Diff for /imach/src/imach.c between versions 1.36 and 1.84

version 1.36, 2002/03/29 15:27:27 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   This program computes Healthy Life Expectancies from    place. It differs from routine "prevalence" which may be called
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    many times. Probs is memory consuming and must be used with
   first survey ("cross") where individuals from different ages are    parcimony.
   interviewed on their health status or degree of disability (in the    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.83  2003/06/10 13:39:11  lievre
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.82  2003/06/05 15:57:20  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Add log in  imach.c and  fullversion number is now printed.
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave  */
   conditional to be observed in state i at the first wave. Therefore  /*
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where     Interpolated Markov Chain
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Short summary of the programme:
   where the markup *Covariates have to be included here again* invites    
   you to do it.  More covariates you add, slower the    This program computes Healthy Life Expectancies from
   convergence.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   The advantage of this computer programme, compared to a simple    interviewed on their health status or degree of disability (in the
   multinomial logistic model, is clear when the delay between waves is not    case of a health survey which is our main interest) -2- at least a
   identical for each individual. Also, if a individual missed an    second wave of interviews ("longitudinal") which measure each change
   intermediate interview, the information is lost, but taken into    (if any) in individual health status.  Health expectancies are
   account using an interpolation or extrapolation.      computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be observed in state i at age x+h    Maximum Likelihood of the parameters involved in the model.  The
   conditional to the observed state i at age x. The delay 'h' can be    simplest model is the multinomial logistic model where pij is the
   split into an exact number (nh*stepm) of unobserved intermediate    probability to be observed in state j at the second wave
   states. This elementary transition (by month or quarter trimester,    conditional to be observed in state i at the first wave. Therefore
   semester or year) is model as a multinomial logistic.  The hPx    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply    complex model than "constant and age", you should modify the program
   hPijx.    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   Also this programme outputs the covariance matrix of the parameters but also    convergence.
   of the life expectancies. It also computes the prevalence limits.  
      The advantage of this computer programme, compared to a simple
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    multinomial logistic model, is clear when the delay between waves is not
            Institut national d'études démographiques, Paris.    identical for each individual. Also, if a individual missed an
   This software have been partly granted by Euro-REVES, a concerted action    intermediate interview, the information is lost, but taken into
   from the European Union.    account using an interpolation or extrapolation.  
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    hPijx is the probability to be observed in state i at age x+h
   can be accessed at http://euroreves.ined.fr/imach .    conditional to the observed state i at age x. The delay 'h' can be
   **********************************************************************/    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 #include <math.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdio.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <stdlib.h>    and the contribution of each individual to the likelihood is simply
 #include <unistd.h>    hPijx.
   
 #define MAXLINE 256    Also this programme outputs the covariance matrix of the parameters but also
 #define GNUPLOTPROGRAM "wgnuplot"    of the life expectancies. It also computes the stable prevalence. 
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
 #define windows    This software have been partly granted by Euro-REVES, a concerted action
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    from the European Union.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    can be accessed at http://euroreves.ined.fr/imach .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define NINTERVMAX 8    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    **********************************************************************/
 #define NCOVMAX 8 /* Maximum number of covariates */  /*
 #define MAXN 20000    main
 #define YEARM 12. /* Number of months per year */    read parameterfile
 #define AGESUP 130    read datafile
 #define AGEBASE 40    concatwav
     freqsummary
     if (mle >= 1)
 int erreur; /* Error number */      mlikeli
 int nvar;    print results files
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    if mle==1 
 int npar=NPARMAX;       computes hessian
 int nlstate=2; /* Number of live states */    read end of parameter file: agemin, agemax, bage, fage, estepm
 int ndeath=1; /* Number of dead states */        begin-prev-date,...
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open gnuplot file
 int popbased=0;    open html file
     stable prevalence
 int *wav; /* Number of waves for this individuual 0 is possible */     for age prevalim()
 int maxwav; /* Maxim number of waves */    h Pij x
 int jmin, jmax; /* min, max spacing between 2 waves */    variance of p varprob
 int mle, weightopt;    forecasting if prevfcast==1 prevforecast call prevalence()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    health expectancies
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Variance-covariance of DFLE
 double jmean; /* Mean space between 2 waves */    prevalence()
 double **oldm, **newm, **savm; /* Working pointers to matrices */     movingaverage()
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varevsij() 
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    if popbased==1 varevsij(,popbased)
 FILE *ficgp,*ficresprob,*ficpop;    total life expectancies
 FILE *ficreseij;    Variance of stable prevalence
   char filerese[FILENAMELENGTH];   end
  FILE  *ficresvij;  */
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  
    
 #define NR_END 1  #include <math.h>
 #define FREE_ARG char*  #include <stdio.h>
 #define FTOL 1.0e-10  #include <stdlib.h>
   #include <unistd.h>
 #define NRANSI  
 #define ITMAX 200  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define TOL 2.0e-4  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 #define CGOLD 0.3819660  /*#define DEBUG*/
 #define ZEPS 1.0e-10  #define windows
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define GOLD 1.618034  
 #define GLIMIT 100.0  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TINY 1.0e-20  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 static double maxarg1,maxarg2;  #define NINTERVMAX 8
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXN 20000
 #define rint(a) floor(a+0.5)  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 static double sqrarg;  #define AGEBASE 40
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #ifdef windows
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 int imx;  #else
 int stepm;  #define DIRSEPARATOR '/'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '\\'
   #endif
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $Id$ */
   /* $State$ */
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fullversion[]="$Revision$ $Date$"; 
 double **pmmij, ***probs, ***mobaverage;  int erreur; /* Error number */
 double dateintmean=0;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double *weight;  int npar=NPARMAX;
 int **s; /* Status */  int nlstate=2; /* Number of live states */
 double *agedc, **covar, idx;  int ndeath=1; /* Number of dead states */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /**************** split *************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    char *s;                             /* pointer */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int  l1, l2;                         /* length counters */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l1 = strlen( path );                 /* length of path */  double jmean; /* Mean space between 2 waves */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #ifdef windows  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    s = strrchr( path, '\\' );           /* find last / */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #else  FILE *ficlog, *ficrespow;
    s = strrchr( path, '/' );            /* find last / */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *fichtm; /* Html File */
 #if     defined(__bsd__)                /* get current working directory */  FILE *ficreseij;
       extern char       *getwd( );  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
       if ( getwd( dirc ) == NULL ) {  char fileresv[FILENAMELENGTH];
 #else  FILE  *ficresvpl;
       extern char       *getcwd( );  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       strcpy( name, path );             /* we've got it */  char filelog[FILENAMELENGTH]; /* Log file */
    } else {                             /* strip direcotry from path */  char filerest[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char fileregp[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char popfile[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define NR_END 1
    }  #define FREE_ARG char*
    l1 = strlen( dirc );                 /* length of directory */  #define FTOL 1.0e-10
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define NRANSI 
 #else  #define ITMAX 200 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  #define TOL 2.0e-4 
    s = strrchr( name, '.' );            /* find last / */  
    s++;  #define CGOLD 0.3819660 
    strcpy(ext,s);                       /* save extension */  #define ZEPS 1.0e-10 
    l1= strlen( name);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  #define GOLD 1.618034 
    finame[l1-l2]= 0;  #define GLIMIT 100.0 
    return( 0 );                         /* we're done */  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void replace(char *s, char*t)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   int i;  
   int lg=20;  static double sqrarg;
   i=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   lg=strlen(t);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  int imx; 
     if (t[i]== '\\') s[i]='/';  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 int nbocc(char *s, char occ)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int i,j=0;  int m,nb;
   int lg=20;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   i=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   lg=strlen(s);  double **pmmij, ***probs;
   for(i=0; i<= lg; i++) {  double dateintmean=0;
   if  (s[i] == occ ) j++;  
   }  double *weight;
   return j;  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void cutv(char *u,char *v, char*t, char occ)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int i,lg,j,p=0;  double ftolhess; /* Tolerance for computing hessian */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /**************** split *************************/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
     char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1, l2;                         /* length counters */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      u[p]='\0';    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
    for(j=0; j<= lg; j++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (j>=(p+1))(v[j-p-1] = t[j]);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   }      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /********************** nrerror ********************/        return( GLOCK_ERROR_GETCWD );
       }
 void nrerror(char error_text[])      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   fprintf(stderr,"ERREUR ...\n");      ss++;                               /* after this, the filename */
   fprintf(stderr,"%s\n",error_text);      l2 = strlen( ss );                  /* length of filename */
   exit(1);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
 /*********************** vector *******************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double *vector(int nl, int nh)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   double *v;    l1 = strlen( dirc );                  /* length of directory */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #ifdef windows
   if (!v) nrerror("allocation failure in vector");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return v-nl+NR_END;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /************************ free vector ******************/    ss = strrchr( name, '.' );            /* find last / */
 void free_vector(double*v, int nl, int nh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(v+nl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /************************ivector *******************************/    finame[l1-l2]= 0;
 int *ivector(long nl,long nh)    return( 0 );                          /* we're done */
 {  }
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /******************************************/
   return v-nl+NR_END;  
 }  void replace(char *s, char*t)
   {
 /******************free ivector **************************/    int i;
 void free_ivector(int *v, long nl, long nh)    int lg=20;
 {    i=0;
   free((FREE_ARG)(v+nl-NR_END));    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /******************* imatrix *******************************/      if (t[i]== '\\') s[i]='/';
 int **imatrix(long nrl, long nrh, long ncl, long nch)    }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  }
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int nbocc(char *s, char occ)
   int **m;  {
      int i,j=0;
   /* allocate pointers to rows */    int lg=20;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(s);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;    if  (s[i] == occ ) j++;
      }
      return j;
   /* allocate rows and set pointers to them */  }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   /* return pointer to array of pointers to rows */    i=0;
   return m;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    lg=strlen(t);
       int **m;    for(j=0; j<p; j++) {
       long nch,ncl,nrh,nrl;      (u[j] = t[j]);
      /* free an int matrix allocated by imatrix() */    }
 {       u[p]='\0';
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /********************** nrerror ********************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  void nrerror(char error_text[])
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    fprintf(stderr,"ERREUR ...\n");
   if (!m) nrerror("allocation failure 1 in matrix()");    fprintf(stderr,"%s\n",error_text);
   m += NR_END;    exit(EXIT_FAILURE);
   m -= nrl;  }
   /*********************** vector *******************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *vector(int nl, int nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    double *v;
   m[nrl] -= ncl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return v-nl+NR_END;
   return m;  }
 }  
   /************************ free vector ******************/
 /*************************free matrix ************************/  void free_vector(double*v, int nl, int nh)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ivector *******************************/
   char *cvector(long nl,long nh)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    char *v;
 {    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if (!v) nrerror("allocation failure in cvector");
   double ***m;    return v-nl+NR_END;
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************free ivector **************************/
   m += NR_END;  void free_cvector(char *v, long nl, long nh)
   m -= nrl;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /************************ivector *******************************/
   m[nrl] -= ncl;  int *ivector(long nl,long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if (!v) nrerror("allocation failure in ivector");
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    return v-nl+NR_END;
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /******************free ivector **************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  void free_ivector(int *v, long nl, long nh)
    {
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG)(v+nl-NR_END));
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   return m;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /*************************free ma3x ************************/    int **m; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    /* allocate pointers to rows */ 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG)(m+nrl-NR_END));    m += NR_END; 
 }    m -= nrl; 
     
 /***************** f1dim *************************/    
 extern int ncom;    /* allocate rows and set pointers to them */ 
 extern double *pcom,*xicom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 extern double (*nrfunc)(double []);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
 double f1dim(double x)    m[nrl] -= ncl; 
 {    
   int j;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double f;    
   double *xt;    /* return pointer to array of pointers to rows */ 
      return m; 
   xt=vector(1,ncom);  } 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /****************** free_imatrix *************************/
   free_vector(xt,1,ncom);  void free_imatrix(m,nrl,nrh,ncl,nch)
   return f;        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /*****************brent *************************/  { 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int iter;  } 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************* matrix *******************************/
   double ftemp;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   x=w=v=bx;    if (!m) nrerror("allocation failure 1 in matrix()");
   fw=fv=fx=(*f)(x);    m += NR_END;
   for (iter=1;iter<=ITMAX;iter++) {    m -= nrl;
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf(".");fflush(stdout);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       *xmin=x;     */
       return fx;  }
     }  
     ftemp=fu;  /*************************free matrix ************************/
     if (fabs(e) > tol1) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       p=(x-v)*q-(x-w)*r;    free((FREE_ARG)(m+nrl-NR_END));
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************* ma3x *******************************/
       etemp=e;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    double ***m;
       else {  
         d=p/q;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         u=x+d;    if (!m) nrerror("allocation failure 1 in matrix()");
         if (u-a < tol2 || b-u < tol2)    m += NR_END;
           d=SIGN(tol1,xm-x);    m -= nrl;
       }  
     } else {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] -= ncl;
     fu=(*f)(u);  
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         } else {    m[nrl][ncl] += NR_END;
           if (u < x) a=u; else b=u;    m[nrl][ncl] -= nll;
           if (fu <= fw || w == x) {    for (j=ncl+1; j<=nch; j++) 
             v=w;      m[nrl][j]=m[nrl][j-1]+nlay;
             w=u;    
             fv=fw;    for (i=nrl+1; i<=nrh; i++) {
             fw=fu;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           } else if (fu <= fv || v == x || v == w) {      for (j=ncl+1; j<=nch; j++) 
             v=u;        m[i][j]=m[i][j-1]+nlay;
             fv=fu;    }
           }    return m; 
         }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   nrerror("Too many iterations in brent");    */
   *xmin=x;  }
   return fx;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             double (*func)(double))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /***************** f1dim *************************/
    extern int ncom; 
   *fa=(*func)(*ax);  extern double *pcom,*xicom;
   *fb=(*func)(*bx);  extern double (*nrfunc)(double []); 
   if (*fb > *fa) {   
     SHFT(dum,*ax,*bx,dum)  double f1dim(double x) 
       SHFT(dum,*fb,*fa,dum)  { 
       }    int j; 
   *cx=(*bx)+GOLD*(*bx-*ax);    double f;
   *fc=(*func)(*cx);    double *xt; 
   while (*fb > *fc) {   
     r=(*bx-*ax)*(*fb-*fc);    xt=vector(1,ncom); 
     q=(*bx-*cx)*(*fb-*fa);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    f=(*nrfunc)(xt); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free_vector(xt,1,ncom); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return f; 
     if ((*bx-u)*(u-*cx) > 0.0) {  } 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /*****************brent *************************/
       fu=(*func)(u);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       if (fu < *fc) {  { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int iter; 
           SHFT(*fb,*fc,fu,(*func)(u))    double a,b,d,etemp;
           }    double fu,fv,fw,fx;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double ftemp;
       u=ulim;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
     } else {   
       u=(*cx)+GOLD*(*cx-*bx);    a=(ax < cx ? ax : cx); 
       fu=(*func)(u);    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     SHFT(*ax,*bx,*cx,u)    fw=fv=fx=(*f)(x); 
       SHFT(*fa,*fb,*fc,fu)    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /*************** linmin ************************/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 int ncom;  #ifdef DEBUG
 double *pcom,*xicom;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double (*nrfunc)(double []);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #endif
 {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double brent(double ax, double bx, double cx,        *xmin=x; 
                double (*f)(double), double tol, double *xmin);        return fx; 
   double f1dim(double x);      } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      ftemp=fu;
               double *fc, double (*func)(double));      if (fabs(e) > tol1) { 
   int j;        r=(x-w)*(fx-fv); 
   double xx,xmin,bx,ax;        q=(x-v)*(fx-fw); 
   double fx,fb,fa;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
   ncom=n;        if (q > 0.0) p = -p; 
   pcom=vector(1,n);        q=fabs(q); 
   xicom=vector(1,n);        etemp=e; 
   nrfunc=func;        e=d; 
   for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     pcom[j]=p[j];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     xicom[j]=xi[j];        else { 
   }          d=p/q; 
   ax=0.0;          u=x+d; 
   xx=1.0;          if (u-a < tol2 || b-u < tol2) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            d=SIGN(tol1,xm-x); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        } 
 #ifdef DEBUG      } else { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
   for (j=1;j<=n;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     xi[j] *= xmin;      fu=(*f)(u); 
     p[j] += xi[j];      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
   free_vector(xicom,1,n);        SHFT(v,w,x,u) 
   free_vector(pcom,1,n);          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
 /*************** powell ************************/            if (fu <= fw || w == x) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,              v=w; 
             double (*func)(double []))              w=u; 
 {              fv=fw; 
   void linmin(double p[], double xi[], int n, double *fret,              fw=fu; 
               double (*func)(double []));            } else if (fu <= fv || v == x || v == w) { 
   int i,ibig,j;              v=u; 
   double del,t,*pt,*ptt,*xit;              fv=fu; 
   double fp,fptt;            } 
   double *xits;          } 
   pt=vector(1,n);    } 
   ptt=vector(1,n);    nrerror("Too many iterations in brent"); 
   xit=vector(1,n);    *xmin=x; 
   xits=vector(1,n);    return fx; 
   *fret=(*func)(p);  } 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /****************** mnbrak ***********************/
     fp=(*fret);  
     ibig=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     del=0.0;              double (*func)(double)) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  { 
     for (i=1;i<=n;i++)    double ulim,u,r,q, dum;
       printf(" %d %.12f",i, p[i]);    double fu; 
     printf("\n");   
     for (i=1;i<=n;i++) {    *fa=(*func)(*ax); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *fb=(*func)(*bx); 
       fptt=(*fret);    if (*fb > *fa) { 
 #ifdef DEBUG      SHFT(dum,*ax,*bx,dum) 
       printf("fret=%lf \n",*fret);        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
       printf("%d",i);fflush(stdout);    *cx=(*bx)+GOLD*(*bx-*ax); 
       linmin(p,xit,n,fret,func);    *fc=(*func)(*cx); 
       if (fabs(fptt-(*fret)) > del) {    while (*fb > *fc) { 
         del=fabs(fptt-(*fret));      r=(*bx-*ax)*(*fb-*fc); 
         ibig=i;      q=(*bx-*cx)*(*fb-*fa); 
       }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("%d %.12e",i,(*fret));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
       for(j=1;j<=n;j++)        if (fu < *fc) { 
         printf(" p=%.12e",p[j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
 #endif            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        u=ulim; 
 #ifdef DEBUG        fu=(*func)(u); 
       int k[2],l;      } else { 
       k[0]=1;        u=(*cx)+GOLD*(*cx-*bx); 
       k[1]=-1;        fu=(*func)(u); 
       printf("Max: %.12e",(*func)(p));      } 
       for (j=1;j<=n;j++)      SHFT(*ax,*bx,*cx,u) 
         printf(" %.12e",p[j]);        SHFT(*fa,*fb,*fc,fu) 
       printf("\n");        } 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** linmin ************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  int ncom; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
 #endif   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
       free_vector(xit,1,n);    double brent(double ax, double bx, double cx, 
       free_vector(xits,1,n);                 double (*f)(double), double tol, double *xmin); 
       free_vector(ptt,1,n);    double f1dim(double x); 
       free_vector(pt,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       return;                double *fc, double (*func)(double)); 
     }    int j; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double xx,xmin,bx,ax; 
     for (j=1;j<=n;j++) {    double fx,fb,fa;
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];    ncom=n; 
       pt[j]=p[j];    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     fptt=(*func)(ptt);    nrfunc=func; 
     if (fptt < fp) {    for (j=1;j<=n;j++) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      pcom[j]=p[j]; 
       if (t < 0.0) {      xicom[j]=xi[j]; 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    ax=0.0; 
           xi[j][ibig]=xi[j][n];    xx=1.0; 
           xi[j][n]=xit[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(j=1;j<=n;j++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           printf(" %.12e",xit[j]);  #endif
         printf("\n");    for (j=1;j<=n;j++) { 
 #endif      xi[j] *= xmin; 
       }      p[j] += xi[j]; 
     }    } 
   }    free_vector(xicom,1,n); 
 }    free_vector(pcom,1,n); 
   } 
 /**** Prevalence limit ****************/  
   /*************** powell ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   int i, ii,j,k;    int i,ibig,j; 
   double min, max, maxmin, maxmax,sumnew=0.;    double del,t,*pt,*ptt,*xit;
   double **matprod2();    double fp,fptt;
   double **out, cov[NCOVMAX], **pmij();    double *xits;
   double **newm;    pt=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    ptt=vector(1,n); 
     xit=vector(1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    xits=vector(1,n); 
     for (j=1;j<=nlstate+ndeath;j++){    *fret=(*func)(p); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
    cov[1]=1.;      ibig=0; 
        del=0.0; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     newm=savm;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     /* Covariates have to be included here again */      for (i=1;i<=n;i++) {
      cov[2]=agefin;        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
       for (k=1; k<=cptcovn;k++) {        fprintf(ficrespow," %.12lf", p[i]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      printf("\n");
       }      fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficrespow,"\n");
       for (k=1; k<=cptcovprod;k++)      for (i=1;i<=n;i++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        printf("fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #endif
         printf("%d",i);fflush(stdout);
     savm=oldm;        fprintf(ficlog,"%d",i);fflush(ficlog);
     oldm=newm;        linmin(p,xit,n,fret,func); 
     maxmax=0.;        if (fabs(fptt-(*fret)) > del) { 
     for(j=1;j<=nlstate;j++){          del=fabs(fptt-(*fret)); 
       min=1.;          ibig=i; 
       max=0.;        } 
       for(i=1; i<=nlstate; i++) {  #ifdef DEBUG
         sumnew=0;        printf("%d %.12e",i,(*fret));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fprintf(ficlog,"%d %.12e",i,(*fret));
         prlim[i][j]= newm[i][j]/(1-sumnew);        for (j=1;j<=n;j++) {
         max=FMAX(max,prlim[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         min=FMIN(min,prlim[i][j]);          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       maxmin=max-min;        }
       maxmax=FMAX(maxmax,maxmin);        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     if(maxmax < ftolpl){          fprintf(ficlog," p=%.12e",p[j]);
       return prlim;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
 }  #endif
       } 
 /*************** transition probabilities ***************/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        int k[2],l;
 {        k[0]=1;
   double s1, s2;        k[1]=-1;
   /*double t34;*/        printf("Max: %.12e",(*func)(p));
   int i,j,j1, nc, ii, jj;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){          printf(" %.12e",p[j]);
     for(j=1; j<i;j++){          fprintf(ficlog," %.12e",p[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         /*s2 += param[i][j][nc]*cov[nc];*/        printf("\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       ps[i][j]=s2;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){          }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        }
       }  #endif
       ps[i][j]=s2;  
     }  
   }        free_vector(xit,1,n); 
     /*ps[3][2]=1;*/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for(i=1; i<= nlstate; i++){        free_vector(pt,1,n); 
      s1=0;        return; 
     for(j=1; j<i; j++)      } 
       s1+=exp(ps[i][j]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=1;j<=n;j++) { 
       s1+=exp(ps[i][j]);        ptt[j]=2.0*p[j]-pt[j]; 
     ps[i][i]=1./(s1+1.);        xit[j]=p[j]-pt[j]; 
     for(j=1; j<i; j++)        pt[j]=p[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      fptt=(*func)(ptt); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fptt < fp) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   } /* end i */        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){            xi[j][ibig]=xi[j][n]; 
       ps[ii][jj]=0;            xi[j][n]=xit[j]; 
       ps[ii][ii]=1;          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            printf(" %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){            fprintf(ficlog," %.12e",xit[j]);
      printf("%lf ",ps[ii][jj]);          }
    }          printf("\n");
     printf("\n ");          fprintf(ficlog,"\n");
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    } 
   goto end;*/  } 
     return ps;  
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
 /**************** Product of 2 matrices ******************/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    int i, ii,j,k;
   /* in, b, out are matrice of pointers which should have been initialized    double min, max, maxmin, maxmax,sumnew=0.;
      before: only the contents of out is modified. The function returns    double **matprod2();
      a pointer to pointers identical to out */    double **out, cov[NCOVMAX], **pmij();
   long i, j, k;    double **newm;
   for(i=nrl; i<= nrh; i++)    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         out[i][k] +=in[i][j]*b[j][k];      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return out;      }
 }  
      cov[1]=1.;
    
 /************* Higher Matrix Product ***************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      newm=savm;
 {      /* Covariates have to be included here again */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month       cov[2]=agefin;
      duration (i.e. until    
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (k=1; k<=cptcovn;k++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      (typically every 2 years instead of every month which is too big).          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      Model is determined by parameters x and covariates have to be        }
      included manually here.        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
      */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   int i, j, d, h, k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double **out, cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **newm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)      savm=oldm;
     for (j=1;j<=nlstate+ndeath;j++){      oldm=newm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      maxmax=0.;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
     }        min=1.;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        max=0.;
   for(h=1; h <=nhstepm; h++){        for(i=1; i<=nlstate; i++) {
     for(d=1; d <=hstepm; d++){          sumnew=0;
       newm=savm;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       /* Covariates have to be included here again */          prlim[i][j]= newm[i][j]/(1-sumnew);
       cov[1]=1.;          max=FMAX(max,prlim[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          min=FMIN(min,prlim[i][j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
       for (k=1; k<=cptcovage;k++)        maxmin=max-min;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        maxmax=FMAX(maxmax,maxmin);
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      if(maxmax < ftolpl){
         return prlim;
       }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** transition probabilities ***************/ 
       savm=oldm;  
       oldm=newm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    double s1, s2;
       for(j=1;j<=nlstate+ndeath;j++) {    /*double t34;*/
         po[i][j][h]=newm[i][j];    int i,j,j1, nc, ii, jj;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */      for(i=1; i<= nlstate; i++){
       }      for(j=1; j<i;j++){
   } /* end h */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return po;          /*s2 += param[i][j][nc]*cov[nc];*/
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 /*************** log-likelihood *************/        ps[i][j]=s2;
 double func( double *x)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 {      }
   int i, ii, j, k, mi, d, kk;      for(j=i+1; j<=nlstate+ndeath;j++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double **out;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sw; /* Sum of weights */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double lli; /* Individual log likelihood */        }
   long ipmx;        ps[i][j]=s2;
   /*extern weight */      }
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /*ps[3][2]=1;*/
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    for(i=1; i<= nlstate; i++){
   */       s1=0;
   cov[1]=1.;      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        s1+=exp(ps[i][j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      ps[i][i]=1./(s1+1.);
     for(mi=1; mi<= wav[i]-1; mi++){      for(j=1; j<i; j++)
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(j=i+1; j<=nlstate+ndeath; j++)
       for(d=0; d<dh[mi][i]; d++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
         newm=savm;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } /* end i */
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }      for(jj=1; jj<= nlstate+ndeath; jj++){
                ps[ii][jj]=0;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        ps[ii][ii]=1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;    }
         oldm=newm;  
          
            /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       } /* end mult */      for(jj=1; jj<= nlstate+ndeath; jj++){
             printf("%lf ",ps[ii][jj]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);     }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      printf("\n ");
       ipmx +=1;      }
       sw += weight[i];      printf("\n ");printf("%lf ",cov[2]);*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*
     } /* end of wave */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   } /* end of individual */    goto end;*/
       return ps;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /**************** Product of 2 matrices ******************/
   return -l;  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /*********** Maximum Likelihood Estimation ***************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i,j, iter;    long i, j, k;
   double **xi,*delti;    for(i=nrl; i<= nrh; i++)
   double fret;      for(k=ncolol; k<=ncoloh; k++)
   xi=matrix(1,npar,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=npar;i++)          out[i][k] +=in[i][j]*b[j][k];
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    return out;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /************* Higher Matrix Product ***************/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 }  {
     /* Computes the transition matrix starting at age 'age' over 
 /**** Computes Hessian and covariance matrix ***/       'nhstepm*hstepm*stepm' months (i.e. until
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 {       nhstepm*hstepm matrices. 
   double  **a,**y,*x,pd;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double **hess;       (typically every 2 years instead of every month which is too big 
   int i, j,jk;       for the memory).
   int *indx;       Model is determined by parameters x and covariates have to be 
        included manually here. 
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);       */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   hess=matrix(1,npar,1,npar);    double **newm;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=npar;i++){    for (i=1;i<=nlstate+ndeath;i++)
     printf("%d",i);fflush(stdout);      for (j=1;j<=nlstate+ndeath;j++){
     hess[i][i]=hessii(p,ftolhess,i,delti);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     /*printf(" %f ",p[i]);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
     /*printf(" %lf ",hess[i][i]);*/      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++) {      for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++)  {        newm=savm;
       if (j>i) {        /* Covariates have to be included here again */
         printf(".%d%d",i,j);fflush(stdout);        cov[1]=1.;
         hess[i][j]=hessij(p,delti,i,j);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         hess[j][i]=hess[i][j];            for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf(" %lf ",hess[i][j]);*/        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("\n");  
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   a=matrix(1,npar,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   y=matrix(1,npar,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   x=vector(1,npar);        savm=oldm;
   indx=ivector(1,npar);        oldm=newm;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for(i=1; i<=nlstate+ndeath; i++)
   ludcmp(a,npar,indx,&pd);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
   for (j=1;j<=npar;j++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++) x[i]=0;           */
     x[j]=1;        }
     lubksb(a,npar,indx,x);    } /* end h */
     for (i=1;i<=npar;i++){    return po;
       matcov[i][j]=x[i];  }
     }  
   }  
   /*************** log-likelihood *************/
   printf("\n#Hessian matrix#\n");  double func( double *x)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    int i, ii, j, k, mi, d, kk;
       printf("%.3e ",hess[i][j]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     printf("\n");    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
     int s1, s2;
   /* Recompute Inverse */    double bbh, survp;
   for (i=1;i<=npar;i++)    long ipmx;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /*extern weight */
   ludcmp(a,npar,indx,&pd);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for (j=1;j<=npar;j++) {    */
     for (i=1;i<=npar;i++) x[i]=0;    cov[1]=1.;
     x[j]=1;  
     lubksb(a,npar,indx,x);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];    if(mle==1){
       printf("%.3e ",y[i][j]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(y,1,npar,1,npar);            }
   free_vector(x,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_ivector(indx,1,npar);            newm=savm;
   free_matrix(hess,1,npar,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*************** hessian matrix ****************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double hessii( double x[], double delta, int theta, double delti[])            savm=oldm;
 {            oldm=newm;
   int i;          } /* end mult */
   int l=1, lmax=20;        
   double k1,k2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double p2[NPARMAX+1];          /* But now since version 0.9 we anticipate for bias and large stepm.
   double res;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int k=0,kmax=10;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double l1;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   fx=func(x);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (i=1;i<=npar;i++) p2[i]=x[i];           * -stepm/2 to stepm/2 .
   for(l=0 ; l <=lmax; l++){           * For stepm=1 the results are the same as for previous versions of Imach.
     l1=pow(10,l);           * For stepm > 1 the results are less biased than in previous versions. 
     delts=delt;           */
     for(k=1 ; k <kmax; k=k+1){          s1=s[mw[mi][i]][i];
       delt = delta*(l1*k);          s2=s[mw[mi+1][i]][i];
       p2[theta]=x[theta] +delt;          bbh=(double)bh[mi][i]/(double)stepm; 
       k1=func(p2)-fx;          /* bias is positive if real duration
       p2[theta]=x[theta]-delt;           * is higher than the multiple of stepm and negative otherwise.
       k2=func(p2)-fx;           */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          if( s2 > nlstate){ 
                  /* i.e. if s2 is a death state and if the date of death is known then the contribution
 #ifdef DEBUG               to the likelihood is the probability to die between last step unit time and current 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);               step unit time, which is also the differences between probability to die before dh 
 #endif               and probability to die before dh-stepm . 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */               In version up to 0.92 likelihood was computed
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          as if date of death was unknown. Death was treated as any other
         k=kmax;          health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          to consider that at each interview the state was recorded
         k=kmax; l=lmax*10.;          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          the contribution of an exact death to the likelihood. This new
         delts=delt;          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   delti[theta]=delts;          probability to die within a month. Thanks to Chris
   return res;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
 }          which slows down the processing. The difference can be up to 10%
           lower mortality.
 double hessij( double x[], double delti[], int thetai,int thetaj)            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int i;          }else{
   int l=1, l1, lmax=20;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double k1,k2,k3,k4,res,fx;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double p2[NPARMAX+1];          } 
   int k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   fx=func(x);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (k=1; k<=2; k++) {          ipmx +=1;
     for (i=1;i<=npar;i++) p2[i]=x[i];          sw += weight[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } /* end of wave */
     k1=func(p2)-fx;      } /* end of individual */
      }  else if(mle==2){
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k2=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(d=0; d<=dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k4=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            for (kk=1; kk<=cptcovage;kk++) {
 #ifdef DEBUG              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            }
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************** Inverse of matrix **************/        
 void ludcmp(double **a, int n, int *indx, double *d)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {          /* But now since version 0.9 we anticipate for bias and large stepm.
   int i,imax,j,k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double big,dum,sum,temp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *vv;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   vv=vector(1,n);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   *d=1.0;           * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     big=0.0;           * -stepm/2 to stepm/2 .
     for (j=1;j<=n;j++)           * For stepm=1 the results are the same as for previous versions of Imach.
       if ((temp=fabs(a[i][j])) > big) big=temp;           * For stepm > 1 the results are less biased than in previous versions. 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           */
     vv[i]=1.0/big;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (j=1;j<=n;j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1;i<j;i++) {          /* bias is positive if real duration
       sum=a[i][j];           * is higher than the multiple of stepm and negative otherwise.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           */
       a[i][j]=sum;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     big=0.0;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (i=j;i<=n;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];          /*if(lli ==000.0)*/
       for (k=1;k<j;k++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         sum -= a[i][k]*a[k][j];          ipmx +=1;
       a[i][j]=sum;          sw += weight[i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         big=dum;        } /* end of wave */
         imax=i;      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (j != imax) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1;k<=n;k++) {        for(mi=1; mi<= wav[i]-1; mi++){
         dum=a[imax][k];          for (ii=1;ii<=nlstate+ndeath;ii++)
         a[imax][k]=a[j][k];            for (j=1;j<=nlstate+ndeath;j++){
         a[j][k]=dum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       *d = -(*d);            }
       vv[imax]=vv[j];          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     indx[j]=imax;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (a[j][j] == 0.0) a[j][j]=TINY;            for (kk=1; kk<=cptcovage;kk++) {
     if (j != n) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       dum=1.0/(a[j][j]);            }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   free_vector(vv,1,n);  /* Doesn't work */            oldm=newm;
 ;          } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void lubksb(double **a, int n, int *indx, double b[])          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i,ii=0,ip,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double sum;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     ip=indx[i];           * probability in order to take into account the bias as a fraction of the way
     sum=b[ip];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     b[ip]=b[i];           * -stepm/2 to stepm/2 .
     if (ii)           * For stepm=1 the results are the same as for previous versions of Imach.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * For stepm > 1 the results are less biased than in previous versions. 
     else if (sum) ii=i;           */
     b[i]=sum;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (i=n;i>=1;i--) {          bbh=(double)bh[mi][i]/(double)stepm; 
     sum=b[i];          /* bias is positive if real duration
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum/a[i][i];           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************ Frequencies ********************/          /*if(lli ==000.0)*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<dh[mi][i]; d++){
     exit(0);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   j=cptcoveff;          
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        
         scanf("%d", i);*/          s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if( s2 > nlstate){ 
           for(m=agemin; m <= agemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
             freq[i][jk][m]=0;          }else{
                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       dateintsum=0;          }
       k2cpt=0;          ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for (z1=1; z1<=cptcoveff; z1++)        } /* end of wave */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      } /* end of individual */
               bool=0;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (bool==1) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=firstpass; m<=lastpass; m++){        for(mi=1; mi<= wav[i]-1; mi++){
             k2=anint[m][i]+(mint[m][i]/12.);          for (ii=1;ii<=nlstate+ndeath;ii++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (j=1;j<=nlstate+ndeath;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if (m<lastpass) {            }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            newm=savm;
               }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                          for (kk=1; kk<=cptcovage;kk++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
                
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       if  (cptcovn>0) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresp, "\n#********** Variable ");          ipmx +=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          sw += weight[i];
         fprintf(ficresp, "**********\n#");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=nlstate;i++)        } /* end of wave */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end of individual */
       fprintf(ficresp, "\n");    } /* End of if */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(i==(int)agemax+3)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           printf("Total");    /*exit(0); */
         else    return -l;
           printf("Age %d", i);  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*********** Maximum Likelihood Estimation ***************/
         }  
         for(jk=1; jk <=nlstate ; jk++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    int i,j, iter;
           if(pp[jk]>=1.e-10)    double **xi;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double fret;
           else    char filerespow[FILENAMELENGTH];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         for(jk=1; jk <=nlstate ; jk++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             pp[jk] += freq[jk][m][i];    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)      printf("Problem with resultfile: %s\n", filerespow);
           pos += pp[jk];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(jk=1; jk <=nlstate ; jk++){    }
           if(pos>=1.e-5)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (i=1;i<=nlstate;i++)
           else      for(j=1;j<=nlstate+ndeath;j++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           if( i <= (int) agemax){    fprintf(ficrespow,"\n");
             if(pos>=1.e-5){    powell(p,xi,npar,ftol,&iter,&fret,func);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    fclose(ficrespow);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
             }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             else    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  }
         }  
          /**** Computes Hessian and covariance matrix ***/
         for(jk=-1; jk <=nlstate+ndeath; jk++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(m=-1; m <=nlstate+ndeath; m++)  {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double  **a,**y,*x,pd;
         if(i <= (int) agemax)    double **hess;
           fprintf(ficresp,"\n");    int i, j,jk;
         printf("\n");    int *indx;
       }  
     }    double hessii(double p[], double delta, int theta, double delti[]);
   }    double hessij(double p[], double delti[], int i, int j);
   dateintmean=dateintsum/k2cpt;    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    hess=matrix(1,npar,1,npar);
   free_vector(pp,1,nlstate);  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* End of Freq */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 /************ Prevalence ********************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      hess[i][i]=hessii(p,ftolhess,i,delti);
 {  /* Some frequencies */      /*printf(" %f ",p[i]);*/
        /*printf(" %lf ",hess[i][i]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }
   double ***freq; /* Frequencies */    
   double *pp;    for (i=1;i<=npar;i++) {
   double pos, k2;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   pp=vector(1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          hess[j][i]=hess[i][j];    
   j1=0;          /*printf(" %lf ",hess[i][j]);*/
          }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
      printf("\n");
  for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (i=-1; i<=nlstate+ndeath; i++)      
         for (jk=-1; jk<=nlstate+ndeath; jk++)      a=matrix(1,npar,1,npar);
           for(m=agemin; m <= agemax+3; m++)    y=matrix(1,npar,1,npar);
             freq[i][jk][m]=0;    x=vector(1,npar);
          indx=ivector(1,npar);
       for (i=1; i<=imx; i++) {    for (i=1;i<=npar;i++)
         bool=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         if  (cptcovn>0) {    ludcmp(a,npar,indx,&pd);
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (j=1;j<=npar;j++) {
               bool=0;      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
         if (bool==1) {      lubksb(a,npar,indx,x);
           for(m=firstpass; m<=lastpass; m++){      for (i=1;i<=npar;i++){ 
             k2=anint[m][i]+(mint[m][i]/12.);        matcov[i][j]=x[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    printf("\n#Hessian matrix#\n");
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    fprintf(ficlog,"\n#Hessian matrix#\n");
             }    for (i=1;i<=npar;i++) { 
           }      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(i=(int)agemin; i <= (int)agemax+3; i++){      }
           for(jk=1; jk <=nlstate ; jk++){      printf("\n");
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      fprintf(ficlog,"\n");
               pp[jk] += freq[jk][m][i];    }
           }  
           for(jk=1; jk <=nlstate ; jk++){    /* Recompute Inverse */
             for(m=-1, pos=0; m <=0 ; m++)    for (i=1;i<=npar;i++)
             pos += freq[jk][m][i];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
          
          for(jk=1; jk <=nlstate ; jk++){    /*  printf("\n#Hessian matrix recomputed#\n");
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];    for (j=1;j<=npar;j++) {
          }      for (i=1;i<=npar;i++) x[i]=0;
                x[j]=1;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
          for(jk=1; jk <=nlstate ; jk++){                  y[i][j]=x[i];
            if( i <= (int) agemax){        printf("%.3e ",y[i][j]);
              if(pos>=1.e-5){        fprintf(ficlog,"%.3e ",y[i][j]);
                probs[i][jk][j1]= pp[jk]/pos;      }
              }      printf("\n");
            }      fprintf(ficlog,"\n");
          }    }
              */
         }  
     }    free_matrix(a,1,npar,1,npar);
   }    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_matrix(hess,1,npar,1,npar);
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */  }
   
 /************* Waves Concatenation ***************/  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  {
 {    int i;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int l=1, lmax=20;
      Death is a valid wave (if date is known).    double k1,k2;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double p2[NPARMAX+1];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double res;
      and mw[mi+1][i]. dh depends on stepm.    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      */    double fx;
     int k=0,kmax=10;
   int i, mi, m;    double l1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   int j, k=0,jk, ju, jl;    for(l=0 ; l <=lmax; l++){
   double sum=0.;      l1=pow(10,l);
   jmin=1e+5;      delts=delt;
   jmax=-1;      for(k=1 ; k <kmax; k=k+1){
   jmean=0.;        delt = delta*(l1*k);
   for(i=1; i<=imx; i++){        p2[theta]=x[theta] +delt;
     mi=0;        k1=func(p2)-fx;
     m=firstpass;        p2[theta]=x[theta]-delt;
     while(s[m][i] <= nlstate){        k2=func(p2)-fx;
       if(s[m][i]>=1)        /*res= (k1-2.0*fx+k2)/delt/delt; */
         mw[++mi][i]=m;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       if(m >=lastpass)        
         break;  #ifdef DEBUG
       else        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         m++;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }/* end while */  #endif
     if (s[m][i] > nlstate){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       mi++;     /* Death is another wave */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       /* if(mi==0)  never been interviewed correctly before death */          k=kmax;
          /* Only death is a correct wave */        }
       mw[mi][i]=m;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
         }
     wav[i]=mi;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if(mi==0)          delts=delt;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        }
   }      }
     }
   for(i=1; i<=imx; i++){    delti[theta]=delts;
     for(mi=1; mi<wav[i];mi++){    return res; 
       if (stepm <=0)    
         dh[mi][i]=1;  }
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  double hessij( double x[], double delti[], int thetai,int thetaj)
           if (agedc[i] < 2*AGESUP) {  {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int i;
           if(j==0) j=1;  /* Survives at least one month after exam */    int l=1, l1, lmax=20;
           k=k+1;    double k1,k2,k3,k4,res,fx;
           if (j >= jmax) jmax=j;    double p2[NPARMAX+1];
           if (j <= jmin) jmin=j;    int k;
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    fx=func(x);
           }    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
         else{      p2[thetai]=x[thetai]+delti[thetai]/k;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           k=k+1;      k1=func(p2)-fx;
           if (j >= jmax) jmax=j;    
           else if (j <= jmin)jmin=j;      p2[thetai]=x[thetai]+delti[thetai]/k;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           sum=sum+j;      k2=func(p2)-fx;
         }    
         jk= j/stepm;      p2[thetai]=x[thetai]-delti[thetai]/k;
         jl= j -jk*stepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         ju= j -(jk+1)*stepm;      k3=func(p2)-fx;
         if(jl <= -ju)    
           dh[mi][i]=jk;      p2[thetai]=x[thetai]-delti[thetai]/k;
         else      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           dh[mi][i]=jk+1;      k4=func(p2)-fx;
         if(dh[mi][i]==0)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           dh[mi][i]=1; /* At least one step */  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   jmean=sum/k;    }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    return res;
  }  }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /************** Inverse of matrix **************/
 {  void ludcmp(double **a, int n, int *indx, double *d) 
   int Ndum[20],ij=1, k, j, i;  { 
   int cptcode=0;    int i,imax,j,k; 
   cptcoveff=0;    double big,dum,sum,temp; 
      double *vv; 
   for (k=0; k<19; k++) Ndum[k]=0;   
   for (k=1; k<=7; k++) ncodemax[k]=0;    vv=vector(1,n); 
     *d=1.0; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for (i=1;i<=n;i++) { 
     for (i=1; i<=imx; i++) {      big=0.0; 
       ij=(int)(covar[Tvar[j]][i]);      for (j=1;j<=n;j++) 
       Ndum[ij]++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       if (ij > cptcode) cptcode=ij;      vv[i]=1.0/big; 
     }    } 
     for (j=1;j<=n;j++) { 
     for (i=0; i<=cptcode; i++) {      for (i=1;i<j;i++) { 
       if(Ndum[i]!=0) ncodemax[j]++;        sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     ij=1;        a[i][j]=sum; 
       } 
       big=0.0; 
     for (i=1; i<=ncodemax[j]; i++) {      for (i=j;i<=n;i++) { 
       for (k=0; k<=19; k++) {        sum=a[i][j]; 
         if (Ndum[k] != 0) {        for (k=1;k<j;k++) 
           nbcode[Tvar[j]][ij]=k;          sum -= a[i][k]*a[k][j]; 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/        a[i][j]=sum; 
           ij++;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
         if (ij > ncodemax[j]) break;          imax=i; 
       }          } 
     }      } 
   }        if (j != imax) { 
         for (k=1;k<=n;k++) { 
  for (k=0; k<19; k++) Ndum[k]=0;          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
  for (i=1; i<=ncovmodel-2; i++) {          a[j][k]=dum; 
       ij=Tvar[i];        } 
       Ndum[ij]++;        *d = -(*d); 
     }        vv[imax]=vv[j]; 
       } 
  ij=1;      indx[j]=imax; 
  for (i=1; i<=10; i++) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
    if((Ndum[i]!=0) && (i<=ncovcol)){      if (j != n) { 
      Tvaraff[ij]=i;        dum=1.0/(a[j][j]); 
      ij++;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
    }      } 
  }    } 
      free_vector(vv,1,n);  /* Doesn't work */
     cptcoveff=ij-1;  ;
 }  } 
   
 /*********** Health Expectancies ****************/  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)    int i,ii=0,ip,j; 
 {    double sum; 
   /* Health expectancies */   
   int i, j, nhstepm, hstepm, h, nstepm;    for (i=1;i<=n;i++) { 
   double age, agelim, hf;      ip=indx[i]; 
   double ***p3mat;      sum=b[ip]; 
        b[ip]=b[i]; 
   fprintf(ficreseij,"# Health expectancies\n");      if (ii) 
   fprintf(ficreseij,"# Age");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for(i=1; i<=nlstate;i++)      else if (sum) ii=i; 
     for(j=1; j<=nlstate;j++)      b[i]=sum; 
       fprintf(ficreseij," %1d-%1d",i,j);    } 
   fprintf(ficreseij,"\n");    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   if(estepm < stepm){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      b[i]=sum/a[i][i]; 
   }    } 
   else  hstepm=estepm;    } 
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example  /************ Frequencies ********************/
    * if stepm=24 months pijx are given only every 2 years and by summing them  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
    * we are calculating an estimate of the Life Expectancy assuming a linear  {  /* Some frequencies */
    * progression inbetween and thus overestimating or underestimating according    
    * to the curvature of the survival function. If, for the same date, we    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int first;
    * to compare the new estimate of Life expectancy with the same linear    double ***freq; /* Frequencies */
    * hypothesis. A more precise result, taking into account a more precise    double *pp, **prop;
    * curvature will be obtained if estepm is as small as stepm. */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
   /* For example we decided to compute the life expectancy with the smallest unit */    char fileresp[FILENAMELENGTH];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    pp=vector(1,nlstate);
      nstepm is the number of stepm from age to agelin.    prop=matrix(1,nlstate,iagemin,iagemax+3);
      Look at hpijx to understand the reason of that which relies in memory size    strcpy(fileresp,"p");
      and note for a fixed period like estepm months */    strcat(fileresp,fileres);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    if((ficresp=fopen(fileresp,"w"))==NULL) {
      survival function given by stepm (the optimization length). Unfortunately it      printf("Problem with prevalence resultfile: %s\n", fileresp);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      exit(0);
      results. So we changed our mind and took the option of the best precision.    }
   */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    j1=0;
     
   agelim=AGESUP;    j=cptcoveff;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    first=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/    for(k1=1; k1<=j;k1++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for(i1=1; i1<=ncodemax[k1];i1++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        j1++;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          scanf("%d", i);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          for (i=-1; i<=nlstate+ndeath; i++)  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     for(i=1; i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++)              freq[i][jk][m]=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for (i=1; i<=nlstate; i++)  
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for(m=iagemin; m <= iagemax+3; m++)
         }          prop[i][m]=0;
     fprintf(ficreseij,"%3.0f",age );        
     for(i=1; i<=nlstate;i++)        dateintsum=0;
       for(j=1; j<=nlstate;j++){        k2cpt=0;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);        for (i=1; i<=imx; i++) {
       }          bool=1;
     fprintf(ficreseij,"\n");          if  (cptcovn>0) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
           }
 /************ Variance ******************/          if (bool==1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            for(m=firstpass; m<=lastpass; m++){
 {              k2=anint[m][i]+(mint[m][i]/12.);
   /* Variance of health expectancies */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double **newm;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double **dnewm,**doldm;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int i, j, nhstepm, hstepm, h, nstepm ;                if (m<lastpass) {
   int k, cptcode;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double *xp;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double **gp, **gm;                }
   double ***gradg, ***trgradg;                
   double ***p3mat;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double age,agelim, hf;                  dateintsum=dateintsum+k2;
   int theta;                  k2cpt++;
                 }
    fprintf(ficresvij,"# Covariances of life expectancies\n");                /*}*/
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);         
   fprintf(ficresvij,"\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
   xp=vector(1,npar);        if  (cptcovn>0) {
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   doldm=matrix(1,nlstate,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   else  hstepm=estepm;          fprintf(ficresp, "\n");
   /* For example we decided to compute the life expectancy with the smallest unit */        
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(i=iagemin; i <= iagemax+3; i++){
      nhstepm is the number of hstepm from age to agelim          if(i==iagemax+3){
      nstepm is the number of stepm from age to agelin.            fprintf(ficlog,"Total");
      Look at hpijx to understand the reason of that which relies in memory size          }else{
      and note for a fixed period like k years */            if(first==1){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              first=0;
      survival function given by stepm (the optimization length). Unfortunately it              printf("See log file for details...\n");
      means that if the survival funtion is printed only each two years of age and if            }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            fprintf(ficlog,"Age %d", i);
      results. So we changed our mind and took the option of the best precision.          }
   */          for(jk=1; jk <=nlstate ; jk++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   agelim = AGESUP;              pp[jk] += freq[jk][m][i]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(jk=1; jk <=nlstate ; jk++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for(m=-1, pos=0; m <=0 ; m++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              pos += freq[jk][m][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            if(pp[jk]>=1.e-10){
     gp=matrix(0,nhstepm,1,nlstate);              if(first==1){
     gm=matrix(0,nhstepm,1,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     for(theta=1; theta <=npar; theta++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=npar; i++){ /* Computes gradient */            }else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
           }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
           prlim[i][i]=probs[(int)age][i][ij];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       }              pp[jk] += freq[jk][m][i];
            }       
       for(j=1; j<= nlstate; j++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for(h=0; h<=nhstepm; h++){            pos += pp[jk];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            posprop += prop[jk][i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
                  if(first==1)
       for(i=1; i<=npar; i++) /* Computes gradient */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       if (popbased==1) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];            if( i <= iagemax){
       }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1; j<= nlstate; j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for(h=0; h<=nhstepm; h++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              else
         }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }            }
           }
       for(j=1; j<= nlstate; j++)          
         for(h=0; h<=nhstepm; h++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
     } /* End theta */              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
     for(h=0; h<=nhstepm; h++)          if(i <= iagemax)
       for(j=1; j<=nlstate;j++)            fprintf(ficresp,"\n");
         for(theta=1; theta <=npar; theta++)          if(first==1)
           trgradg[h][j][theta]=gradg[h][theta][j];            printf("Others in log...\n");
           fprintf(ficlog,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    dateintmean=dateintsum/k2cpt; 
    
     for(h=0;h<=nhstepm;h++){    fclose(ficresp);
       for(k=0;k<=nhstepm;k++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_vector(pp,1,nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(i=1;i<=nlstate;i++)    /* End of Freq */
           for(j=1;j<=nlstate;j++)  }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  /************ Prevalence ********************/
     }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     fprintf(ficresvij,"%.0f ",age );    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for(i=1; i<=nlstate;i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(j=1; j<=nlstate;j++){       We still use firstpass and lastpass as another selection.
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    */
       }   
     fprintf(ficresvij,"\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     free_matrix(gp,0,nhstepm,1,nlstate);    double ***freq; /* Frequencies */
     free_matrix(gm,0,nhstepm,1,nlstate);    double *pp, **prop;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double pos,posprop; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double  y2; /* in fractional years */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int iagemin, iagemax;
   } /* End age */  
      iagemin= (int) agemin;
   free_vector(xp,1,npar);    iagemax= (int) agemax;
   free_matrix(doldm,1,nlstate,1,npar);    /*pp=vector(1,nlstate);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 }    j1=0;
     
 /************ Variance of prevlim ******************/    j=cptcoveff;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 {    
   /* Variance of prevalence limit */    for(k1=1; k1<=j;k1++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(i1=1; i1<=ncodemax[k1];i1++){
   double **newm;        j1++;
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm;        for (i=1; i<=nlstate; i++)  
   int k, cptcode;          for(m=iagemin; m <= iagemax+3; m++)
   double *xp;            prop[i][m]=0.0;
   double *gp, *gm;       
   double **gradg, **trgradg;        for (i=1; i<=imx; i++) { /* Each individual */
   double age,agelim;          bool=1;
   int theta;          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficresvpl,"# Age");                bool=0;
   for(i=1; i<=nlstate;i++)          } 
       fprintf(ficresvpl," %1d-%1d",i,i);          if (bool==1) { 
   fprintf(ficresvpl,"\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   xp=vector(1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   dnewm=matrix(1,nlstate,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   doldm=matrix(1,nlstate,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   hstepm=1*YEARM; /* Every year of age */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   agelim = AGESUP;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  prop[s[m][i]][iagemax+3] += weight[i]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                } 
     if (stepm >= YEARM) hstepm=1;              }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            } /* end selection of waves */
     gradg=matrix(1,npar,1,nlstate);          }
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){  
           
     for(theta=1; theta <=npar; theta++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */            posprop += prop[jk][i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } 
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){     
       for(i=1;i<=nlstate;i++)            if( i <=  iagemax){ 
         gp[i] = prlim[i][i];              if(posprop>=1.e-5){ 
                    probs[i][jk][j1]= prop[jk][i]/posprop;
       for(i=1; i<=npar; i++) /* Computes gradient */              } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }/* end jk */ 
       for(i=1;i<=nlstate;i++)        }/* end i */ 
         gm[i] = prlim[i][i];      } /* end i1 */
     } /* end k1 */
       for(i=1;i<=nlstate;i++)    
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     } /* End theta */    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     trgradg =matrix(1,nlstate,1,npar);  }  /* End of prevalence */
   
     for(j=1; j<=nlstate;j++)  /************* Waves Concatenation ***************/
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     for(i=1;i<=nlstate;i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       varpl[i][(int)age] =0.;       Death is a valid wave (if date is known).
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(i=1;i<=nlstate;i++)       and mw[mi+1][i]. dh depends on stepm.
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */       */
   
     fprintf(ficresvpl,"%.0f ",age );    int i, mi, m;
     for(i=1; i<=nlstate;i++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));       double sum=0., jmean=0.;*/
     fprintf(ficresvpl,"\n");    int first;
     free_vector(gp,1,nlstate);    int j, k=0,jk, ju, jl;
     free_vector(gm,1,nlstate);    double sum=0.;
     free_matrix(gradg,1,npar,1,nlstate);    first=0;
     free_matrix(trgradg,1,nlstate,1,npar);    jmin=1e+5;
   } /* End age */    jmax=-1;
     jmean=0.;
   free_vector(xp,1,npar);    for(i=1; i<=imx; i++){
   free_matrix(doldm,1,nlstate,1,npar);      mi=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);      m=firstpass;
       while(s[m][i] <= nlstate){
 }        if(s[m][i]>=1)
           mw[++mi][i]=m;
 /************ Variance of one-step probabilities  ******************/        if(m >=lastpass)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          break;
 {        else
   int i, j;          m++;
   int k=0, cptcode;      }/* end while */
   double **dnewm,**doldm;      if (s[m][i] > nlstate){
   double *xp;        mi++;     /* Death is another wave */
   double *gp, *gm;        /* if(mi==0)  never been interviewed correctly before death */
   double **gradg, **trgradg;           /* Only death is a correct wave */
   double age,agelim, cov[NCOVMAX];        mw[mi][i]=m;
   int theta;      }
   char fileresprob[FILENAMELENGTH];  
       wav[i]=mi;
   strcpy(fileresprob,"prob");      if(mi==0){
   strcat(fileresprob,fileres);        if(first==0){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     printf("Problem with resultfile: %s\n", fileresprob);          first=1;
   }        }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        if(first==1){
            fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
   xp=vector(1,npar);      } /* end mi==0 */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* End individuals */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      for(i=1; i<=imx; i++){
   cov[1]=1;      for(mi=1; mi<wav[i];mi++){
   for (age=bage; age<=fage; age ++){        if (stepm <=0)
     cov[2]=age;          dh[mi][i]=1;
     gradg=matrix(1,npar,1,9);        else{
     trgradg=matrix(1,9,1,npar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            if (agedc[i] < 2*AGESUP) {
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
     for(theta=1; theta <=npar; theta++){            k=k+1;
       for(i=1; i<=npar; i++)            if (j >= jmax) jmax=j;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            if (j <= jmin) jmin=j;
                  sum=sum+j;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       k=0;            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<= (nlstate+ndeath); i++){            }
         for(j=1; j<=(nlstate+ndeath);j++){          }
            k=k+1;          else{
           gp[k]=pmmij[i][j];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            k=k+1;
             if (j >= jmax) jmax=j;
       for(i=1; i<=npar; i++)            else if (j <= jmin)jmin=j;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            sum=sum+j;
       k=0;          }
       for(i=1; i<=(nlstate+ndeath); i++){          jk= j/stepm;
         for(j=1; j<=(nlstate+ndeath);j++){          jl= j -jk*stepm;
           k=k+1;          ju= j -(jk+1)*stepm;
           gm[k]=pmmij[i][j];          if(mle <=1){ 
         }            if(jl==0){
       }              dh[mi][i]=jk;
                    bh[mi][i]=0;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            }else{ /* We want a negative bias in order to only have interpolation ie
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                      * at the price of an extra matrix product in likelihood */
     }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            }
       for(theta=1; theta <=npar; theta++)          }else{
       trgradg[j][theta]=gradg[theta][j];            if(jl <= -ju){
                dh[mi][i]=jk;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              bh[mi][i]=jl;       /* bias is positive if real duration
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
      pmij(pmmij,cov,ncovmodel,x,nlstate);            }
             else{
      k=0;              dh[mi][i]=jk+1;
      for(i=1; i<=(nlstate+ndeath); i++){              bh[mi][i]=ju;
        for(j=1; j<=(nlstate+ndeath);j++){            }
          k=k+1;            if(dh[mi][i]==0){
          gm[k]=pmmij[i][j];              dh[mi][i]=1; /* At least one step */
         }              bh[mi][i]=ju; /* At least one step */
      }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  }
      /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        } /* end if mle */
              } /* end wave */
     }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    jmean=sum/k;
      }*/    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficresprob,"\n%d ",(int)age);   }
   
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  /*********** Tricode ****************************/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  void tricode(int *Tvar, int **nbcode, int imx)
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  {
   }    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    int cptcode=0;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    cptcoveff=0; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 }    for (k=1; k<=7; k++) ncodemax[k]=0;
  free_vector(xp,1,npar);  
 fclose(ficresprob);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /******************* Printing html file ***********/        Ndum[ij]++; /*store the modality */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  int lastpass, int stepm, int weightopt, char model[],\        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                                         Tvar[j]. If V=sex and male is 0 and 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                                         female is 1, then  cptcode=1.*/
  char version[], int popforecast, int estepm ){      }
   int jj1, k1, i1, cpt;  
   FILE *fichtm;      for (i=0; i<=cptcode; i++) {
   /*char optionfilehtm[FILENAMELENGTH];*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");      ij=1; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for (i=1; i<=ncodemax[j]; i++) {
     printf("Problem with %s \n",optionfilehtm), exit(0);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            
 \n            ij++;
 Total number of observations=%d <br>\n          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          if (ij > ncodemax[j]) break; 
 <hr  size=\"2\" color=\"#EC5E5E\">        }  
  <ul><li>Outputs files<br>\n      } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n   for (k=0; k< maxncov; k++) Ndum[k]=0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n   for (i=1; i<=ncovmodel-2; i++) { 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,estepm);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
  fprintf(fichtm,"\n     Ndum[ij]++;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n   }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n   ij=1;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
  if(popforecast==1) fprintf(fichtm,"\n       Tvaraff[ij]=i; /*For printing */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       ij++;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n     }
         <br>",fileres,fileres,fileres,fileres);   }
  else   
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);   cptcoveff=ij-1; /*Number of simple covariates*/
 fprintf(fichtm," <li>Graphs</li><p>");  }
   
  m=cptcoveff;  /*********** Health Expectancies ****************/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  jj1=0;  
  for(k1=1; k1<=m;k1++){  {
    for(i1=1; i1<=ncodemax[k1];i1++){    /* Health expectancies */
        jj1++;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        if (cptcovn > 0) {    double age, agelim, hf;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double ***p3mat,***varhe;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double **dnewm,**doldm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double *xp;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **gp, **gm;
        }    double ***gradg, ***trgradg;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int theta;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    xp=vector(1,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficreseij,"# Health expectancies\n");
 interval) in state (%d): v%s%d%d.gif <br>    fprintf(ficreseij,"# Age");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
      for(cpt=1; cpt<=nlstate;cpt++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    fprintf(ficreseij,"\n");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }    if(estepm < stepm){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      printf ("Problem %d lower than %d\n",estepm, stepm);
 health expectancies in states (1) and (2): e%s%d.gif<br>    }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    else  hstepm=estepm;   
 fprintf(fichtm,"\n</body>");    /* We compute the life expectancy from trapezoids spaced every estepm months
    }     * This is mainly to measure the difference between two models: for example
    }     * if stepm=24 months pijx are given only every 2 years and by summing them
 fclose(fichtm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 /******************* Gnuplot file **************/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;     * curvature will be obtained if estepm is as small as stepm. */
   
   strcpy(optionfilegnuplot,optionfilefiname);    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(optionfilegnuplot,".gp.txt");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with file %s",optionfilegnuplot);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
 #ifdef windows    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficgp,"cd \"%s\" \n",pathc);       survival function given by stepm (the optimization length). Unfortunately it
 #endif       means that if the survival funtion is printed only each two years of age and if
 m=pow(2,cptcoveff);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
  /* 1eme*/    */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    for (k1=1; k1<= m ; k1 ++) {  
     agelim=AGESUP;
 #ifdef windows    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      /* nhstepm age range expressed in number of stepm */
 #endif      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 #ifdef unix      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
 #endif      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 for (i=1; i<= nlstate ; i ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for (i=1; i<= nlstate ; i ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Computing Variances of health expectancies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(theta=1; theta <=npar; theta++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(i=1; i<=npar; i++){ 
 #ifdef unix          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 fprintf(ficgp,"\nset ter gif small size 400,300");        }
 #endif        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }        cptj=0;
   }        for(j=1; j<= nlstate; j++){
   /*2 eme*/          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
   for (k1=1; k1<= m ; k1 ++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       
       for (j=1; j<= nlstate+1 ; j ++) {       
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=npar; i++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        cptj=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1;i<=nlstate;i++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cptj=cptj+1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate*nlstate; j++)
 }            for(h=0; h<=nhstepm-1; h++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }       } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);     
   }  /* End theta */
    
   /*3eme*/       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   for (k1=1; k1<= m ; k1 ++) {       for(h=0; h<=nhstepm-1; h++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<=nlstate*nlstate;j++)
       k=2+nlstate*(cpt-1);          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            trgradg[h][j][theta]=gradg[h][theta][j];
       for (i=1; i< nlstate ; i ++) {       
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }       for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(j=1;j<=nlstate*nlstate;j++)
     }          varhe[i][j][(int)age] =0.;
     }  
         printf("%d|",(int)age);fflush(stdout);
   /* CV preval stat */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (k1=1; k1<= m ; k1 ++) {       for(h=0;h<=nhstepm-1;h++){
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(k=0;k<=nhstepm-1;k++){
       k=3;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
       for (i=1; i< nlstate ; i ++)            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficgp,"+$%d",k+i+1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
            }
       l=3+(nlstate+ndeath)*cpt;      /* Computing expectancies */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<=nlstate;j++)
         l=3+(nlstate+ndeath)*cpt;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficgp,"+$%d",l+i+1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }          }
   }    
        fprintf(ficreseij,"%3.0f",age );
   /* proba elementaires */      cptj=0;
    for(i=1,jk=1; i <=nlstate; i++){      for(i=1; i<=nlstate;i++)
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<=nlstate;j++){
       if (k != i) {          cptj++;
         for(j=1; j <=ncovmodel; j++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      fprintf(ficreseij,"\n");
           jk++;     
           fprintf(ficgp,"\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
     for(jk=1; jk <=m; jk++) {    printf("\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    fprintf(ficlog,"\n");
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {    free_vector(xp,1,npar);
      k3=i;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      for(k=1; k<=(nlstate+ndeath); k++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        if (k != k2){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  }
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {  /************ Variance ******************/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
             ij++;    /* Variance of health expectancies */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           else    /* double **newm;*/
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
           fprintf(ficgp,")/(1");    int i, j, nhstepm, hstepm, h, nstepm ;
            int k, cptcode;
         for(k1=1; k1 <=nlstate; k1++){      double *xp;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double **gp, **gm;  /* for var eij */
 ij=1;    double ***gradg, ***trgradg; /*for var eij */
           for(j=3; j <=ncovmodel; j++){    double **gradgp, **trgradgp; /* for var p point j */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *gpp, *gmp; /* for var p point j */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             ij++;    double ***p3mat;
           }    double age,agelim, hf;
           else    double ***mobaverage;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int theta;
           }    char digit[4];
           fprintf(ficgp,")");    char digitp[25];
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    char fileresprobmorprev[FILENAMELENGTH];
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    if(popbased==1){
        }      if(mobilav!=0)
      }        strcpy(digitp,"-populbased-mobilav-");
    }      else strcpy(digitp,"-populbased-nomobil-");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    }
    }    else 
          strcpy(digitp,"-stablbased-");
   fclose(ficgp);  
 }  /* end gnuplot */    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 /*************** Moving average **************/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   int i, cpt, cptcod;    }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    strcpy(fileresprobmorprev,"prmorprev"); 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    sprintf(digit,"%-d",ij);
           mobaverage[(int)agedeb][i][cptcod]=0.;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        strcat(fileresprobmorprev,digit); /* Tvar to be done */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for (i=1; i<=nlstate;i++){    strcat(fileresprobmorprev,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           for (cpt=0;cpt<=4;cpt++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           }    }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 /************** Forecasting ******************/    }  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    fprintf(ficresprobmorprev,"\n");
      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   int *popage;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      exit(0);
   double *popeffectif,*popcount;    }
   double ***p3mat;    else{
   char fileresf[FILENAMELENGTH];      fprintf(ficgp,"\n# Routine varevsij");
     }
  agelim=AGESUP;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      exit(0);
      }
      else{
   strcpy(fileresf,"f");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   strcat(fileresf,fileres);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", fileresf);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   if (mobilav==1) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldm=matrix(1,nlstate,1,nlstate);
   if (stepm<=12) stepsize=1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   hstepm=1;    gpp=vector(nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    gmp=vector(nlstate+1,nlstate+ndeath);
   yp1=modf(dateintmean,&yp);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   anprojmean=yp;    
   yp2=modf((yp1*12),&yp);    if(estepm < stepm){
   mprojmean=yp;      printf ("Problem %d lower than %d\n",estepm, stepm);
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    else  hstepm=estepm;   
   if(jprojmean==0) jprojmean=1;    /* For example we decided to compute the life expectancy with the smallest unit */
   if(mprojmean==0) jprojmean=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   for(cptcov=1;cptcov<=i2;cptcov++){       and note for a fixed period like k years */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficresf,"\n#******");       means that if the survival funtion is printed every two years of age and if
       for(j=1;j<=cptcoveff;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
       }    */
       fprintf(ficresf,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresf,"# StartingAge FinalAge");    agelim = AGESUP;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresf,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      for(theta=1; theta <=npar; theta++){
                  for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {        if (popbased==1) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;          }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 if (mobilav==1)              prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }        for(j=1; j<= nlstate; j++){
                          for(h=0; h<=nhstepm; h++){
               }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                 fprintf(ficresf," %.3f", kk1);          }
                                }
               }        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
                /* end probability of death */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fclose(ficresf);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /************** Forecasting ******************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   
          if (popbased==1) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          if(mobilav ==0){
   int *popage;            for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              prlim[i][i]=probs[(int)age][i][ij];
   double *popeffectif,*popcount;          }else{ /* mobilav */ 
   double ***p3mat,***tabpop,***tabpopprev;            for(i=1; i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
   strcpy(filerespop,"pop");        /* This for computing probability of death (h=1 means
   strcat(filerespop,fileres);           computed over hstepm matrices product = hstepm*stepm months) 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {           as a weighted average of prlim.
     printf("Problem with forecast resultfile: %s\n", filerespop);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }    
         /* end probability of death */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++) /* vareij */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   agelim=AGESUP;        }
    
   hstepm=1;      } /* End theta */
   hstepm=hstepm/stepm;  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      for(h=0; h<=nhstepm; h++) /* veij */
       printf("Problem with population file : %s\n",popfile);exit(0);        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
     popage=ivector(0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
     i=1;            trgradgp[j][theta]=gradgp[theta][j];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    
      
     imx=i;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(h=0;h<=nhstepm;h++){
       k=k+1;        for(k=0;k<=nhstepm;k++){
       fprintf(ficrespop,"\n#******");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1;i<=nlstate;i++)
       }            for(j=1;j<=nlstate;j++)
       fprintf(ficrespop,"******\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficrespop,"# Age");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    
            /* pptj */
       for (cpt=0; cpt<=0;cpt++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
              for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          varppt[j][i]=doldmp[j][i];
           nhstepm = nhstepm/hstepm;      /* end ppptj */
                /*  x centered again */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
              if (popbased==1) {
           for (h=0; h<=nhstepm; h++){        if(mobilav ==0){
             if (h==(int) (calagedate+YEARM*cpt)) {          for(i=1; i<=nlstate;i++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            prlim[i][i]=probs[(int)age][i][ij];
             }        }else{ /* mobilav */ 
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;            prlim[i][i]=mobaverage[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)      }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];               
                 else {      /* This for computing probability of death (h=1 means
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 }         as a weighted average of prlim.
               }      */
               if (h==(int)(calagedate+12*cpt)){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   /*fprintf(ficrespop," %.3f", kk1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      }    
               }      /* end probability of death */
             }  
             for(i=1; i<=nlstate;i++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               kk1=0.;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 for(j=1; j<=nlstate;j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for(i=1; i<=nlstate;i++){
                 }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }      } 
       fprintf(ficresprobmorprev,"\n");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      fprintf(ficresvij,"%.0f ",age );
           }      for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
        fprintf(ficresvij,"\n");
   /******/      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    } /* End age */
           nhstepm = nhstepm/hstepm;    free_vector(gpp,nlstate+1,nlstate+ndeath);
              free_vector(gmp,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           for (h=0; h<=nhstepm; h++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=nlstate+ndeath;j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               kk1=0.;kk2=0;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
               }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
             }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           }  */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         }  
       }    free_vector(xp,1,npar);
    }    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ivector(popage,0,AGESUP);    fclose(ficresprobmorprev);
     free_vector(popeffectif,0,AGESUP);    fclose(ficgp);
     free_vector(popcount,0,AGESUP);    fclose(fichtm);
   }  }  /* end varevsij */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance of prevlim ******************/
   fclose(ficrespop);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 }  {
     /* Variance of prevalence limit */
 /***********************************************/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /**************** Main Program *****************/    double **newm;
 /***********************************************/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
 int main(int argc, char *argv[])    int k, cptcode;
 {    double *xp;
     double *gp, *gm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double **gradg, **trgradg;
   double agedeb, agefin,hf;    double age,agelim;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    int theta;
      
   double fret;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   double **xi,tmp,delta;    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   double dum; /* Dummy variable */        fprintf(ficresvpl," %1d-%1d",i,i);
   double ***p3mat;    fprintf(ficresvpl,"\n");
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    xp=vector(1,npar);
   char title[MAXLINE];    dnewm=matrix(1,nlstate,1,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    doldm=matrix(1,nlstate,1,nlstate);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    
      hstepm=1*YEARM; /* Every year of age */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   char filerest[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char fileregp[FILENAMELENGTH];      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   char popfile[FILENAMELENGTH];      if (stepm >= YEARM) hstepm=1;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int firstobs=1, lastobs=10;      gradg=matrix(1,npar,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      gp=vector(1,nlstate);
   int c,  h , cpt,l;      gm=vector(1,nlstate);
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(theta=1; theta <=npar; theta++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(i=1; i<=npar; i++){ /* Computes gradient */
   int mobilav=0,popforecast=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   double bage, fage, age, agelim, agebase;          gp[i] = prlim[i][i];
   double ftolpl=FTOL;      
   double **prlim;        for(i=1; i<=npar; i++) /* Computes gradient */
   double *severity;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double ***param; /* Matrix of parameters */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double  *p;        for(i=1;i<=nlstate;i++)
   double **matcov; /* Matrix of covariance */          gm[i] = prlim[i][i];
   double ***delti3; /* Scale */  
   double *delti; /* Scale */        for(i=1;i<=nlstate;i++)
   double ***eij, ***vareij;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double **varpl; /* Variances of prevalence limits by age */      } /* End theta */
   double *epj, vepp;  
   double kk1, kk2;      trgradg =matrix(1,nlstate,1,npar);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
        for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";          trgradg[j][theta]=gradg[theta][j];
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   char z[1]="c", occ;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 #include <sys/time.h>      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 #include <time.h>      for(i=1;i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   /* long total_usecs;      fprintf(ficresvpl,"%.0f ",age );
   struct timeval start_time, end_time;      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresvpl,"\n");
   getcwd(pathcd, size);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   printf("\n%s",version);      free_matrix(gradg,1,npar,1,nlstate);
   if(argc <=1){      free_matrix(trgradg,1,nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    } /* End age */
     scanf("%s",pathtot);  
   }    free_vector(xp,1,npar);
   else{    free_matrix(doldm,1,nlstate,1,npar);
     strcpy(pathtot,argv[1]);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /************ Variance of one-step probabilities  ******************/
   /* cutv(path,optionfile,pathtot,'\\');*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, j=0,  i1, k1, l1, t, tj;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int k2, l2, j1,  z1;
   chdir(path);    int k=0,l, cptcode;
   replace(pathc,path);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 /*-------- arguments in the command line --------*/    double **dnewm,**doldm;
     double *xp;
   strcpy(fileres,"r");    double *gp, *gm;
   strcat(fileres, optionfilefiname);    double **gradg, **trgradg;
   strcat(fileres,".txt");    /* Other files have txt extension */    double **mu;
     double age,agelim, cov[NCOVMAX];
   /*---------arguments file --------*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char fileresprob[FILENAMELENGTH];
     printf("Problem with optionfile %s\n",optionfile);    char fileresprobcov[FILENAMELENGTH];
     goto end;    char fileresprobcor[FILENAMELENGTH];
   }  
     double ***varpij;
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    strcpy(fileresprob,"prob"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcat(fileresprob,fileres);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcov,"probcov"); 
     ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      
        fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprob,"# Age");
   cptcovn=0;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   ncovmodel=2+cptcovn;    fprintf(ficresprobcov,"# Age");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     puts(line);      }  
     fputs(line,ficparo);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcor,"\n");
     */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   xp=vector(1,npar);
     for(i=1; i <=nlstate; i++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       printf("%1d%1d",i,j);    first=1;
       for(k=1; k<=ncovmodel;k++){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         fscanf(ficpar," %lf",&param[i][j][k]);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         printf(" %lf",param[i][j][k]);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         fprintf(ficparo," %lf",param[i][j][k]);      exit(0);
       }    }
       fscanf(ficpar,"\n");    else{
       printf("\n");      fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficparo,"\n");    }
     }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
        printf("Problem with html file: %s\n", optionfilehtm);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   p=param[1][1];    }
      else{
   /* Reads comments: lines beginning with '#' */      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(fichtm,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     puts(line);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fputs(line,ficparo);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   }  
   ungetc(c,ficpar);    }
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    cov[1]=1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    tj=cptcoveff;
   for(i=1; i <=nlstate; i++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     for(j=1; j <=nlstate+ndeath-1; j++){    j1=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for(t=1; t<=tj;t++){
       printf("%1d%1d",i,j);      for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficparo,"%1d%1d",i1,j1);        j1++;
       for(k=1; k<=ncovmodel;k++){        if  (cptcovn>0) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(ficresprob, "\n#********** Variable "); 
         printf(" %le",delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
       fscanf(ficpar,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("\n");          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficparo,"\n");          
     }          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=delti3[1][1];          fprintf(ficgp, "**********\n#\n");
            
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     puts(line);          
     fputs(line,ficparo);          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
          }
   matcov=matrix(1,npar,1,npar);        
   for(i=1; i <=npar; i++){        for (age=bage; age<=fage; age ++){ 
     fscanf(ficpar,"%s",&str);          cov[2]=age;
     printf("%s",str);          for (k=1; k<=cptcovn;k++) {
     fprintf(ficparo,"%s",str);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for(j=1; j <=i; j++){          }
       fscanf(ficpar," %le",&matcov[i][j]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf(" %.5le",matcov[i][j]);          for (k=1; k<=cptcovprod;k++)
       fprintf(ficparo," %.5le",matcov[i][j]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
     fscanf(ficpar,"\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     printf("\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fprintf(ficparo,"\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   for(i=1; i <=npar; i++)      
     for(j=i+1;j<=npar;j++)          for(theta=1; theta <=npar; theta++){
       matcov[i][j]=matcov[j][i];            for(i=1; i<=npar; i++)
                  xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   printf("\n");            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
     /*-------- Rewriting paramater file ----------*/            k=0;
      strcpy(rfileres,"r");    /* "Rparameterfile */            for(i=1; i<= (nlstate); i++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              for(j=1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,".");    /* */                k=k+1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                gp[k]=pmmij[i][j];
     if((ficres =fopen(rfileres,"w"))==NULL) {              }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     }            
     fprintf(ficres,"#%s\n",version);            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     /*-------- data file ----------*/      
     if((fic=fopen(datafile,"r"))==NULL)    {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("Problem with datafile: %s\n", datafile);goto end;            k=0;
     }            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
     n= lastobs;                k=k+1;
     severity = vector(1,maxwav);                gm[k]=pmmij[i][j];
     outcome=imatrix(1,maxwav+1,1,n);              }
     num=ivector(1,n);            }
     moisnais=vector(1,n);       
     annais=vector(1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     moisdc=vector(1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     andc=vector(1,n);          }
     agedc=vector(1,n);  
     cod=ivector(1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     weight=vector(1,n);            for(theta=1; theta <=npar; theta++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              trgradg[j][theta]=gradg[theta][j];
     mint=matrix(1,maxwav,1,n);          
     anint=matrix(1,maxwav,1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     s=imatrix(1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     adl=imatrix(1,maxwav+1,1,n);              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     tab=ivector(1,NCOVMAX);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     ncodemax=ivector(1,8);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {          pmij(pmmij,cov,ncovmodel,x,nlstate);
       if ((i >= firstobs) && (i <=lastobs)) {          
                  k=0;
         for (j=maxwav;j>=1;j--){          for(i=1; i<=(nlstate); i++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(j=1; j<=(nlstate+ndeath);j++){
           strcpy(line,stra);              k=k+1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }          }
                  for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              varpij[i][j][(int)age] = doldm[i][j];
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          /*printf("\n%d ",(int)age);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (j=ncovcol;j>=1;j--){            }*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          fprintf(ficresprob,"\n%d ",(int)age);
         num[i]=atol(stra);          fprintf(ficresprobcov,"\n%d ",(int)age);
                  fprintf(ficresprobcor,"\n%d ",(int)age);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         i=i+1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     /* printf("ii=%d", ij);          }
        scanf("%d",i);*/          i=0;
   imx=i-1; /* Number of individuals */          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   /* for (i=1; i<=imx; i++){              i=i++;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              for (j=1; j<=i;j++){
     }*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /* for (i=1; i<=imx; i++){              }
      if (s[4][i]==9)  s[4][i]=-1;            }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}          }/* end of loop for state */
   */        } /* end of loop for age */
    
   /* Calculation of the number of parameter from char model*/        /* Confidence intervalle of pij  */
   Tvar=ivector(1,15);        /*
   Tprod=ivector(1,15);          fprintf(ficgp,"\nset noparametric;unset label");
   Tvaraff=ivector(1,15);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   Tvard=imatrix(1,15,1,2);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   Tage=ivector(1,15);                fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if (strlen(model) >1){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     j=0, j1=0, k1=1, k2=1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     j=nbocc(model,'+');        */
     j1=nbocc(model,'*');  
     cptcovn=j+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     cptcovprod=j1;        first1=1;
            for (k2=1; k2<=(nlstate);k2++){
     strcpy(modelsav,model);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            if(l2==k2) continue;
       printf("Error. Non available option model=%s ",model);            j=(k2-1)*(nlstate+ndeath)+l2;
       goto end;            for (k1=1; k1<=(nlstate);k1++){
     }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                    if(l1==k1) continue;
     for(i=(j+1); i>=1;i--){                i=(k1-1)*(nlstate+ndeath)+l1;
       cutv(stra,strb,modelsav,'+');                if(i<=j) continue;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                for (age=bage; age<=fage; age ++){ 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                  if ((int)age %5==0){
       /*scanf("%d",i);*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       if (strchr(strb,'*')) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         cutv(strd,strc,strb,'*');                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if (strcmp(strc,"age")==0) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
           cptcovprod--;                    mu2=mu[j][(int) age]/stepm*YEARM;
           cutv(strb,stre,strd,'V');                    c12=cv12/sqrt(v1*v2);
           Tvar[i]=atoi(stre);                    /* Computing eigen value of matrix of covariance */
           cptcovage++;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             Tage[cptcovage]=i;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*printf("stre=%s ", stre);*/                    /* Eigen vectors */
         }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         else if (strcmp(strd,"age")==0) {                    /*v21=sqrt(1.-v11*v11); *//* error */
           cptcovprod--;                    v21=(lc1-v1)/cv12*v11;
           cutv(strb,stre,strc,'V');                    v12=-v21;
           Tvar[i]=atoi(stre);                    v22=v11;
           cptcovage++;                    tnalp=v21/v11;
           Tage[cptcovage]=i;                    if(first1==1){
         }                      first1=0;
         else {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(strb,stre,strc,'V');                    }
           Tvar[i]=ncovcol+k1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(strb,strc,strd,'V');                    /*printf(fignu*/
           Tprod[k1]=i;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           Tvard[k1][1]=atoi(strc);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           Tvard[k1][2]=atoi(stre);                    if(first==1){
           Tvar[cptcovn+k2]=Tvard[k1][1];                      first=0;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      fprintf(ficgp,"\nset parametric;unset label");
           for (k=1; k<=lastobs;k++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           k1++;                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
           k2=k2+2;                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
       else {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        /*  scanf("%d",i);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       cutv(strd,strc,strb,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       Tvar[i]=atoi(strc);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
       strcpy(modelsav,stra);                        first=0;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
         scanf("%d",i);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   printf("cptcovprod=%d ", cptcovprod);                    }/* if first */
   scanf("%d ",i);*/                  } /* age mod 5 */
     fclose(fic);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     /*  if(mle==1){*/                first=1;
     if (weightopt != 1) { /* Maximisation without weights*/              } /*l12 */
       for(i=1;i<=n;i++) weight[i]=1.0;            } /* k12 */
     }          } /*l1 */
     /*-calculation of age at interview from date of interview and age at death -*/        }/* k1 */
     agev=matrix(1,maxwav,1,imx);      } /* loop covariates */
     }
     for (i=1; i<=imx; i++) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       for(m=2; (m<= maxwav); m++) {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_vector(xp,1,npar);
          anint[m][i]=9999;    fclose(ficresprob);
          s[m][i]=-1;    fclose(ficresprobcov);
        }    fclose(ficresprobcor);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fclose(ficgp);
       }    fclose(fichtm);
     }  }
   
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /******************* Printing html file ***********/
       for(m=1; (m<= maxwav); m++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         if(s[m][i] >0){                    int lastpass, int stepm, int weightopt, char model[],\
           if (s[m][i] >= nlstate+1) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             if(agedc[i]>0)                    int popforecast, int estepm ,\
               if(moisdc[i]!=99 && andc[i]!=9999)                    double jprev1, double mprev1,double anprev1, \
                 agev[m][i]=agedc[i];                    double jprev2, double mprev2,double anprev2){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    int jj1, k1, i1, cpt;
            else {    /*char optionfilehtm[FILENAMELENGTH];*/
               if (andc[i]!=9999){    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      printf("Problem with %s \n",optionfilehtm), exit(0);
               agev[m][i]=-1;      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
               }    }
             }  
           }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
           else if(s[m][i] !=9){ /* Should no more exist */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
             if(mint[m][i]==99 || anint[m][i]==9999)   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
               agev[m][i]=1;   - Life expectancies by age and initial health status (estepm=%2d months): 
             else if(agev[m][i] <agemin){     <a href=\"e%s\">e%s</a> <br>\n</li>", \
               agemin=agev[m][i];    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];   m=cptcoveff;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/   jj1=0;
             /*   agev[m][i] = age[i]+2*m;*/   for(k1=1; k1<=m;k1++){
           }     for(i1=1; i1<=ncodemax[k1];i1++){
           else { /* =9 */       jj1++;
             agev[m][i]=1;       if (cptcovn > 0) {
             s[m][i]=-1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++) 
         }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         else /*= 0 Unknown */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           agev[m][i]=1;       }
       }       /* Pij */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     }  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     for (i=1; i<=imx; i++)  {       /* Quasi-incidences */
       for(m=1; (m<= maxwav); m++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
         if (s[m][i] > (nlstate+ndeath)) {  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           printf("Error: Wrong value in nlstate or ndeath\n");           /* Stable prevalence in each health state */
           goto end;         for(cpt=1; cpt<nlstate;cpt++){
         }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       }  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     free_vector(severity,1,maxwav);       }
     free_imatrix(outcome,1,maxwav+1,1,n);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     free_vector(moisnais,1,n);  health expectancies in states (1) and (2): e%s%d.png<br>
     free_vector(annais,1,n);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     /* free_matrix(mint,1,maxwav,1,n);     } /* end i1 */
        free_matrix(anint,1,maxwav,1,n);*/   }/* End k1 */
     free_vector(moisdc,1,n);   fprintf(fichtm,"</ul>");
     free_vector(andc,1,n);  
   
       fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     wav=ivector(1,imx);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
       - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     /* Concatenates waves */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
       Tcode=ivector(1,100);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       ncodemax[1]=1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
        /*  else  */
    codtab=imatrix(1,100,1,10);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    h=0;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    m=pow(2,cptcoveff);  
     m=cptcoveff;
    for(k=1;k<=cptcoveff; k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){   jj1=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   for(k1=1; k1<=m;k1++){
            h++;     for(i1=1; i1<=ncodemax[k1];i1++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       jj1++;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       if (cptcovn > 0) {
          }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        }         for (cpt=1; cpt<=cptcoveff;cpt++) 
      }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       }
       codtab[1][2]=1;codtab[2][2]=2; */       for(cpt=1; cpt<=nlstate;cpt++) {
    /* for(i=1; i <=m ;i++){         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
       for(k=1; k <=cptcovn; k++){  interval) in state (%d): v%s%d%d.png <br>
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
       }       }
       printf("\n");     } /* end i1 */
       }   }/* End k1 */
       scanf("%d",i);*/   fprintf(fichtm,"</ul>");
      fclose(fichtm);
    /* Calculates basic frequencies. Computes observed prevalence at single age  }
        and prints on file fileres'p'. */  
   /******************* Gnuplot file **************/
      void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int ng;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with file %s",optionfilegnuplot);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
          }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*#ifdef windows */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     if(mle==1){  m=pow(2,cptcoveff);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }   /* 1eme*/
        for (cpt=1; cpt<= nlstate ; cpt ++) {
     /*--------- results files --------------*/     for (k1=1; k1<= m ; k1 ++) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
    jk=1;       for (i=1; i<= nlstate ; i ++) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1,jk=1; i <=nlstate; i++){       }
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        if (k != i)       for (i=1; i<= nlstate ; i ++) {
          {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            printf("%d%d ",i,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"%1d%1d ",i,k);       } 
            for(j=1; j <=ncovmodel; j++){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
              printf("%f ",p[jk]);       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficres,"%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
            }       }  
            printf("\n");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
            fprintf(ficres,"\n");     }
          }    }
      }    /*2 eme*/
    }    
  if(mle==1){    for (k1=1; k1<= m ; k1 ++) { 
     /* Computing hessian and covariance matrix */      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     ftolhess=ftol; /* Usually correct */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     hesscov(matcov, p, npar, delti, ftolhess, func);      
  }      for (i=1; i<= nlstate+1 ; i ++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        k=2*i;
     printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
      for(i=1,jk=1; i <=nlstate; i++){        for (j=1; j<= nlstate+1 ; j ++) {
       for(j=1; j <=nlstate+ndeath; j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         if (j!=i) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficres,"%1d%1d",i,j);        }   
           printf("%1d%1d",i,j);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           for(k=1; k<=ncovmodel;k++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             printf(" %.5e",delti[jk]);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
             fprintf(ficres," %.5e",delti[jk]);        for (j=1; j<= nlstate+1 ; j ++) {
             jk++;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           }          else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("\n");        }   
           fprintf(ficres,"\n");        fprintf(ficgp,"\" t\"\" w l 0,");
         }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
      }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     k=1;        }   
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
     for(i=1;i<=npar;i++){      }
       /*  if (k>nlstate) k=1;    }
       i1=(i-1)/(ncovmodel*nlstate)+1;    
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /*3eme*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/    
       fprintf(ficres,"%3d",i);    for (k1=1; k1<= m ; k1 ++) { 
       printf("%3d",i);      for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1; j<=i;j++){        k=2+nlstate*(2*cpt-2);
         fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         printf(" %.5e",matcov[i][j]);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficres,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       k++;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     while((c=getc(ficpar))=='#' && c!= EOF){          
       ungetc(c,ficpar);        */
       fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++) {
       puts(line);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       fputs(line,ficparo);          
     }        } 
     ungetc(c,ficpar);      }
     estepm=0;    }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    
     if (estepm==0 || estepm < stepm) estepm=stepm;    /* CV preval stable (period) */
     if (fage <= 2) {    for (k1=1; k1<= m ; k1 ++) { 
       bage = ageminpar;      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fage = agemaxpar;        k=3;
     }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (i=1; i< nlstate ; i ++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        l=3+(nlstate+ndeath)*cpt;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     puts(line);        for (i=1; i< nlstate ; i ++) {
     fputs(line,ficparo);          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
   ungetc(c,ficpar);        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      } 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
          /* proba elementaires */
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1,jk=1; i <=nlstate; i++){
     ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
     fgets(line, MAXLINE, ficpar);        if (k != i) {
     puts(line);          for(j=1; j <=ncovmodel; j++){
     fputs(line,ficparo);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
   ungetc(c,ficpar);            fprintf(ficgp,"\n");
            }
         }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     }
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficparo,"pop_based=%d\n",popbased);         for(jk=1; jk <=m; jk++) {
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
           if (ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     ungetc(c,ficpar);         else
     fgets(line, MAXLINE, ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
     puts(line);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     fputs(line,ficparo);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   ungetc(c,ficpar);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);             if (k != k2){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);               if(ng==2)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 while((c=getc(ficpar))=='#' && c!= EOF){               ij=1;
     ungetc(c,ficpar);               for(j=3; j <=ncovmodel; j++) {
     fgets(line, MAXLINE, ficpar);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     puts(line);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fputs(line,ficparo);                   ij++;
   }                 }
   ungetc(c,ficpar);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);               }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               fprintf(ficgp,")/(1");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               
                for(k1=1; k1 <=nlstate; k1++){   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
 /*------------ gnuplot -------------*/                 for(j=3; j <=ncovmodel; j++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /*------------ free_vector  -------------*/                     ij++;
  chdir(path);                   }
                     else
  free_ivector(wav,1,imx);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                 }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                   fprintf(ficgp,")");
  free_ivector(num,1,n);               }
  free_vector(agedc,1,n);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  fclose(ficparo);               i=i+ncovmodel;
  fclose(ficres);             }
            } /* end k */
 /*--------- index.htm --------*/         } /* end k2 */
        } /* end jk */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);     } /* end ng */
      fclose(ficgp); 
    }  /* end gnuplot */
   /*--------------- Prevalence limit --------------*/  
    
   strcpy(filerespl,"pl");  /*************** Moving average **************/
   strcat(filerespl,fileres);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int i, cpt, cptcod;
   }    int modcovmax =1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int mobilavrange, mob;
   fprintf(ficrespl,"#Prevalence limit\n");    double age;
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   fprintf(ficrespl,"\n");                             a covariate has 2 modalities */
      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mobilav==1) mobilavrange=5; /* default */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else mobilavrange=mobilav;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (age=bage; age<=fage; age++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (i=1; i<=nlstate;i++)
   k=0;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   agebase=ageminpar;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   agelim=agemaxpar;      /* We keep the original values on the extreme ages bage, fage and for 
   ftolpl=1.e-10;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   i1=cptcoveff;         we use a 5 terms etc. until the borders are no more concerned. 
   if (cptcovn < 1){i1=1;}      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   for(cptcov=1;cptcov<=i1;cptcov++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<=nlstate;i++){
         k=k+1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficrespl,"\n#******");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         fprintf(ficrespl,"******\n");                }
                      mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         for (age=agebase; age<=agelim; age++){            }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
           fprintf(ficrespl,"%.0f",age );        }/* end age */
           for(i=1; i<=nlstate;i++)      }/* end mob */
           fprintf(ficrespl," %.5f", prlim[i][i]);    }else return -1;
           fprintf(ficrespl,"\n");    return 0;
         }  }/* End movingaverage */
       }  
     }  
   fclose(ficrespl);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /*------------- h Pij x at various ages ------------*/    /* proj1, year, month, day of starting projection 
         agemin, agemax range of age
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       dateprev1 dateprev2 range of dates during which prevalence is computed
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       anproj2 year of en of projection (same day and month as proj1).
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    */
   }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   printf("Computing pij: result on file '%s' \n", filerespij);    int *popage;
      double agec; /* generic age */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   /*if (stepm<=24) stepsize=2;*/    double *popeffectif,*popcount;
     double ***p3mat;
   agelim=AGESUP;    double ***mobaverage;
   hstepm=stepsize*YEARM; /* Every year of age */    char fileresf[FILENAMELENGTH];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      agelim=AGESUP;
   k=0;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(fileresf,"f"); 
       k=k+1;    strcat(fileresf,fileres);
         fprintf(ficrespij,"\n#****** ");    if((ficresf=fopen(fileresf,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)      printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrespij,"******\n");    }
            printf("Computing forecasting: result on file '%s' \n", fileresf);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (mobilav!=0) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"# Age");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=nlstate+ndeath;j++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespij," %1d-%1d",i,j);      }
           fprintf(ficrespij,"\n");    }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    stepsize=(int) (stepm+YEARM-1)/YEARM;
             for(i=1; i<=nlstate;i++)    if (stepm<=12) stepsize=1;
               for(j=1; j<=nlstate+ndeath;j++)    if(estepm < stepm){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf ("Problem %d lower than %d\n",estepm, stepm);
             fprintf(ficrespij,"\n");    }
           }    else  hstepm=estepm;   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    hstepm=hstepm/stepm; 
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     }                                 fractional in yp1 */
   }    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   fclose(ficrespij);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){    i1=cptcoveff;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if (cptcovn < 1){i1=1;}
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    
     free_matrix(mint,1,maxwav,1,n);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);}    fprintf(ficresf,"#****** Routine prevforecast **\n");
   else{  
     erreur=108;  /*            if (h==(int)(YEARM*yearp)){ */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
         fprintf(ficresf,"\n#******");
   /*---------- Health expectancies and variances ------------*/        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcpy(filerest,"t");        }
   strcat(filerest,fileres);        fprintf(ficresf,"******\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(j=1; j<=nlstate+ndeath;j++){ 
   }          for(i=1; i<=nlstate;i++)              
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
   strcpy(filerese,"e");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   strcat(filerese,fileres);          fprintf(ficresf,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
  strcpy(fileresv,"v");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresv,fileres);            oldm=oldms;savm=savms;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          
   }            for (h=0; h<=nhstepm; h++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   k=0;                for(j=1;j<=cptcoveff;j++) 
   for(cptcov=1;cptcov<=i1;cptcov++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       k=k+1;              } 
       fprintf(ficrest,"\n#****** ");              for(j=1; j<=nlstate+ndeath;j++) {
       for(j=1;j<=cptcoveff;j++)                ppij=0.;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {
       fprintf(ficrest,"******\n");                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficreseij,"\n#****** ");                  else {
       for(j=1;j<=cptcoveff;j++)                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
       fprintf(ficreseij,"******\n");                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fprintf(ficresvij,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                } /* end i */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h*hstepm/YEARM*stepm==yearp) {
       fprintf(ficresvij,"******\n");                  fprintf(ficresf," %.3f", ppij);
                 }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              }/* end j */
       oldm=oldms;savm=savms;            } /* end h */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          } /* end agec */
       oldm=oldms;savm=savms;        } /* end yearp */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      } /* end cptcod */
        } /* end  cptcov */
          
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fclose(ficresf);
       fprintf(ficrest,"\n");  }
   
       epj=vector(1,nlstate+1);  /************** Forecasting *****not tested NB*************/
       for(age=bage; age <=fage ;age++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
         if (popbased==1) {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
           for(i=1; i<=nlstate;i++)    int *popage;
             prlim[i][i]=probs[(int)age][i][k];    double calagedatem, agelim, kk1, kk2;
         }    double *popeffectif,*popcount;
            double ***p3mat,***tabpop,***tabpopprev;
         fprintf(ficrest," %4.0f",age);    double ***mobaverage;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    char filerespop[FILENAMELENGTH];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           epj[nlstate+1] +=epj[j];    agelim=AGESUP;
         }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             vepp += vareij[i][j][(int)age];    
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));    
         for(j=1;j <=nlstate;j++){    strcpy(filerespop,"pop"); 
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));    strcat(filerespop,fileres);
         }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         fprintf(ficrest,"\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
       }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }    }
   }    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   fclose(ficreseij);  
   fclose(ficresvij);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fclose(ficrest);  
   fclose(ficpar);    if (mobilav!=0) {
   free_vector(epj,1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*------- Variance limit prevalence------*/          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     exit(0);    if (stepm<=12) stepsize=1;
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    agelim=AGESUP;
     
   k=0;    hstepm=1;
   for(cptcov=1;cptcov<=i1;cptcov++){    hstepm=hstepm/stepm; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    if (popforecast==1) {
       fprintf(ficresvpl,"\n#****** ");      if((ficpop=fopen(popfile,"r"))==NULL) {
       for(j=1;j<=cptcoveff;j++)        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       fprintf(ficresvpl,"******\n");      } 
            popage=ivector(0,AGESUP);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      popeffectif=vector(0,AGESUP);
       oldm=oldms;savm=savms;      popcount=vector(0,AGESUP);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      
     }      i=1;   
  }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
   fclose(ficresvpl);      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   /*---------- End : free ----------------*/    }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        k=k+1;
          fprintf(ficrespop,"\n#******");
          for(j=1;j<=cptcoveff;j++) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficrespop,"******\n");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficrespop,"# Age");
          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   free_matrix(matcov,1,npar,1,npar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
   free_vector(delti,1,npar);        
   free_matrix(agev,1,maxwav,1,imx);        for (cpt=0; cpt<=0;cpt++) { 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
   if(erreur >0)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     printf("End of Imach with error or warning %d\n",erreur);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   else   printf("End of Imach\n");            nhstepm = nhstepm/hstepm; 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            oldm=oldms;savm=savms;
   /*printf("Total time was %d uSec.\n", total_usecs);*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*------ End -----------*/          
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
  end:                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 #ifdef windows              } 
   /* chdir(pathcd);*/              for(j=1; j<=nlstate+ndeath;j++) {
 #endif                kk1=0.;kk2=0;
  /*system("wgnuplot graph.plt");*/                for(i=1; i<=nlstate;i++) {              
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  if (mobilav==1) 
  /*system("cd ../gp37mgw");*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  else {
  strcpy(plotcmd,GNUPLOTPROGRAM);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
  strcat(plotcmd," ");                  }
  strcat(plotcmd,optionfilegnuplot);                }
  system(plotcmd);                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
 #ifdef windows                    /*fprintf(ficrespop," %.3f", kk1);
   while (z[0] != 'q') {                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     /* chdir(path); */                }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");              }
     scanf("%s",z);              for(i=1; i<=nlstate;i++){
     if (z[0] == 'c') system("./imach");                kk1=0.;
     else if (z[0] == 'e') system(optionfilehtm);                  for(j=1; j<=nlstate;j++){
     else if (z[0] == 'g') system(plotcmd);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     else if (z[0] == 'q') exit(0);                  }
   }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 #endif              }
 }  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.36  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>