Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.84

version 1.41.2.2, 2003/06/13 07:45:28 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   This program computes Healthy Life Expectancies from    place. It differs from routine "prevalence" which may be called
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    many times. Probs is memory consuming and must be used with
   first survey ("cross") where individuals from different ages are    parcimony.
   interviewed on their health status or degree of disability (in the    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.83  2003/06/10 13:39:11  lievre
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.82  2003/06/05 15:57:20  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Add log in  imach.c and  fullversion number is now printed.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave  */
   conditional to be observed in state i at the first wave. Therefore  /*
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where     Interpolated Markov Chain
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Short summary of the programme:
   where the markup *Covariates have to be included here again* invites    
   you to do it.  More covariates you add, slower the    This program computes Healthy Life Expectancies from
   convergence.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   The advantage of this computer programme, compared to a simple    interviewed on their health status or degree of disability (in the
   multinomial logistic model, is clear when the delay between waves is not    case of a health survey which is our main interest) -2- at least a
   identical for each individual. Also, if a individual missed an    second wave of interviews ("longitudinal") which measure each change
   intermediate interview, the information is lost, but taken into    (if any) in individual health status.  Health expectancies are
   account using an interpolation or extrapolation.      computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be observed in state i at age x+h    Maximum Likelihood of the parameters involved in the model.  The
   conditional to the observed state i at age x. The delay 'h' can be    simplest model is the multinomial logistic model where pij is the
   split into an exact number (nh*stepm) of unobserved intermediate    probability to be observed in state j at the second wave
   states. This elementary transition (by month or quarter trimester,    conditional to be observed in state i at the first wave. Therefore
   semester or year) is model as a multinomial logistic.  The hPx    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply    complex model than "constant and age", you should modify the program
   hPijx.    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   Also this programme outputs the covariance matrix of the parameters but also    convergence.
   of the life expectancies. It also computes the prevalence limits.  
      The advantage of this computer programme, compared to a simple
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    multinomial logistic model, is clear when the delay between waves is not
            Institut national d'études démographiques, Paris.    identical for each individual. Also, if a individual missed an
   This software have been partly granted by Euro-REVES, a concerted action    intermediate interview, the information is lost, but taken into
   from the European Union.    account using an interpolation or extrapolation.  
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    hPijx is the probability to be observed in state i at age x+h
   can be accessed at http://euroreves.ined.fr/imach .    conditional to the observed state i at age x. The delay 'h' can be
   **********************************************************************/    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 #include <math.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdio.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <stdlib.h>    and the contribution of each individual to the likelihood is simply
 #include <unistd.h>    hPijx.
   
 #define MAXLINE 256    Also this programme outputs the covariance matrix of the parameters but also
 #define GNUPLOTPROGRAM "wgnuplot"    of the life expectancies. It also computes the stable prevalence. 
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /*#define windows*/    from the European Union.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    It is copyrighted identically to a GNU software product, ie programme and
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    **********************************************************************/
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*
 #define NCOVMAX 8 /* Maximum number of covariates */    main
 #define MAXN 20000    read parameterfile
 #define YEARM 12. /* Number of months per year */    read datafile
 #define AGESUP 130    concatwav
 #define AGEBASE 40    freqsummary
     if (mle >= 1)
       mlikeli
 int erreur; /* Error number */    print results files
 int nvar;    if mle==1 
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;       computes hessian
 int npar=NPARMAX;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int nlstate=2; /* Number of live states */        begin-prev-date,...
 int ndeath=1; /* Number of dead states */    open gnuplot file
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open html file
 int popbased=0;    stable prevalence
      for age prevalim()
 int *wav; /* Number of waves for this individuual 0 is possible */    h Pij x
 int maxwav; /* Maxim number of waves */    variance of p varprob
 int jmin, jmax; /* min, max spacing between 2 waves */    forecasting if prevfcast==1 prevforecast call prevalence()
 int mle, weightopt;    health expectancies
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Variance-covariance of DFLE
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    prevalence()
 double jmean; /* Mean space between 2 waves */     movingaverage()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    varevsij() 
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    if popbased==1 varevsij(,popbased)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    total life expectancies
 FILE *ficgp,*ficresprob,*ficpop;    Variance of stable prevalence
 FILE *ficreseij;   end
   char filerese[FILENAMELENGTH];  */
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];   
   #include <math.h>
 #define NR_END 1  #include <stdio.h>
 #define FREE_ARG char*  #include <stdlib.h>
 #define FTOL 1.0e-10  #include <unistd.h>
   
 #define NRANSI  #define MAXLINE 256
 #define ITMAX 200  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define TOL 2.0e-4  #define FILENAMELENGTH 80
   /*#define DEBUG*/
 #define CGOLD 0.3819660  #define windows
 #define ZEPS 1.0e-10  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define GOLD 1.618034  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define GLIMIT 100.0  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define TINY 1.0e-20  
   #define NINTERVMAX 8
 static double maxarg1,maxarg2;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define YEARM 12. /* Number of months per year */
 #define rint(a) floor(a+0.5)  #define AGESUP 130
   #define AGEBASE 40
 static double sqrarg;  #ifdef windows
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define DIRSEPARATOR '\\'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define ODIRSEPARATOR '/'
   #else
 int imx;  #define DIRSEPARATOR '/'
 int stepm;  #define ODIRSEPARATOR '\\'
 /* Stepm, step in month: minimum step interpolation*/  #endif
   
 int estepm;  /* $Id$ */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $State$ */
   
 int m,nb;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char fullversion[]="$Revision$ $Date$"; 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int erreur; /* Error number */
 double **pmmij, ***probs, ***mobaverage;  int nvar;
 double dateintmean=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 double *weight;  int nlstate=2; /* Number of live states */
 int **s; /* Status */  int ndeath=1; /* Number of dead states */
 double *agedc, **covar, idx;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int popbased=0;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int *wav; /* Number of waves for this individuual 0 is possible */
 double ftolhess; /* Tolerance for computing hessian */  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /**************** split *************************/  int mle, weightopt;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    char *s;                             /* pointer */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    int  l1, l2;                         /* length counters */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
    l1 = strlen( path );                 /* length of path */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #ifdef windows  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    s = strrchr( path, '\\' );           /* find last / */  FILE *ficlog, *ficrespow;
 #else  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    s = strrchr( path, '/' );            /* find last / */  FILE *ficresprobmorprev;
 #endif  FILE *fichtm; /* Html File */
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *ficreseij;
 #if     defined(__bsd__)                /* get current working directory */  char filerese[FILENAMELENGTH];
       extern char       *getwd( );  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
       if ( getwd( dirc ) == NULL ) {  FILE  *ficresvpl;
 #else  char fileresvpl[FILENAMELENGTH];
       extern char       *getcwd( );  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #endif  
          return( GLOCK_ERROR_GETCWD );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  char filelog[FILENAMELENGTH]; /* Log file */
       strcpy( name, path );             /* we've got it */  char filerest[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  char fileregp[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char popfile[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define NR_END 1
       dirc[l1-l2] = 0;                  /* add zero */  #define FREE_ARG char*
    }  #define FTOL 1.0e-10
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  #define NRANSI 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define ITMAX 200 
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define TOL 2.0e-4 
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define CGOLD 0.3819660 
    s++;  #define ZEPS 1.0e-10 
    strcpy(ext,s);                       /* save extension */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l1= strlen( name);  
    l2= strlen( s)+1;  #define GOLD 1.618034 
    strncpy( finame, name, l1-l2);  #define GLIMIT 100.0 
    finame[l1-l2]= 0;  #define TINY 1.0e-20 
    return( 0 );                         /* we're done */  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************************************/    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void replace(char *s, char*t)  #define rint(a) floor(a+0.5)
 {  
   int i;  static double sqrarg;
   int lg=20;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   i=0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  int imx; 
     (s[i] = t[i]);  int stepm;
     if (t[i]== '\\') s[i]='/';  /* Stepm, step in month: minimum step interpolation*/
   }  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int nbocc(char *s, char occ)  
 {  int m,nb;
   int i,j=0;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   int lg=20;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   i=0;  double **pmmij, ***probs;
   lg=strlen(s);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  double *weight;
   }  int **s; /* Status */
   return j;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 void cutv(char *u,char *v, char*t, char occ)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   int i,lg,j,p=0;  
   i=0;  /**************** split *************************/
   for(j=0; j<=strlen(t)-1; j++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  {
   }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   lg=strlen(t);  
   for(j=0; j<p; j++) {    l1 = strlen(path );                   /* length of path */
     (u[j] = t[j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      u[p]='\0';    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
    for(j=0; j<= lg; j++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     if (j>=(p+1))(v[j-p-1] = t[j]);      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /********************** nrerror ********************/      }
       strcpy( name, path );               /* we've got it */
 void nrerror(char error_text[])    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   fprintf(stderr,"ERREUR ...\n");      l2 = strlen( ss );                  /* length of filename */
   fprintf(stderr,"%s\n",error_text);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   exit(1);      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*********************** vector *******************/      dirc[l1-l2] = 0;                    /* add zero */
 double *vector(int nl, int nh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   double *v;  #ifdef windows
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!v) nrerror("allocation failure in vector");  #else
   return v-nl+NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     ss = strrchr( name, '.' );            /* find last / */
 /************************ free vector ******************/    ss++;
 void free_vector(double*v, int nl, int nh)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   free((FREE_ARG)(v+nl-NR_END));    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /************************ivector *******************************/    return( 0 );                          /* we're done */
 int *ivector(long nl,long nh)  }
 {  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /******************************************/
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  void replace(char *s, char*t)
 }  {
     int i;
 /******************free ivector **************************/    int lg=20;
 void free_ivector(int *v, long nl, long nh)    i=0;
 {    lg=strlen(t);
   free((FREE_ARG)(v+nl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int nbocc(char *s, char occ)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    int i,j=0;
      int lg=20;
   /* allocate pointers to rows */    i=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    lg=strlen(s);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;    if  (s[i] == occ ) j++;
   m -= nrl;    }
      return j;
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl] -= ncl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
         gives u="abcedf" and v="ghi2j" */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int i,lg,j,p=0;
      i=0;
   /* return pointer to array of pointers to rows */    for(j=0; j<=strlen(t)-1; j++) {
   return m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /****************** free_imatrix *************************/    lg=strlen(t);
 void free_imatrix(m,nrl,nrh,ncl,nch)    for(j=0; j<p; j++) {
       int **m;      (u[j] = t[j]);
       long nch,ncl,nrh,nrl;    }
      /* free an int matrix allocated by imatrix() */       u[p]='\0';
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     for(j=0; j<= lg; j++) {
   free((FREE_ARG) (m+nrl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /********************** nrerror ********************/
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  void nrerror(char error_text[])
   double **m;  {
     fprintf(stderr,"ERREUR ...\n");
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    fprintf(stderr,"%s\n",error_text);
   if (!m) nrerror("allocation failure 1 in matrix()");    exit(EXIT_FAILURE);
   m += NR_END;  }
   m -= nrl;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    double *v;
   m[nrl] += NR_END;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl] -= ncl;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************ivector *******************************/
 }  char *cvector(long nl,long nh)
   {
 /******************* ma3x *******************************/    char *v;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 {    if (!v) nrerror("allocation failure in cvector");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return v-nl+NR_END;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************free ivector **************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_cvector(char *v, long nl, long nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ivector *******************************/
   m[nrl] += NR_END;  int *ivector(long nl,long nh)
   m[nrl] -= ncl;  {
     int *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /******************free ivector **************************/
   for (j=ncl+1; j<=nch; j++)  void free_ivector(int *v, long nl, long nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /******************* imatrix *******************************/
       m[i][j]=m[i][j-1]+nlay;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return m;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END; 
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl; 
 }    
     
 /***************** f1dim *************************/    /* allocate rows and set pointers to them */ 
 extern int ncom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 extern double *pcom,*xicom;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 extern double (*nrfunc)(double []);    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
 double f1dim(double x)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int j;    
   double f;    /* return pointer to array of pointers to rows */ 
   double *xt;    return m; 
    } 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /****************** free_imatrix *************************/
   f=(*nrfunc)(xt);  void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(xt,1,ncom);        int **m;
   return f;        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*****************brent *************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   int iter;  
   double a,b,d,etemp;  /******************* matrix *******************************/
   double fu,fv,fw,fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double e=0.0;    double **m;
    
   a=(ax < cx ? ax : cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   b=(ax > cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   x=w=v=bx;    m += NR_END;
   fw=fv=fx=(*f)(x);    m -= nrl;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl] += NR_END;
     printf(".");fflush(stdout);    m[nrl] -= ncl;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return m;
 #endif    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     */
       *xmin=x;  }
       return fx;  
     }  /*************************free matrix ************************/
     ftemp=fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=(x-v)*(fx-fw);    free((FREE_ARG)(m+nrl-NR_END));
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /******************* ma3x *******************************/
       q=fabs(q);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       etemp=e;  {
       e=d;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    double ***m;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()");
         u=x+d;    m += NR_END;
         if (u-a < tol2 || b-u < tol2)    m -= nrl;
           d=SIGN(tol1,xm-x);  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       SHFT(v,w,x,u)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         SHFT(fv,fw,fx,fu)    m[nrl][ncl] += NR_END;
         } else {    m[nrl][ncl] -= nll;
           if (u < x) a=u; else b=u;    for (j=ncl+1; j<=nch; j++) 
           if (fu <= fw || w == x) {      m[nrl][j]=m[nrl][j-1]+nlay;
             v=w;    
             w=u;    for (i=nrl+1; i<=nrh; i++) {
             fv=fw;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             fw=fu;      for (j=ncl+1; j<=nch; j++) 
           } else if (fu <= fv || v == x || v == w) {        m[i][j]=m[i][j-1]+nlay;
             v=u;    }
             fv=fu;    return m; 
           }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /****************** mnbrak ***********************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  /***************** f1dim *************************/
   double fu;  extern int ncom; 
    extern double *pcom,*xicom;
   *fa=(*func)(*ax);  extern double (*nrfunc)(double []); 
   *fb=(*func)(*bx);   
   if (*fb > *fa) {  double f1dim(double x) 
     SHFT(dum,*ax,*bx,dum)  { 
       SHFT(dum,*fb,*fa,dum)    int j; 
       }    double f;
   *cx=(*bx)+GOLD*(*bx-*ax);    double *xt; 
   *fc=(*func)(*cx);   
   while (*fb > *fc) {    xt=vector(1,ncom); 
     r=(*bx-*ax)*(*fb-*fc);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     q=(*bx-*cx)*(*fb-*fa);    f=(*nrfunc)(xt); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    free_vector(xt,1,ncom); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return f; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  } 
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /*****************brent *************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       fu=(*func)(u);  { 
       if (fu < *fc) {    int iter; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    double a,b,d,etemp;
           SHFT(*fb,*fc,fu,(*func)(u))    double fu,fv,fw,fx;
           }    double ftemp;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       u=ulim;    double e=0.0; 
       fu=(*func)(u);   
     } else {    a=(ax < cx ? ax : cx); 
       u=(*cx)+GOLD*(*cx-*bx);    b=(ax > cx ? ax : cx); 
       fu=(*func)(u);    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     SHFT(*ax,*bx,*cx,u)    for (iter=1;iter<=ITMAX;iter++) { 
       SHFT(*fa,*fb,*fc,fu)      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /*************** linmin ************************/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 int ncom;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double *pcom,*xicom;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double (*nrfunc)(double []);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 {        *xmin=x; 
   double brent(double ax, double bx, double cx,        return fx; 
                double (*f)(double), double tol, double *xmin);      } 
   double f1dim(double x);      ftemp=fu;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      if (fabs(e) > tol1) { 
               double *fc, double (*func)(double));        r=(x-w)*(fx-fv); 
   int j;        q=(x-v)*(fx-fw); 
   double xx,xmin,bx,ax;        p=(x-v)*q-(x-w)*r; 
   double fx,fb,fa;        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
   ncom=n;        q=fabs(q); 
   pcom=vector(1,n);        etemp=e; 
   xicom=vector(1,n);        e=d; 
   nrfunc=func;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (j=1;j<=n;j++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     pcom[j]=p[j];        else { 
     xicom[j]=xi[j];          d=p/q; 
   }          u=x+d; 
   ax=0.0;          if (u-a < tol2 || b-u < tol2) 
   xx=1.0;            d=SIGN(tol1,xm-x); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        } 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      } else { 
 #ifdef DEBUG        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (j=1;j<=n;j++) {      fu=(*f)(u); 
     xi[j] *= xmin;      if (fu <= fx) { 
     p[j] += xi[j];        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
   free_vector(xicom,1,n);          SHFT(fv,fw,fx,fu) 
   free_vector(pcom,1,n);          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /*************** powell ************************/              v=w; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,              w=u; 
             double (*func)(double []))              fv=fw; 
 {              fw=fu; 
   void linmin(double p[], double xi[], int n, double *fret,            } else if (fu <= fv || v == x || v == w) { 
               double (*func)(double []));              v=u; 
   int i,ibig,j;              fv=fu; 
   double del,t,*pt,*ptt,*xit;            } 
   double fp,fptt;          } 
   double *xits;    } 
   pt=vector(1,n);    nrerror("Too many iterations in brent"); 
   ptt=vector(1,n);    *xmin=x; 
   xit=vector(1,n);    return fx; 
   xits=vector(1,n);  } 
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /****************** mnbrak ***********************/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     ibig=0;              double (*func)(double)) 
     del=0.0;  { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double ulim,u,r,q, dum;
     for (i=1;i<=n;i++)    double fu; 
       printf(" %d %.12f",i, p[i]);   
     printf("\n");    *fa=(*func)(*ax); 
     for (i=1;i<=n;i++) {    *fb=(*func)(*bx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if (*fb > *fa) { 
       fptt=(*fret);      SHFT(dum,*ax,*bx,dum) 
 #ifdef DEBUG        SHFT(dum,*fb,*fa,dum) 
       printf("fret=%lf \n",*fret);        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf("%d",i);fflush(stdout);    *fc=(*func)(*cx); 
       linmin(p,xit,n,fret,func);    while (*fb > *fc) { 
       if (fabs(fptt-(*fret)) > del) {      r=(*bx-*ax)*(*fb-*fc); 
         del=fabs(fptt-(*fret));      q=(*bx-*cx)*(*fb-*fa); 
         ibig=i;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       printf("%d %.12e",i,(*fret));      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         printf(" x(%d)=%.12e",j,xit[j]);        fu=(*func)(u); 
       }        if (fu < *fc) { 
       for(j=1;j<=n;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         printf(" p=%.12e",p[j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
       printf("\n");            } 
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       int k[2],l;        u=(*cx)+GOLD*(*cx-*bx); 
       k[0]=1;        fu=(*func)(u); 
       k[1]=-1;      } 
       printf("Max: %.12e",(*func)(p));      SHFT(*ax,*bx,*cx,u) 
       for (j=1;j<=n;j++)        SHFT(*fa,*fb,*fc,fu) 
         printf(" %.12e",p[j]);        } 
       printf("\n");  } 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*************** linmin ************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int ncom; 
         }  double *pcom,*xicom;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double (*nrfunc)(double []); 
       }   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
       free_vector(xit,1,n);                 double (*f)(double), double tol, double *xmin); 
       free_vector(xits,1,n);    double f1dim(double x); 
       free_vector(ptt,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       free_vector(pt,1,n);                double *fc, double (*func)(double)); 
       return;    int j; 
     }    double xx,xmin,bx,ax; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fx,fb,fa;
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];    ncom=n; 
       xit[j]=p[j]-pt[j];    pcom=vector(1,n); 
       pt[j]=p[j];    xicom=vector(1,n); 
     }    nrfunc=func; 
     fptt=(*func)(ptt);    for (j=1;j<=n;j++) { 
     if (fptt < fp) {      pcom[j]=p[j]; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      xicom[j]=xi[j]; 
       if (t < 0.0) {    } 
         linmin(p,xit,n,fret,func);    ax=0.0; 
         for (j=1;j<=n;j++) {    xx=1.0; 
           xi[j][ibig]=xi[j][n];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
           xi[j][n]=xit[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         }  #ifdef DEBUG
 #ifdef DEBUG    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(j=1;j<=n;j++)  #endif
           printf(" %.12e",xit[j]);    for (j=1;j<=n;j++) { 
         printf("\n");      xi[j] *= xmin; 
 #endif      p[j] += xi[j]; 
       }    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
 }  } 
   
 /**** Prevalence limit ****************/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)              double (*func)(double [])) 
 {  { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    void linmin(double p[], double xi[], int n, double *fret, 
      matrix by transitions matrix until convergence is reached */                double (*func)(double [])); 
     int i,ibig,j; 
   int i, ii,j,k;    double del,t,*pt,*ptt,*xit;
   double min, max, maxmin, maxmax,sumnew=0.;    double fp,fptt;
   double **matprod2();    double *xits;
   double **out, cov[NCOVMAX], **pmij();    pt=vector(1,n); 
   double **newm;    ptt=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    xit=vector(1,n); 
     xits=vector(1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=(*func)(p); 
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
       ibig=0; 
    cov[1]=1.;      del=0.0; 
        printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     newm=savm;      for (i=1;i<=n;i++) {
     /* Covariates have to be included here again */        printf(" %d %.12f",i, p[i]);
      cov[2]=agefin;        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
       for (k=1; k<=cptcovn;k++) {      }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf("\n");
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for (i=1;i<=n;i++) { 
       for (k=1; k<=cptcovprod;k++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fptt=(*fret); 
   #ifdef DEBUG
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
     savm=oldm;        linmin(p,xit,n,fret,func); 
     oldm=newm;        if (fabs(fptt-(*fret)) > del) { 
     maxmax=0.;          del=fabs(fptt-(*fret)); 
     for(j=1;j<=nlstate;j++){          ibig=i; 
       min=1.;        } 
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {        printf("%d %.12e",i,(*fret));
         sumnew=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        for (j=1;j<=n;j++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         max=FMAX(max,prlim[i][j]);          printf(" x(%d)=%.12e",j,xit[j]);
         min=FMIN(min,prlim[i][j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       maxmin=max-min;        for(j=1;j<=n;j++) {
       maxmax=FMAX(maxmax,maxmin);          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     if(maxmax < ftolpl){        }
       return prlim;        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*************** transition probabilities ***************/  #ifdef DEBUG
         int k[2],l;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        k[0]=1;
 {        k[1]=-1;
   double s1, s2;        printf("Max: %.12e",(*func)(p));
   /*double t34;*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i,j,j1, nc, ii, jj;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
     for(i=1; i<= nlstate; i++){          fprintf(ficlog," %.12e",p[j]);
     for(j=1; j<i;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("\n");
         /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficlog,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for(l=0;l<=1;l++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       ps[i][j]=s2;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     for(j=i+1; j<=nlstate+ndeath;j++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }  
       ps[i][j]=s2;  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
     /*ps[3][2]=1;*/        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   for(i=1; i<= nlstate; i++){        return; 
      s1=0;      } 
     for(j=1; j<i; j++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       s1+=exp(ps[i][j]);      for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        ptt[j]=2.0*p[j]-pt[j]; 
       s1+=exp(ps[i][j]);        xit[j]=p[j]-pt[j]; 
     ps[i][i]=1./(s1+1.);        pt[j]=p[j]; 
     for(j=1; j<i; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fptt=(*func)(ptt); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fptt < fp) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        if (t < 0.0) { 
   } /* end i */          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            xi[j][ibig]=xi[j][n]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){            xi[j][n]=xit[j]; 
       ps[ii][jj]=0;          }
       ps[ii][ii]=1;  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            fprintf(ficlog," %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
      printf("%lf ",ps[ii][jj]);          printf("\n");
    }          fprintf(ficlog,"\n");
     printf("\n ");  #endif
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/      } 
 /*    } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /**** Prevalence limit (stable prevalence)  ****************/
 }  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /**************** Product of 2 matrices ******************/  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       matrix by transitions matrix until convergence is reached */
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int i, ii,j,k;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double min, max, maxmin, maxmax,sumnew=0.;
   /* in, b, out are matrice of pointers which should have been initialized    double **matprod2();
      before: only the contents of out is modified. The function returns    double **out, cov[NCOVMAX], **pmij();
      a pointer to pointers identical to out */    double **newm;
   long i, j, k;    double agefin, delaymax=50 ; /* Max number of years to converge */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      for (j=1;j<=nlstate+ndeath;j++){
         out[i][k] +=in[i][j]*b[j][k];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   return out;  
 }     cov[1]=1.;
    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************* Higher Matrix Product ***************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /* Covariates have to be included here again */
 {       cov[2]=agefin;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    
      duration (i.e. until        for (k=1; k<=cptcovn;k++) {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      (typically every 2 years instead of every month which is too big).        }
      Model is determined by parameters x and covariates have to be        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      included manually here.        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      */  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, j, d, h, k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **out, cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double **newm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   /* Hstepm could be zero and should return the unit matrix */      savm=oldm;
   for (i=1;i<=nlstate+ndeath;i++)      oldm=newm;
     for (j=1;j<=nlstate+ndeath;j++){      maxmax=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        min=1.;
     }        max=0.;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(i=1; i<=nlstate; i++) {
   for(h=1; h <=nhstepm; h++){          sumnew=0;
     for(d=1; d <=hstepm; d++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       newm=savm;          prlim[i][j]= newm[i][j]/(1-sumnew);
       /* Covariates have to be included here again */          max=FMAX(max,prlim[i][j]);
       cov[1]=1.;          min=FMIN(min,prlim[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        maxmin=max-min;
       for (k=1; k<=cptcovage;k++)        maxmax=FMAX(maxmax,maxmin);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      if(maxmax < ftolpl){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return prlim;
       }
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** transition probabilities ***************/ 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       oldm=newm;  {
     }    double s1, s2;
     for(i=1; i<=nlstate+ndeath; i++)    /*double t34;*/
       for(j=1;j<=nlstate+ndeath;j++) {    int i,j,j1, nc, ii, jj;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      for(i=1; i<= nlstate; i++){
          */      for(j=1; j<i;j++){
       }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   } /* end h */          /*s2 += param[i][j][nc]*cov[nc];*/
   return po;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
         ps[i][j]=s2;
 /*************** log-likelihood *************/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 double func( double *x)      }
 {      for(j=i+1; j<=nlstate+ndeath;j++){
   int i, ii, j, k, mi, d, kk;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **out;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double sw; /* Sum of weights */        }
   double lli; /* Individual log likelihood */        ps[i][j]=s2;
   int s1, s2;      }
   long ipmx;    }
   /*extern weight */      /*ps[3][2]=1;*/
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for(i=1; i<= nlstate; i++){
   /*for(i=1;i<imx;i++)       s1=0;
     printf(" %d\n",s[4][i]);      for(j=1; j<i; j++)
   */        s1+=exp(ps[i][j]);
   cov[1]=1.;      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      ps[i][i]=1./(s1+1.);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for(j=1; j<i; j++)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(mi=1; mi<= wav[i]-1; mi++){      for(j=i+1; j<=nlstate+ndeath; j++)
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         for (j=1;j<=nlstate+ndeath;j++){      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } /* end i */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  
         }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(d=0; d<dh[mi][i]; d++){      for(jj=1; jj<= nlstate+ndeath; jj++){
         newm=savm;        ps[ii][jj]=0;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        ps[ii][ii]=1;
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }  
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(jj=1; jj<= nlstate+ndeath; jj++){
         savm=oldm;       printf("%lf ",ps[ii][jj]);
         oldm=newm;     }
              printf("\n ");
              }
       } /* end mult */      printf("\n ");printf("%lf ",cov[2]);*/
        /*
       s1=s[mw[mi][i]][i];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       s2=s[mw[mi+1][i]][i];    goto end;*/
       if( s2 > nlstate){      return ps;
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  }
            to the likelihood is the probability to die between last step unit time and current  
            step unit time, which is also the differences between probability to die before dh  /**************** Product of 2 matrices ******************/
            and probability to die before dh-stepm .  
            In version up to 0.92 likelihood was computed  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
            as if date of death was unknown. Death was treated as any other  {
            health state: the date of the interview describes the actual state    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
            and not the date of a change in health state. The former idea was       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
            to consider that at each interview the state was recorded    /* in, b, out are matrice of pointers which should have been initialized 
            (healthy, disable or death) and IMaCh was corrected; but when we       before: only the contents of out is modified. The function returns
            introduced the exact date of death then we should have modified       a pointer to pointers identical to out */
            the contribution of an exact death to the likelihood. This new    long i, j, k;
            contribution is smaller and very dependent of the step unit    for(i=nrl; i<= nrh; i++)
            stepm. It is no more the probability to die between last interview      for(k=ncolol; k<=ncoloh; k++)
            and month of death but the probability to survive from last        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            interview up to one month before death multiplied by the          out[i][k] +=in[i][j]*b[j][k];
            probability to die within a month. Thanks to Chris  
            Jackson for correcting this bug.  Former versions increased    return out;
            mortality artificially. The bad side is that we add another loop  }
            which slows down the processing. The difference can be up to 10%  
            lower mortality.  
         */  /************* Higher Matrix Product ***************/
         lli=log(out[s1][s2] - savm[s1][s2]);  
       }else{  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  {
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
       ipmx +=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       sw += weight[i];       nhstepm*hstepm matrices. 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/       (typically every 2 years instead of every month which is too big 
     } /* end of wave */       for the memory).
   } /* end of individual */       Model is determined by parameters x and covariates have to be 
        included manually here. 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   /*exit(0);*/    int i, j, d, h, k;
   return -l;    double **out, cov[NCOVMAX];
 }    double **newm;
   
     /* Hstepm could be zero and should return the unit matrix */
 /*********** Maximum Likelihood Estimation ***************/    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i,j, iter;      }
   double **xi,*delti;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double fret;    for(h=1; h <=nhstepm; h++){
   xi=matrix(1,npar,1,npar);      for(d=1; d <=hstepm; d++){
   for (i=1;i<=npar;i++)        newm=savm;
     for (j=1;j<=npar;j++)        /* Covariates have to be included here again */
       xi[i][j]=(i==j ? 1.0 : 0.0);        cov[1]=1.;
   printf("Powell\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
   
 /**** Computes Hessian and covariance matrix ***/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double  **a,**y,*x,pd;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **hess;        savm=oldm;
   int i, j,jk;        oldm=newm;
   int *indx;      }
       for(i=1; i<=nlstate+ndeath; i++)
   double hessii(double p[], double delta, int theta, double delti[]);        for(j=1;j<=nlstate+ndeath;j++) {
   double hessij(double p[], double delti[], int i, int j);          po[i][j][h]=newm[i][j];
   void lubksb(double **a, int npar, int *indx, double b[]) ;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;           */
         }
   hess=matrix(1,npar,1,npar);    } /* end h */
     return po;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*************** log-likelihood *************/
     /*printf(" %f ",p[i]);*/  double func( double *x)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++) {    double **out;
     for (j=1;j<=npar;j++)  {    double sw; /* Sum of weights */
       if (j>i) {    double lli; /* Individual log likelihood */
         printf(".%d%d",i,j);fflush(stdout);    int s1, s2;
         hess[i][j]=hessij(p,delti,i,j);    double bbh, survp;
         hess[j][i]=hess[i][j];        long ipmx;
         /*printf(" %lf ",hess[i][j]);*/    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   printf("\n");      printf(" %d\n",s[4][i]);
     */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    cov[1]=1.;
    
   a=matrix(1,npar,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    if(mle==1){
   indx=ivector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
   ludcmp(a,npar,indx,&pd);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;            }
     lubksb(a,npar,indx,x);          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++){            newm=savm;
       matcov[i][j]=x[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   printf("\n#Hessian matrix#\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=npar;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=1;j<=npar;j++) {            savm=oldm;
       printf("%.3e ",hess[i][j]);            oldm=newm;
     }          } /* end mult */
     printf("\n");        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
   /* Recompute Inverse */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (i=1;i<=npar;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
   ludcmp(a,npar,indx,&pd);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   /*  printf("\n#Hessian matrix recomputed#\n");           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (j=1;j<=npar;j++) {           * -stepm/2 to stepm/2 .
     for (i=1;i<=npar;i++) x[i]=0;           * For stepm=1 the results are the same as for previous versions of Imach.
     x[j]=1;           * For stepm > 1 the results are less biased than in previous versions. 
     lubksb(a,npar,indx,x);           */
     for (i=1;i<=npar;i++){          s1=s[mw[mi][i]][i];
       y[i][j]=x[i];          s2=s[mw[mi+1][i]][i];
       printf("%.3e ",y[i][j]);          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     printf("\n");           * is higher than the multiple of stepm and negative otherwise.
   }           */
   */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   free_matrix(a,1,npar,1,npar);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   free_matrix(y,1,npar,1,npar);               to the likelihood is the probability to die between last step unit time and current 
   free_vector(x,1,npar);               step unit time, which is also the differences between probability to die before dh 
   free_ivector(indx,1,npar);               and probability to die before dh-stepm . 
   free_matrix(hess,1,npar,1,npar);               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /*************** hessian matrix ****************/          (healthy, disable or death) and IMaCh was corrected; but when we
 double hessii( double x[], double delta, int theta, double delti[])          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i;          contribution is smaller and very dependent of the step unit
   int l=1, lmax=20;          stepm. It is no more the probability to die between last interview
   double k1,k2;          and month of death but the probability to survive from last
   double p2[NPARMAX+1];          interview up to one month before death multiplied by the
   double res;          probability to die within a month. Thanks to Chris
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          Jackson for correcting this bug.  Former versions increased
   double fx;          mortality artificially. The bad side is that we add another loop
   int k=0,kmax=10;          which slows down the processing. The difference can be up to 10%
   double l1;          lower mortality.
             */
   fx=func(x);            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          }else{
   for(l=0 ; l <=lmax; l++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     l1=pow(10,l);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     delts=delt;          } 
     for(k=1 ; k <kmax; k=k+1){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       delt = delta*(l1*k);          /*if(lli ==000.0)*/
       p2[theta]=x[theta] +delt;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       k1=func(p2)-fx;          ipmx +=1;
       p2[theta]=x[theta]-delt;          sw += weight[i];
       k2=func(p2)-fx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        } /* end of wave */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } /* end of individual */
          }  else if(mle==2){
 #ifdef DEBUG      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #endif        for(mi=1; mi<= wav[i]-1; mi++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for (ii=1;ii<=nlstate+ndeath;ii++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            for (j=1;j<=nlstate+ndeath;j++){
         k=kmax;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            }
         k=kmax; l=lmax*10.;          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         delts=delt;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   delti[theta]=delts;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
              oldm=newm;
 }          } /* end mult */
         
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {          /* But now since version 0.9 we anticipate for bias and large stepm.
   int i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int l=1, l1, lmax=20;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double k1,k2,k3,k4,res,fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double p2[NPARMAX+1];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   fx=func(x);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (k=1; k<=2; k++) {           * -stepm/2 to stepm/2 .
     for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]+delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           */
     k1=func(p2)-fx;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /* bias is positive if real duration
     k2=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     k3=func(p2)-fx;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k4=func(p2)-fx;          ipmx +=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          sw += weight[i];
 #ifdef DEBUG          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        } /* end of wave */
 #endif      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   return res;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************** Inverse of matrix **************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void ludcmp(double **a, int n, int *indx, double *d)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,imax,j,k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;            }
   double *vv;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   vv=vector(1,n);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   *d=1.0;            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     big=0.0;            }
     for (j=1;j<=n;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ((temp=fabs(a[i][j])) > big) big=temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            savm=oldm;
     vv[i]=1.0/big;            oldm=newm;
   }          } /* end mult */
   for (j=1;j<=n;j++) {        
     for (i=1;i<j;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       sum=a[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       a[i][j]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     big=0.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=j;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       sum=a[i][j];           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<j;k++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         sum -= a[i][k]*a[k][j];           * -stepm/2 to stepm/2 .
       a[i][j]=sum;           * For stepm=1 the results are the same as for previous versions of Imach.
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * For stepm > 1 the results are less biased than in previous versions. 
         big=dum;           */
         imax=i;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != imax) {          /* bias is positive if real duration
       for (k=1;k<=n;k++) {           * is higher than the multiple of stepm and negative otherwise.
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         a[j][k]=dum;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       *d = -(*d);          /*if(lli ==000.0)*/
       vv[imax]=vv[j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     indx[j]=imax;          sw += weight[i];
     if (a[j][j] == 0.0) a[j][j]=TINY;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (j != n) {        } /* end of wave */
       dum=1.0/(a[j][j]);      } /* end of individual */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(vv,1,n);  /* Doesn't work */        for(mi=1; mi<= wav[i]-1; mi++){
 ;          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i,ii=0,ip,j;          for(d=0; d<dh[mi][i]; d++){
   double sum;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=n;i++) {            for (kk=1; kk<=cptcovage;kk++) {
     ip=indx[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     sum=b[ip];            }
     b[ip]=b[i];          
     if (ii)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     else if (sum) ii=i;            savm=oldm;
     b[i]=sum;            oldm=newm;
   }          } /* end mult */
   for (i=n;i>=1;i--) {        
     sum=b[i];          s1=s[mw[mi][i]][i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          s2=s[mw[mi+1][i]][i];
     b[i]=sum/a[i][i];          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
 }          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /************ Frequencies ********************/          }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          ipmx +=1;
 {  /* Some frequencies */          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<dh[mi][i]; d++){
     exit(0);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   j=cptcoveff;          
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        
         scanf("%d", i);*/          s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=agemin; m <= agemax+3; m++)          ipmx +=1;
             freq[i][jk][m]=0;          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       dateintsum=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       k2cpt=0;        } /* end of wave */
       for (i=1; i<=imx; i++) {      } /* end of individual */
         bool=1;    } /* End of if */
         if  (cptcovn>0) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for (z1=1; z1<=cptcoveff; z1++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               bool=0;    /*exit(0); */
         }    return -l;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*********** Maximum Likelihood Estimation ***************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
               if (m<lastpass) {  {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i,j, iter;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double **xi;
               }    double fret;
                  char filerespow[FILENAMELENGTH];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    xi=matrix(1,npar,1,npar);
                 dateintsum=dateintsum+k2;    for (i=1;i<=npar;i++)
                 k2cpt++;      for (j=1;j<=npar;j++)
               }        xi[i][j]=(i==j ? 1.0 : 0.0);
             }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           }    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
       if  (cptcovn>0) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         fprintf(ficresp, "\n#********** Variable ");    for (i=1;i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(j=1;j<=nlstate+ndeath;j++)
         fprintf(ficresp, "**********\n#");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
       for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    fclose(ficrespow);
          printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(i=(int)agemin; i <= (int)agemax+3; i++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         if(i==(int)agemax+3)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           printf("Total");  
         else  }
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  /**** Computes Hessian and covariance matrix ***/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             pp[jk] += freq[jk][m][i];  {
         }    double  **a,**y,*x,pd;
         for(jk=1; jk <=nlstate ; jk++){    double **hess;
           for(m=-1, pos=0; m <=0 ; m++)    int i, j,jk;
             pos += freq[jk][m][i];    int *indx;
           if(pp[jk]>=1.e-10)  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double hessii(double p[], double delta, int theta, double delti[]);
           else    double hessij(double p[], double delti[], int i, int j);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    void lubksb(double **a, int npar, int *indx, double b[]) ;
         }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
         for(jk=1; jk <=nlstate ; jk++){    hess=matrix(1,npar,1,npar);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)      printf("%d",i);fflush(stdout);
           pos += pp[jk];      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(jk=1; jk <=nlstate ; jk++){      hess[i][i]=hessii(p,ftolhess,i,delti);
           if(pos>=1.e-5)      /*printf(" %f ",p[i]);*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      /*printf(" %lf ",hess[i][i]);*/
           else    }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    
           if( i <= (int) agemax){    for (i=1;i<=npar;i++) {
             if(pos>=1.e-5){      for (j=1;j<=npar;j++)  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        if (j>i) { 
               probs[i][jk][j1]= pp[jk]/pos;          printf(".%d%d",i,j);fflush(stdout);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             }          hess[i][j]=hessij(p,delti,i,j);
             else          hess[j][i]=hess[i][j];    
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*printf(" %lf ",hess[i][j]);*/
           }        }
         }      }
            }
         for(jk=-1; jk <=nlstate+ndeath; jk++)    printf("\n");
           for(m=-1; m <=nlstate+ndeath; m++)    fprintf(ficlog,"\n");
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           fprintf(ficresp,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         printf("\n");    
       }    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
   }    x=vector(1,npar);
   dateintmean=dateintsum/k2cpt;    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
   fclose(ficresp);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    ludcmp(a,npar,indx,&pd);
   free_vector(pp,1,nlstate);  
      for (j=1;j<=npar;j++) {
   /* End of Freq */      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /************ Prevalence ********************/      for (i=1;i<=npar;i++){ 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        matcov[i][j]=x[i];
 {  /* Some frequencies */      }
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    printf("\n#Hessian matrix#\n");
   double *pp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double pos, k2;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   pp=vector(1,nlstate);        printf("%.3e ",hess[i][j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"%.3e ",hess[i][j]);
        }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      printf("\n");
   j1=0;      fprintf(ficlog,"\n");
      }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Recompute Inverse */
      for (i=1;i<=npar;i++)
  for(k1=1; k1<=j;k1++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(i1=1; i1<=ncodemax[k1];i1++){    ludcmp(a,npar,indx,&pd);
       j1++;  
      /*  printf("\n#Hessian matrix recomputed#\n");
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for (j=1;j<=npar;j++) {
           for(m=agemin; m <= agemax+3; m++)      for (i=1;i<=npar;i++) x[i]=0;
             freq[i][jk][m]=0;      x[j]=1;
            lubksb(a,npar,indx,x);
       for (i=1; i<=imx; i++) {      for (i=1;i<=npar;i++){ 
         bool=1;        y[i][j]=x[i];
         if  (cptcovn>0) {        printf("%.3e ",y[i][j]);
           for (z1=1; z1<=cptcoveff; z1++)        fprintf(ficlog,"%.3e ",y[i][j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      }
               bool=0;      printf("\n");
         }      fprintf(ficlog,"\n");
         if (bool==1) {    }
           for(m=firstpass; m<=lastpass; m++){    */
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    free_matrix(a,1,npar,1,npar);
               if(agev[m][i]==0) agev[m][i]=agemax+1;    free_matrix(y,1,npar,1,npar);
               if(agev[m][i]==1) agev[m][i]=agemax+2;    free_vector(x,1,npar);
               if (m<lastpass)    free_ivector(indx,1,npar);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    free_matrix(hess,1,npar,1,npar);
               else  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  }
             }  
           }  /*************** hessian matrix ****************/
         }  double hessii( double x[], double delta, int theta, double delti[])
       }  {
         for(i=(int)agemin; i <= (int)agemax+3; i++){    int i;
           for(jk=1; jk <=nlstate ; jk++){    int l=1, lmax=20;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double k1,k2;
               pp[jk] += freq[jk][m][i];    double p2[NPARMAX+1];
           }    double res;
           for(jk=1; jk <=nlstate ; jk++){    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             for(m=-1, pos=0; m <=0 ; m++)    double fx;
             pos += freq[jk][m][i];    int k=0,kmax=10;
         }    double l1;
          
          for(jk=1; jk <=nlstate ; jk++){    fx=func(x);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (i=1;i<=npar;i++) p2[i]=x[i];
              pp[jk] += freq[jk][m][i];    for(l=0 ; l <=lmax; l++){
          }      l1=pow(10,l);
                delts=delt;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
          for(jk=1; jk <=nlstate ; jk++){                  p2[theta]=x[theta] +delt;
            if( i <= (int) agemax){        k1=func(p2)-fx;
              if(pos>=1.e-5){        p2[theta]=x[theta]-delt;
                probs[i][jk][j1]= pp[jk]/pos;        k2=func(p2)-fx;
              }        /*res= (k1-2.0*fx+k2)/delt/delt; */
            }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          }        
            #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          k=kmax;
   free_vector(pp,1,nlstate);        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 }  /* End of Freq */          k=kmax; l=lmax*10.;
         }
 /************* Waves Concatenation ***************/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        }
 {      }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }
      Death is a valid wave (if date is known).    delti[theta]=delts;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    return res; 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    
      and mw[mi+1][i]. dh depends on stepm.  }
      */  
   double hessij( double x[], double delti[], int thetai,int thetaj)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int i;
      double sum=0., jmean=0.;*/    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   int j, k=0,jk, ju, jl;    double p2[NPARMAX+1];
   double sum=0.;    int k;
   jmin=1e+5;  
   jmax=-1;    fx=func(x);
   jmean=0.;    for (k=1; k<=2; k++) {
   for(i=1; i<=imx; i++){      for (i=1;i<=npar;i++) p2[i]=x[i];
     mi=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
     m=firstpass;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     while(s[m][i] <= nlstate){      k1=func(p2)-fx;
       if(s[m][i]>=1)    
         mw[++mi][i]=m;      p2[thetai]=x[thetai]+delti[thetai]/k;
       if(m >=lastpass)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         break;      k2=func(p2)-fx;
       else    
         m++;      p2[thetai]=x[thetai]-delti[thetai]/k;
     }/* end while */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (s[m][i] > nlstate){      k3=func(p2)-fx;
       mi++;     /* Death is another wave */    
       /* if(mi==0)  never been interviewed correctly before death */      p2[thetai]=x[thetai]-delti[thetai]/k;
          /* Only death is a correct wave */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       mw[mi][i]=m;      k4=func(p2)-fx;
     }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     wav[i]=mi;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if(mi==0)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  #endif
   }    }
     return res;
   for(i=1; i<=imx; i++){  }
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  /************** Inverse of matrix **************/
         dh[mi][i]=1;  void ludcmp(double **a, int n, int *indx, double *d) 
       else{  { 
         if (s[mw[mi+1][i]][i] > nlstate) {    int i,imax,j,k; 
           if (agedc[i] < 2*AGESUP) {    double big,dum,sum,temp; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double *vv; 
           if(j==0) j=1;  /* Survives at least one month after exam */   
           k=k+1;    vv=vector(1,n); 
           if (j >= jmax) jmax=j;    *d=1.0; 
           if (j <= jmin) jmin=j;    for (i=1;i<=n;i++) { 
           sum=sum+j;      big=0.0; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (j=1;j<=n;j++) 
           }        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         else{      vv[i]=1.0/big; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    } 
           k=k+1;    for (j=1;j<=n;j++) { 
           if (j >= jmax) jmax=j;      for (i=1;i<j;i++) { 
           else if (j <= jmin)jmin=j;        sum=a[i][j]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           sum=sum+j;        a[i][j]=sum; 
         }      } 
         jk= j/stepm;      big=0.0; 
         jl= j -jk*stepm;      for (i=j;i<=n;i++) { 
         ju= j -(jk+1)*stepm;        sum=a[i][j]; 
         if(jl <= -ju)        for (k=1;k<j;k++) 
           dh[mi][i]=jk;          sum -= a[i][k]*a[k][j]; 
         else        a[i][j]=sum; 
           dh[mi][i]=jk+1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         if(dh[mi][i]==0)          big=dum; 
           dh[mi][i]=1; /* At least one step */          imax=i; 
       }        } 
     }      } 
   }      if (j != imax) { 
   jmean=sum/k;        for (k=1;k<=n;k++) { 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          dum=a[imax][k]; 
  }          a[imax][k]=a[j][k]; 
 /*********** Tricode ****************************/          a[j][k]=dum; 
 void tricode(int *Tvar, int **nbcode, int imx)        } 
 {        *d = -(*d); 
   int Ndum[20],ij=1, k, j, i;        vv[imax]=vv[j]; 
   int cptcode=0;      } 
   cptcoveff=0;      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   for (k=0; k<19; k++) Ndum[k]=0;      if (j != n) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      } 
     for (i=1; i<=imx; i++) {    } 
       ij=(int)(covar[Tvar[j]][i]);    free_vector(vv,1,n);  /* Doesn't work */
       Ndum[ij]++;  ;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  } 
       if (ij > cptcode) cptcode=ij;  
     }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     for (i=0; i<=cptcode; i++) {    int i,ii=0,ip,j; 
       if(Ndum[i]!=0) ncodemax[j]++;    double sum; 
     }   
     ij=1;    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       sum=b[ip]; 
     for (i=1; i<=ncodemax[j]; i++) {      b[ip]=b[i]; 
       for (k=0; k<=19; k++) {      if (ii) 
         if (Ndum[k] != 0) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           nbcode[Tvar[j]][ij]=k;      else if (sum) ii=i; 
                b[i]=sum; 
           ij++;    } 
         }    for (i=n;i>=1;i--) { 
         if (ij > ncodemax[j]) break;      sum=b[i]; 
       }        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
   }      } 
   } 
  for (k=0; k<19; k++) Ndum[k]=0;  
   /************ Frequencies ********************/
  for (i=1; i<=ncovmodel-2; i++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       ij=Tvar[i];  {  /* Some frequencies */
       Ndum[ij]++;    
     }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
  ij=1;    double ***freq; /* Frequencies */
  for (i=1; i<=10; i++) {    double *pp, **prop;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      Tvaraff[ij]=i;    FILE *ficresp;
      ij++;    char fileresp[FILENAMELENGTH];
    }    
  }    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
     cptcoveff=ij-1;    strcpy(fileresp,"p");
 }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
 /*********** Health Expectancies ****************/      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      exit(0);
     }
 {    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   /* Health expectancies */    j1=0;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    
   double age, agelim, hf;    j=cptcoveff;
   double ***p3mat,***varhe;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **dnewm,**doldm;  
   double *xp;    first=1;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for(k1=1; k1<=j;k1++){
   int theta;      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   xp=vector(1,npar);          scanf("%d", i);*/
   dnewm=matrix(1,nlstate*2,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   doldm=matrix(1,nlstate*2,1,nlstate*2);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficreseij,"# Health expectancies\n");              freq[i][jk][m]=0;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
     for(j=1; j<=nlstate;j++)        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          prop[i][m]=0;
   fprintf(ficreseij,"\n");        
         dateintsum=0;
   if(estepm < stepm){        k2cpt=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (i=1; i<=imx; i++) {
   }          bool=1;
   else  hstepm=estepm;            if  (cptcovn>0) {
   /* We compute the life expectancy from trapezoids spaced every estepm months            for (z1=1; z1<=cptcoveff; z1++) 
    * This is mainly to measure the difference between two models: for example              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    * if stepm=24 months pijx are given only every 2 years and by summing them                bool=0;
    * we are calculating an estimate of the Life Expectancy assuming a linear          }
    * progression inbetween and thus overestimating or underestimating according          if (bool==1){
    * to the curvature of the survival function. If, for the same date, we            for(m=firstpass; m<=lastpass; m++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              k2=anint[m][i]+(mint[m][i]/12.);
    * to compare the new estimate of Life expectancy with the same linear              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    * hypothesis. A more precise result, taking into account a more precise                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    * curvature will be obtained if estepm is as small as stepm. */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* For example we decided to compute the life expectancy with the smallest unit */                if (m<lastpass) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      nhstepm is the number of hstepm from age to agelim                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      nstepm is the number of stepm from age to agelin.                }
      Look at hpijx to understand the reason of that which relies in memory size                
      and note for a fixed period like estepm months */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                  dateintsum=dateintsum+k2;
      survival function given by stepm (the optimization length). Unfortunately it                  k2cpt++;
      means that if the survival funtion is printed only each two years of age and if                }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                /*}*/
      results. So we changed our mind and took the option of the best precision.            }
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
          
   agelim=AGESUP;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */        if  (cptcovn>0) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          fprintf(ficresp, "\n#********** Variable "); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* if (stepm >= YEARM) hstepm=1;*/          fprintf(ficresp, "**********\n#");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficresp, "\n");
     gm=matrix(0,nhstepm,1,nlstate*2);        
         for(i=iagemin; i <= iagemax+3; i++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          if(i==iagemax+3){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            fprintf(ficlog,"Total");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }else{
              if(first==1){
               first=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              printf("See log file for details...\n");
             }
     /* Computing Variances of health expectancies */            fprintf(ficlog,"Age %d", i);
           }
      for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i]; 
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pos=0; m <=0 ; m++)
       cptj=0;              pos += freq[jk][m][i];
       for(j=1; j<= nlstate; j++){            if(pp[jk]>=1.e-10){
         for(i=1; i<=nlstate; i++){              if(first==1){
           cptj=cptj+1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
         }              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
       for(i=1; i<=npar; i++)          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
                  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       cptj=0;              pp[jk] += freq[jk][m][i];
       for(j=1; j<= nlstate; j++){          }       
         for(i=1;i<=nlstate;i++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           cptj=cptj+1;            pos += pp[jk];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            posprop += prop[jk][i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }
           }          for(jk=1; jk <=nlstate ; jk++){
         }            if(pos>=1.e-5){
       }              if(first==1)
                      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
       for(j=1; j<= nlstate*2; j++)              if(first==1)
         for(h=0; h<=nhstepm-1; h++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
             if( i <= iagemax){
      }              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 /* End theta */                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              }
               else
      for(h=0; h<=nhstepm-1; h++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1; j<=nlstate*2;j++)            }
         for(theta=1; theta <=npar; theta++)          }
         trgradg[h][j][theta]=gradg[h][theta][j];          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
      for(i=1;i<=nlstate*2;i++)              if(freq[jk][m][i] !=0 ) {
       for(j=1;j<=nlstate*2;j++)              if(first==1)
         varhe[i][j][(int)age] =0.;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(h=0;h<=nhstepm-1;h++){              }
       for(k=0;k<=nhstepm-1;k++){          if(i <= iagemax)
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            fprintf(ficresp,"\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          if(first==1)
         for(i=1;i<=nlstate*2;i++)            printf("Others in log...\n");
           for(j=1;j<=nlstate*2;j++)          fprintf(ficlog,"\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }      }
     }    }
     dateintmean=dateintsum/k2cpt; 
         
     /* Computing expectancies */    fclose(ficresp);
     for(i=1; i<=nlstate;i++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       for(j=1; j<=nlstate;j++)    free_vector(pp,1,nlstate);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /* End of Freq */
            }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   /************ Prevalence ********************/
         }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     fprintf(ficreseij,"%3.0f",age );    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     cptj=0;       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
       for(j=1; j<=nlstate;j++){    */
         cptj++;   
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       }    double ***freq; /* Frequencies */
     fprintf(ficreseij,"\n");    double *pp, **prop;
        double pos,posprop; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double  y2; /* in fractional years */
     free_matrix(gp,0,nhstepm,1,nlstate*2);    int iagemin, iagemax;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    iagemin= (int) agemin;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   free_vector(xp,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   free_matrix(dnewm,1,nlstate*2,1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    j1=0;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   /* Variance of health expectancies */        j1++;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;        for (i=1; i<=nlstate; i++)  
   double **dnewm,**doldm;          for(m=iagemin; m <= iagemax+3; m++)
   int i, j, nhstepm, hstepm, h, nstepm ;            prop[i][m]=0.0;
   int k, cptcode;       
   double *xp;        for (i=1; i<=imx; i++) { /* Each individual */
   double **gp, **gm;          bool=1;
   double ***gradg, ***trgradg;          if  (cptcovn>0) {
   double ***p3mat;            for (z1=1; z1<=cptcoveff; z1++) 
   double age,agelim, hf;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int theta;                bool=0;
           } 
    fprintf(ficresvij,"# Covariances of life expectancies\n");          if (bool==1) { 
   fprintf(ficresvij,"# Age");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   for(i=1; i<=nlstate;i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(j=1; j<=nlstate;j++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresvij,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   xp=vector(1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   dnewm=matrix(1,nlstate,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   doldm=matrix(1,nlstate,1,nlstate);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   if(estepm < stepm){                } 
     printf ("Problem %d lower than %d\n",estepm, stepm);              }
   }            } /* end selection of waves */
   else  hstepm=estepm;            }
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(i=iagemin; i <= iagemax+3; i++){  
      nhstepm is the number of hstepm from age to agelim          
      nstepm is the number of stepm from age to agelin.          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      Look at hpijx to understand the reason of that which relies in memory size            posprop += prop[jk][i]; 
      and note for a fixed period like k years */          } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it          for(jk=1; jk <=nlstate ; jk++){     
      means that if the survival funtion is printed only each two years of age and if            if( i <=  iagemax){ 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              if(posprop>=1.e-5){ 
      results. So we changed our mind and took the option of the best precision.                probs[i][jk][j1]= prop[jk][i]/posprop;
   */              } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            } 
   agelim = AGESUP;          }/* end jk */ 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }/* end i */ 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end i1 */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } /* end k1 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     gp=matrix(0,nhstepm,1,nlstate);    /*free_vector(pp,1,nlstate);*/
     gm=matrix(0,nhstepm,1,nlstate);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /************* Waves Concatenation ***************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
       if (popbased==1) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for(i=1; i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           prlim[i][i]=probs[(int)age][i][ij];       and mw[mi+1][i]. dh depends on stepm.
       }       */
    
       for(j=1; j<= nlstate; j++){    int i, mi, m;
         for(h=0; h<=nhstepm; h++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       double sum=0., jmean=0.;*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int first;
         }    int j, k=0,jk, ju, jl;
       }    double sum=0.;
        first=0;
       for(i=1; i<=npar; i++) /* Computes gradient */    jmin=1e+5;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmax=-1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      jmean=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(i=1; i<=imx; i++){
        mi=0;
       if (popbased==1) {      m=firstpass;
         for(i=1; i<=nlstate;i++)      while(s[m][i] <= nlstate){
           prlim[i][i]=probs[(int)age][i][ij];        if(s[m][i]>=1)
       }          mw[++mi][i]=m;
         if(m >=lastpass)
       for(j=1; j<= nlstate; j++){          break;
         for(h=0; h<=nhstepm; h++){        else
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          m++;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }/* end while */
         }      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
       for(j=1; j<= nlstate; j++)           /* Only death is a correct wave */
         for(h=0; h<=nhstepm; h++){        mw[mi][i]=m;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }  
     } /* End theta */      wav[i]=mi;
       if(mi==0){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if(first==0){
           printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     for(h=0; h<=nhstepm; h++)          first=1;
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        if(first==1){
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } /* end mi==0 */
     for(i=1;i<=nlstate;i++)    } /* End individuals */
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
     for(h=0;h<=nhstepm;h++){        if (stepm <=0)
       for(k=0;k<=nhstepm;k++){          dh[mi][i]=1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        else{
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(i=1;i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
           for(j=1;j<=nlstate;j++)            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            if(j==0) j=1;  /* Survives at least one month after exam */
       }            k=k+1;
     }            if (j >= jmax) jmax=j;
             if (j <= jmin) jmin=j;
     fprintf(ficresvij,"%.0f ",age );            sum=sum+j;
     for(i=1; i<=nlstate;i++)            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for(j=1; j<=nlstate;j++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);          else{
     free_matrix(gm,0,nhstepm,1,nlstate);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            k=k+1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if (j >= jmax) jmax=j;
   } /* End age */            else if (j <= jmin)jmin=j;
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   free_vector(xp,1,npar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   free_matrix(doldm,1,nlstate,1,npar);            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_matrix(dnewm,1,nlstate,1,nlstate);            sum=sum+j;
           }
 }          jk= j/stepm;
           jl= j -jk*stepm;
 /************ Variance of prevlim ******************/          ju= j -(jk+1)*stepm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if(mle <=1){ 
 {            if(jl==0){
   /* Variance of prevalence limit */              dh[mi][i]=jk;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              bh[mi][i]=0;
   double **newm;            }else{ /* We want a negative bias in order to only have interpolation ie
   double **dnewm,**doldm;                    * at the price of an extra matrix product in likelihood */
   int i, j, nhstepm, hstepm;              dh[mi][i]=jk+1;
   int k, cptcode;              bh[mi][i]=ju;
   double *xp;            }
   double *gp, *gm;          }else{
   double **gradg, **trgradg;            if(jl <= -ju){
   double age,agelim;              dh[mi][i]=jk;
   int theta;              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                                   */
   fprintf(ficresvpl,"# Age");            }
   for(i=1; i<=nlstate;i++)            else{
       fprintf(ficresvpl," %1d-%1d",i,i);              dh[mi][i]=jk+1;
   fprintf(ficresvpl,"\n");              bh[mi][i]=ju;
             }
   xp=vector(1,npar);            if(dh[mi][i]==0){
   dnewm=matrix(1,nlstate,1,npar);              dh[mi][i]=1; /* At least one step */
   doldm=matrix(1,nlstate,1,nlstate);              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   hstepm=1*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   agelim = AGESUP;        } /* end if mle */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    jmean=sum/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     gp=vector(1,nlstate);   }
     gm=vector(1,nlstate);  
   /*********** Tricode ****************************/
     for(theta=1; theta <=npar; theta++){  void tricode(int *Tvar, int **nbcode, int imx)
       for(i=1; i<=npar; i++){ /* Computes gradient */  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    int Ndum[20],ij=1, k, j, i, maxncov=19;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int cptcode=0;
       for(i=1;i<=nlstate;i++)    cptcoveff=0; 
         gp[i] = prlim[i][i];   
        for (k=0; k<maxncov; k++) Ndum[k]=0;
       for(i=1; i<=npar; i++) /* Computes gradient */    for (k=1; k<=7; k++) ncodemax[k]=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for(i=1;i<=nlstate;i++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         gm[i] = prlim[i][i];                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(i=1;i<=nlstate;i++)        Ndum[ij]++; /*store the modality */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     } /* End theta */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
     trgradg =matrix(1,nlstate,1,npar);                                         female is 1, then  cptcode=1.*/
       }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)      for (i=0; i<=cptcode; i++) {
         trgradg[j][theta]=gradg[theta][j];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;      ij=1; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for (i=1; i<=ncodemax[j]; i++) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for (k=0; k<= maxncov; k++) {
     for(i=1;i<=nlstate;i++)          if (Ndum[k] != 0) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficresvpl,"%.0f ",age );            
     for(i=1; i<=nlstate;i++)            ij++;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          }
     fprintf(ficresvpl,"\n");          if (ij > ncodemax[j]) break; 
     free_vector(gp,1,nlstate);        }  
     free_vector(gm,1,nlstate);      } 
     free_matrix(gradg,1,npar,1,nlstate);    }  
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   free_vector(xp,1,npar);   for (i=1; i<=ncovmodel-2; i++) { 
   free_matrix(doldm,1,nlstate,1,npar);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   free_matrix(dnewm,1,nlstate,1,nlstate);     ij=Tvar[i];
      Ndum[ij]++;
 }   }
   
 /************ Variance of one-step probabilities  ******************/   ij=1;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)   for (i=1; i<= maxncov; i++) {
 {     if((Ndum[i]!=0) && (i<=ncovcol)){
   int i, j, i1, k1, j1, z1;       Tvaraff[ij]=i; /*For printing */
   int k=0, cptcode;       ij++;
   double **dnewm,**doldm;     }
   double *xp;   }
   double *gp, *gm;   
   double **gradg, **trgradg;   cptcoveff=ij-1; /*Number of simple covariates*/
   double age,agelim, cov[NCOVMAX];  }
   int theta;  
   char fileresprob[FILENAMELENGTH];  /*********** Health Expectancies ****************/
   
   strcpy(fileresprob,"prob");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprob);    /* Health expectancies */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double age, agelim, hf;
      double ***p3mat,***varhe;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    double **dnewm,**doldm;
   fprintf(ficresprob,"# Age");    double *xp;
   for(i=1; i<=nlstate;i++)    double **gp, **gm;
     for(j=1; j<=(nlstate+ndeath);j++)    double ***gradg, ***trgradg;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int theta;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresprob,"\n");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficreseij,"# Health expectancies\n");
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++)
   cov[1]=1;      for(j=1; j<=nlstate;j++)
   j=cptcoveff;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fprintf(ficreseij,"\n");
   j1=0;  
   for(k1=1; k1<=1;k1++){    if(estepm < stepm){
     for(i1=1; i1<=ncodemax[k1];i1++){      printf ("Problem %d lower than %d\n",estepm, stepm);
     j1++;    }
     else  hstepm=estepm;   
     if  (cptcovn>0) {    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficresprob, "\n#********** Variable ");     * This is mainly to measure the difference between two models: for example
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficresprob, "**********\n#");     * we are calculating an estimate of the Life Expectancy assuming a linear 
     }     * progression in between and thus overestimating or underestimating according
         * to the curvature of the survival function. If, for the same date, we 
       for (age=bage; age<=fage; age ++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         cov[2]=age;     * to compare the new estimate of Life expectancy with the same linear 
         for (k=1; k<=cptcovn;k++) {     * hypothesis. A more precise result, taking into account a more precise
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];     * curvature will be obtained if estepm is as small as stepm. */
            
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for (k=1; k<=cptcovprod;k++)       nhstepm is the number of hstepm from age to agelim 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
         gradg=matrix(1,npar,1,9);       and note for a fixed period like estepm months */
         trgradg=matrix(1,9,1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       survival function given by stepm (the optimization length). Unfortunately it
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       means that if the survival funtion is printed only each two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(theta=1; theta <=npar; theta++){       results. So we changed our mind and took the option of the best precision.
           for(i=1; i<=npar; i++)    */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    agelim=AGESUP;
              for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           k=0;      /* nhstepm age range expressed in number of stepm */
           for(i=1; i<= (nlstate+ndeath); i++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             for(j=1; j<=(nlstate+ndeath);j++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               k=k+1;      /* if (stepm >= YEARM) hstepm=1;*/
               gp[k]=pmmij[i][j];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<=npar; i++)      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
           pmij(pmmij,cov,ncovmodel,xp,nlstate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           k=0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           for(i=1; i<=(nlstate+ndeath); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               gm[k]=pmmij[i][j];  
             }      /* Computing Variances of health expectancies */
           }  
             for(theta=1; theta <=npar; theta++){
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        for(i=1; i<=npar; i++){ 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    
           for(theta=1; theta <=npar; theta++)        cptj=0;
             trgradg[j][theta]=gradg[theta][j];        for(j=1; j<= nlstate; j++){
                  for(i=1; i<=nlstate; i++){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            cptj=cptj+1;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                      gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         pmij(pmmij,cov,ncovmodel,x,nlstate);            }
                  }
         k=0;        }
         for(i=1; i<=(nlstate+ndeath); i++){       
           for(j=1; j<=(nlstate+ndeath);j++){       
             k=k+1;        for(i=1; i<=npar; i++) 
             gm[k]=pmmij[i][j];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        
              cptj=0;
      /*printf("\n%d ",(int)age);        for(j=1; j<= nlstate; j++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for(i=1;i<=nlstate;i++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            cptj=cptj+1;
      }*/            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
         fprintf(ficresprob,"\n%d ",(int)age);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        }
          for(j=1; j<= nlstate*nlstate; j++)
       }          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /* End theta */
   }  
   free_vector(xp,1,npar);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficresprob);  
         for(h=0; h<=nhstepm-1; h++)
 }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
 /******************* Printing html file ***********/            trgradg[h][j][theta]=gradg[h][theta][j];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \       for(i=1;i<=nlstate*nlstate;i++)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        for(j=1;j<=nlstate*nlstate;j++)
  char version[], int popforecast, int estepm ){          varhe[i][j][(int)age] =0.;
   int jj1, k1, i1, cpt;  
   FILE *fichtm;       printf("%d|",(int)age);fflush(stdout);
   /*char optionfilehtm[FILENAMELENGTH];*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   strcpy(optionfilehtm,optionfile);        for(k=0;k<=nhstepm-1;k++){
   strcat(optionfilehtm,".htm");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      }
 \n      /* Computing expectancies */
 Total number of observations=%d <br>\n      for(i=1; i<=nlstate;i++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for(j=1; j<=nlstate;j++)
 <hr  size=\"2\" color=\"#EC5E5E\">          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  <ul><li>Outputs files<br>\n            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
  fprintf(fichtm,"\n      for(i=1; i<=nlstate;i++)
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        for(j=1; j<=nlstate;j++){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          cptj++;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      fprintf(ficreseij,"\n");
      
  if(popforecast==1) fprintf(fichtm,"\n      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         <br>",fileres,fileres,fileres,fileres);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  else      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    }
 fprintf(fichtm," <li>Graphs</li><p>");    printf("\n");
     fprintf(ficlog,"\n");
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  jj1=0;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  for(k1=1; k1<=m;k1++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        jj1++;  
        if (cptcovn > 0) {  /************ Variance ******************/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
          for (cpt=1; cpt<=cptcoveff;cpt++)  {
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* Variance of health expectancies */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        }    /* double **newm;*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double **dnewm,**doldm;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double **dnewmp,**doldmp;
        for(cpt=1; cpt<nlstate;cpt++){    int i, j, nhstepm, hstepm, h, nstepm ;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    int k, cptcode;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double *xp;
        }    double **gp, **gm;  /* for var eij */
     for(cpt=1; cpt<=nlstate;cpt++) {    double ***gradg, ***trgradg; /*for var eij */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double **gradgp, **trgradgp; /* for var p point j */
 interval) in state (%d): v%s%d%d.gif <br>    double *gpp, *gmp; /* for var p point j */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      }    double ***p3mat;
      for(cpt=1; cpt<=nlstate;cpt++) {    double age,agelim, hf;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double ***mobaverage;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int theta;
      }    char digit[4];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    char digitp[25];
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    char fileresprobmorprev[FILENAMELENGTH];
 fprintf(fichtm,"\n</body>");  
    }    if(popbased==1){
    }      if(mobilav!=0)
 fclose(fichtm);        strcpy(digitp,"-populbased-mobilav-");
 }      else strcpy(digitp,"-populbased-nomobil-");
     }
 /******************* Gnuplot file **************/    else 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      strcpy(digitp,"-stablbased-");
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(optionfilegnuplot,optionfilefiname);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(optionfilegnuplot,".gp.txt");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with file %s",optionfilegnuplot);      }
   }    }
   
 #ifdef windows    strcpy(fileresprobmorprev,"prmorprev"); 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    sprintf(digit,"%-d",ij);
 #endif    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 m=pow(2,cptcoveff);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  /* 1eme*/    strcat(fileresprobmorprev,fileres);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresprobmorprev," p.%-d SE",j);
     for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }    fprintf(ficresprobmorprev,"\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      for (i=1; i<= nlstate ; i ++) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      exit(0);
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    else{
       fprintf(ficgp,"\n# Routine varevsij");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
    }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   }      printf("Problem with html file: %s\n", optionfilehtm);
   /*2 eme*/      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    else{
          fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for (i=1; i<= nlstate+1 ; i ++) {      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       k=2*i;    }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvij,"# Age");
 }      for(i=1; i<=nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for(j=1; j<=nlstate;j++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    xp=vector(1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    dnewm=matrix(1,nlstate,1,npar);
 }      doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficgp,"\" t\"\" w l 0,");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gpp=vector(nlstate+1,nlstate+ndeath);
 }      gmp=vector(nlstate+1,nlstate+ndeath);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }    if(estepm < stepm){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
      else  hstepm=estepm;   
   /*3eme*/    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for (k1=1; k1<= m ; k1 ++) {       nhstepm is the number of hstepm from age to agelim 
     for (cpt=1; cpt<= nlstate ; cpt ++) {       nstepm is the number of stepm from age to agelin. 
       k=2+nlstate*(2*cpt-2);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       and note for a fixed period like k years */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       means that if the survival funtion is printed every two years of age and if
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       results. So we changed our mind and took the option of the best precision.
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 */    agelim = AGESUP;
       for (i=1; i< nlstate ; i ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     }      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
    
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {      for(theta=1; theta <=npar; theta++){
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       k=3;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (i=1; i< nlstate ; i ++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        if (popbased==1) {
                if(mobilav ==0){
       l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              prlim[i][i]=probs[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {          }else{ /* mobilav */ 
         l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",l+i+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }        for(j=1; j<= nlstate; j++){
   }            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /* proba elementaires */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {        /* This for computing probability of death (h=1 means
         for(j=1; j <=ncovmodel; j++){           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        */
           jk++;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficgp,"\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
     }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     for(jk=1; jk <=m; jk++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    i=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(k2=1; k2<=nlstate; k2++) {   
      k3=i;        if (popbased==1) {
      for(k=1; k<=(nlstate+ndeath); k++) {          if(mobilav ==0){
        if (k != k2){            for(i=1; i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              prlim[i][i]=probs[(int)age][i][ij];
 ij=1;          }else{ /* mobilav */ 
         for(j=3; j <=ncovmodel; j++) {            for(i=1; i<=nlstate;i++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              prlim[i][i]=mobaverage[(int)age][i][ij];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;        }
           }  
           else        for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,")/(1");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                  }
         for(k1=1; k1 <=nlstate; k1++){          }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        /* This for computing probability of death (h=1 means
 ij=1;           computed over hstepm matrices product = hstepm*stepm months) 
           for(j=3; j <=ncovmodel; j++){           as a weighted average of prlim.
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             ij++;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           else        }    
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /* end probability of death */
           }  
           fprintf(ficgp,")");        for(j=1; j<= nlstate; j++) /* vareij */
         }          for(h=0; h<=nhstepm; h++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
         i=i+ncovmodel;  
        }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    }        }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }      } /* End theta */
      
   fclose(ficgp);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  /* end gnuplot */  
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/          for(theta=1; theta <=npar; theta++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            trgradg[h][j][theta]=gradg[h][theta][j];
   
   int i, cpt, cptcod;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++)          trgradgp[j][theta]=gradgp[theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(i=1;i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        for(j=1;j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          vareij[i][j][(int)age] =0.;
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }        }
       }
     
 /************** Forecasting ******************/      /* pptj */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int *popage;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          varppt[j][i]=doldmp[j][i];
   double *popeffectif,*popcount;      /* end ppptj */
   double ***p3mat;      /*  x centered again */
   char fileresf[FILENAMELENGTH];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  agelim=AGESUP;   
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      if (popbased==1) {
         if(mobilav ==0){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   strcpy(fileresf,"f");          for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);      }
   }               
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         as a weighted average of prlim.
       */
   if (mobilav==1) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
       /* end probability of death */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   agelim=AGESUP;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   hstepm=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);      } 
   anprojmean=yp;      fprintf(ficresprobmorprev,"\n");
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;      fprintf(ficresvij,"%.0f ",age );
   yp1=modf((yp2*30.5),&yp);      for(i=1; i<=nlstate;i++)
   jprojmean=yp;        for(j=1; j<=nlstate;j++){
   if(jprojmean==0) jprojmean=1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if(mprojmean==0) jprojmean=1;        }
        fprintf(ficresvij,"\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       k=k+1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"\n#******");    } /* End age */
       for(j=1;j<=cptcoveff;j++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
       }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"******\n");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
          fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresf,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
              /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  */
           oldm=oldms;savm=savms;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            free_vector(xp,1,npar);
           for (h=0; h<=nhstepm; h++){    free_matrix(doldm,1,nlstate,1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(dnewm,1,nlstate,1,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               kk1=0.;kk2=0;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(i=1; i<=nlstate;i++) {                  fclose(ficresprobmorprev);
                 if (mobilav==1)    fclose(ficgp);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fclose(fichtm);
                 else {  }  /* end varevsij */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  /************ Variance of prevlim ******************/
                  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
               }  {
               if (h==(int)(calagedate+12*cpt)){    /* Variance of prevalence limit */
                 fprintf(ficresf," %.3f", kk1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                            double **newm;
               }    double **dnewm,**doldm;
             }    int i, j, nhstepm, hstepm;
           }    int k, cptcode;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp;
         }    double *gp, *gm;
       }    double **gradg, **trgradg;
     }    double age,agelim;
   }    int theta;
             
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   fclose(ficresf);    for(i=1; i<=nlstate;i++)
 }        fprintf(ficresvpl," %1d-%1d",i,i);
 /************** Forecasting ******************/    fprintf(ficresvpl,"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      xp=vector(1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    dnewm=matrix(1,nlstate,1,npar);
   int *popage;    doldm=matrix(1,nlstate,1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;    hstepm=1*YEARM; /* Every year of age */
   double ***p3mat,***tabpop,***tabpopprev;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   char filerespop[FILENAMELENGTH];    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (stepm >= YEARM) hstepm=1;
   agelim=AGESUP;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      gm=vector(1,nlstate);
    
        for(theta=1; theta <=npar; theta++){
   strcpy(filerespop,"pop");        for(i=1; i<=npar; i++){ /* Computes gradient */
   strcat(filerespop,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);          gp[i] = prlim[i][i];
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (mobilav==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gm[i] = prlim[i][i];
   }  
         for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   if (stepm<=12) stepsize=1;      } /* End theta */
    
   agelim=AGESUP;      trgradg =matrix(1,nlstate,1,npar);
    
   hstepm=1;      for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm;        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      for(i=1;i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     popage=ivector(0,AGESUP);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     popeffectif=vector(0,AGESUP);      for(i=1;i<=nlstate;i++)
     popcount=vector(0,AGESUP);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      
     i=1;        fprintf(ficresvpl,"%.0f ",age );
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     imx=i;      fprintf(ficresvpl,"\n");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      free_matrix(trgradg,1,nlstate,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    } /* End age */
       k=k+1;  
       fprintf(ficrespop,"\n#******");    free_vector(xp,1,npar);
       for(j=1;j<=cptcoveff;j++) {    free_matrix(doldm,1,nlstate,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewm,1,nlstate,1,nlstate);
       }  
       fprintf(ficrespop,"******\n");  }
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  /************ Variance of one-step probabilities  ******************/
       if (popforecast==1)  fprintf(ficrespop," [Population]");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
        {
       for (cpt=0; cpt<=0;cpt++) {    int i, j=0,  i1, k1, l1, t, tj;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int k2, l2, j1,  z1;
            int k=0,l, cptcode;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int first=1, first1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           nhstepm = nhstepm/hstepm;    double **dnewm,**doldm;
              double *xp;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gp, *gm;
           oldm=oldms;savm=savms;    double **gradg, **trgradg;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **mu;
            double age,agelim, cov[NCOVMAX];
           for (h=0; h<=nhstepm; h++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             if (h==(int) (calagedate+YEARM*cpt)) {    int theta;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    char fileresprob[FILENAMELENGTH];
             }    char fileresprobcov[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {    char fileresprobcor[FILENAMELENGTH];
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  double ***varpij;
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcpy(fileresprob,"prob"); 
                 else {    strcat(fileresprob,fileres);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                 }      printf("Problem with resultfile: %s\n", fileresprob);
               }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
               if (h==(int)(calagedate+12*cpt)){    }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    strcpy(fileresprobcov,"probcov"); 
                   /*fprintf(ficrespop," %.3f", kk1);    strcat(fileresprobcov,fileres);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprobcov);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;    strcpy(fileresprobcor,"probcor"); 
                 for(j=1; j<=nlstate;j++){    strcat(fileresprobcor,fileres);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                 }      printf("Problem with resultfile: %s\n", fileresprobcor);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   /******/    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobcov,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
              for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobcov," p%1d-%1d ",i,j);
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             if (h==(int) (calagedate+YEARM*cpt)) {      }  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   /* fprintf(ficresprob,"\n");
             }    fprintf(ficresprobcov,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobcor,"\n");
               kk1=0.;kk2=0;   */
               for(i=1; i<=nlstate;i++) {                 xp=vector(1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
             }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           }    first=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
    }      exit(0);
   }    }
      else{
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficgp,"\n# Routine varprob");
     }
   if (popforecast==1) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     free_ivector(popage,0,AGESUP);      printf("Problem with html file: %s\n", optionfilehtm);
     free_vector(popeffectif,0,AGESUP);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     free_vector(popcount,0,AGESUP);      exit(0);
   }    }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else{
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fclose(ficrespop);      fprintf(fichtm,"\n");
 }  
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 /***********************************************/      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 /**************** Main Program *****************/      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
 /***********************************************/  
     }
 int main(int argc, char *argv[])  
 {    cov[1]=1;
     tj=cptcoveff;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   double agedeb, agefin,hf;    j1=0;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   double fret;        j1++;
   double **xi,tmp,delta;        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   double dum; /* Dummy variable */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***p3mat;          fprintf(ficresprob, "**********\n#\n");
   int *indx;          fprintf(ficresprobcov, "\n#********** Variable "); 
   char line[MAXLINE], linepar[MAXLINE];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char title[MAXLINE];          fprintf(ficresprobcov, "**********\n#\n");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          fprintf(ficgp, "**********\n#\n");
           
   char filerest[FILENAMELENGTH];          
   char fileregp[FILENAMELENGTH];          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   char popfile[FILENAMELENGTH];          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int firstobs=1, lastobs=10;          
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresprobcor, "\n#********** Variable ");    
   int c,  h , cpt,l;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int ju,jl, mi;          fprintf(ficresprobcor, "**********\n#");    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        
   int mobilav=0,popforecast=0;        for (age=bage; age<=fage; age ++){ 
   int hstepm, nhstepm;          cov[2]=age;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   double bage, fage, age, agelim, agebase;          }
   double ftolpl=FTOL;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double **prlim;          for (k=1; k<=cptcovprod;k++)
   double *severity;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double ***param; /* Matrix of parameters */          
   double  *p;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   double **matcov; /* Matrix of covariance */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double ***delti3; /* Scale */          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double *delti; /* Scale */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   double ***eij, ***vareij;      
   double **varpl; /* Variances of prevalence limits by age */          for(theta=1; theta <=npar; theta++){
   double *epj, vepp;            for(i=1; i<=npar; i++)
   double kk1, kk2;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";            k=0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   char z[1]="c", occ;                gp[k]=pmmij[i][j];
 #include <sys/time.h>              }
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            
              for(i=1; i<=npar; i++)
   /* long total_usecs;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   struct timeval start_time, end_time;      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            k=0;
   getcwd(pathcd, size);            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   printf("\n%s",version);                k=k+1;
   if(argc <=1){                gm[k]=pmmij[i][j];
     printf("\nEnter the parameter file name: ");              }
     scanf("%s",pathtot);            }
   }       
   else{            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     strcpy(pathtot,argv[1]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   }          }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(theta=1; theta <=npar; theta++)
   /* cutv(path,optionfile,pathtot,'\\');*/              trgradg[j][theta]=gradg[theta][j];
           
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   chdir(path);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   replace(pathc,path);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*-------- arguments in the command line --------*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   strcpy(fileres,"r");          pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcat(fileres, optionfilefiname);          
   strcat(fileres,".txt");    /* Other files have txt extension */          k=0;
           for(i=1; i<=(nlstate); i++){
   /*---------arguments file --------*/            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              mu[k][(int) age]=pmmij[i][j];
     printf("Problem with optionfile %s\n",optionfile);            }
     goto end;          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   strcpy(filereso,"o");              varpij[i][j][(int)age] = doldm[i][j];
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {          /*printf("\n%d ",(int)age);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* Reads comments: lines beginning with '#' */            }*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
     puts(line);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fputs(line,ficparo);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   ungetc(c,ficpar);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          }
 while((c=getc(ficpar))=='#' && c!= EOF){          i=0;
     ungetc(c,ficpar);          for (k=1; k<=(nlstate);k++){
     fgets(line, MAXLINE, ficpar);            for (l=1; l<=(nlstate+ndeath);l++){ 
     puts(line);              i=i++;
     fputs(line,ficparo);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   ungetc(c,ficpar);              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                    fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   covar=matrix(0,NCOVMAX,1,n);              }
   cptcovn=0;            }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }/* end of loop for state */
         } /* end of loop for age */
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        /* Confidence intervalle of pij  */
          /*
   /* Read guess parameters */          fprintf(ficgp,"\nset noparametric;unset label");
   /* Reads comments: lines beginning with '#' */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     ungetc(c,ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     puts(line);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fputs(line,ficparo);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
   ungetc(c,ficpar);  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        first1=1;
     for(i=1; i <=nlstate; i++)        for (k2=1; k2<=(nlstate);k2++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);            if(l2==k2) continue;
       fprintf(ficparo,"%1d%1d",i1,j1);            j=(k2-1)*(nlstate+ndeath)+l2;
       printf("%1d%1d",i,j);            for (k1=1; k1<=(nlstate);k1++){
       for(k=1; k<=ncovmodel;k++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fscanf(ficpar," %lf",&param[i][j][k]);                if(l1==k1) continue;
         printf(" %lf",param[i][j][k]);                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficparo," %lf",param[i][j][k]);                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
       fscanf(ficpar,"\n");                  if ((int)age %5==0){
       printf("\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficparo,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   p=param[1][1];                    /* Computing eigen value of matrix of covariance */
                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /* Reads comments: lines beginning with '#' */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fgets(line, MAXLINE, ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     puts(line);                    v21=(lc1-v1)/cv12*v11;
     fputs(line,ficparo);                    v12=-v21;
   }                    v22=v11;
   ungetc(c,ficpar);                    tnalp=v21/v11;
                     if(first1==1){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      first1=0;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   for(i=1; i <=nlstate; i++){                    }
     for(j=1; j <=nlstate+ndeath-1; j++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    /*printf(fignu*/
       printf("%1d%1d",i,j);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficparo,"%1d%1d",i1,j1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       for(k=1; k<=ncovmodel;k++){                    if(first==1){
         fscanf(ficpar,"%le",&delti3[i][j][k]);                      first=0;
         printf(" %le",delti3[i][j][k]);                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficparo," %le",delti3[i][j][k]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fscanf(ficpar,"\n");                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
       printf("\n");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
       fprintf(ficparo,"\n");                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   delti=delti3[1][1];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* Reads comments: lines beginning with '#' */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   while((c=getc(ficpar))=='#' && c!= EOF){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     ungetc(c,ficpar);                    }else{
     fgets(line, MAXLINE, ficpar);                      first=0;
     puts(line);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   matcov=matrix(1,npar,1,npar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i <=npar; i++){                    }/* if first */
     fscanf(ficpar,"%s",&str);                  } /* age mod 5 */
     printf("%s",str);                } /* end loop age */
     fprintf(ficparo,"%s",str);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     for(j=1; j <=i; j++){                first=1;
       fscanf(ficpar," %le",&matcov[i][j]);              } /*l12 */
       printf(" %.5le",matcov[i][j]);            } /* k12 */
       fprintf(ficparo," %.5le",matcov[i][j]);          } /*l1 */
     }        }/* k1 */
     fscanf(ficpar,"\n");      } /* loop covariates */
     printf("\n");    }
     fprintf(ficparo,"\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   for(i=1; i <=npar; i++)    free_vector(xp,1,npar);
     for(j=i+1;j<=npar;j++)    fclose(ficresprob);
       matcov[i][j]=matcov[j][i];    fclose(ficresprobcov);
        fclose(ficresprobcor);
   printf("\n");    fclose(ficgp);
     fclose(fichtm);
   }
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /******************* Printing html file ***********/
      strcat(rfileres,".");    /* */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                    int lastpass, int stepm, int weightopt, char model[],\
     if((ficres =fopen(rfileres,"w"))==NULL) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                    int popforecast, int estepm ,\
     }                    double jprev1, double mprev1,double anprev1, \
     fprintf(ficres,"#%s\n",version);                    double jprev2, double mprev2,double anprev2){
        int jj1, k1, i1, cpt;
     /*-------- data file ----------*/    /*char optionfilehtm[FILENAMELENGTH];*/
     if((fic=fopen(datafile,"r"))==NULL)    {    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;      printf("Problem with %s \n",optionfilehtm), exit(0);
     }      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
     n= lastobs;  
     severity = vector(1,maxwav);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     outcome=imatrix(1,maxwav+1,1,n);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     num=ivector(1,n);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     moisnais=vector(1,n);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     annais=vector(1,n);   - Life expectancies by age and initial health status (estepm=%2d months): 
     moisdc=vector(1,n);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     andc=vector(1,n);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
     agedc=vector(1,n);  
     cod=ivector(1,n);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   m=cptcoveff;
     mint=matrix(1,maxwav,1,n);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);   jj1=0;
     adl=imatrix(1,maxwav+1,1,n);       for(k1=1; k1<=m;k1++){
     tab=ivector(1,NCOVMAX);     for(i1=1; i1<=ncodemax[k1];i1++){
     ncodemax=ivector(1,8);       jj1++;
        if (cptcovn > 0) {
     i=1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     while (fgets(line, MAXLINE, fic) != NULL)    {         for (cpt=1; cpt<=cptcoveff;cpt++) 
       if ((i >= firstobs) && (i <=lastobs)) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                 fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (j=maxwav;j>=1;j--){       }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       /* Pij */
           strcpy(line,stra);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       /* Quasi-incidences */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
          <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);         /* Stable prevalence in each health state */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
         for (j=ncovcol;j>=1;j--){  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       }
         }       fprintf(fichtm,"\n<br>- Total life expectancy by age and
         num[i]=atol(stra);  health expectancies in states (1) and (2): e%s%d.png<br>
          <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     } /* end i1 */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   }/* End k1 */
    fprintf(fichtm,"</ul>");
         i=i+1;  
       }  
     }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     /* printf("ii=%d", ij);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
        scanf("%d",i);*/   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
   imx=i-1; /* Number of individuals */   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
   /* for (i=1; i<=imx; i++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
    /*  for (i=1; i<=imx; i++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      if (s[4][i]==9)  s[4][i]=-1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /*      <br>",fileres,fileres,fileres,fileres); */
    /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   /* Calculation of the number of parameter from char model*/  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);   m=cptcoveff;
   Tvaraff=ivector(1,15);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);         jj1=0;
       for(k1=1; k1<=m;k1++){
   if (strlen(model) >1){     for(i1=1; i1<=ncodemax[k1];i1++){
     j=0, j1=0, k1=1, k2=1;       jj1++;
     j=nbocc(model,'+');       if (cptcovn > 0) {
     j1=nbocc(model,'*');         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     cptcovn=j+1;         for (cpt=1; cpt<=cptcoveff;cpt++) 
     cptcovprod=j1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     strcpy(modelsav,model);       }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       for(cpt=1; cpt<=nlstate;cpt++) {
       printf("Error. Non available option model=%s ",model);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
       goto end;  interval) in state (%d): v%s%d%d.png <br>
     }  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
           }
     for(i=(j+1); i>=1;i--){     } /* end i1 */
       cutv(stra,strb,modelsav,'+');   }/* End k1 */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   fprintf(fichtm,"</ul>");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  fclose(fichtm);
       /*scanf("%d",i);*/  }
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');  /******************* Gnuplot file **************/
         if (strcmp(strc,"age")==0) {  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           cptcovprod--;  
           cutv(strb,stre,strd,'V');    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           Tvar[i]=atoi(stre);    int ng;
           cptcovage++;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
             Tage[cptcovage]=i;      printf("Problem with file %s",optionfilegnuplot);
             /*printf("stre=%s ", stre);*/      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
         }    }
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;    /*#ifdef windows */
           cutv(strb,stre,strc,'V');      fprintf(ficgp,"cd \"%s\" \n",pathc);
           Tvar[i]=atoi(stre);      /*#endif */
           cptcovage++;  m=pow(2,cptcoveff);
           Tage[cptcovage]=i;    
         }   /* 1eme*/
         else {    for (cpt=1; cpt<= nlstate ; cpt ++) {
           cutv(strb,stre,strc,'V');     for (k1=1; k1<= m ; k1 ++) {
           Tvar[i]=ncovcol+k1;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           cutv(strb,strc,strd,'V');       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);       for (i=1; i<= nlstate ; i ++) {
           Tvard[k1][2]=atoi(stre);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           Tvar[cptcovn+k2]=Tvard[k1][1];         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       }
           for (k=1; k<=lastobs;k++)       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       for (i=1; i<= nlstate ; i ++) {
           k1++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           k2=k2+2;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       } 
       }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
       else {       for (i=1; i<= nlstate ; i ++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        /*  scanf("%d",i);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
       cutv(strd,strc,strb,'V');       }  
       Tvar[i]=atoi(strc);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       }     }
       strcpy(modelsav,stra);      }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /*2 eme*/
         scanf("%d",i);*/    
     }    for (k1=1; k1<= m ; k1 ++) { 
 }      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      
   printf("cptcovprod=%d ", cptcovprod);      for (i=1; i<= nlstate+1 ; i ++) {
   scanf("%d ",i);*/        k=2*i;
     fclose(fic);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
     /*  if(mle==1){*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     if (weightopt != 1) { /* Maximisation without weights*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(i=1;i<=n;i++) weight[i]=1.0;        }   
     }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     /*-calculation of age at interview from date of interview and age at death -*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     agev=matrix(1,maxwav,1,imx);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
     for (i=1; i<=imx; i++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for(m=2; (m<= maxwav); m++) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }   
          anint[m][i]=9999;        fprintf(ficgp,"\" t\"\" w l 0,");
          s[m][i]=-1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
        }        for (j=1; j<= nlstate+1 ; j ++) {
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     for (i=1; i<=imx; i++)  {        else fprintf(ficgp,"\" t\"\" w l 0,");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    
           if (s[m][i] >= nlstate+1) {    /*3eme*/
             if(agedc[i]>0)    
               if(moisdc[i]!=99 && andc[i]!=9999)    for (k1=1; k1<= m ; k1 ++) { 
                 agev[m][i]=agedc[i];      for (cpt=1; cpt<= nlstate ; cpt ++) {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        k=2+nlstate*(2*cpt-2);
            else {        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
               if (andc[i]!=9999){        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               agev[m][i]=-1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          
             if(mint[m][i]==99 || anint[m][i]==9999)        */
               agev[m][i]=1;        for (i=1; i< nlstate ; i ++) {
             else if(agev[m][i] <agemin){          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
               agemin=agev[m][i];          
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        } 
             }      }
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* CV preval stable (period) */
             }    for (k1=1; k1<= m ; k1 ++) { 
             /*agev[m][i]=anint[m][i]-annais[i];*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
             /*   agev[m][i] = age[i]+2*m;*/        k=3;
           }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           else { /* =9 */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
             agev[m][i]=1;        
             s[m][i]=-1;        for (i=1; i< nlstate ; i ++)
           }          fprintf(ficgp,"+$%d",k+i+1);
         }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         else /*= 0 Unknown */        
           agev[m][i]=1;        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
            for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"+$%d",l+i+1);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           printf("Error: Wrong value in nlstate or ndeath\n");        } 
           goto end;    }  
         }    
       }    /* proba elementaires */
     }    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
     free_vector(severity,1,maxwav);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     free_imatrix(outcome,1,maxwav+1,1,n);            jk++; 
     free_vector(moisnais,1,n);            fprintf(ficgp,"\n");
     free_vector(annais,1,n);          }
     /* free_matrix(mint,1,maxwav,1,n);        }
        free_matrix(anint,1,maxwav,1,n);*/      }
     free_vector(moisdc,1,n);     }
     free_vector(andc,1,n);  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           for(jk=1; jk <=m; jk++) {
     wav=ivector(1,imx);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         if (ng==2)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             else
     /* Concatenates waves */           fprintf(ficgp,"\nset title \"Probability\"\n");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
       Tcode=ivector(1,100);           k3=i;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           for(k=1; k<=(nlstate+ndeath); k++) {
       ncodemax[1]=1;             if (k != k2){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);               if(ng==2)
                       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
    codtab=imatrix(1,100,1,10);               else
    h=0;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
    m=pow(2,cptcoveff);               ij=1;
                 for(j=3; j <=ncovmodel; j++) {
    for(k=1;k<=cptcoveff; k++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      for(i=1; i <=(m/pow(2,k));i++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        for(j=1; j <= ncodemax[k]; j++){                   ij++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                 }
            h++;                 else
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/               }
          }               fprintf(ficgp,")/(1");
        }               
      }               for(k1=1; k1 <=nlstate; k1++){   
    }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                 ij=1;
       codtab[1][2]=1;codtab[2][2]=2; */                 for(j=3; j <=ncovmodel; j++){
    /* for(i=1; i <=m ;i++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(k=1; k <=cptcovn; k++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                     ij++;
       }                   }
       printf("\n");                   else
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       scanf("%d",i);*/                 }
                     fprintf(ficgp,")");
    /* Calculates basic frequencies. Computes observed prevalence at single age               }
        and prints on file fileres'p'. */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   i=i+ncovmodel;
                 }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           } /* end k */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         } /* end k2 */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } /* end jk */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end ng */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     fclose(ficgp); 
        }  /* end gnuplot */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int i, cpt, cptcod;
     }    int modcovmax =1;
        int mobilavrange, mob;
     /*--------- results files --------------*/    double age;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
    jk=1;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    for(i=1,jk=1; i <=nlstate; i++){      if(mobilav==1) mobilavrange=5; /* default */
      for(k=1; k <=(nlstate+ndeath); k++){      else mobilavrange=mobilav;
        if (k != i)      for (age=bage; age<=fage; age++)
          {        for (i=1; i<=nlstate;i++)
            printf("%d%d ",i,k);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
            fprintf(ficres,"%1d%1d ",i,k);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            for(j=1; j <=ncovmodel; j++){      /* We keep the original values on the extreme ages bage, fage and for 
              printf("%f ",p[jk]);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
              fprintf(ficres,"%f ",p[jk]);         we use a 5 terms etc. until the borders are no more concerned. 
              jk++;      */ 
            }      for (mob=3;mob <=mobilavrange;mob=mob+2){
            printf("\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            fprintf(ficres,"\n");          for (i=1; i<=nlstate;i++){
          }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
      }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
    }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
  if(mle==1){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     /* Computing hessian and covariance matrix */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     ftolhess=ftol; /* Usually correct */                }
     hesscov(matcov, p, npar, delti, ftolhess, func);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
  }            }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          }
     printf("# Scales (for hessian or gradient estimation)\n");        }/* end age */
      for(i=1,jk=1; i <=nlstate; i++){      }/* end mob */
       for(j=1; j <=nlstate+ndeath; j++){    }else return -1;
         if (j!=i) {    return 0;
           fprintf(ficres,"%1d%1d",i,j);  }/* End movingaverage */
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  /************** Forecasting ******************/
             fprintf(ficres," %.5e",delti[jk]);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             jk++;    /* proj1, year, month, day of starting projection 
           }       agemin, agemax range of age
           printf("\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
           fprintf(ficres,"\n");       anproj2 year of en of projection (same day and month as proj1).
         }    */
       }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      }    int *popage;
        double agec; /* generic age */
     k=1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *popeffectif,*popcount;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***p3mat;
     for(i=1;i<=npar;i++){    double ***mobaverage;
       /*  if (k>nlstate) k=1;    char fileresf[FILENAMELENGTH];
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    agelim=AGESUP;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficres,"%3d",i);   
       printf("%3d",i);    strcpy(fileresf,"f"); 
       for(j=1; j<=i;j++){    strcat(fileresf,fileres);
         fprintf(ficres," %.5e",matcov[i][j]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
         printf(" %.5e",matcov[i][j]);      printf("Problem with forecast resultfile: %s\n", fileresf);
       }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficres,"\n");    }
       printf("\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
       k++;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     }  
        if (cptcoveff==0) ncodemax[cptcoveff]=1;
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    if (mobilav!=0) {
       fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       puts(line);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);      }
     estepm=0;    }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (fage <= 2) {    if (stepm<=12) stepsize=1;
       bage = ageminpar;    if(estepm < stepm){
       fage = agemaxpar;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
        else  hstepm=estepm;   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    hstepm=hstepm/stepm; 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
     while((c=getc(ficpar))=='#' && c!= EOF){    anprojmean=yp;
     ungetc(c,ficpar);    yp2=modf((yp1*12),&yp);
     fgets(line, MAXLINE, ficpar);    mprojmean=yp;
     puts(line);    yp1=modf((yp2*30.5),&yp);
     fputs(line,ficparo);    jprojmean=yp;
   }    if(jprojmean==0) jprojmean=1;
   ungetc(c,ficpar);    if(mprojmean==0) jprojmean=1;
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    i1=cptcoveff;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (cptcovn < 1){i1=1;}
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
          fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*            if (h==(int)(YEARM*yearp)){ */
     fputs(line,ficparo);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   ungetc(c,ficpar);        k=k+1;
          fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        }
         fprintf(ficresf,"******\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(j=1; j<=nlstate+ndeath;j++){ 
   fprintf(ficres,"pop_based=%d\n",popbased);            for(i=1; i<=nlstate;i++)              
              fprintf(ficresf," p%d%d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresf," p.%d",j);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     puts(line);          fprintf(ficresf,"\n");
     fputs(line,ficparo);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   }  
   ungetc(c,ficpar);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            nhstepm = nhstepm/hstepm; 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
 while((c=getc(ficpar))=='#' && c!= EOF){            for (h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);              if (h*hstepm/YEARM*stepm ==yearp) {
     fgets(line, MAXLINE, ficpar);                fprintf(ficresf,"\n");
     puts(line);                for(j=1;j<=cptcoveff;j++) 
     fputs(line,ficparo);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   ungetc(c,ficpar);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                ppij=0.;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                for(i=1; i<=nlstate;i++) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 /*------------ gnuplot -------------*/                  }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                  if (h*hstepm/YEARM*stepm== yearp) {
                      fprintf(ficresf," %.3f", p3mat[i][j][h]);
 /*------------ free_vector  -------------*/                  }
  chdir(path);                } /* end i */
                  if (h*hstepm/YEARM*stepm==yearp) {
  free_ivector(wav,1,imx);                  fprintf(ficresf," %.3f", ppij);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                }/* end j */
  free_ivector(num,1,n);            } /* end h */
  free_vector(agedc,1,n);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          } /* end agec */
  fclose(ficparo);        } /* end yearp */
  fclose(ficres);      } /* end cptcod */
     } /* end  cptcov */
 /*--------- index.htm --------*/         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
     fclose(ficresf);
    }
   /*--------------- Prevalence limit --------------*/  
    /************** Forecasting *****not tested NB*************/
   strcpy(filerespl,"pl");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   strcat(filerespl,fileres);    
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int *popage;
   }    double calagedatem, agelim, kk1, kk2;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double *popeffectif,*popcount;
   fprintf(ficrespl,"#Prevalence limit\n");    double ***p3mat,***tabpop,***tabpopprev;
   fprintf(ficrespl,"#Age ");    double ***mobaverage;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    char filerespop[FILENAMELENGTH];
   fprintf(ficrespl,"\n");  
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   prlim=matrix(1,nlstate,1,nlstate);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;    
   agebase=ageminpar;    strcpy(filerespop,"pop"); 
   agelim=agemaxpar;    strcat(filerespop,fileres);
   ftolpl=1.e-10;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   i1=cptcoveff;      printf("Problem with forecast resultfile: %s\n", filerespop);
   if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing forecasting: result on file '%s' \n", filerespop);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    if (mobilav!=0) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficrespl,"******\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         for (age=agebase; age<=agelim; age++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
           fprintf(ficrespl,"\n");    if (stepm<=12) stepsize=1;
         }    
       }    agelim=AGESUP;
     }    
   fclose(ficrespl);    hstepm=1;
     hstepm=hstepm/stepm; 
   /*------------- h Pij x at various ages ------------*/    
      if (popforecast==1) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      if((ficpop=fopen(popfile,"r"))==NULL) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        printf("Problem with population file : %s\n",popfile);exit(0);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   }      } 
   printf("Computing pij: result on file '%s' \n", filerespij);      popage=ivector(0,AGESUP);
        popeffectif=vector(0,AGESUP);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      popcount=vector(0,AGESUP);
   /*if (stepm<=24) stepsize=2;*/      
       i=1;   
   agelim=AGESUP;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   hstepm=stepsize*YEARM; /* Every year of age */     
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       k=k+1;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficrespij,"\n#****** ");        k=k+1;
         for(j=1;j<=cptcoveff;j++)        fprintf(ficrespop,"\n#******");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficrespij,"******\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficrespop,"******\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficrespop,"# Age");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (popforecast==1)  fprintf(ficrespop," [Population]");
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespij,"# Age");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for(i=1; i<=nlstate;i++)          
             for(j=1; j<=nlstate+ndeath;j++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
               fprintf(ficrespij," %1d-%1d",i,j);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           fprintf(ficrespij,"\n");            nhstepm = nhstepm/hstepm; 
            for (h=0; h<=nhstepm; h++){            
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(i=1; i<=nlstate;i++)            oldm=oldms;savm=savms;
               for(j=1; j<=nlstate+ndeath;j++)            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          
             fprintf(ficrespij,"\n");            for (h=0; h<=nhstepm; h++){
              }              if (h==(int) (calagedatem+YEARM*cpt)) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespij,"\n");              } 
         }              for(j=1; j<=nlstate+ndeath;j++) {
     }                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   fclose(ficrespij);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
   /*---------- Forecasting ------------------*/                if (h==(int)(calagedatem+12*cpt)){
   if((stepm == 1) && (strcmp(model,".")==0)){                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    /*fprintf(ficrespop," %.3f", kk1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
   else{              }
     erreur=108;              for(i=1; i<=nlstate;i++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                kk1=0.;
   }                  for(j=1; j<=nlstate;j++){
                      kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   /*---------- Health expectancies and variances ------------*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   strcpy(filerest,"t");  
   strcat(filerest,fileres);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   if((ficrest=fopen(filerest,"w"))==NULL) {                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
         }
    
   strcpy(filerese,"e");    /******/
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
  strcpy(fileresv,"v");            
   strcat(fileresv,fileres);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            oldm=oldms;savm=savms;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }            for (h=0; h<=nhstepm; h++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              if (h==(int) (calagedatem+YEARM*cpt)) {
   calagedate=-1;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   k=0;                kk1=0.;kk2=0;
   for(cptcov=1;cptcov<=i1;cptcov++){                for(i=1; i<=nlstate;i++) {              
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       k=k+1;                }
       fprintf(ficrest,"\n#****** ");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficrest,"******\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
       fprintf(ficreseij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)     } 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficreseij,"******\n");   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    if (popforecast==1) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ivector(popage,0,AGESUP);
       fprintf(ficresvij,"******\n");      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficrespop);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  } /* End of popforecast */
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  /***********************************************/
      /**************** Main Program *****************/
   /***********************************************/
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  int main(int argc, char *argv[])
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  {
       fprintf(ficrest,"\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       epj=vector(1,nlstate+1);    double agedeb, agefin,hf;
       for(age=bage; age <=fage ;age++){    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    double fret;
           for(i=1; i<=nlstate;i++)    double **xi,tmp,delta;
             prlim[i][i]=probs[(int)age][i][k];  
         }    double dum; /* Dummy variable */
            double ***p3mat;
         fprintf(ficrest," %4.0f",age);    double ***mobaverage;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int *indx;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    char line[MAXLINE], linepar[MAXLINE];
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int firstobs=1, lastobs=10;
           }    int sdeb, sfin; /* Status at beginning and end */
           epj[nlstate+1] +=epj[j];    int c,  h , cpt,l;
         }    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         for(i=1, vepp=0.;i <=nlstate;i++)    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
           for(j=1;j <=nlstate;j++)    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
             vepp += vareij[i][j][(int)age];    int mobilav=0,popforecast=0;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int hstepm, nhstepm;
         for(j=1;j <=nlstate;j++){    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         }  
         fprintf(ficrest,"\n");    double bage, fage, age, agelim, agebase;
       }    double ftolpl=FTOL;
     }    double **prlim;
   }    double *severity;
 free_matrix(mint,1,maxwav,1,n);    double ***param; /* Matrix of parameters */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double  *p;
     free_vector(weight,1,n);    double **matcov; /* Matrix of covariance */
   fclose(ficreseij);    double ***delti3; /* Scale */
   fclose(ficresvij);    double *delti; /* Scale */
   fclose(ficrest);    double ***eij, ***vareij;
   fclose(ficpar);    double **varpl; /* Variances of prevalence limits by age */
   free_vector(epj,1,nlstate+1);    double *epj, vepp;
      double kk1, kk2;
   /*------- Variance limit prevalence------*/      double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
   strcpy(fileresvpl,"vpl");    char *alph[]={"a","a","b","c","d","e"}, str[4];
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char z[1]="c", occ;
     exit(0);  #include <sys/time.h>
   }  #include <time.h>
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
   k=0;    /* long total_usecs;
   for(cptcov=1;cptcov<=i1;cptcov++){       struct timeval start_time, end_time;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       fprintf(ficresvpl,"\n#****** ");    getcwd(pathcd, size);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("\n%s\n%s",version,fullversion);
       fprintf(ficresvpl,"******\n");    if(argc <=1){
            printf("\nEnter the parameter file name: ");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      scanf("%s",pathtot);
       oldm=oldms;savm=savms;    }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    else{
     }      strcpy(pathtot,argv[1]);
  }    }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   fclose(ficresvpl);    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   /*---------- End : free ----------------*/    /* cutv(path,optionfile,pathtot,'\\');*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    chdir(path);
      replace(pathc,path);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /*-------- arguments in the command line --------*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* Log file */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcat(filelog, optionfilefiname);
      strcat(filelog,".log");    /* */
   free_matrix(matcov,1,npar,1,npar);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   free_vector(delti,1,npar);      printf("Problem with logfile %s\n",filelog);
   free_matrix(agev,1,maxwav,1,imx);      goto end;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   if(erreur >0)    fprintf(ficlog,"\n%s",version);
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(ficlog,"\nEnter the parameter file name: ");
   else   printf("End of Imach\n");    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fflush(ficlog);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /* */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcpy(fileres,"r");
   /*------ End -----------*/    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
  end:    /*---------arguments file --------*/
   /* chdir(pathcd);*/  
  /*system("wgnuplot graph.plt");*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
  /*system("../gp37mgw/wgnuplot graph.plt");*/      printf("Problem with optionfile %s\n",optionfile);
  /*system("cd ../gp37mgw");*/      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      goto end;
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    strcpy(filereso,"o");
  system(plotcmd);    strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
  /*#ifdef windows*/      printf("Problem with Output resultfile: %s\n", filereso);
   while (z[0] != 'q') {      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     /* chdir(path); */      goto end;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    }
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    /* Reads comments: lines beginning with '#' */
     else if (z[0] == 'e') system(optionfilehtm);    while((c=getc(ficpar))=='#' && c!= EOF){
     else if (z[0] == 'g') system(plotcmd);      ungetc(c,ficpar);
     else if (z[0] == 'q') exit(0);      fgets(line, MAXLINE, ficpar);
   }      puts(line);
   /*#endif */      fputs(line,ficparo);
 }    }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>