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   if(argc <=1){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
     printf("\nEnter the parameter file name: ");       /* Quasi-incidences */
     scanf("%s",pathtot);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   else{  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     strcpy(pathtot,argv[1]);         /* Period (stable) prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   /*cygwin_split_path(pathtot,path,optionfile);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/         }
   /* cutv(path,optionfile,pathtot,'\\');*/       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       }
   chdir(path);     } /* end i1 */
   replace(pathc,path);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   /*-------- arguments in the command line --------*/  
   
   /* Log file */   fprintf(fichtm,"\
   strcat(filelog, optionfilefiname);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   strcat(filelog,".log");    /* */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     goto end;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
   fprintf(ficlog,"Log filename:%s\n",filelog);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficlog,"\n%s",version);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   fprintf(fichtm,"\
   fflush(ficlog);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   /* */   fprintf(fichtm,"\
   strcpy(fileres,"r");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   strcat(fileres, optionfilefiname);     <a href=\"%s\">%s</a> <br>\n</li>",
   strcat(fileres,".txt");    /* Other files have txt extension */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   /*---------arguments file --------*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   if((ficpar=fopen(optionfile,"r"))==NULL)    {             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     printf("Problem with optionfile %s\n",optionfile);   fprintf(fichtm,"\
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     goto end;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   strcpy(filereso,"o");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   strcat(filereso,fileres);   fprintf(fichtm,"\
   if((ficparo=fopen(filereso,"w"))==NULL) {   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     printf("Problem with Output resultfile: %s\n", filereso);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  
     goto end;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /* Reads comments: lines beginning with '#' */  /*      <br>",fileres,fileres,fileres,fileres); */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  else  */
     ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fgets(line, MAXLINE, ficpar);   fflush(fichtm);
     puts(line);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fputs(line,ficparo);  
   }   m=cptcoveff;
   ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   jj1=0;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   for(k1=1; k1<=m;k1++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);     for(i1=1; i1<=ncodemax[k1];i1++){
   while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
     ungetc(c,ficpar);       if (cptcovn > 0) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++)
     fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);       }
          for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   covar=matrix(0,NCOVMAX,1,n);   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  health expectancies in states (1) and (2): %s%d.png<br>\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        } /* end i1 */
   /* Read guess parameters */   }/* End k1 */
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"</ul>");
   while((c=getc(ficpar))=='#' && c!= EOF){   fflush(fichtm);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /******************* Gnuplot file **************/
     fputs(line,ficparo);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   ungetc(c,ficpar);    char dirfileres[132],optfileres[132];
       int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int ng;
   for(i=1; i <=nlstate; i++)  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     for(j=1; j <=nlstate+ndeath-1; j++){  /*     printf("Problem with file %s",optionfilegnuplot); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*   } */
       if(mle==1)  
         printf("%1d%1d",i,j);    /*#ifdef windows */
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for(k=1; k<=ncovmodel;k++){      /*#endif */
         fscanf(ficpar," %lf",&param[i][j][k]);    m=pow(2,cptcoveff);
         if(mle==1){  
           printf(" %lf",param[i][j][k]);    strcpy(dirfileres,optionfilefiname);
           fprintf(ficlog," %lf",param[i][j][k]);    strcpy(optfileres,"vpl");
         }   /* 1eme*/
         else    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficlog," %lf",param[i][j][k]);     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficparo," %lf",param[i][j][k]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       fscanf(ficpar,"\n");       fprintf(ficgp,"set xlabel \"Age\" \n\
       if(mle==1)  set ylabel \"Probability\" \n\
         printf("\n");  set ter png small\n\
       fprintf(ficlog,"\n");  set size 0.65,0.65\n\
       fprintf(ficparo,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     }  
          for (i=1; i<= nlstate ; i ++) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   p=param[1][1];       }
          fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   /* Reads comments: lines beginning with '#' */       for (i=1; i<= nlstate ; i ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fputs(line,ficparo);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */     }
   for(i=1; i <=nlstate; i++){    }
     for(j=1; j <=nlstate+ndeath-1; j++){    /*2 eme*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);   
       printf("%1d%1d",i,j);    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fscanf(ficpar,"%le",&delti3[i][j][k]);     
         printf(" %le",delti3[i][j][k]);      for (i=1; i<= nlstate+1 ; i ++) {
         fprintf(ficparo," %le",delti3[i][j][k]);        k=2*i;
       }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fscanf(ficpar,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
       printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficparo,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }  
   }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   delti=delti3[1][1];        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */        }  
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"\" t\"\" w l 0,");
     ungetc(c,ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
     puts(line);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
   ungetc(c,ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           else fprintf(ficgp,"\" t\"\" w l 0,");
   matcov=matrix(1,npar,1,npar);      }
   for(i=1; i <=npar; i++){    }
     fscanf(ficpar,"%s",&str);   
     if(mle==1)    /*3eme*/
       printf("%s",str);   
     fprintf(ficlog,"%s",str);    for (k1=1; k1<= m ; k1 ++) {
     fprintf(ficparo,"%s",str);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     for(j=1; j <=i; j++){        /*       k=2+nlstate*(2*cpt-2); */
       fscanf(ficpar," %le",&matcov[i][j]);        k=2+(nlstate+1)*(cpt-1);
       if(mle==1){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         printf(" %.5le",matcov[i][j]);        fprintf(ficgp,"set ter png small\n\
         fprintf(ficlog," %.5le",matcov[i][j]);  set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       else        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficlog," %.5le",matcov[i][j]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fscanf(ficpar,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     if(mle==1)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("\n");         
     fprintf(ficlog,"\n");        */
     fprintf(ficparo,"\n");        for (i=1; i< nlstate ; i ++) {
   }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   for(i=1; i <=npar; i++)          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     for(j=i+1;j<=npar;j++)         
       matcov[i][j]=matcov[j][i];        }
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   if(mle==1)      }
     printf("\n");    }
   fprintf(ficlog,"\n");   
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) {
   /*-------- Rewriting paramater file ----------*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
   strcpy(rfileres,"r");    /* "Rparameterfile */        k=3;
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   strcat(rfileres,".");    /* */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   strcat(rfileres,optionfilext);    /* Other files have txt extension */  set ter png small\nset size 0.65,0.65\n\
   if((ficres =fopen(rfileres,"w"))==NULL) {  unset log y\n\
     printf("Problem writing new parameter file: %s\n", fileres);goto end;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;       
   }        for (i=1; i< nlstate ; i ++)
   fprintf(ficres,"#%s\n",version);          fprintf(ficgp,"+$%d",k+i+1);
             fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   /*-------- data file ----------*/       
   if((fic=fopen(datafile,"r"))==NULL)    {        l=3+(nlstate+ndeath)*cpt;
     printf("Problem with datafile: %s\n", datafile);goto end;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   n= lastobs;        }
   severity = vector(1,maxwav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   outcome=imatrix(1,maxwav+1,1,n);      }
   num=ivector(1,n);    }  
   moisnais=vector(1,n);   
   annais=vector(1,n);    /* proba elementaires */
   moisdc=vector(1,n);    for(i=1,jk=1; i <=nlstate; i++){
   andc=vector(1,n);      for(k=1; k <=(nlstate+ndeath); k++){
   agedc=vector(1,n);        if (k != i) {
   cod=ivector(1,n);          for(j=1; j <=ncovmodel; j++){
   weight=vector(1,n);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            jk++;
   mint=matrix(1,maxwav,1,n);            fprintf(ficgp,"\n");
   anint=matrix(1,maxwav,1,n);          }
   s=imatrix(1,maxwav+1,1,n);        }
   tab=ivector(1,NCOVMAX);      }
   ncodemax=ivector(1,8);     }
   
   i=1;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   while (fgets(line, MAXLINE, fic) != NULL)    {       for(jk=1; jk <=m; jk++) {
     if ((i >= firstobs) && (i <=lastobs)) {         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
                  if (ng==2)
       for (j=maxwav;j>=1;j--){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          else
         strcpy(line,stra);           fprintf(ficgp,"\nset title \"Probability\"\n");
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         i=1;
       }         for(k2=1; k2<=nlstate; k2++) {
                    k3=i;
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);           for(k=1; k<=(nlstate+ndeath); k++) {
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);             if (k != k2){
                if(ng==2)
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);               ij=1;
       for (j=ncovcol;j>=1;j--){               for(j=3; j <=ncovmodel; j++) {
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       num[i]=atol(stra);                   ij++;
                          }
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                 else
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
       i=i+1;               fprintf(ficgp,")/(1");
     }               
   }               for(k1=1; k1 <=nlstate; k1++){  
   /* printf("ii=%d", ij);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
      scanf("%d",i);*/                 ij=1;
   imx=i-1; /* Number of individuals */                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   /* for (i=1; i<=imx; i++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                     ij++;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                   }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                   else
     }*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    /*  for (i=1; i<=imx; i++){                 }
      if (s[4][i]==9)  s[4][i]=-1;                  fprintf(ficgp,")");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/               }
                  fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  for (i=1; i<=imx; i++)               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 i=i+ncovmodel;
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;             }
      else weight[i]=1;*/           } /* end k */
          } /* end k2 */
   /* Calculation of the number of parameter from char model*/       } /* end jk */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     } /* end ng */
   Tprod=ivector(1,15);      fflush(ficgp);
   Tvaraff=ivector(1,15);   }  /* end gnuplot */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        
      /*************** Moving average **************/
   if (strlen(model) >1){ /* If there is at least 1 covariate */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */    int i, cpt, cptcod;
     j1=nbocc(model,'*'); /* j1=Number of '*' */    int modcovmax =1;
     cptcovn=j+1;     int mobilavrange, mob;
     cptcovprod=j1; /*Number of products */    double age;
       
     strcpy(modelsav,model);     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                             a covariate has 2 modalities */
       printf("Error. Non available option model=%s ",model);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     }      if(mobilav==1) mobilavrange=5; /* default */
           else mobilavrange=mobilav;
     /* This loop fills the array Tvar from the string 'model'.*/      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
     for(i=(j+1); i>=1;i--){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      /* We keep the original values on the extreme ages bage, fage and for
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       /*scanf("%d",i);*/         we use a 5 terms etc. until the borders are no more concerned.
       if (strchr(strb,'*')) {  /* Model includes a product */      */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
         if (strcmp(strc,"age")==0) { /* Vn*age */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           cptcovprod--;          for (i=1; i<=nlstate;i++){
           cutv(strb,stre,strd,'V');            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           cptcovage++;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             Tage[cptcovage]=i;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             /*printf("stre=%s ", stre);*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           cptcovprod--;            }
           cutv(strb,stre,strc,'V');          }
           Tvar[i]=atoi(stre);        }/* end age */
           cptcovage++;      }/* end mob */
           Tage[cptcovage]=i;    }else return -1;
         }    return 0;
         else {  /* Age is not in the model */  }/* End movingaverage */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  /************** Forecasting ******************/
           Tprod[k1]=i;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           Tvard[k1][1]=atoi(strc); /* m*/    /* proj1, year, month, day of starting projection
           Tvard[k1][2]=atoi(stre); /* n */       agemin, agemax range of age
           Tvar[cptcovn+k2]=Tvard[k1][1];       dateprev1 dateprev2 range of dates during which prevalence is computed
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        anproj2 year of en of projection (same day and month as proj1).
           for (k=1; k<=lastobs;k++)     */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           k1++;    int *popage;
           k2=k2+2;    double agec; /* generic age */
         }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       }    double *popeffectif,*popcount;
       else { /* no more sum */    double ***p3mat;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double ***mobaverage;
        /*  scanf("%d",i);*/    char fileresf[FILENAMELENGTH];
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    agelim=AGESUP;
       }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       strcpy(modelsav,stra);     
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    strcpy(fileresf,"f");
         scanf("%d",i);*/    strcat(fileresf,fileres);
     } /* end of loop + */    if((ficresf=fopen(fileresf,"w"))==NULL) {
   } /* end model */      printf("Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    }
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
     if (mobilav!=0) {
   scanf("%d ",i);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(fic);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /*  if(mle==1){*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if (weightopt != 1) { /* Maximisation without weights*/      }
     for(i=1;i<=n;i++) weight[i]=1.0;    }
   }  
     /*-calculation of age at interview from date of interview and age at death -*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
   agev=matrix(1,maxwav,1,imx);    if (stepm<=12) stepsize=1;
     if(estepm < stepm){
   for (i=1; i<=imx; i++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(m=2; (m<= maxwav); m++) {    }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    else  hstepm=estepm;  
         anint[m][i]=9999;  
         s[m][i]=-1;    hstepm=hstepm/stepm;
       }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){                                 fractional in yp1 */
         printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    anprojmean=yp;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    yp2=modf((yp1*12),&yp);
         s[m][i]=-1;    mprojmean=yp;
       }    yp1=modf((yp2*30.5),&yp);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    jprojmean=yp;
         printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     if(jprojmean==0) jprojmean=1;
         fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     if(mprojmean==0) jprojmean=1;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  
       }    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
   }   
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   for (i=1; i<=imx; i++)  {   
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){  /*            if (h==(int)(YEARM*yearp)){ */
         if (s[m][i] >= nlstate+1) {    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           if(agedc[i]>0)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        k=k+1;
               agev[m][i]=agedc[i];        fprintf(ficresf,"\n#******");
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(j=1;j<=cptcoveff;j++) {
             else {          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               if ((int)andc[i]!=9999){        }
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficresf,"******\n");
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                 agev[m][i]=-1;        for(j=1; j<=nlstate+ndeath;j++){
               }          for(i=1; i<=nlstate;i++)              
             }            fprintf(ficresf," p%d%d",i,j);
         }          fprintf(ficresf," p.%d",j);
         else if(s[m][i] !=9){ /* Standard case, age in fractional        }
                                  years but with the precision of a        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
                                  month */          fprintf(ficresf,"\n");
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  
             agev[m][i]=1;          for (agec=fage; agec>=(ageminpar-1); agec--){
           else if(agev[m][i] <agemin){             nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             agemin=agev[m][i];            nhstepm = nhstepm/hstepm;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }            oldm=oldms;savm=savms;
           else if(agev[m][i] >agemax){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             agemax=agev[m][i];         
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for (h=0; h<=nhstepm; h++){
           }              if (h*hstepm/YEARM*stepm ==yearp) {
           /*agev[m][i]=anint[m][i]-annais[i];*/                fprintf(ficresf,"\n");
           /*     agev[m][i] = age[i]+2*m;*/                for(j=1;j<=cptcoveff;j++)
         }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         else { /* =9 */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           agev[m][i]=1;              }
           s[m][i]=-1;              for(j=1; j<=nlstate+ndeath;j++) {
         }                ppij=0.;
       }                for(i=1; i<=nlstate;i++) {
       else /*= 0 Unknown */                  if (mobilav==1)
         agev[m][i]=1;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     }                  else {
                         ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   for (i=1; i<=imx; i++)  {                  if (h*hstepm/YEARM*stepm== yearp) {
     for(m=firstpass; (m<=lastpass); m++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       if (s[m][i] > (nlstate+ndeath)) {                  }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                     } /* end i */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                     if (h*hstepm/YEARM*stepm==yearp) {
         goto end;                  fprintf(ficresf," %.3f", ppij);
       }                }
     }              }/* end j */
   }            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*for (i=1; i<=imx; i++){          } /* end agec */
   for (m=firstpass; (m<lastpass); m++){        } /* end yearp */
      printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);      } /* end cptcod */
 }    } /* end  cptcov */
          
 }*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fclose(ficresf);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   }
   
   free_vector(severity,1,maxwav);  /************** Forecasting *****not tested NB*************/
   free_imatrix(outcome,1,maxwav+1,1,n);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   free_vector(moisnais,1,n);   
   free_vector(annais,1,n);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   /* free_matrix(mint,1,maxwav,1,n);    int *popage;
      free_matrix(anint,1,maxwav,1,n);*/    double calagedatem, agelim, kk1, kk2;
   free_vector(moisdc,1,n);    double *popeffectif,*popcount;
   free_vector(andc,1,n);    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
        char filerespop[FILENAMELENGTH];
   wav=ivector(1,imx);  
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    agelim=AGESUP;
        calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   /* Concatenates waves */   
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */   
     strcpy(filerespop,"pop");
   Tcode=ivector(1,100);    strcat(filerespop,fileres);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   ncodemax[1]=1;      printf("Problem with forecast resultfile: %s\n", filerespop);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           }
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     printf("Computing forecasting: result on file '%s' \n", filerespop);
                                  the estimations*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   h=0;  
   m=pow(2,cptcoveff);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   for(k=1;k<=cptcoveff; k++){    if (mobilav!=0) {
     for(i=1; i <=(m/pow(2,k));i++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1; j <= ncodemax[k]; j++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           h++;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      }
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }
         }   
       }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     }    if (stepm<=12) stepsize=1;
   }    
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     agelim=AGESUP;
      codtab[1][2]=1;codtab[2][2]=2; */   
   /* for(i=1; i <=m ;i++){     hstepm=1;
      for(k=1; k <=cptcovn; k++){    hstepm=hstepm/stepm;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   
      }    if (popforecast==1) {
      printf("\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
      }        printf("Problem with population file : %s\n",popfile);exit(0);
      scanf("%d",i);*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
           }
   /* Calculates basic frequencies. Computes observed prevalence at single age      popage=ivector(0,AGESUP);
      and prints on file fileres'p'. */      popeffectif=vector(0,AGESUP);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      popcount=vector(0,AGESUP);
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      i=1;  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      imx=i;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         }
      
   /* For Powell, parameters are in a vector p[] starting at p[1]    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        k=k+1;
         fprintf(ficrespop,"\n#******");
   if(mle>=1){ /* Could be 1 or 2 */        for(j=1;j<=cptcoveff;j++) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }        }
             fprintf(ficrespop,"******\n");
   /*--------- results files --------------*/        fprintf(ficrespop,"# Age");
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           if (popforecast==1)  fprintf(ficrespop," [Population]");
        
   jk=1;        for (cpt=0; cpt<=0;cpt++) {
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   for(i=1,jk=1; i <=nlstate; i++){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     for(k=1; k <=(nlstate+ndeath); k++){            nhstepm = nhstepm/hstepm;
       if (k != i)            
         {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           printf("%d%d ",i,k);            oldm=oldms;savm=savms;
           fprintf(ficlog,"%d%d ",i,k);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficres,"%1d%1d ",i,k);         
           for(j=1; j <=ncovmodel; j++){            for (h=0; h<=nhstepm; h++){
             printf("%f ",p[jk]);              if (h==(int) (calagedatem+YEARM*cpt)) {
             fprintf(ficlog,"%f ",p[jk]);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
             fprintf(ficres,"%f ",p[jk]);              }
             jk++;               for(j=1; j<=nlstate+ndeath;j++) {
           }                kk1=0.;kk2=0;
           printf("\n");                for(i=1; i<=nlstate;i++) {              
           fprintf(ficlog,"\n");                  if (mobilav==1)
           fprintf(ficres,"\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         }                  else {
     }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   }                  }
   if(mle!=0){                }
     /* Computing hessian and covariance matrix */                if (h==(int)(calagedatem+12*cpt)){
     ftolhess=ftol; /* Usually correct */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     hesscov(matcov, p, npar, delti, ftolhess, func);                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                }
   printf("# Scales (for hessian or gradient estimation)\n");              }
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");              for(i=1; i<=nlstate;i++){
   for(i=1,jk=1; i <=nlstate; i++){                kk1=0.;
     for(j=1; j <=nlstate+ndeath; j++){                  for(j=1; j<=nlstate;j++){
       if (j!=i) {                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
         fprintf(ficres,"%1d%1d",i,j);                  }
         printf("%1d%1d",i,j);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
         fprintf(ficlog,"%1d%1d",i,j);              }
         for(k=1; k<=ncovmodel;k++){  
           printf(" %.5e",delti[jk]);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
           fprintf(ficlog," %.5e",delti[jk]);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
           fprintf(ficres," %.5e",delti[jk]);            }
           jk++;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          }
         printf("\n");        }
         fprintf(ficlog,"\n");   
         fprintf(ficres,"\n");    /******/
       }  
     }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
              for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   if(mle==1)            nhstepm = nhstepm/hstepm;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1,k=1;i<=npar;i++){            oldm=oldms;savm=savms;
     /*  if (k>nlstate) k=1;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         i1=(i-1)/(ncovmodel*nlstate)+1;             for (h=0; h<=nhstepm; h++){
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              if (h==(int) (calagedatem+YEARM*cpt)) {
         printf("%s%d%d",alph[k],i1,tab[i]);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     */              }
     fprintf(ficres,"%3d",i);              for(j=1; j<=nlstate+ndeath;j++) {
     if(mle==1)                kk1=0.;kk2=0;
       printf("%3d",i);                for(i=1; i<=nlstate;i++) {              
     fprintf(ficlog,"%3d",i);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     for(j=1; j<=i;j++){                }
       fprintf(ficres," %.5e",matcov[i][j]);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       if(mle==1)              }
         printf(" %.5e",matcov[i][j]);            }
       fprintf(ficlog," %.5e",matcov[i][j]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }          }
     fprintf(ficres,"\n");        }
     if(mle==1)     }
       printf("\n");    }
     fprintf(ficlog,"\n");   
     k++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
        if (popforecast==1) {
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ivector(popage,0,AGESUP);
     ungetc(c,ficpar);      free_vector(popeffectif,0,AGESUP);
     fgets(line, MAXLINE, ficpar);      free_vector(popcount,0,AGESUP);
     puts(line);    }
     fputs(line,ficparo);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    fclose(ficrespop);
   } /* End of popforecast */
   estepm=0;  
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  int fileappend(FILE *fichier, char *optionfich)
   if (estepm==0 || estepm < stepm) estepm=stepm;  {
   if (fage <= 2) {    if((fichier=fopen(optionfich,"a"))==NULL) {
     bage = ageminpar;      printf("Problem with file: %s\n", optionfich);
     fage = agemaxpar;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   }      return (0);
        }
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fflush(fichier);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    return (1);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  }
      
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /**************** function prwizard **********************/
     fgets(line, MAXLINE, ficpar);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     puts(line);  {
     fputs(line,ficparo);  
   }    /* Wizard to print covariance matrix template */
   ungetc(c,ficpar);  
       char ca[32], cb[32], cc[32];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    int numlinepar;
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
        for(i=1; i <=nlstate; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      jj=0;
     ungetc(c,ficpar);      for(j=1; j <=nlstate+ndeath; j++){
     fgets(line, MAXLINE, ficpar);        if(j==i) continue;
     puts(line);        jj++;
     fputs(line,ficparo);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   }        printf("%1d%1d",i,j);
   ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i,j);
          for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;          printf(" 0.");
           fprintf(ficparo," 0.");
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);           printf("\n");
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficparo,"\n");
         }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("# Scales (for hessian or gradient estimation)\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     puts(line);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     fputs(line,ficparo);    for(i=1; i <=nlstate; i++){
   }      jj=0;
   ungetc(c,ficpar);      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);        jj++;
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fprintf(ficparo,"%1d%1d",i,j);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        printf("%1d%1d",i,j);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fflush(stdout);
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        for(k=1; k<=ncovmodel;k++){
   /* day and month of proj2 are not used but only year anproj2.*/          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   while((c=getc(ficpar))=='#' && c!= EOF){          printf(" 0.");
     ungetc(c,ficpar);          fprintf(ficparo," 0.");
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        numlinepar++;
     fputs(line,ficparo);        printf("\n");
   }        fprintf(ficparo,"\n");
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    printf("# Covariance matrix\n");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /* # 121 Var(a12)\n\ */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /*------------ gnuplot -------------*/  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   strcpy(optionfilegnuplot,optionfilefiname);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   strcat(optionfilegnuplot,".gp");    fflush(stdout);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficparo,"# Covariance matrix\n");
     printf("Problem with file %s",optionfilegnuplot);    /* # 121 Var(a12)\n\ */
   }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   else{    /* #   ...\n\ */
     fprintf(ficgp,"\n# %s\n", version);     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    
     fprintf(ficgp,"set missing 'NaNq'\n");    for(itimes=1;itimes<=2;itimes++){
   }      jj=0;
   fclose(ficgp);      for(i=1; i <=nlstate; i++){
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        for(j=1; j <=nlstate+ndeath; j++){
   /*--------- index.htm --------*/          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
   strcpy(optionfilehtm,optionfile);            jj++;
   strcat(optionfilehtm,".htm");            ca[0]= k+'a'-1;ca[1]='\0';
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            if(itimes==1){
     printf("Problem with %s \n",optionfilehtm), exit(0);              printf("#%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              printf("%1d%1d%d",i,j,k);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficparo,"%1d%1d%d",i,j,k);
 \n              /*  printf(" %.5le",matcov[i][j]); */
 Total number of observations=%d <br>\n            }
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n            ll=0;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            for(li=1;li <=nlstate; li++){
 <hr  size=\"2\" color=\"#EC5E5E\">              for(lj=1;lj <=nlstate+ndeath; lj++){
  <ul><li><h4>Parameter files</h4>\n                if(lj==li) continue;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                for(lk=1;lk<=ncovmodel;lk++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                  ll++;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                  if(ll<=jj){
    fclose(fichtm);                    cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                      if(itimes==1){
                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /*------------ free_vector  -------------*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   chdir(path);                      }else{
                          printf(" 0.");
   free_ivector(wav,1,imx);                        fprintf(ficparo," 0.");
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                      }
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);                    }else{
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                         if(itimes==1){
   free_ivector(num,1,n);                        printf(" Var(%s%1d%1d)",ca,i,j);
   free_vector(agedc,1,n);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   /*free_matrix(covar,0,NCOVMAX,1,n);*/                      }else{
   /*free_matrix(covar,1,NCOVMAX,1,n);*/                        printf(" 0.");
   fclose(ficparo);                        fprintf(ficparo," 0.");
   fclose(ficres);                      }
                     }
                   }
   /*--------------- Prevalence limit  (stable prevalence) --------------*/                } /* end lk */
                 } /* end lj */
   strcpy(filerespl,"pl");            } /* end li */
   strcat(filerespl,fileres);            printf("\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            fprintf(ficparo,"\n");
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;            numlinepar++;
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;          } /* end k*/
   }        } /*end j */
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);      } /* end i */
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    } /* end itimes */
   fprintf(ficrespl,"#Stable prevalence \n");  
   fprintf(ficrespl,"#Age ");  } /* end of prwizard */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /******************* Gompertz Likelihood ******************************/
   fprintf(ficrespl,"\n");  double gompertz(double x[])
     {
   prlim=matrix(1,nlstate,1,nlstate);    double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   agebase=ageminpar;  
   agelim=agemaxpar;    for (i=0;i<=imx-1 ; i++) {
   ftolpl=1.e-10;      sump=sump+weight[i];
   i1=cptcoveff;      /*    sump=sump+1;*/
   if (cptcovn < 1){i1=1;}      num=num+1;
     }
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
       k=k+1;    /* for (i=0; i<=imx; i++)
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       fprintf(ficrespl,"\n#******");  
       printf("\n#******");    for (i=1;i<=imx ; i++)
       fprintf(ficlog,"\n#******");      {
       for(j=1;j<=cptcoveff;j++) {        if (cens[i] == 1 && wav[i]>1)
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (cens[i] == 0 && wav[i]>1)
       }          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       fprintf(ficrespl,"******\n");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       printf("******\n");       
       fprintf(ficlog,"******\n");        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                 if (wav[i] > 1 ) { /* ??? */
       for (age=agebase; age<=agelim; age++){          L=L+A*weight[i];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         fprintf(ficrespl,"%.0f ",age );        }
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         for(i=1; i<=nlstate;i++)   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);   
         fprintf(ficrespl,"\n");    return -2*L*num/sump;
       }  }
     }  
   }  /******************* Printing html file ***********/
   fclose(ficrespl);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   /*------------- h Pij x at various ages ------------*/                    int imx,  double p[],double **matcov,double agemortsup){
       int i,k;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    for (i=1;i<=2;i++)
   }      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    fprintf(fichtm,"</ul>");
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   /*if (stepm<=24) stepsize=2;*/  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */   for (k=agegomp;k<(agemortsup-2);k++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   /* hstepm=1;   aff par mois*/   
     fflush(fichtm);
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");  }
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Gnuplot file **************/
       k=k+1;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficrespij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)     char dirfileres[132],optfileres[132];
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fprintf(ficrespij,"******\n");    int ng;
           
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /*#ifdef windows */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
         /*        nhstepm=nhstepm*YEARM; aff par mois*/  
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(dirfileres,optionfilefiname);
         oldm=oldms;savm=savms;    strcpy(optfileres,"vpl");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"set out \"graphmort.png\"\n ");
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
         for(i=1; i<=nlstate;i++)    fprintf(ficgp, "set ter png small\n set log y\n");
           for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficgp, "set size 0.65,0.65\n");
             fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         fprintf(ficrespij,"\n");  
         for (h=0; h<=nhstepm; h++){  }
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
           fprintf(ficrespij,"\n");  
         }  /***********************************************/
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /**************** Main Program *****************/
         fprintf(ficrespij,"\n");  /***********************************************/
       }  
     }  int main(int argc, char *argv[])
   }  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
   fclose(ficrespij);    int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int itimes;
     int NDIM=2;
   /*---------- Forecasting ------------------*/  
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    char ca[32], cb[32], cc[32];
   if(prevfcast==1){    char dummy[]="                         ";
     /*    if(stepm ==1){*/    /*  FILE *fichtm; *//* Html File */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);    /* FILE *ficgp;*/ /*Gnuplot File */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    struct stat info;
 /*      }  */    double agedeb, agefin,hf;
 /*      else{ */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 /*        erreur=108; */  
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    double fret;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    double **xi,tmp,delta;
 /*      } */  
   }    double dum; /* Dummy variable */
       double ***p3mat;
     double ***mobaverage;
   /*---------- Health expectancies and variances ------------*/    int *indx;
     char line[MAXLINE], linepar[MAXLINE];
   strcpy(filerest,"t");    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   strcat(filerest,fileres);    char pathr[MAXLINE], pathimach[MAXLINE];
   if((ficrest=fopen(filerest,"w"))==NULL) {    char **bp, *tok, *val; /* pathtot */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    int firstobs=1, lastobs=10;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    int sdeb, sfin; /* Status at beginning and end */
   }    int c,  h , cpt,l;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     int ju,jl, mi;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   strcpy(filerese,"e");    int mobilav=0,popforecast=0;
   strcat(filerese,fileres);    int hstepm, nhstepm;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int agemortsup;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    float  sumlpop=0.;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
   strcpy(fileresv,"v");    double **prlim;
   strcat(fileresv,fileres);    double *severity;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double ***param; /* Matrix of parameters */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double  *p;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    double **matcov; /* Matrix of covariance */
   }    double ***delti3; /* Scale */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double *delti; /* Scale */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    double *epj, vepp;
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    double kk1, kk2;
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    double **ximort;
   */    char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char z[1]="c", occ;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    char  *strt, strtend[80];
     }    char *stratrunc;
   }    int lstra;
   
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    long total_usecs;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
       k=k+1;   /*   setlocale (LC_ALL, ""); */
       fprintf(ficrest,"\n#****** ");  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
       for(j=1;j<=cptcoveff;j++)   /*   textdomain (PACKAGE); */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   setlocale (LC_CTYPE, ""); */
       fprintf(ficrest,"******\n");  /*   setlocale (LC_MESSAGES, ""); */
   
       fprintf(ficreseij,"\n#****** ");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       for(j=1;j<=cptcoveff;j++)     (void) gettimeofday(&start_time,&tzp);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    curr_time=start_time;
       fprintf(ficreseij,"******\n");    tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
       fprintf(ficresvij,"\n#****** ");    strcpy(strstart,asctime(&tm));
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  printf("Localtime (at start)=%s",strstart); */
       fprintf(ficresvij,"******\n");  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       oldm=oldms;savm=savms;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    /*   tmg.tm_hour=tmg.tm_hour + 1; */
    /*   tp.tv_sec = mktime(&tmg); */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*   strt=asctime(&tmg); */
       oldm=oldms;savm=savms;  /*   printf("Time(after) =%s",strstart);  */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);  /*  (void) time (&time_value);
       if(popbased==1){  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);  *  tm = *localtime(&time_value);
       }  *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
    */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    nberr=0; /* Number of errors and warnings */
       fprintf(ficrest,"\n");    nbwarn=0;
     getcwd(pathcd, size);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    printf("\n%s\n%s",version,fullversion);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if(argc <=1){
         if (popbased==1) {      printf("\nEnter the parameter file name: ");
           if(mobilav ==0){      fgets(pathr,FILENAMELENGTH,stdin);
             for(i=1; i<=nlstate;i++)      i=strlen(pathr);
               prlim[i][i]=probs[(int)age][i][k];      if(pathr[i-1]=='\n')
           }else{ /* mobilav */         pathr[i-1]='\0';
             for(i=1; i<=nlstate;i++)     for (tok = pathr; tok != NULL; ){
               prlim[i][i]=mobaverage[(int)age][i][k];        printf("Pathr |%s|\n",pathr);
           }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         }        printf("val= |%s| pathr=%s\n",val,pathr);
                 strcpy (pathtot, val);
         fprintf(ficrest," %4.0f",age);        if(pathr[0] == '\0') break; /* Dirty */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    else{
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      strcpy(pathtot,argv[1]);
           }    }
           epj[nlstate+1] +=epj[j];    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         }    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         for(i=1, vepp=0.;i <=nlstate;i++)    /* cutv(path,optionfile,pathtot,'\\');*/
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    /* Split argv[0], imach program to get pathimach */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
         for(j=1;j <=nlstate;j++){    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
         }   /*   strcpy(pathimach,argv[0]); */
         fprintf(ficrest,"\n");    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    chdir(path); /* Can be a relative path */
       free_vector(epj,1,nlstate+1);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
     }      printf("Current directory %s!\n",pathcd);
   }    strcpy(command,"mkdir ");
   free_vector(weight,1,n);    strcat(command,optionfilefiname);
   free_imatrix(Tvard,1,15,1,2);    if((outcmd=system(command)) != 0){
   free_imatrix(s,1,maxwav+1,1,n);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   free_matrix(anint,1,maxwav,1,n);       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   free_matrix(mint,1,maxwav,1,n);      /* fclose(ficlog); */
   free_ivector(cod,1,n);  /*     exit(1); */
   free_ivector(tab,1,NCOVMAX);    }
   fclose(ficreseij);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   fclose(ficresvij);  /*     perror("mkdir"); */
   fclose(ficrest);  /*   } */
   fclose(ficpar);  
       /*-------- arguments in the command line --------*/
   /*------- Variance of stable prevalence------*/     
     /* Log file */
   strcpy(fileresvpl,"vpl");    strcat(filelog, optionfilefiname);
   strcat(fileresvpl,fileres);    strcat(filelog,".log");    /* */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if((ficlog=fopen(filelog,"w"))==NULL)    {
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      printf("Problem with logfile %s\n",filelog);
     exit(0);      goto end;
   }    }
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    fprintf(ficlog,"\nEnter the parameter file name: \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
       k=k+1;   path=%s \n\
       fprintf(ficresvpl,"\n#****** ");   optionfile=%s\n\
       for(j=1;j<=cptcoveff;j++)    optionfilext=%s\n\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficresvpl,"******\n");  
           printf("Local time (at start):%s",strstart);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficlog,"Local time (at start): %s",strstart);
       oldm=oldms;savm=savms;    fflush(ficlog);
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*   (void) gettimeofday(&curr_time,&tzp); */
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     }  
   }    /* */
     strcpy(fileres,"r");
   fclose(ficresvpl);    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   /*---------- End : free ----------------*/  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /*---------arguments file --------*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf("Problem with optionfile %s\n",optionfile);
         fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   free_matrix(covar,0,NCOVMAX,1,n);      fflush(ficlog);
   free_matrix(matcov,1,npar,1,npar);      goto end;
   /*free_vector(delti,1,npar);*/    }
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(filereso,"o");
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   free_ivector(ncodemax,1,8);      printf("Problem with Output resultfile: %s\n", filereso);
   free_ivector(Tvar,1,15);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   free_ivector(Tprod,1,15);      fflush(ficlog);
   free_ivector(Tvaraff,1,15);      goto end;
   free_ivector(Tage,1,15);    }
   free_ivector(Tcode,1,100);  
     /* Reads comments: lines beginning with '#' */
   /*  fclose(fichtm);*/    numlinepar=0;
   /*  fclose(ficgp);*/ /* ALready done */    while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   if(erreur >0){      numlinepar++;
     printf("End of Imach with error or warning %d\n",erreur);      puts(line);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      fputs(line,ficparo);
   }else{      fputs(line,ficlog);
    printf("End of Imach\n");    }
    fprintf(ficlog,"End of Imach\n");    ungetc(c,ficpar);
   }  
   printf("See log file on %s\n",filelog);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   fclose(ficlog);    numlinepar++;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fflush(ficlog);
   /*------ End -----------*/    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   end:      fgets(line, MAXLINE, ficpar);
 #ifdef windows      numlinepar++;
   /* chdir(pathcd);*/      puts(line);
 #endif       fputs(line,ficparo);
  /*system("wgnuplot graph.plt");*/      fputs(line,ficlog);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    }
  /*system("cd ../gp37mgw");*/    ungetc(c,ficpar);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
   strcpy(plotcmd,GNUPLOTPROGRAM);     
   strcat(plotcmd," ");    covar=matrix(0,NCOVMAX,1,n);
   strcat(plotcmd,optionfilegnuplot);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   system(plotcmd);  
   printf(" Wait...");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
  /*#ifdef windows*/    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   while (z[0] != 'q') {  
     /* chdir(path); */    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    delti=delti3[1][1];
     scanf("%s",z);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if (z[0] == 'c') system("./imach");    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     else if (z[0] == 'e') system(optionfilehtm);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     else if (z[0] == 'g') system(plotcmd);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     else if (z[0] == 'q') exit(0);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   }      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   /*#endif */      fclose (ficparo);
 }      fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.84  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>