Diff for /imach/src/imach.c between versions 1.85 and 1.125

version 1.85, 2003/06/17 13:12:43 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   * imach.c (Repository): Check when date of death was earlier that    Errors in calculation of health expectancies. Age was not initialized.
   current date of interview. It may happen when the death was just    Forecasting file added.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.124  2006/03/22 17:13:53  lievre
   assuming that the date of death was just one stepm after the    Parameters are printed with %lf instead of %f (more numbers after the comma).
   interview.    The log-likelihood is printed in the log file
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.123  2006/03/20 10:52:43  brouard
   memory allocation. But we also truncated to 8 characters (left    * imach.c (Module): <title> changed, corresponds to .htm file
   truncation)    name. <head> headers where missing.
   (Repository): No more line truncation errors.  
     * imach.c (Module): Weights can have a decimal point as for
   Revision 1.84  2003/06/13 21:44:43  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   * imach.c (Repository): Replace "freqsummary" at a correct    otherwise the weight is truncated).
   place. It differs from routine "prevalence" which may be called    Modification of warning when the covariates values are not 0 or
   many times. Probs is memory consuming and must be used with    1.
   parcimony.    Version 0.98g
   Version 0.95a2 (should output exactly the same maximization than 0.8a2)  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): Weights can have a decimal point as for
   *** empty log message ***    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.82  2003/06/05 15:57:20  brouard    Modification of warning when the covariates values are not 0 or
   Add log in  imach.c and  fullversion number is now printed.    1.
     Version 0.98g
 */  
 /*    Revision 1.121  2006/03/16 17:45:01  lievre
    Interpolated Markov Chain    * imach.c (Module): Comments concerning covariates added
   
   Short summary of the programme:    * imach.c (Module): refinements in the computation of lli if
       status=-2 in order to have more reliable computation if stepm is
   This program computes Healthy Life Expectancies from    not 1 month. Version 0.98f
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.120  2006/03/16 15:10:38  lievre
   interviewed on their health status or degree of disability (in the    (Module): refinements in the computation of lli if
   case of a health survey which is our main interest) -2- at least a    status=-2 in order to have more reliable computation if stepm is
   second wave of interviews ("longitudinal") which measure each change    not 1 month. Version 0.98f
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.119  2006/03/15 17:42:26  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Bug if status = -2, the loglikelihood was
   Maximum Likelihood of the parameters involved in the model.  The    computed as likelihood omitting the logarithm. Version O.98e
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.118  2006/03/14 18:20:07  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): varevsij Comments added explaining the second
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    table of variances if popbased=1 .
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   complex model than "constant and age", you should modify the program    (Module): Function pstamp added
   where the markup *Covariates have to be included here again* invites    (Module): Version 0.98d
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   The advantage of this computer programme, compared to a simple    table of variances if popbased=1 .
   multinomial logistic model, is clear when the delay between waves is not    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   identical for each individual. Also, if a individual missed an    (Module): Function pstamp added
   intermediate interview, the information is lost, but taken into    (Module): Version 0.98d
   account using an interpolation or extrapolation.    
     Revision 1.116  2006/03/06 10:29:27  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Variance-covariance wrong links and
   conditional to the observed state i at age x. The delay 'h' can be    varian-covariance of ej. is needed (Saito).
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.115  2006/02/27 12:17:45  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): One freematrix added in mlikeli! 0.98c
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.114  2006/02/26 12:57:58  brouard
   hPijx.    (Module): Some improvements in processing parameter
     filename with strsep.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the stable prevalence.     Revision 1.113  2006/02/24 14:20:24  brouard
       (Module): Memory leaks checks with valgrind and:
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    datafile was not closed, some imatrix were not freed and on matrix
            Institut national d'études démographiques, Paris.    allocation too.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.112  2006/01/30 09:55:26  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Comments can be added in data file. Missing date values
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    can be a simple dot '.'.
     
   **********************************************************************/    Revision 1.110  2006/01/25 00:51:50  brouard
 /*    (Module): Lots of cleaning and bugs added (Gompertz)
   main  
   read parameterfile    Revision 1.109  2006/01/24 19:37:15  brouard
   read datafile    (Module): Comments (lines starting with a #) are allowed in data.
   concatwav  
   freqsummary    Revision 1.108  2006/01/19 18:05:42  lievre
   if (mle >= 1)    Gnuplot problem appeared...
     mlikeli    To be fixed
   print results files  
   if mle==1     Revision 1.107  2006/01/19 16:20:37  brouard
      computes hessian    Test existence of gnuplot in imach path
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.106  2006/01/19 13:24:36  brouard
   open gnuplot file    Some cleaning and links added in html output
   open html file  
   stable prevalence    Revision 1.105  2006/01/05 20:23:19  lievre
    for age prevalim()    *** empty log message ***
   h Pij x  
   variance of p varprob    Revision 1.104  2005/09/30 16:11:43  lievre
   forecasting if prevfcast==1 prevforecast call prevalence()    (Module): sump fixed, loop imx fixed, and simplifications.
   health expectancies    (Module): If the status is missing at the last wave but we know
   Variance-covariance of DFLE    that the person is alive, then we can code his/her status as -2
   prevalence()    (instead of missing=-1 in earlier versions) and his/her
    movingaverage()    contributions to the likelihood is 1 - Prob of dying from last
   varevsij()     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   if popbased==1 varevsij(,popbased)    the healthy state at last known wave). Version is 0.98
   total life expectancies  
   Variance of stable prevalence    Revision 1.103  2005/09/30 15:54:49  lievre
  end    (Module): sump fixed, loop imx fixed, and simplifications.
 */  
     Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   
      Revision 1.101  2004/09/15 10:38:38  brouard
 #include <math.h>    Fix on curr_time
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.100  2004/07/12 18:29:06  brouard
 #include <unistd.h>    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define MAXLINE 256    Revision 1.99  2004/06/05 08:57:40  brouard
 #define GNUPLOTPROGRAM "gnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Revision 1.98  2004/05/16 15:05:56  brouard
 /*#define DEBUG*/    New version 0.97 . First attempt to estimate force of mortality
 /*#define windows*/    directly from the data i.e. without the need of knowing the health
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    cross-longitudinal survey is different from the mortality estimated
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    from other sources like vital statistic data.
   
 #define NINTERVMAX 8    The same imach parameter file can be used but the option for mle should be -3.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Agnès, who wrote this part of the code, tried to keep most of the
 #define NCOVMAX 8 /* Maximum number of covariates */    former routines in order to include the new code within the former code.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    The output is very simple: only an estimate of the intercept and of
 #define AGESUP 130    the slope with 95% confident intervals.
 #define AGEBASE 40  
 #ifdef unix    Current limitations:
 #define DIRSEPARATOR '/'    A) Even if you enter covariates, i.e. with the
 #define ODIRSEPARATOR '\\'    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #else    B) There is no computation of Life Expectancy nor Life Table.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.97  2004/02/20 13:25:42  lievre
 #endif    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /* $Id$ */  
 /* $State$ */    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";    rewritten within the same printf. Workaround: many printfs.
 char fullversion[]="$Revision$ $Date$";   
 int erreur; /* Error number */    Revision 1.95  2003/07/08 07:54:34  brouard
 int nvar;    * imach.c (Repository):
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Repository): Using imachwizard code to output a more meaningful covariance
 int npar=NPARMAX;    matrix (cov(a12,c31) instead of numbers.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.94  2003/06/27 13:00:02  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Just cleaning
 int popbased=0;  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): On windows (cygwin) function asctime_r doesn't
 int maxwav; /* Maxim number of waves */    exist so I changed back to asctime which exists.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Version 0.96b
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.92  2003/06/25 16:30:45  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): On windows (cygwin) function asctime_r doesn't
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    exist so I changed back to asctime which exists.
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */    Revision 1.91  2003/06/25 15:30:29  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Repository): Duplicated warning errors corrected.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Repository): Elapsed time after each iteration is now output. It
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    helps to forecast when convergence will be reached. Elapsed time
 FILE *ficlog, *ficrespow;    is stamped in powell.  We created a new html file for the graphs
 int globpr; /* Global variable for printing or not */    concerning matrix of covariance. It has extension -cov.htm.
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */    Revision 1.90  2003/06/24 12:34:15  brouard
 double sw; /* Sum of weights */    (Module): Some bugs corrected for windows. Also, when
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficresilk;    of the covariance matrix to be input.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *fichtm; /* Html File */    (Module): Some bugs corrected for windows. Also, when
 FILE *ficreseij;    mle=-1 a template is output in file "or"mypar.txt with the design
 char filerese[FILENAMELENGTH];    of the covariance matrix to be input.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE  *ficresvpl;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.87  2003/06/18 12:26:01  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Version 0.96
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.86  2003/06/17 20:04:08  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
 char filelog[FILENAMELENGTH]; /* Log file */    routine fileappend.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
 char popfile[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define NR_END 1    assuming that the date of death was just one stepm after the
 #define FREE_ARG char*    interview.
 #define FTOL 1.0e-10    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define NRANSI     memory allocation. But we also truncated to 8 characters (left
 #define ITMAX 200     truncation)
     (Repository): No more line truncation errors.
 #define TOL 2.0e-4   
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define CGOLD 0.3819660     * imach.c (Repository): Replace "freqsummary" at a correct
 #define ZEPS 1.0e-10     place. It differs from routine "prevalence" which may be called
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     many times. Probs is memory consuming and must be used with
     parcimony.
 #define GOLD 1.618034     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GLIMIT 100.0   
 #define TINY 1.0e-20     Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.82  2003/06/05 15:57:20  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Add log in  imach.c and  fullversion number is now printed.
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  */
 #define rint(a) floor(a+0.5)  /*
      Interpolated Markov Chain
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Short summary of the programme:
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    
     This program computes Healthy Life Expectancies from
 int imx;     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int stepm;    first survey ("cross") where individuals from different ages are
 /* Stepm, step in month: minimum step interpolation*/    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int estepm;    second wave of interviews ("longitudinal") which measure each change
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 int m,nb;    model. More health states you consider, more time is necessary to reach the
 long *num;    Maximum Likelihood of the parameters involved in the model.  The
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    simplest model is the multinomial logistic model where pij is the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    probability to be observed in state j at the second wave
 double **pmmij, ***probs;    conditional to be observed in state i at the first wave. Therefore
 double dateintmean=0;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 double *weight;    complex model than "constant and age", you should modify the program
 int **s; /* Status */    where the markup *Covariates have to be included here again* invites
 double *agedc, **covar, idx;    you to do it.  More covariates you add, slower the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    convergence.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    The advantage of this computer programme, compared to a simple
 double ftolhess; /* Tolerance for computing hessian */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /**************** split *************************/    intermediate interview, the information is lost, but taken into
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    account using an interpolation or extrapolation.  
 {  
   char  *ss;                            /* pointer */    hPijx is the probability to be observed in state i at age x+h
   int   l1, l2;                         /* length counters */    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
   l1 = strlen(path );                   /* length of path */    states. This elementary transition (by month, quarter,
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    semester or year) is modelled as a multinomial logistic.  The hPx
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    matrix is simply the matrix product of nh*stepm elementary matrices
   if ( ss == NULL ) {                   /* no directory, so use current */    and the contribution of each individual to the likelihood is simply
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    hPijx.
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
     /* get current working directory */    Also this programme outputs the covariance matrix of the parameters but also
     /*    extern  char* getcwd ( char *buf , int len);*/    of the life expectancies. It also computes the period (stable) prevalence.
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {   
       return( GLOCK_ERROR_GETCWD );    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     }             Institut national d'études démographiques, Paris.
     strcpy( name, path );               /* we've got it */    This software have been partly granted by Euro-REVES, a concerted action
   } else {                              /* strip direcotry from path */    from the European Union.
     ss++;                               /* after this, the filename */    It is copyrighted identically to a GNU software product, ie programme and
     l2 = strlen( ss );                  /* length of filename */    software can be distributed freely for non commercial use. Latest version
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    can be accessed at http://euroreves.ined.fr/imach .
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     dirc[l1-l2] = 0;                    /* add zero */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }   
   l1 = strlen( dirc );                  /* length of directory */    **********************************************************************/
   /*#ifdef windows  /*
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    main
 #else    read parameterfile
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    read datafile
 #endif    concatwav
   */    freqsummary
   ss = strrchr( name, '.' );            /* find last / */    if (mle >= 1)
   ss++;      mlikeli
   strcpy(ext,ss);                       /* save extension */    print results files
   l1= strlen( name);    if mle==1
   l2= strlen(ss)+1;       computes hessian
   strncpy( finame, name, l1-l2);    read end of parameter file: agemin, agemax, bage, fage, estepm
   finame[l1-l2]= 0;        begin-prev-date,...
   return( 0 );                          /* we're done */    open gnuplot file
 }    open html file
     period (stable) prevalence
      for age prevalim()
 /******************************************/    h Pij x
     variance of p varprob
 void replace(char *s, char*t)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int i;    Variance-covariance of DFLE
   int lg=20;    prevalence()
   i=0;     movingaverage()
   lg=strlen(t);    varevsij()
   for(i=0; i<= lg; i++) {    if popbased==1 varevsij(,popbased)
     (s[i] = t[i]);    total life expectancies
     if (t[i]== '\\') s[i]='/';    Variance of period (stable) prevalence
   }   end
 }  */
   
 int nbocc(char *s, char occ)  
 {  
   int i,j=0;   
   int lg=20;  #include <math.h>
   i=0;  #include <stdio.h>
   lg=strlen(s);  #include <stdlib.h>
   for(i=0; i<= lg; i++) {  #include <string.h>
   if  (s[i] == occ ) j++;  #include <unistd.h>
   }  
   return j;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <errno.h>
 {  extern int errno;
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  /* #include <sys/time.h> */
      gives u="abcedf" and v="ghi2j" */  #include <time.h>
   int i,lg,j,p=0;  #include "timeval.h"
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /* #include <libintl.h> */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* #define _(String) gettext (String) */
   }  
   #define MAXLINE 256
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define GNUPLOTPROGRAM "gnuplot"
     (u[j] = t[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
      u[p]='\0';  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    for(j=0; j<= lg; j++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /********************** nrerror ********************/  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 void nrerror(char error_text[])  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   fprintf(stderr,"ERREUR ...\n");  #define MAXN 20000
   fprintf(stderr,"%s\n",error_text);  #define YEARM 12. /* Number of months per year */
   exit(EXIT_FAILURE);  #define AGESUP 130
 }  #define AGEBASE 40
 /*********************** vector *******************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double *vector(int nl, int nh)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   double *v;  #define CHARSEPARATOR "/"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '\\'
   if (!v) nrerror("allocation failure in vector");  #else
   return v-nl+NR_END;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /************************ free vector ******************/  #endif
 void free_vector(double*v, int nl, int nh)  
 {  /* $Id$ */
   free((FREE_ARG)(v+nl-NR_END));  /* $State$ */
 }  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 /************************ivector *******************************/  char fullversion[]="$Revision$ $Date$";
 int *ivector(long nl,long nh)  char strstart[80];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int *v;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int nvar;
   if (!v) nrerror("allocation failure in ivector");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return v-nl+NR_END;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************free ivector **************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_ivector(int *v, long nl, long nh)  int popbased=0;
 {  
   free((FREE_ARG)(v+nl-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /************************lvector *******************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */
 long *lvector(long nl,long nh)  int gipmx, gsw; /* Global variables on the number of contributions
 {                     to the likelihood and the sum of weights (done by funcone)*/
   long *v;  int mle, weightopt;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!v) nrerror("allocation failure in ivector");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return v-nl+NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************free lvector **************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_lvector(long *v, long nl, long nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************* imatrix *******************************/  long ipmx; /* Number of contributions */
 int **imatrix(long nrl, long nrh, long ncl, long nch)   double sw; /* Sum of weights */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char filerespow[FILENAMELENGTH];
 {   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   FILE *ficresilk;
   int **m;   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     FILE *ficresprobmorprev;
   /* allocate pointers to rows */   FILE *fichtm, *fichtmcov; /* Html File */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   FILE *ficreseij;
   if (!m) nrerror("allocation failure 1 in matrix()");   char filerese[FILENAMELENGTH];
   m += NR_END;   FILE *ficresstdeij;
   m -= nrl;   char fileresstde[FILENAMELENGTH];
     FILE *ficrescveij;
     char filerescve[FILENAMELENGTH];
   /* allocate rows and set pointers to them */   FILE  *ficresvij;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   char fileresv[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   FILE  *ficresvpl;
   m[nrl] += NR_END;   char fileresvpl[FILENAMELENGTH];
   m[nrl] -= ncl;   char title[MAXLINE];
     char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */   char command[FILENAMELENGTH];
   return m;   int  outcmd=0;
 }   
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char filelog[FILENAMELENGTH]; /* Log file */
       int **m;  char filerest[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;   char fileregp[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */   char popfile[FILENAMELENGTH];
 {   
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG) (m+nrl-NR_END));   
 }   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /******************* matrix *******************************/  extern int gettimeofday();
 double **matrix(long nrl, long nrh, long ncl, long nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  extern long time();
   double **m;  char strcurr[80], strfor[80];
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char *endptr;
   if (!m) nrerror("allocation failure 1 in matrix()");  long lval;
   m += NR_END;  double dval;
   m -= nrl;  
   #define NR_END 1
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI
   #define ITMAX 200
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define TOL 2.0e-4
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   
    */  #define CGOLD 0.3819660
 }  #define ZEPS 1.0e-10
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define GOLD 1.618034
 {  #define GLIMIT 100.0
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define TINY 1.0e-20
   free((FREE_ARG)(m+nrl-NR_END));  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************* ma3x *******************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)   
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define rint(a) floor(a+0.5)
   double ***m;  
   static double sqrarg;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   m += NR_END;  int agegomp= AGEGOMP;
   m -= nrl;  
   int imx;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int stepm=1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   int m,nb;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  long *num;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m[nrl][ncl] += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl][ncl] -= nll;  double **pmmij, ***probs;
   for (j=ncl+1; j<=nch; j++)   double *ageexmed,*agecens;
     m[nrl][j]=m[nrl][j-1]+nlay;  double dateintmean=0;
     
   for (i=nrl+1; i<=nrh; i++) {  double *weight;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int **s; /* Status */
     for (j=ncl+1; j<=nch; j++)   double *agedc, **covar, idx;
       m[i][j]=m[i][j-1]+nlay;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
   return m;   
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  double ftolhess; /* Tolerance for computing hessian */
   */  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    char  *ss;                            /* pointer */
   free((FREE_ARG)(m+nrl-NR_END));    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /***************** f1dim *************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 extern int ncom;     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 extern double *pcom,*xicom;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 extern double (*nrfunc)(double []);       strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double f1dim(double x)         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {       /* get current working directory */
   int j;       /*    extern  char* getcwd ( char *buf , int len);*/
   double f;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double *xt;         return( GLOCK_ERROR_GETCWD );
        }
   xt=vector(1,ncom);       /* got dirc from getcwd*/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       printf(" DIRC = %s \n",dirc);
   f=(*nrfunc)(xt);     } else {                              /* strip direcotry from path */
   free_vector(xt,1,ncom);       ss++;                               /* after this, the filename */
   return f;       l2 = strlen( ss );                  /* length of filename */
 }       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /*****************brent *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       dirc[l1-l2] = 0;                    /* add zero */
 {       printf(" DIRC2 = %s \n",dirc);
   int iter;     }
   double a,b,d,etemp;    /* We add a separator at the end of dirc if not exists */
   double fu,fv,fw,fx;    l1 = strlen( dirc );                  /* length of directory */
   double ftemp;    if( dirc[l1-1] != DIRSEPARATOR ){
   double p,q,r,tol1,tol2,u,v,w,x,xm;       dirc[l1] =  DIRSEPARATOR;
   double e=0.0;       dirc[l1+1] = 0;
        printf(" DIRC3 = %s \n",dirc);
   a=(ax < cx ? ax : cx);     }
   b=(ax > cx ? ax : cx);     ss = strrchr( name, '.' );            /* find last / */
   x=w=v=bx;     if (ss >0){
   fw=fv=fx=(*f)(x);       ss++;
   for (iter=1;iter<=ITMAX;iter++) {       strcpy(ext,ss);                     /* save extension */
     xm=0.5*(a+b);       l1= strlen( name);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       l2= strlen(ss)+1;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strncpy( finame, name, l1-l2);
     printf(".");fflush(stdout);      finame[l1-l2]= 0;
     fprintf(ficlog,".");fflush(ficlog);    }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return( 0 );                          /* we're done */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   /******************************************/
       *xmin=x;   
       return fx;   void replace_back_to_slash(char *s, char*t)
     }   {
     ftemp=fu;    int i;
     if (fabs(e) > tol1) {     int lg=0;
       r=(x-w)*(fx-fv);     i=0;
       q=(x-v)*(fx-fw);     lg=strlen(t);
       p=(x-v)*q-(x-w)*r;     for(i=0; i<= lg; i++) {
       q=2.0*(q-r);       (s[i] = t[i]);
       if (q > 0.0) p = -p;       if (t[i]== '\\') s[i]='/';
       q=fabs(q);     }
       etemp=e;   }
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   int nbocc(char *s, char occ)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   {
       else {     int i,j=0;
         d=p/q;     int lg=20;
         u=x+d;     i=0;
         if (u-a < tol2 || b-u < tol2)     lg=strlen(s);
           d=SIGN(tol1,xm-x);     for(i=0; i<= lg; i++) {
       }     if  (s[i] == occ ) j++;
     } else {     }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     return j;
     }   }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);   void cutv(char *u,char *v, char*t, char occ)
     if (fu <= fx) {   {
       if (u >= x) a=x; else b=x;     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       SHFT(v,w,x,u)        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         SHFT(fv,fw,fx,fu)        gives u="abcedf" and v="ghi2j" */
         } else {     int i,lg,j,p=0;
           if (u < x) a=u; else b=u;     i=0;
           if (fu <= fw || w == x) {     for(j=0; j<=strlen(t)-1; j++) {
             v=w;       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             w=u;     }
             fv=fw;   
             fw=fu;     lg=strlen(t);
           } else if (fu <= fv || v == x || v == w) {     for(j=0; j<p; j++) {
             v=u;       (u[j] = t[j]);
             fv=fu;     }
           }        u[p]='\0';
         }   
   }      for(j=0; j<= lg; j++) {
   nrerror("Too many iterations in brent");       if (j>=(p+1))(v[j-p-1] = t[j]);
   *xmin=x;     }
   return fx;   }
 }   
   /********************** nrerror ********************/
 /****************** mnbrak ***********************/  
   void nrerror(char error_text[])
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   {
             double (*func)(double))     fprintf(stderr,"ERREUR ...\n");
 {     fprintf(stderr,"%s\n",error_text);
   double ulim,u,r,q, dum;    exit(EXIT_FAILURE);
   double fu;   }
    /*********************** vector *******************/
   *fa=(*func)(*ax);   double *vector(int nl, int nh)
   *fb=(*func)(*bx);   {
   if (*fb > *fa) {     double *v;
     SHFT(dum,*ax,*bx,dum)     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       SHFT(dum,*fb,*fa,dum)     if (!v) nrerror("allocation failure in vector");
       }     return v-nl+NR_END;
   *cx=(*bx)+GOLD*(*bx-*ax);   }
   *fc=(*func)(*cx);   
   while (*fb > *fc) {   /************************ free vector ******************/
     r=(*bx-*ax)*(*fb-*fc);   void free_vector(double*v, int nl, int nh)
     q=(*bx-*cx)*(*fb-*fa);   {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     free((FREE_ARG)(v+nl-NR_END));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   }
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {   /************************ivector *******************************/
       fu=(*func)(u);   int *ivector(long nl,long nh)
     } else if ((*cx-u)*(u-ulim) > 0.0) {   {
       fu=(*func)(u);     int *v;
       if (fu < *fc) {     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     if (!v) nrerror("allocation failure in ivector");
           SHFT(*fb,*fc,fu,(*func)(u))     return v-nl+NR_END;
           }   }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;   /******************free ivector **************************/
       fu=(*func)(u);   void free_ivector(int *v, long nl, long nh)
     } else {   {
       u=(*cx)+GOLD*(*cx-*bx);     free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);   }
     }   
     SHFT(*ax,*bx,*cx,u)   /************************lvector *******************************/
       SHFT(*fa,*fb,*fc,fu)   long *lvector(long nl,long nh)
       }   {
 }     long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*************** linmin ************************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 int ncom;   }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);   /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   {
 {     free((FREE_ARG)(v+nl-NR_END));
   double brent(double ax, double bx, double cx,   }
                double (*f)(double), double tol, double *xmin);   
   double f1dim(double x);   /******************* imatrix *******************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   int **imatrix(long nrl, long nrh, long ncl, long nch)
               double *fc, double (*func)(double));        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   int j;   {
   double xx,xmin,bx,ax;     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   double fx,fb,fa;    int **m;
     
   ncom=n;     /* allocate pointers to rows */
   pcom=vector(1,n);     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   xicom=vector(1,n);     if (!m) nrerror("allocation failure 1 in matrix()");
   nrfunc=func;     m += NR_END;
   for (j=1;j<=n;j++) {     m -= nrl;
     pcom[j]=p[j];    
     xicom[j]=xi[j];    
   }     /* allocate rows and set pointers to them */
   ax=0.0;     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   xx=1.0;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     m[nrl] += NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     m[nrl] -= ncl;
 #ifdef DEBUG   
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif    /* return pointer to array of pointers to rows */
   for (j=1;j<=n;j++) {     return m;
     xi[j] *= xmin;   }
     p[j] += xi[j];   
   }   /****************** free_imatrix *************************/
   free_vector(xicom,1,n);   void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(pcom,1,n);         int **m;
 }         long nch,ncl,nrh,nrl;
        /* free an int matrix allocated by imatrix() */
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     free((FREE_ARG) (m[nrl]+ncl-NR_END));
             double (*func)(double []))     free((FREE_ARG) (m+nrl-NR_END));
 {   }
   void linmin(double p[], double xi[], int n, double *fret,   
               double (*func)(double []));   /******************* matrix *******************************/
   int i,ibig,j;   double **matrix(long nrl, long nrh, long ncl, long nch)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double *xits;    double **m;
   pt=vector(1,n);   
   ptt=vector(1,n);     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xit=vector(1,n);     if (!m) nrerror("allocation failure 1 in matrix()");
   xits=vector(1,n);     m += NR_END;
   *fret=(*func)(p);     m -= nrl;
   for (j=1;j<=n;j++) pt[j]=p[j];   
   for (*iter=1;;++(*iter)) {     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fp=(*fret);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ibig=0;     m[nrl] += NR_END;
     del=0.0;     m[nrl] -= ncl;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    return m;
     for (i=1;i<=n;i++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       printf(" %d %.12f",i, p[i]);     */
       fprintf(ficlog," %d %.12lf",i, p[i]);  }
       fprintf(ficrespow," %.12lf", p[i]);  
     }  /*************************free matrix ************************/
     printf("\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     fprintf(ficlog,"\n");  {
     fprintf(ficrespow,"\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (i=1;i<=n;i++) {     free((FREE_ARG)(m+nrl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   }
       fptt=(*fret);   
 #ifdef DEBUG  /******************* ma3x *******************************/
       printf("fret=%lf \n",*fret);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("%d",i);fflush(stdout);    double ***m;
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fabs(fptt-(*fret)) > del) {     if (!m) nrerror("allocation failure 1 in matrix()");
         del=fabs(fptt-(*fret));     m += NR_END;
         ibig=i;     m -= nrl;
       }   
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("%d %.12e",i,(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl] += NR_END;
       for (j=1;j<=n;j++) {    m[nrl] -= ncl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         printf(" p=%.12e",p[j]);    m[nrl][ncl] += NR_END;
         fprintf(ficlog," p=%.12e",p[j]);    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++)
       printf("\n");      m[nrl][j]=m[nrl][j-1]+nlay;
       fprintf(ficlog,"\n");   
 #endif    for (i=nrl+1; i<=nrh; i++) {
     }       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      for (j=ncl+1; j<=nch; j++)
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
       int k[2],l;    }
       k[0]=1;    return m;
       k[1]=-1;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       printf("Max: %.12e",(*func)(p));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       fprintf(ficlog,"Max: %.12e",(*func)(p));    */
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("\n");  {
       fprintf(ficlog,"\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************** function subdirf ***********/
         }  char *subdirf(char fileres[])
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     return tmpout;
       free_vector(xit,1,n);   }
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);   /*************** function subdirf2 ***********/
       free_vector(pt,1,n);   char *subdirf2(char fileres[], char *preop)
       return;   {
     }    
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     /* Caution optionfilefiname is hidden */
     for (j=1;j<=n;j++) {     strcpy(tmpout,optionfilefiname);
       ptt[j]=2.0*p[j]-pt[j];     strcat(tmpout,"/");
       xit[j]=p[j]-pt[j];     strcat(tmpout,preop);
       pt[j]=p[j];     strcat(tmpout,fileres);
     }     return tmpout;
     fptt=(*func)(ptt);   }
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   /*************** function subdirf3 ***********/
       if (t < 0.0) {   char *subdirf3(char fileres[], char *preop, char *preop2)
         linmin(p,xit,n,fret,func);   {
         for (j=1;j<=n;j++) {    
           xi[j][ibig]=xi[j][n];     /* Caution optionfilefiname is hidden */
           xi[j][n]=xit[j];     strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
 #ifdef DEBUG    strcat(tmpout,preop);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcat(tmpout,preop2);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcat(tmpout,fileres);
         for(j=1;j<=n;j++){    return tmpout;
           printf(" %.12e",xit[j]);  }
           fprintf(ficlog," %.12e",xit[j]);  
         }  /***************** f1dim *************************/
         printf("\n");  extern int ncom;
         fprintf(ficlog,"\n");  extern double *pcom,*xicom;
 #endif  extern double (*nrfunc)(double []);
       }   
     }   double f1dim(double x)
   }   {
 }     int j;
     double f;
 /**** Prevalence limit (stable prevalence)  ****************/    double *xt;
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xt=vector(1,ncom);
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    f=(*nrfunc)(xt);
      matrix by transitions matrix until convergence is reached */    free_vector(xt,1,ncom);
     return f;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*****************brent *************************/
   double **out, cov[NCOVMAX], **pmij();  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    int iter;
     double a,b,d,etemp;
   for (ii=1;ii<=nlstate+ndeath;ii++)    double fu,fv,fw,fx;
     for (j=1;j<=nlstate+ndeath;j++){    double ftemp;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm;
     }    double e=0.0;
    
    cov[1]=1.;    a=(ax < cx ? ax : cx);
      b=(ax > cx ? ax : cx);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    x=w=v=bx;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    fw=fv=fx=(*f)(x);
     newm=savm;    for (iter=1;iter<=ITMAX;iter++) {
     /* Covariates have to be included here again */      xm=0.5*(a+b);
      cov[2]=agefin;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
         /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (k=1; k<=cptcovn;k++) {      printf(".");fflush(stdout);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,".");fflush(ficlog);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovprod;k++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        *xmin=x;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        return fx;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      ftemp=fu;
       if (fabs(e) > tol1) {
     savm=oldm;        r=(x-w)*(fx-fv);
     oldm=newm;        q=(x-v)*(fx-fw);
     maxmax=0.;        p=(x-v)*q-(x-w)*r;
     for(j=1;j<=nlstate;j++){        q=2.0*(q-r);
       min=1.;        if (q > 0.0) p = -p;
       max=0.;        q=fabs(q);
       for(i=1; i<=nlstate; i++) {        etemp=e;
         sumnew=0;        e=d;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
         prlim[i][j]= newm[i][j]/(1-sumnew);          d=CGOLD*(e=(x >= xm ? a-x : b-x));
         max=FMAX(max,prlim[i][j]);        else {
         min=FMIN(min,prlim[i][j]);          d=p/q;
       }          u=x+d;
       maxmin=max-min;          if (u-a < tol2 || b-u < tol2)
       maxmax=FMAX(maxmax,maxmin);            d=SIGN(tol1,xm-x);
     }        }
     if(maxmax < ftolpl){      } else {
       return prlim;        d=CGOLD*(e=(x >= xm ? a-x : b-x));
     }      }
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
 }      fu=(*f)(u);
       if (fu <= fx) {
 /*************** transition probabilities ***************/         if (u >= x) a=x; else b=x;
         SHFT(v,w,x,u)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          SHFT(fv,fw,fx,fu)
 {          } else {
   double s1, s2;            if (u < x) a=u; else b=u;
   /*double t34;*/            if (fu <= fw || w == x) {
   int i,j,j1, nc, ii, jj;              v=w;
               w=u;
     for(i=1; i<= nlstate; i++){              fv=fw;
     for(j=1; j<i;j++){              fw=fu;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } else if (fu <= fv || v == x || v == w) {
         /*s2 += param[i][j][nc]*cov[nc];*/              v=u;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              fv=fu;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            }
       }          }
       ps[i][j]=s2;    }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    nrerror("Too many iterations in brent");
     }    *xmin=x;
     for(j=i+1; j<=nlstate+ndeath;j++){    return fx;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /****************** mnbrak ***********************/
       }  
       ps[i][j]=s2;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     }              double (*func)(double))
   }  {
     /*ps[3][2]=1;*/    double ulim,u,r,q, dum;
     double fu;
   for(i=1; i<= nlstate; i++){   
      s1=0;    *fa=(*func)(*ax);
     for(j=1; j<i; j++)    *fb=(*func)(*bx);
       s1+=exp(ps[i][j]);    if (*fb > *fa) {
     for(j=i+1; j<=nlstate+ndeath; j++)      SHFT(dum,*ax,*bx,dum)
       s1+=exp(ps[i][j]);        SHFT(dum,*fb,*fa,dum)
     ps[i][i]=1./(s1+1.);        }
     for(j=1; j<i; j++)    *cx=(*bx)+GOLD*(*bx-*ax);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fc=(*func)(*cx);
     for(j=i+1; j<=nlstate+ndeath; j++)    while (*fb > *fc) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];      r=(*bx-*ax)*(*fb-*fc);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      q=(*bx-*cx)*(*fb-*fa);
   } /* end i */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      ulim=(*bx)+GLIMIT*(*cx-*bx);
     for(jj=1; jj<= nlstate+ndeath; jj++){      if ((*bx-u)*(u-*cx) > 0.0) {
       ps[ii][jj]=0;        fu=(*func)(u);
       ps[ii][ii]=1;      } else if ((*cx-u)*(u-ulim) > 0.0) {
     }        fu=(*func)(u);
   }        if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
             SHFT(*fb,*fc,fu,(*func)(u))
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            }
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
      printf("%lf ",ps[ii][jj]);        u=ulim;
    }        fu=(*func)(u);
     printf("\n ");      } else {
     }        u=(*cx)+GOLD*(*cx-*bx);
     printf("\n ");printf("%lf ",cov[2]);*/        fu=(*func)(u);
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(*ax,*bx,*cx,u)
   goto end;*/        SHFT(*fa,*fb,*fc,fu)
     return ps;        }
 }  }
   
 /**************** Product of 2 matrices ******************/  /*************** linmin ************************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int ncom;
 {  double *pcom,*xicom;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double (*nrfunc)(double []);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    double brent(double ax, double bx, double cx,
   long i, j, k;                 double (*f)(double), double tol, double *xmin);
   for(i=nrl; i<= nrh; i++)    double f1dim(double x);
     for(k=ncolol; k<=ncoloh; k++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for(j=ncl,out[i][k]=0.; j<=nch; j++)                double *fc, double (*func)(double));
         out[i][k] +=in[i][j]*b[j][k];    int j;
     double xx,xmin,bx,ax;
   return out;    double fx,fb,fa;
 }   
     ncom=n;
     pcom=vector(1,n);
 /************* Higher Matrix Product ***************/    xicom=vector(1,n);
     nrfunc=func;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (j=1;j<=n;j++) {
 {      pcom[j]=p[j];
   /* Computes the transition matrix starting at age 'age' over       xicom[j]=xi[j];
      'nhstepm*hstepm*stepm' months (i.e. until    }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     ax=0.0;
      nhstepm*hstepm matrices.     xx=1.0;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
      (typically every 2 years instead of every month which is too big     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
      for the memory).  #ifdef DEBUG
      Model is determined by parameters x and covariates have to be     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      included manually here.     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
      */    for (j=1;j<=n;j++) {
       xi[j] *= xmin;
   int i, j, d, h, k;      p[j] += xi[j];
   double **out, cov[NCOVMAX];    }
   double **newm;    free_vector(xicom,1,n);
     free_vector(pcom,1,n);
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  char *asc_diff_time(long time_sec, char ascdiff[])
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    sec_left = (time_sec) % (60*60*24);
   for(h=1; h <=nhstepm; h++){    hours = (sec_left) / (60*60) ;
     for(d=1; d <=hstepm; d++){    sec_left = (sec_left) %(60*60);
       newm=savm;    minutes = (sec_left) /60;
       /* Covariates have to be included here again */    sec_left = (sec_left) % (60);
       cov[1]=1.;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    return ascdiff;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** powell ************************/
       for (k=1; k<=cptcovprod;k++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              double (*func)(double []))
   {
     void linmin(double p[], double xi[], int n, double *fret,
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                double (*func)(double []));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int i,ibig,j;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     double del,t,*pt,*ptt,*xit;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fp,fptt;
       savm=oldm;    double *xits;
       oldm=newm;    int niterf, itmp;
     }  
     for(i=1; i<=nlstate+ndeath; i++)    pt=vector(1,n);
       for(j=1;j<=nlstate+ndeath;j++) {    ptt=vector(1,n);
         po[i][j][h]=newm[i][j];    xit=vector(1,n);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xits=vector(1,n);
          */    *fret=(*func)(p);
       }    for (j=1;j<=n;j++) pt[j]=p[j];
   } /* end h */    for (*iter=1;;++(*iter)) {
   return po;      fp=(*fret);
 }      ibig=0;
       del=0.0;
       last_time=curr_time;
 /*************** log-likelihood *************/      (void) gettimeofday(&curr_time,&tzp);
 double func( double *x)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   int i, ii, j, k, mi, d, kk;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];     for (i=1;i<=n;i++) {
   double **out;        printf(" %d %.12f",i, p[i]);
   double sw; /* Sum of weights */        fprintf(ficlog," %d %.12lf",i, p[i]);
   double lli; /* Individual log likelihood */        fprintf(ficrespow," %.12lf", p[i]);
   int s1, s2;      }
   double bbh, survp;      printf("\n");
   long ipmx;      fprintf(ficlog,"\n");
   /*extern weight */      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* We are differentiating ll according to initial status */      if(*iter <=3){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        tm = *localtime(&curr_time.tv_sec);
   /*for(i=1;i<imx;i++)         strcpy(strcurr,asctime(&tm));
     printf(" %d\n",s[4][i]);  /*       asctime_r(&tm,strcurr); */
   */        forecast_time=curr_time;
   cov[1]=1.;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for(k=1; k<=nlstate; k++) ll[k]=0.;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   if(mle==1){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(niterf=10;niterf<=30;niterf+=10){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for(mi=1; mi<= wav[i]-1; mi++){          tmf = *localtime(&forecast_time.tv_sec);
         for (ii=1;ii<=nlstate+ndeath;ii++)  /*      asctime_r(&tmf,strfor); */
           for (j=1;j<=nlstate+ndeath;j++){          strcpy(strfor,asctime(&tmf));
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          itmp = strlen(strfor);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          if(strfor[itmp-1]=='\n')
           }          strfor[itmp-1]='\0';
         for(d=0; d<dh[mi][i]; d++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           newm=savm;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
           for (kk=1; kk<=cptcovage;kk++) {      }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (i=1;i<=n;i++) {
           }        for (j=1;j<=n;j++) xit[j]=xi[j][i];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fptt=(*fret);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
           savm=oldm;        printf("fret=%lf \n",*fret);
           oldm=newm;        fprintf(ficlog,"fret=%lf \n",*fret);
         } /* end mult */  #endif
               printf("%d",i);fflush(stdout);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        fprintf(ficlog,"%d",i);fflush(ficlog);
         /* But now since version 0.9 we anticipate for bias and large stepm.        linmin(p,xit,n,fret,func);
          * If stepm is larger than one month (smallest stepm) and if the exact delay         if (fabs(fptt-(*fret)) > del) {
          * (in months) between two waves is not a multiple of stepm, we rounded to           del=fabs(fptt-(*fret));
          * the nearest (and in case of equal distance, to the lowest) interval but now          ibig=i;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        }
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  #ifdef DEBUG
          * probability in order to take into account the bias as a fraction of the way        printf("%d %.12e",i,(*fret));
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        fprintf(ficlog,"%d %.12e",i,(*fret));
          * -stepm/2 to stepm/2 .        for (j=1;j<=n;j++) {
          * For stepm=1 the results are the same as for previous versions of Imach.          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
          * For stepm > 1 the results are less biased than in previous versions.           printf(" x(%d)=%.12e",j,xit[j]);
          */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         s1=s[mw[mi][i]][i];        }
         s2=s[mw[mi+1][i]][i];        for(j=1;j<=n;j++) {
         bbh=(double)bh[mi][i]/(double)stepm;           printf(" p=%.12e",p[j]);
         /* bias is positive if real duration          fprintf(ficlog," p=%.12e",p[j]);
          * is higher than the multiple of stepm and negative otherwise.        }
          */        printf("\n");
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        fprintf(ficlog,"\n");
         if( s2 > nlstate){   #endif
           /* i.e. if s2 is a death state and if the date of death is known then the contribution      }
              to the likelihood is the probability to die between last step unit time and current       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
              step unit time, which is also the differences between probability to die before dh   #ifdef DEBUG
              and probability to die before dh-stepm .         int k[2],l;
              In version up to 0.92 likelihood was computed        k[0]=1;
         as if date of death was unknown. Death was treated as any other        k[1]=-1;
         health state: the date of the interview describes the actual state        printf("Max: %.12e",(*func)(p));
         and not the date of a change in health state. The former idea was        fprintf(ficlog,"Max: %.12e",(*func)(p));
         to consider that at each interview the state was recorded        for (j=1;j<=n;j++) {
         (healthy, disable or death) and IMaCh was corrected; but when we          printf(" %.12e",p[j]);
         introduced the exact date of death then we should have modified          fprintf(ficlog," %.12e",p[j]);
         the contribution of an exact death to the likelihood. This new        }
         contribution is smaller and very dependent of the step unit        printf("\n");
         stepm. It is no more the probability to die between last interview        fprintf(ficlog,"\n");
         and month of death but the probability to survive from last        for(l=0;l<=1;l++) {
         interview up to one month before death multiplied by the          for (j=1;j<=n;j++) {
         probability to die within a month. Thanks to Chris            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         Jackson for correcting this bug.  Former versions increased            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         mortality artificially. The bad side is that we add another loop            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         which slows down the processing. The difference can be up to 10%          }
         lower mortality.          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           lli=log(out[s1][s2] - savm[s1][s2]);        }
         }else{  #endif
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */  
         }         free_vector(xit,1,n);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        free_vector(xits,1,n);
         /*if(lli ==000.0)*/        free_vector(ptt,1,n);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        free_vector(pt,1,n);
         ipmx +=1;        return;
         sw += weight[i];      }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
       } /* end of wave */      for (j=1;j<=n;j++) {
     } /* end of individual */        ptt[j]=2.0*p[j]-pt[j];
   }  else if(mle==2){        xit[j]=p[j]-pt[j];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        pt[j]=p[j];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){      fptt=(*func)(ptt);
         for (ii=1;ii<=nlstate+ndeath;ii++)      if (fptt < fp) {
           for (j=1;j<=nlstate+ndeath;j++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        if (t < 0.0) {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          linmin(p,xit,n,fret,func);
           }          for (j=1;j<=n;j++) {
         for(d=0; d<=dh[mi][i]; d++){            xi[j][ibig]=xi[j][n];
           newm=savm;            xi[j][n]=xit[j];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          }
           for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(j=1;j<=n;j++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            printf(" %.12e",xit[j]);
           savm=oldm;            fprintf(ficlog," %.12e",xit[j]);
           oldm=newm;          }
         } /* end mult */          printf("\n");
                 fprintf(ficlog,"\n");
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  #endif
         /* But now since version 0.9 we anticipate for bias and large stepm.        }
          * If stepm is larger than one month (smallest stepm) and if the exact delay       }
          * (in months) between two waves is not a multiple of stepm, we rounded to     }
          * the nearest (and in case of equal distance, to the lowest) interval but now  }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  /**** Prevalence limit (stable or period prevalence)  ****************/
          * probability in order to take into account the bias as a fraction of the way  
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          * -stepm/2 to stepm/2 .  {
          * For stepm=1 the results are the same as for previous versions of Imach.    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          * For stepm > 1 the results are less biased than in previous versions.        matrix by transitions matrix until convergence is reached */
          */  
         s1=s[mw[mi][i]][i];    int i, ii,j,k;
         s2=s[mw[mi+1][i]][i];    double min, max, maxmin, maxmax,sumnew=0.;
         bbh=(double)bh[mi][i]/(double)stepm;     double **matprod2();
         /* bias is positive if real duration    double **out, cov[NCOVMAX], **pmij();
          * is higher than the multiple of stepm and negative otherwise.    double **newm;
          */    double agefin, delaymax=50 ; /* Max number of years to converge */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    for (ii=1;ii<=nlstate+ndeath;ii++)
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */      for (j=1;j<=nlstate+ndeath;j++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  
         ipmx +=1;     cov[1]=1.;
         sw += weight[i];   
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       } /* end of wave */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     } /* end of individual */      newm=savm;
   }  else if(mle==3){  /* exponential inter-extrapolation */      /* Covariates have to be included here again */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       cov[2]=agefin;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) {
         for (ii=1;ii<=nlstate+ndeath;ii++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for (j=1;j<=nlstate+ndeath;j++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           }        for (k=1; k<=cptcovprod;k++)
         for(d=0; d<dh[mi][i]; d++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for (kk=1; kk<=cptcovage;kk++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      savm=oldm;
           savm=oldm;      oldm=newm;
           oldm=newm;      maxmax=0.;
         } /* end mult */      for(j=1;j<=nlstate;j++){
               min=1.;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        max=0.;
         /* But now since version 0.9 we anticipate for bias and large stepm.        for(i=1; i<=nlstate; i++) {
          * If stepm is larger than one month (smallest stepm) and if the exact delay           sumnew=0;
          * (in months) between two waves is not a multiple of stepm, we rounded to           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          * the nearest (and in case of equal distance, to the lowest) interval but now          prlim[i][j]= newm[i][j]/(1-sumnew);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          max=FMAX(max,prlim[i][j]);
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          min=FMIN(min,prlim[i][j]);
          * probability in order to take into account the bias as a fraction of the way        }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        maxmin=max-min;
          * -stepm/2 to stepm/2 .        maxmax=FMAX(maxmax,maxmin);
          * For stepm=1 the results are the same as for previous versions of Imach.      }
          * For stepm > 1 the results are less biased than in previous versions.       if(maxmax < ftolpl){
          */        return prlim;
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];    }
         bbh=(double)bh[mi][i]/(double)stepm;   }
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.  /*************** transition probabilities ***************/
          */  
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    double s1, s2;
         /*if(lli ==000.0)*/    /*double t34;*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    int i,j,j1, nc, ii, jj;
         ipmx +=1;  
         sw += weight[i];      for(i=1; i<= nlstate; i++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(j=1; j<i;j++){
       } /* end of wave */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     } /* end of individual */            /*s2 += param[i][j][nc]*cov[nc];*/
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
       for(mi=1; mi<= wav[i]-1; mi++){          ps[i][j]=s2;
         for (ii=1;ii<=nlstate+ndeath;ii++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
           for (j=1;j<=nlstate+ndeath;j++){        }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for(d=0; d<dh[mi][i]; d++){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          ps[i][j]=s2;
           for (kk=1; kk<=cptcovage;kk++) {        }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }      /*ps[3][2]=1;*/
              
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(i=1; i<= nlstate; i++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        s1=0;
           savm=oldm;        for(j=1; j<i; j++)
           oldm=newm;          s1+=exp(ps[i][j]);
         } /* end mult */        for(j=i+1; j<=nlstate+ndeath; j++)
                 s1+=exp(ps[i][j]);
         s1=s[mw[mi][i]][i];        ps[i][i]=1./(s1+1.);
         s2=s[mw[mi+1][i]][i];        for(j=1; j<i; j++)
         if( s2 > nlstate){           ps[i][j]= exp(ps[i][j])*ps[i][i];
           lli=log(out[s1][s2] - savm[s1][s2]);        for(j=i+1; j<=nlstate+ndeath; j++)
         }else{          ps[i][j]= exp(ps[i][j])*ps[i][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
         ipmx +=1;     
         sw += weight[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(jj=1; jj<= nlstate+ndeath; jj++){
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          ps[ii][jj]=0;
       } /* end of wave */          ps[ii][ii]=1;
     } /* end of individual */        }
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){     
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for (ii=1;ii<=nlstate+ndeath;ii++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           for (j=1;j<=nlstate+ndeath;j++){  /*         printf("ddd %lf ",ps[ii][jj]); */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       } */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       printf("\n "); */
           }  /*        } */
         for(d=0; d<dh[mi][i]; d++){  /*        printf("\n ");printf("%lf ",cov[2]); */
           newm=savm;         /*
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for (kk=1; kk<=cptcovage;kk++) {        goto end;*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      return ps;
           }  }
           
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /**************** Product of 2 matrices ******************/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           oldm=newm;  {
         } /* end mult */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
              b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         s1=s[mw[mi][i]][i];    /* in, b, out are matrice of pointers which should have been initialized
         s2=s[mw[mi+1][i]][i];       before: only the contents of out is modified. The function returns
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */       a pointer to pointers identical to out */
         ipmx +=1;    long i, j, k;
         sw += weight[i];    for(i=nrl; i<= nrh; i++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(k=ncolol; k<=ncoloh; k++)
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       } /* end of wave */          out[i][k] +=in[i][j]*b[j][k];
     } /* end of individual */  
   } /* End of if */    return out;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /************* Higher Matrix Product ***************/
 }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 /*************** log-likelihood *************/  {
 double funcone( double *x)    /* Computes the transition matrix starting at age 'age' over
 {       'nhstepm*hstepm*stepm' months (i.e. until
   int i, ii, j, k, mi, d, kk;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       nhstepm*hstepm matrices.
   double **out;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   double lli; /* Individual log likelihood */       (typically every 2 years instead of every month which is too big
   int s1, s2;       for the memory).
   double bbh, survp;       Model is determined by parameters x and covariates have to be
   /*extern weight */       included manually here.
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       */
   /*for(i=1;i<imx;i++)   
     printf(" %d\n",s[4][i]);    int i, j, d, h, k;
   */    double **out, cov[NCOVMAX];
   cov[1]=1.;    double **newm;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (j=1;j<=nlstate+ndeath;j++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(mi=1; mi<= wav[i]-1; mi++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for (ii=1;ii<=nlstate+ndeath;ii++)      }
         for (j=1;j<=nlstate+ndeath;j++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(h=1; h <=nhstepm; h++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      for(d=1; d <=hstepm; d++){
         }        newm=savm;
       for(d=0; d<dh[mi][i]; d++){        /* Covariates have to be included here again */
         newm=savm;        cov[1]=1.;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (kk=1; kk<=cptcovage;kk++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovprod;k++)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         savm=oldm;  
         oldm=newm;  
       } /* end mult */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       s1=s[mw[mi][i]][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
       s2=s[mw[mi+1][i]][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       bbh=(double)bh[mi][i]/(double)stepm;         savm=oldm;
       /* bias is positive if real duration        oldm=newm;
        * is higher than the multiple of stepm and negative otherwise.      }
        */      for(i=1; i<=nlstate+ndeath; i++)
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        for(j=1;j<=nlstate+ndeath;j++) {
         lli=log(out[s1][s2] - savm[s1][s2]);          po[i][j][h]=newm[i][j];
       } else if (mle==1){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           */
       } else if(mle==2){        }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    } /* end h */
       } else if(mle==3){  /* exponential inter-extrapolation */    return po;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  }
       } else if (mle==4){  /* mle=4 no inter-extrapolation */  
         lli=log(out[s1][s2]); /* Original formula */  
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */  /*************** log-likelihood *************/
         lli=log(out[s1][s2]); /* Original formula */  double func( double *x)
       } /* End of if */  {
       ipmx +=1;    int i, ii, j, k, mi, d, kk;
       sw += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    double sw; /* Sum of weights */
       if(globpr){    double lli; /* Individual log likelihood */
         fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \    int s1, s2;
                 i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);    double bbh, survp;
         for(k=1,l=0.; k<=nlstate; k++)     long ipmx;
           fprintf(ficresilk," %10.6f",ll[k]);    /*extern weight */
         fprintf(ficresilk,"\n");    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     } /* end of wave */    /*for(i=1;i<imx;i++)
   } /* end of individual */      printf(" %d\n",s[4][i]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    cov[1]=1.;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* This routine should help understanding what is done with the selection of individuals/waves and          for (ii=1;ii<=nlstate+ndeath;ii++)
      to check the exact contribution to the likelihood.            for (j=1;j<=nlstate+ndeath;j++){
      Plotting could be done.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k;            }
   if(globpr !=0){ /* Just counts and sums no printings */          for(d=0; d<dh[mi][i]; d++){
     strcpy(fileresilk,"ilk");             newm=savm;
     strcat(fileresilk,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
       printf("Problem with resultfile: %s\n", fileresilk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");            savm=oldm;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            oldm=newm;
     for(k=1; k<=nlstate; k++)           } /* end mult */
       fprintf(ficresilk," ll[%d]",k);       
     fprintf(ficresilk,"\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay
   *fretone=(*funcone)(p);           * (in months) between two waves is not a multiple of stepm, we rounded to
   if(globpr !=0)           * the nearest (and in case of equal distance, to the lowest) interval but now
     fclose(ficresilk);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   return;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /*********** Maximum Likelihood Estimation ***************/           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))           * For stepm > 1 the results are less biased than in previous versions.
 {           */
   int i,j, iter;          s1=s[mw[mi][i]][i];
   double **xi;          s2=s[mw[mi+1][i]][i];
   double fret;          bbh=(double)bh[mi][i]/(double)stepm;
   double fretone; /* Only one call to likelihood */          /* bias bh is positive if real duration
   char filerespow[FILENAMELENGTH];           * is higher than the multiple of stepm and negative otherwise.
   xi=matrix(1,npar,1,npar);           */
   for (i=1;i<=npar;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for (j=1;j<=npar;j++)          if( s2 > nlstate){
       xi[i][j]=(i==j ? 1.0 : 0.0);            /* i.e. if s2 is a death state and if the date of death is known
   printf("Powell\n");  fprintf(ficlog,"Powell\n");               then the contribution to the likelihood is the probability to
   strcpy(filerespow,"pow");                die between last step unit time and current  step unit time,
   strcat(filerespow,fileres);               which is also equal to probability to die before dh
   if((ficrespow=fopen(filerespow,"w"))==NULL) {               minus probability to die before dh-stepm .
     printf("Problem with resultfile: %s\n", filerespow);               In version up to 0.92 likelihood was computed
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          and not the date of a change in health state. The former idea was
   for (i=1;i<=nlstate;i++)          to consider that at each interview the state was recorded
     for(j=1;j<=nlstate+ndeath;j++)          (healthy, disable or death) and IMaCh was corrected; but when we
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          introduced the exact date of death then we should have modified
   fprintf(ficrespow,"\n");          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   powell(p,xi,npar,ftol,&iter,&fret,func);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   fclose(ficrespow);          interview up to one month before death multiplied by the
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          probability to die within a month. Thanks to Chris
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          Jackson for correcting this bug.  Former versions increased
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
 /**** Computes Hessian and covariance matrix ***/            lli=log(out[s1][s2] - savm[s1][s2]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  
   double  **a,**y,*x,pd;          } else if  (s2==-2) {
   double **hess;            for (j=1,survp=0. ; j<=nlstate; j++)
   int i, j,jk;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int *indx;            /*survp += out[s1][j]; */
             lli= log(survp);
   double hessii(double p[], double delta, int theta, double delti[]);          }
   double hessij(double p[], double delti[], int i, int j);         
   void lubksb(double **a, int npar, int *indx, double b[]) ;          else if  (s2==-4) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hess=matrix(1,npar,1,npar);            lli= log(survp);
           }
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          else if  (s2==-5) {
   for (i=1;i<=npar;i++){            for (j=1,survp=0. ; j<=2; j++)  
     printf("%d",i);fflush(stdout);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficlog,"%d",i);fflush(ficlog);            lli= log(survp);
     hess[i][i]=hessii(p,ftolhess,i,delti);          }
     /*printf(" %f ",p[i]);*/         
     /*printf(" %lf ",hess[i][i]);*/          else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (i=1;i<=npar;i++) {          }
     for (j=1;j<=npar;j++)  {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if (j>i) {           /*if(lli ==000.0)*/
         printf(".%d%d",i,j);fflush(stdout);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          ipmx +=1;
         hess[i][j]=hessij(p,delti,i,j);          sw += weight[i];
         hess[j][i]=hess[i][j];              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf(" %lf ",hess[i][j]);*/        } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficlog,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 savm[ii][j]=(ii==j ? 1.0 : 0.0);
   a=matrix(1,npar,1,npar);            }
   y=matrix(1,npar,1,npar);          for(d=0; d<=dh[mi][i]; d++){
   x=vector(1,npar);            newm=savm;
   indx=ivector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=npar;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   ludcmp(a,npar,indx,&pd);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (j=1;j<=npar;j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) x[i]=0;            savm=oldm;
     x[j]=1;            oldm=newm;
     lubksb(a,npar,indx,x);          } /* end mult */
     for (i=1;i<=npar;i++){        
       matcov[i][j]=x[i];          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm;
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("\n#Hessian matrix#\n");          ipmx +=1;
   fprintf(ficlog,"\n#Hessian matrix#\n");          sw += weight[i];
   for (i=1;i<=npar;i++) {           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=npar;j++) {         } /* end of wave */
       printf("%.3e ",hess[i][j]);      } /* end of individual */
       fprintf(ficlog,"%.3e ",hess[i][j]);    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficlog,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /* Recompute Inverse */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            }
   ludcmp(a,npar,indx,&pd);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   /*  printf("\n#Hessian matrix recomputed#\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1;j<=npar;j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1;i<=npar;i++) x[i]=0;            }
     x[j]=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     lubksb(a,npar,indx,x);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){             savm=oldm;
       y[i][j]=x[i];            oldm=newm;
       printf("%.3e ",y[i][j]);          } /* end mult */
       fprintf(ficlog,"%.3e ",y[i][j]);       
     }          s1=s[mw[mi][i]][i];
     printf("\n");          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"\n");          bbh=(double)bh[mi][i]/(double)stepm;
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   */          ipmx +=1;
           sw += weight[i];
   free_matrix(a,1,npar,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(y,1,npar,1,npar);        } /* end of wave */
   free_vector(x,1,npar);      } /* end of individual */
   free_ivector(indx,1,npar);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   free_matrix(hess,1,npar,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*************** hessian matrix ****************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double hessii( double x[], double delta, int theta, double delti[])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i;          for(d=0; d<dh[mi][i]; d++){
   int l=1, lmax=20;            newm=savm;
   double k1,k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double p2[NPARMAX+1];            for (kk=1; kk<=cptcovage;kk++) {
   double res;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            }
   double fx;         
   int k=0,kmax=10;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double l1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   fx=func(x);            oldm=newm;
   for (i=1;i<=npar;i++) p2[i]=x[i];          } /* end mult */
   for(l=0 ; l <=lmax; l++){       
     l1=pow(10,l);          s1=s[mw[mi][i]][i];
     delts=delt;          s2=s[mw[mi+1][i]][i];
     for(k=1 ; k <kmax; k=k+1){          if( s2 > nlstate){
       delt = delta*(l1*k);            lli=log(out[s1][s2] - savm[s1][s2]);
       p2[theta]=x[theta] +delt;          }else{
       k1=func(p2)-fx;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       p2[theta]=x[theta]-delt;          }
       k2=func(p2)-fx;          ipmx +=1;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          sw += weight[i];
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 #ifdef DEBUG        } /* end of wave */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } /* end of individual */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 #endif      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(mi=1; mi<= wav[i]-1; mi++){
         k=kmax;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=kmax; l=lmax*10.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           for(d=0; d<dh[mi][i]; d++){
         delts=delt;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   delti[theta]=delts;            }
   return res;          
               out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 double hessij( double x[], double delti[], int thetai,int thetaj)            oldm=newm;
 {          } /* end mult */
   int i;       
   int l=1, l1, lmax=20;          s1=s[mw[mi][i]][i];
   double k1,k2,k3,k4,res,fx;          s2=s[mw[mi+1][i]][i];
   double p2[NPARMAX+1];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k;          ipmx +=1;
           sw += weight[i];
   fx=func(x);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=1; k<=2; k++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for (i=1;i<=npar;i++) p2[i]=x[i];        } /* end of wave */
     p2[thetai]=x[thetai]+delti[thetai]/k;      } /* end of individual */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } /* End of if */
     k1=func(p2)-fx;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     p2[thetai]=x[thetai]+delti[thetai]/k;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return -l;
     k2=func(p2)-fx;  }
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** log-likelihood *************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double funcone( double *x)
     k3=func(p2)-fx;  {
       /* Same as likeli but slower because of a lot of printf and if */
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i, ii, j, k, mi, d, kk;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     k4=func(p2)-fx;    double **out;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double lli; /* Individual log likelihood */
 #ifdef DEBUG    double llt;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int s1, s2;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double bbh, survp;
 #endif    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   return res;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++)
       printf(" %d\n",s[4][i]);
 /************** Inverse of matrix **************/    */
 void ludcmp(double **a, int n, int *indx, double *d)     cov[1]=1.;
 {   
   int i,imax,j,k;     for(k=1; k<=nlstate; k++) ll[k]=0.;
   double big,dum,sum,temp;   
   double *vv;     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   vv=vector(1,n);       for(mi=1; mi<= wav[i]-1; mi++){
   *d=1.0;         for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=n;i++) {           for (j=1;j<=nlstate+ndeath;j++){
     big=0.0;             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)             savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((temp=fabs(a[i][j])) > big) big=temp;           }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         for(d=0; d<dh[mi][i]; d++){
     vv[i]=1.0/big;           newm=savm;
   }           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1;j<=n;j++) {           for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<j;i++) {             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       sum=a[i][j];           }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       a[i][j]=sum;                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }           savm=oldm;
     big=0.0;           oldm=newm;
     for (i=j;i<=n;i++) {         } /* end mult */
       sum=a[i][j];        
       for (k=1;k<j;k++)         s1=s[mw[mi][i]][i];
         sum -= a[i][k]*a[k][j];         s2=s[mw[mi+1][i]][i];
       a[i][j]=sum;         bbh=(double)bh[mi][i]/(double)stepm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {         /* bias is positive if real duration
         big=dum;          * is higher than the multiple of stepm and negative otherwise.
         imax=i;          */
       }         if( s2 > nlstate && (mle <5) ){  /* Jackson */
     }           lli=log(out[s1][s2] - savm[s1][s2]);
     if (j != imax) {         } else if  (s2==-2) {
       for (k=1;k<=n;k++) {           for (j=1,survp=0. ; j<=nlstate; j++)
         dum=a[imax][k];             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         a[imax][k]=a[j][k];           lli= log(survp);
         a[j][k]=dum;         }else if (mle==1){
       }           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       *d = -(*d);         } else if(mle==2){
       vv[imax]=vv[j];           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }         } else if(mle==3){  /* exponential inter-extrapolation */
     indx[j]=imax;           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (a[j][j] == 0.0) a[j][j]=TINY;         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     if (j != n) {           lli=log(out[s1][s2]); /* Original formula */
       dum=1.0/(a[j][j]);         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           lli=log(out[s1][s2]); /* Original formula */
     }         } /* End of if */
   }         ipmx +=1;
   free_vector(vv,1,n);  /* Doesn't work */        sw += weight[i];
 ;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 void lubksb(double **a, int n, int *indx, double b[])           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 {    %11.6f %11.6f %11.6f ", \
   int i,ii=0,ip,j;                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double sum;                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (i=1;i<=n;i++) {             llt +=ll[k]*gipmx/gsw;
     ip=indx[i];             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     sum=b[ip];           }
     b[ip]=b[i];           fprintf(ficresilk," %10.6f\n", -llt);
     if (ii)         }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       } /* end of wave */
     else if (sum) ii=i;     } /* end of individual */
     b[i]=sum;     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (i=n;i>=1;i--) {     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     sum=b[i];     if(globpr==0){ /* First time we count the contributions and weights */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       gipmx=ipmx;
     b[i]=sum/a[i][i];       gsw=sw;
   }     }
 }     return -l;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)  
 {  /* Some frequencies */  /*************** function likelione ***********/
     void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   int first;    /* This routine should help understanding what is done with
   double ***freq; /* Frequencies */       the selection of individuals/waves and
   double *pp, **prop;       to check the exact contribution to the likelihood.
   double pos,posprop, k2, dateintsum=0,k2cpt=0;       Plotting could be done.
   FILE *ficresp;     */
   char fileresp[FILENAMELENGTH];    int k;
     
   pp=vector(1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
   prop=matrix(1,nlstate,iagemin,iagemax+3);      strcpy(fileresilk,"ilk");
   strcpy(fileresp,"p");      strcat(fileresilk,fileres);
   strcat(fileresp,fileres);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {        printf("Problem with resultfile: %s\n", fileresilk);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   j1=0;      for(k=1; k<=nlstate; k++)
           fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   j=cptcoveff;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
   
   first=1;    *fretone=(*funcone)(p);
     if(*globpri !=0){
   for(k1=1; k1<=j;k1++){      fclose(ficresilk);
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       j1++;      fflush(fichtm);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    }
         scanf("%d", i);*/    return;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=iagemin; m <= iagemax+3; m++)  
             freq[i][jk][m]=0;  /*********** Maximum Likelihood Estimation ***************/
   
     for (i=1; i<=nlstate; i++)    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(m=iagemin; m <= iagemax+3; m++)  {
         prop[i][m]=0;    int i,j, iter;
           double **xi;
       dateintsum=0;    double fret;
       k2cpt=0;    double fretone; /* Only one call to likelihood */
       for (i=1; i<=imx; i++) {    /*  char filerespow[FILENAMELENGTH];*/
         bool=1;    xi=matrix(1,npar,1,npar);
         if  (cptcovn>0) {    for (i=1;i<=npar;i++)
           for (z1=1; z1<=cptcoveff; z1++)       for (j=1;j<=npar;j++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         xi[i][j]=(i==j ? 1.0 : 0.0);
               bool=0;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow");
         if (bool==1){    strcat(filerespow,fileres);
           for(m=firstpass; m<=lastpass; m++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             k2=anint[m][i]+(mint[m][i]/12.);      printf("Problem with resultfile: %s\n", filerespow);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    for (i=1;i<=nlstate;i++)
               if (m<lastpass) {      for(j=1;j<=nlstate+ndeath;j++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    fprintf(ficrespow,"\n");
               }  
                   powell(p,xi,npar,ftol,&iter,&fret,func);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {  
                 dateintsum=dateintsum+k2;    free_matrix(xi,1,npar,1,npar);
                 k2cpt++;    fclose(ficrespow);
               }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
               /*}*/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }  
       }  }
          
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if  (cptcovn>0) {  {
         fprintf(ficresp, "\n#********** Variable ");     double  **a,**y,*x,pd;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **hess;
         fprintf(ficresp, "**********\n#");    int i, j,jk;
       }    int *indx;
       for(i=1; i<=nlstate;i++)   
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fprintf(ficresp, "\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(i=iagemin; i <= iagemax+3; i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if(i==iagemax+3){    double gompertz(double p[]);
           fprintf(ficlog,"Total");    hess=matrix(1,npar,1,npar);
         }else{  
           if(first==1){    printf("\nCalculation of the hessian matrix. Wait...\n");
             first=0;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             printf("See log file for details...\n");    for (i=1;i<=npar;i++){
           }      printf("%d",i);fflush(stdout);
           fprintf(ficlog,"Age %d", i);      fprintf(ficlog,"%d",i);fflush(ficlog);
         }     
         for(jk=1; jk <=nlstate ; jk++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)     
             pp[jk] += freq[jk][m][i];       /*  printf(" %f ",p[i]);
         }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pos=0; m <=0 ; m++)   
             pos += freq[jk][m][i];    for (i=1;i<=npar;i++) {
           if(pp[jk]>=1.e-10){      for (j=1;j<=npar;j++)  {
             if(first==1){        if (j>i) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf(".%d%d",i,j);fflush(stdout);
             }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           }else{         
             if(first==1)          hess[j][i]=hess[i][j];    
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf(" %lf ",hess[i][j]);*/
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
           }      }
         }    }
     printf("\n");
         for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }           fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){   
           pos += pp[jk];    a=matrix(1,npar,1,npar);
           posprop += prop[jk][i];    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
         for(jk=1; jk <=nlstate ; jk++){    indx=ivector(1,npar);
           if(pos>=1.e-5){    for (i=1;i<=npar;i++)
             if(first==1)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    ludcmp(a,npar,indx,&pd);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{    for (j=1;j<=npar;j++) {
             if(first==1)      for (i=1;i<=npar;i++) x[i]=0;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      x[j]=1;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){
           if( i <= iagemax){        matcov[i][j]=x[i];
             if(pos>=1.e-5){      }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    }
               /*probs[i][jk][j1]= pp[jk]/pos;*/  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    printf("\n#Hessian matrix#\n");
             }    fprintf(ficlog,"\n#Hessian matrix#\n");
             else    for (i=1;i<=npar;i++) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);      for (j=1;j<=npar;j++) {
           }        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
               }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      printf("\n");
           for(m=-1; m <=nlstate+ndeath; m++)      fprintf(ficlog,"\n");
             if(freq[jk][m][i] !=0 ) {    }
             if(first==1)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* Recompute Inverse */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         if(i <= iagemax)    ludcmp(a,npar,indx,&pd);
           fprintf(ficresp,"\n");  
         if(first==1)    /*  printf("\n#Hessian matrix recomputed#\n");
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }      lubksb(a,npar,indx,x);
   dateintmean=dateintsum/k2cpt;       for (i=1;i<=npar;i++){
          y[i][j]=x[i];
   fclose(ficresp);        printf("%.3e ",y[i][j]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);        fprintf(ficlog,"%.3e ",y[i][j]);
   free_vector(pp,1,nlstate);      }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      printf("\n");
   /* End of Freq */      fprintf(ficlog,"\n");
 }    }
     */
 /************ Prevalence ********************/  
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    free_matrix(a,1,npar,1,npar);
 {      free_matrix(y,1,npar,1,npar);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    free_vector(x,1,npar);
      in each health status at the date of interview (if between dateprev1 and dateprev2).    free_ivector(indx,1,npar);
      We still use firstpass and lastpass as another selection.    free_matrix(hess,1,npar,1,npar);
   */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp, **prop;  /*************** hessian matrix ****************/
   double pos,posprop;   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double  y2; /* in fractional years */  {
   int iagemin, iagemax;    int i;
     int l=1, lmax=20;
   iagemin= (int) agemin;    double k1,k2;
   iagemax= (int) agemax;    double p2[NPARMAX+1];
   /*pp=vector(1,nlstate);*/    double res;
   prop=matrix(1,nlstate,iagemin,iagemax+3);     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    double fx;
   j1=0;    int k=0,kmax=10;
       double l1;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fx=func(x);
       for (i=1;i<=npar;i++) p2[i]=x[i];
   for(k1=1; k1<=j;k1++){    for(l=0 ; l <=lmax; l++){
     for(i1=1; i1<=ncodemax[k1];i1++){      l1=pow(10,l);
       j1++;      delts=delt;
             for(k=1 ; k <kmax; k=k+1){
       for (i=1; i<=nlstate; i++)          delt = delta*(l1*k);
         for(m=iagemin; m <= iagemax+3; m++)        p2[theta]=x[theta] +delt;
           prop[i][m]=0.0;        k1=func(p2)-fx;
              p2[theta]=x[theta]-delt;
       for (i=1; i<=imx; i++) { /* Each individual */        k2=func(p2)-fx;
         bool=1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
         if  (cptcovn>0) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for (z1=1; z1<=cptcoveff; z1++)        
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   #ifdef DEBUG
               bool=0;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         if (bool==1) {   #endif
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */          k=kmax;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);           k=kmax; l=lmax*10.;
               if (s[m][i]>0 && s[m][i]<=nlstate) {         }
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];          delts=delt;
                 prop[s[m][i]][iagemax+3] += weight[i];         }
               }       }
             }    }
           } /* end selection of waves */    delti[theta]=delts;
         }    return res;
       }   
       for(i=iagemin; i <= iagemax+3; i++){    }
           
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           posprop += prop[jk][i];   {
         }     int i;
     int l=1, l1, lmax=20;
         for(jk=1; jk <=nlstate ; jk++){         double k1,k2,k3,k4,res,fx;
           if( i <=  iagemax){     double p2[NPARMAX+1];
             if(posprop>=1.e-5){     int k;
               probs[i][jk][j1]= prop[jk][i]/posprop;  
             }     fx=func(x);
           }     for (k=1; k<=2; k++) {
         }/* end jk */       for (i=1;i<=npar;i++) p2[i]=x[i];
       }/* end i */       p2[thetai]=x[thetai]+delti[thetai]/k;
     } /* end i1 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   } /* end k1 */      k1=func(p2)-fx;
      
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*free_vector(pp,1,nlstate);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);      k2=func(p2)-fx;
 }  /* End of prevalence */   
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /************* Waves Concatenation ***************/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)   
 {      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      Death is a valid wave (if date is known).      k4=func(p2)-fx;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  #ifdef DEBUG
      and mw[mi+1][i]. dh depends on stepm.      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   int i, mi, m;    }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return res;
      double sum=0., jmean=0.;*/  }
   int first;  
   int j, k=0,jk, ju, jl;  /************** Inverse of matrix **************/
   double sum=0.;  void ludcmp(double **a, int n, int *indx, double *d)
   first=0;  {
   jmin=1e+5;    int i,imax,j,k;
   jmax=-1;    double big,dum,sum,temp;
   jmean=0.;    double *vv;
   for(i=1; i<=imx; i++){   
     mi=0;    vv=vector(1,n);
     m=firstpass;    *d=1.0;
     while(s[m][i] <= nlstate){    for (i=1;i<=n;i++) {
       if(s[m][i]>=1)      big=0.0;
         mw[++mi][i]=m;      for (j=1;j<=n;j++)
       if(m >=lastpass)        if ((temp=fabs(a[i][j])) > big) big=temp;
         break;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       else      vv[i]=1.0/big;
         m++;    }
     }/* end while */    for (j=1;j<=n;j++) {
     if (s[m][i] > nlstate){      for (i=1;i<j;i++) {
       mi++;     /* Death is another wave */        sum=a[i][j];
       /* if(mi==0)  never been interviewed correctly before death */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
          /* Only death is a correct wave */        a[i][j]=sum;
       mw[mi][i]=m;      }
     }      big=0.0;
       for (i=j;i<=n;i++) {
     wav[i]=mi;        sum=a[i][j];
     if(mi==0){        for (k=1;k<j;k++)
       if(first==0){          sum -= a[i][k]*a[k][j];
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);        a[i][j]=sum;
         first=1;        if ( (dum=vv[i]*fabs(sum)) >= big) {
       }          big=dum;
       if(first==1){          imax=i;
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);        }
       }      }
     } /* end mi==0 */      if (j != imax) {
   } /* End individuals */        for (k=1;k<=n;k++) {
           dum=a[imax][k];
   for(i=1; i<=imx; i++){          a[imax][k]=a[j][k];
     for(mi=1; mi<wav[i];mi++){          a[j][k]=dum;
       if (stepm <=0)        }
         dh[mi][i]=1;        *d = -(*d);
       else{        vv[imax]=vv[j];
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */      }
           if (agedc[i] < 2*AGESUP) {      indx[j]=imax;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       if (a[j][j] == 0.0) a[j][j]=TINY;
             if(j==0) j=1;  /* Survives at least one month after exam */      if (j != n) {
             else if(j<0){        dum=1.0/(a[j][j]);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for (i=j+1;i<=n;i++) a[i][j] *= dum;
               j=1; /* Careful Patch */      }
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);    }
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    free_vector(vv,1,n);  /* Doesn't work */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);  ;
             }  }
             k=k+1;  
             if (j >= jmax) jmax=j;  void lubksb(double **a, int n, int *indx, double b[])
             if (j <= jmin) jmin=j;  {
             sum=sum+j;    int i,ii=0,ip,j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    double sum;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/   
           }    for (i=1;i<=n;i++) {
         }      ip=indx[i];
         else{      sum=b[ip];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      b[ip]=b[i];
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      if (ii)
           k=k+1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
           if (j >= jmax) jmax=j;      else if (sum) ii=i;
           else if (j <= jmin)jmin=j;      b[i]=sum;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    }
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    for (i=n;i>=1;i--) {
           if(j<0){      sum=b[i];
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      b[i]=sum/a[i][i];
           }    }
           sum=sum+j;  }
         }  
         jk= j/stepm;  void pstamp(FILE *fichier)
         jl= j -jk*stepm;  {
         ju= j -(jk+1)*stepm;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */  }
           if(jl==0){  
             dh[mi][i]=jk;  /************ Frequencies ********************/
             bh[mi][i]=0;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           }else{ /* We want a negative bias in order to only have interpolation ie  {  /* Some frequencies */
                   * at the price of an extra matrix product in likelihood */   
             dh[mi][i]=jk+1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
             bh[mi][i]=ju;    int first;
           }    double ***freq; /* Frequencies */
         }else{    double *pp, **prop;
           if(jl <= -ju){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             dh[mi][i]=jk;    char fileresp[FILENAMELENGTH];
             bh[mi][i]=jl;       /* bias is positive if real duration   
                                  * is higher than the multiple of stepm and negative otherwise.    pp=vector(1,nlstate);
                                  */    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
           else{    strcat(fileresp,fileres);
             dh[mi][i]=jk+1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
             bh[mi][i]=ju;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           if(dh[mi][i]==0){      exit(0);
             dh[mi][i]=1; /* At least one step */    }
             bh[mi][i]=ju; /* At least one step */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    j1=0;
           }   
         } /* end if mle */    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     } /* end wave */  
   }    first=1;
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for(k1=1; k1<=j;k1++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for(i1=1; i1<=ncodemax[k1];i1++){
  }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /*********** Tricode ****************************/          scanf("%d", i);*/
 void tricode(int *Tvar, int **nbcode, int imx)        for (i=-5; i<=nlstate+ndeath; i++)  
 {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               for(m=iagemin; m <= iagemax+3; m++)
   int Ndum[20],ij=1, k, j, i, maxncov=19;              freq[i][jk][m]=0;
   int cptcode=0;  
   cptcoveff=0;       for (i=1; i<=nlstate; i++)  
          for(m=iagemin; m <= iagemax+3; m++)
   for (k=0; k<maxncov; k++) Ndum[k]=0;          prop[i][m]=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;       
         dateintsum=0;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        k2cpt=0;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         for (i=1; i<=imx; i++) {
                                modality*/           bool=1;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          if  (cptcovn>0) {
       Ndum[ij]++; /*store the modality */            for (z1=1; z1<=cptcoveff; z1++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                 bool=0;
                                        Tvar[j]. If V=sex and male is 0 and           }
                                        female is 1, then  cptcode=1.*/          if (bool==1){
     }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     for (i=0; i<=cptcode; i++) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     ij=1;                 if (m<lastpass) {
     for (i=1; i<=ncodemax[j]; i++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for (k=0; k<= maxncov; k++) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         if (Ndum[k] != 0) {                }
           nbcode[Tvar[j]][ij]=k;                
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                             dateintsum=dateintsum+k2;
           ij++;                  k2cpt++;
         }                }
         if (ij > ncodemax[j]) break;                 /*}*/
       }              }
     }           }
   }          }
          
  for (k=0; k< maxncov; k++) Ndum[k]=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
  for (i=1; i<=ncovmodel-2; i++) {         if  (cptcovn>0) {
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          fprintf(ficresp, "\n#********** Variable ");
    ij=Tvar[i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    Ndum[ij]++;          fprintf(ficresp, "**********\n#");
  }        }
         for(i=1; i<=nlstate;i++)
  ij=1;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
  for (i=1; i<= maxncov; i++) {        fprintf(ficresp, "\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){       
      Tvaraff[ij]=i; /*For printing */        for(i=iagemin; i <= iagemax+3; i++){
      ij++;          if(i==iagemax+3){
    }            fprintf(ficlog,"Total");
  }          }else{
              if(first==1){
  cptcoveff=ij-1; /*Number of simple covariates*/              first=0;
 }              printf("See log file for details...\n");
             }
 /*********** Health Expectancies ****************/            fprintf(ficlog,"Age %d", i);
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 {              pp[jk] += freq[jk][m][i];
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(jk=1; jk <=nlstate ; jk++){
   double age, agelim, hf;            for(m=-1, pos=0; m <=0 ; m++)
   double ***p3mat,***varhe;              pos += freq[jk][m][i];
   double **dnewm,**doldm;            if(pp[jk]>=1.e-10){
   double *xp;              if(first==1){
   double **gp, **gm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***gradg, ***trgradg;              }
   int theta;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              if(first==1)
   xp=vector(1,npar);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   dnewm=matrix(1,nlstate*nlstate,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);            }
             }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");          for(jk=1; jk <=nlstate ; jk++){
   for(i=1; i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(j=1; j<=nlstate;j++)              pp[jk] += freq[jk][m][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          }      
   fprintf(ficreseij,"\n");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   if(estepm < stepm){            posprop += prop[jk][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   else  hstepm=estepm;               if(pos>=1.e-5){
   /* We compute the life expectancy from trapezoids spaced every estepm months              if(first==1)
    * This is mainly to measure the difference between two models: for example                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    * if stepm=24 months pijx are given only every 2 years and by summing them              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    * we are calculating an estimate of the Life Expectancy assuming a linear             }else{
    * progression in between and thus overestimating or underestimating according              if(first==1)
    * to the curvature of the survival function. If, for the same date, we                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    * to compare the new estimate of Life expectancy with the same linear             }
    * hypothesis. A more precise result, taking into account a more precise            if( i <= iagemax){
    * curvature will be obtained if estepm is as small as stepm. */              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /* For example we decided to compute the life expectancy with the smallest unit */                /*probs[i][jk][j1]= pp[jk]/pos;*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      nhstepm is the number of hstepm from age to agelim               }
      nstepm is the number of stepm from age to agelin.               else
      Look at hpijx to understand the reason of that which relies in memory size                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      and note for a fixed period like estepm months */            }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          }
      survival function given by stepm (the optimization length). Unfortunately it         
      means that if the survival funtion is printed only each two years of age and if          for(jk=-1; jk <=nlstate+ndeath; jk++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same             for(m=-1; m <=nlstate+ndeath; m++)
      results. So we changed our mind and took the option of the best precision.              if(freq[jk][m][i] !=0 ) {
   */              if(first==1)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim=AGESUP;              }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if(i <= iagemax)
     /* nhstepm age range expressed in number of stepm */            fprintf(ficresp,"\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           if(first==1)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */             printf("Others in log...\n");
     /* if (stepm >= YEARM) hstepm=1;*/          fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    dateintmean=dateintsum/k2cpt;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);   
     fclose(ficresp);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    free_vector(pp,1,nlstate);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /************ Prevalence ********************/
     /* Computing Variances of health expectancies */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
      for(theta=1; theta <=npar; theta++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for(i=1; i<=npar; i++){        in each health status at the date of interview (if between dateprev1 and dateprev2).
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       We still use firstpass and lastpass as another selection.
       }    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       cptj=0;    double ***freq; /* Frequencies */
       for(j=1; j<= nlstate; j++){    double *pp, **prop;
         for(i=1; i<=nlstate; i++){    double pos,posprop;
           cptj=cptj+1;    double  y2; /* in fractional years */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    int iagemin, iagemax;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    iagemin= (int) agemin;
         }    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
          prop=matrix(1,nlstate,iagemin,iagemax+3);
          /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(i=1; i<=npar; i++)     j1=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      j=cptcoveff;
           if (cptcovn<1) {j=1;ncodemax[1]=1;}
       cptj=0;   
       for(j=1; j<= nlstate; j++){    for(k1=1; k1<=j;k1++){
         for(i=1;i<=nlstate;i++){      for(i1=1; i1<=ncodemax[k1];i1++){
           cptj=cptj+1;        j1++;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){       
         for (i=1; i<=nlstate; i++)  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(m=iagemin; m <= iagemax+3; m++)
           }            prop[i][m]=0.0;
         }       
       }        for (i=1; i<=imx; i++) { /* Each individual */
       for(j=1; j<= nlstate*nlstate; j++)          bool=1;
         for(h=0; h<=nhstepm-1; h++){          if  (cptcovn>0) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (z1=1; z1<=cptcoveff; z1++)
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
      }                 bool=0;
              }
 /* End theta */          if (bool==1) {
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      for(h=0; h<=nhstepm-1; h++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<=nlstate*nlstate;j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(theta=1; theta <=npar; theta++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
           trgradg[h][j][theta]=gradg[h][theta][j];                if (s[m][i]>0 && s[m][i]<=nlstate) {
                        /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
      for(i=1;i<=nlstate*nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i];
       for(j=1;j<=nlstate*nlstate;j++)                }
         varhe[i][j][(int)age] =0.;              }
             } /* end selection of waves */
      printf("%d|",(int)age);fflush(stdout);          }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        }
      for(h=0;h<=nhstepm-1;h++){        for(i=iagemin; i <= iagemax+3; i++){  
       for(k=0;k<=nhstepm-1;k++){         
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);            posprop += prop[jk][i];
         for(i=1;i<=nlstate*nlstate;i++)          }
           for(j=1;j<=nlstate*nlstate;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          for(jk=1; jk <=nlstate ; jk++){    
       }            if( i <=  iagemax){
     }              if(posprop>=1.e-5){
     /* Computing expectancies */                probs[i][jk][j1]= prop[jk][i]/posprop;
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++)            }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          }/* end jk */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        }/* end i */
                 } /* end i1 */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    } /* end k1 */
    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     fprintf(ficreseij,"%3.0f",age );    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     cptj=0;  }  /* End of prevalence */
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /************* Waves Concatenation ***************/
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     fprintf(ficreseij,"\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Death is a valid wave (if date is known).
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);       and mw[mi+1][i]. dh depends on stepm.
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);       */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    int i, mi, m;
   printf("\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficlog,"\n");       double sum=0., jmean=0.;*/
     int first;
   free_vector(xp,1,npar);    int j, k=0,jk, ju, jl;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    double sum=0.;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    first=0;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    jmin=1e+5;
 }    jmax=-1;
     jmean=0.;
 /************ Variance ******************/    for(i=1; i<=imx; i++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)      mi=0;
 {      m=firstpass;
   /* Variance of health expectancies */      while(s[m][i] <= nlstate){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* double **newm;*/          mw[++mi][i]=m;
   double **dnewm,**doldm;        if(m >=lastpass)
   double **dnewmp,**doldmp;          break;
   int i, j, nhstepm, hstepm, h, nstepm ;        else
   int k, cptcode;          m++;
   double *xp;      }/* end while */
   double **gp, **gm;  /* for var eij */      if (s[m][i] > nlstate){
   double ***gradg, ***trgradg; /*for var eij */        mi++;     /* Death is another wave */
   double **gradgp, **trgradgp; /* for var p point j */        /* if(mi==0)  never been interviewed correctly before death */
   double *gpp, *gmp; /* for var p point j */           /* Only death is a correct wave */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        mw[mi][i]=m;
   double ***p3mat;      }
   double age,agelim, hf;  
   double ***mobaverage;      wav[i]=mi;
   int theta;      if(mi==0){
   char digit[4];        nbwarn++;
   char digitp[25];        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   char fileresprobmorprev[FILENAMELENGTH];          first=1;
         }
   if(popbased==1){        if(first==1){
     if(mobilav!=0)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       strcpy(digitp,"-populbased-mobilav-");        }
     else strcpy(digitp,"-populbased-nomobil-");      } /* end mi==0 */
   }    } /* End individuals */
   else   
     strcpy(digitp,"-stablbased-");    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   if (mobilav!=0) {        if (stepm <=0)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          dh[mi][i]=1;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        else{
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   strcpy(fileresprobmorprev,"prmorprev");                 nberr++;
   sprintf(digit,"%-d",ij);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/                j=1; /* Temporary Dangerous patch */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(fileresprobmorprev,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              k=k+1;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);              if (j >= jmax){
   }                jmax=j;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                ijmax=i;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              }
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);              if (j <= jmin){
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);                jmin=j;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                ijmin=i;
     fprintf(ficresprobmorprev," p.%-d SE",j);              }
     for(i=1; i<=nlstate;i++)              sum=sum+j;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficresprobmorprev,"\n");            }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          else{
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     exit(0);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
   else{            k=k+1;
     fprintf(ficgp,"\n# Routine varevsij");            if (j >= jmax) {
   }              jmax=j;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              ijmax=i;
     printf("Problem with html file: %s\n", optionfilehtm);            }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            else if (j <= jmin){
     exit(0);              jmin=j;
   }              ijmin=i;
   else{            }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)            sum=sum+j;
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          jk= j/stepm;
   fprintf(ficresvij,"\n");          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   xp=vector(1,npar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   dnewm=matrix(1,nlstate,1,npar);            if(jl==0){
   doldm=matrix(1,nlstate,1,nlstate);              dh[mi][i]=jk;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);              bh[mi][i]=0;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk+1;
   gpp=vector(nlstate+1,nlstate+ndeath);              bh[mi][i]=ju;
   gmp=vector(nlstate+1,nlstate+ndeath);            }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          }else{
               if(jl <= -ju){
   if(estepm < stepm){              dh[mi][i]=jk;
     printf ("Problem %d lower than %d\n",estepm, stepm);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   else  hstepm=estepm;                                      */
   /* For example we decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.             else{
      nhstepm is the number of hstepm from age to agelim               dh[mi][i]=jk+1;
      nstepm is the number of stepm from age to agelin.               bh[mi][i]=ju;
      Look at hpijx to understand the reason of that which relies in memory size            }
      and note for a fixed period like k years */            if(dh[mi][i]==0){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              dh[mi][i]=1; /* At least one step */
      survival function given by stepm (the optimization length). Unfortunately it              bh[mi][i]=ju; /* At least one step */
      means that if the survival funtion is printed every two years of age and if              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same             }
      results. So we changed our mind and took the option of the best precision.          } /* end if mle */
   */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       } /* end wave */
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    jmean=sum/k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /*********** Tricode ****************************/
     gm=matrix(0,nhstepm,1,nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
   {
    
     for(theta=1; theta <=npar; theta++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    int cptcode=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    cptcoveff=0;
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (k=0; k<maxncov; k++) Ndum[k]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (k=1; k<=7; k++) ncodemax[k]=0;
   
       if (popbased==1) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         if(mobilav ==0){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
           for(i=1; i<=nlstate;i++)                                 modality*/
             prlim[i][i]=probs[(int)age][i][ij];        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         }else{ /* mobilav */         Ndum[ij]++; /*store the modality */
           for(i=1; i<=nlstate;i++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             prlim[i][i]=mobaverage[(int)age][i][ij];        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
         }                                         Tvar[j]. If V=sex and male is 0 and
       }                                         female is 1, then  cptcode=1.*/
         }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){      for (i=0; i<=cptcode; i++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }  
       }      ij=1;
       /* This for computing probability of death (h=1 means      for (i=1; i<=ncodemax[j]; i++) {
          computed over hstepm matrices product = hstepm*stepm months)         for (k=0; k<= maxncov; k++) {
          as a weighted average of prlim.          if (Ndum[k] != 0) {
       */            nbcode[Tvar[j]][ij]=k;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)           
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            ij++;
       }              }
       /* end probability of death */          if (ij > ncodemax[j]) break;
         }  
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
       if (popbased==1) {   for (i=1; i<=ncovmodel-2; i++) {
         if(mobilav ==0){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           for(i=1; i<=nlstate;i++)     ij=Tvar[i];
             prlim[i][i]=probs[(int)age][i][ij];     Ndum[ij]++;
         }else{ /* mobilav */    }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];   ij=1;
         }   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
       for(j=1; j<= nlstate; j++){       ij++;
         for(h=0; h<=nhstepm; h++){     }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)   }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];   
         }   cptcoveff=ij-1; /*Number of simple covariates*/
       }  }
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   /*********** Health Expectancies ****************/
          as a weighted average of prlim.  
       */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  {
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    /* Health expectancies, no variances */
       }        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       /* end probability of death */    double age, agelim, hf;
     double ***p3mat;
       for(j=1; j<= nlstate; j++) /* vareij */    double eip;
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    pstamp(ficreseij);
         }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    for(i=1; i<=nlstate;i++){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for(j=1; j<=nlstate;j++){
       }        fprintf(ficreseij," e%1d%1d ",i,j);
       }
     } /* End theta */      fprintf(ficreseij," e%1d. ",i);
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    fprintf(ficreseij,"\n");
   
     for(h=0; h<=nhstepm; h++) /* veij */   
       for(j=1; j<=nlstate;j++)    if(estepm < stepm){
         for(theta=1; theta <=npar; theta++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           trgradg[h][j][theta]=gradg[h][theta][j];    }
     else  hstepm=estepm;  
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    /* We compute the life expectancy from trapezoids spaced every estepm months
       for(theta=1; theta <=npar; theta++)     * This is mainly to measure the difference between two models: for example
         trgradgp[j][theta]=gradgp[theta][j];     * if stepm=24 months pijx are given only every 2 years and by summing them
        * we are calculating an estimate of the Life Expectancy assuming a linear
      * progression in between and thus overestimating or underestimating according
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * to the curvature of the survival function. If, for the same date, we
     for(i=1;i<=nlstate;i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(j=1;j<=nlstate;j++)     * to compare the new estimate of Life expectancy with the same linear
         vareij[i][j][(int)age] =0.;     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    /* For example we decided to compute the life expectancy with the smallest unit */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);       nhstepm is the number of hstepm from age to agelim
         for(i=1;i<=nlstate;i++)       nstepm is the number of stepm from age to agelin.
           for(j=1;j<=nlstate;j++)       Look at hpijx to understand the reason of that which relies in memory size
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
          means that if the survival funtion is printed only each two years of age and if
     /* pptj */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       results. So we changed our mind and took the option of the best precision.
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];    agelim=AGESUP;
     /* end ppptj */    /* If stepm=6 months */
     /*  x centered again */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);     
    /* nhstepm age range expressed in number of stepm */
     if (popbased==1) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       if(mobilav ==0){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for(i=1; i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
           prlim[i][i]=probs[(int)age][i][ij];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }else{ /* mobilav */     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];    for (age=bage; age<=fage; age ++){
       }  
     }  
                    hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     /* This for computing probability of death (h=1 means     
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        as a weighted average of prlim.     
     */      printf("%d|",(int)age);fflush(stdout);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }          /* Computing expectancies */
     /* end probability of death */      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));           
       for(i=1; i<=nlstate;i++){            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }          }
     }      
     fprintf(ficresprobmorprev,"\n");      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
     fprintf(ficresvij,"%.0f ",age );        eip=0;
     for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate;j++){          eip +=eij[i][j][(int)age];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       }        }
     fprintf(ficresvij,"\n");        fprintf(ficreseij,"%9.4f", eip );
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);      fprintf(ficreseij,"\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);     
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   } /* End age */    printf("\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);    fprintf(ficlog,"\n");
   free_vector(gmp,nlstate+1,nlstate+ndeath);   
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  {
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    /* Covariances of health expectancies eij and of total life expectancies according
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */     to initial status i, ei. .
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);    double age, agelim, hf;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);    double ***p3matp, ***p3matm, ***varhe;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    double **dnewm,**doldm;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);    double *xp, *xm;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    double **gp, **gm;
 */    double ***gradg, ***trgradg;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);    int theta;
   
   free_vector(xp,1,npar);    double eip, vip;
   free_matrix(doldm,1,nlstate,1,nlstate);  
   free_matrix(dnewm,1,nlstate,1,npar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    xp=vector(1,npar);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    xm=vector(1,npar);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fclose(ficresprobmorprev);   
   fclose(ficgp);    pstamp(ficresstdeij);
   fclose(fichtm);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 }  /* end varevsij */    fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
 /************ Variance of prevlim ******************/      for(j=1; j<=nlstate;j++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 {      fprintf(ficresstdeij," e%1d. ",i);
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    fprintf(ficresstdeij,"\n");
   double **newm;  
   double **dnewm,**doldm;    pstamp(ficrescveij);
   int i, j, nhstepm, hstepm;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   int k, cptcode;    fprintf(ficrescveij,"# Age");
   double *xp;    for(i=1; i<=nlstate;i++)
   double *gp, *gm;      for(j=1; j<=nlstate;j++){
   double **gradg, **trgradg;        cptj= (j-1)*nlstate+i;
   double age,agelim;        for(i2=1; i2<=nlstate;i2++)
   int theta;          for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");            if(cptj2 <= cptj)
   fprintf(ficresvpl,"# Age");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");    fprintf(ficrescveij,"\n");
    
   xp=vector(1,npar);    if(estepm < stepm){
   dnewm=matrix(1,nlstate,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   doldm=matrix(1,nlstate,1,nlstate);    }
       else  hstepm=estepm;  
   hstepm=1*YEARM; /* Every year of age */    /* We compute the life expectancy from trapezoids spaced every estepm months
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      * This is mainly to measure the difference between two models: for example
   agelim = AGESUP;     * if stepm=24 months pijx are given only every 2 years and by summing them
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     * we are calculating an estimate of the Life Expectancy assuming a linear
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      * progression in between and thus overestimating or underestimating according
     if (stepm >= YEARM) hstepm=1;     * to the curvature of the survival function. If, for the same date, we
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     gradg=matrix(1,npar,1,nlstate);     * to compare the new estimate of Life expectancy with the same linear
     gp=vector(1,nlstate);     * hypothesis. A more precise result, taking into account a more precise
     gm=vector(1,nlstate);     * curvature will be obtained if estepm is as small as stepm. */
   
     for(theta=1; theta <=npar; theta++){    /* For example we decided to compute the life expectancy with the smallest unit */
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nhstepm is the number of hstepm from age to agelim
       }       nstepm is the number of stepm from age to agelin.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Look at hpijx to understand the reason of that which relies in memory size
       for(i=1;i<=nlstate;i++)       and note for a fixed period like estepm months */
         gp[i] = prlim[i][i];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            survival function given by stepm (the optimization length). Unfortunately it
       for(i=1; i<=npar; i++) /* Computes gradient */       means that if the survival funtion is printed only each two years of age and if
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       results. So we changed our mind and took the option of the best precision.
       for(i=1;i<=nlstate;i++)    */
         gm[i] = prlim[i][i];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
       for(i=1;i<=nlstate;i++)    /* If stepm=6 months */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /* nhstepm age range expressed in number of stepm */
     } /* End theta */    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     trgradg =matrix(1,nlstate,1,npar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
     for(j=1; j<=nlstate;j++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(theta=1; theta <=npar; theta++)   
         trgradg[j][theta]=gradg[theta][j];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=nlstate;i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       varpl[i][(int)age] =0.;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    for (age=bage; age<=fage; age ++){
   
     fprintf(ficresvpl,"%.0f ",age );      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(i=1; i<=nlstate;i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));   
     fprintf(ficresvpl,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);      /* Computing  Variances of health expectancies */
     free_matrix(gradg,1,npar,1,nlstate);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     free_matrix(trgradg,1,nlstate,1,npar);         decrease memory allocation */
   } /* End age */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){
   free_vector(xp,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(doldm,1,nlstate,1,npar);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    
 /************ Variance of one-step probabilities  ******************/        for(j=1; j<= nlstate; j++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for(i=1; i<=nlstate; i++){
 {            for(h=0; h<=nhstepm-1; h++){
   int i, j=0,  i1, k1, l1, t, tj;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   int k2, l2, j1,  z1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   int k=0,l, cptcode;            }
   int first=1, first1;          }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        }
   double **dnewm,**doldm;       
   double *xp;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double *gp, *gm;          for(h=0; h<=nhstepm-1; h++){
   double **gradg, **trgradg;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double **mu;          }
   double age,agelim, cov[NCOVMAX];      }/* End theta */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     
   int theta;     
   char fileresprob[FILENAMELENGTH];      for(h=0; h<=nhstepm-1; h++)
   char fileresprobcov[FILENAMELENGTH];        for(j=1; j<=nlstate*nlstate;j++)
   char fileresprobcor[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   double ***varpij;     
   
   strcpy(fileresprob,"prob");        for(ij=1;ij<=nlstate*nlstate;ij++)
   strcat(fileresprob,fileres);        for(ji=1;ji<=nlstate*nlstate;ji++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          varhe[ij][ji][(int)age] =0.;
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcpy(fileresprobcov,"probcov");        for(h=0;h<=nhstepm-1;h++){
   strcat(fileresprobcov,fileres);        for(k=0;k<=nhstepm-1;k++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     printf("Problem with resultfile: %s\n", fileresprobcov);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          for(ij=1;ij<=nlstate*nlstate;ij++)
   }            for(ji=1;ji<=nlstate*nlstate;ji++)
   strcpy(fileresprobcor,"probcor");               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   strcat(fileresprobcor,fileres);        }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      /* Computing expectancies */
   }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=1; j<=nlstate;j++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);           
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          }
   fprintf(ficresprob,"# Age");  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficresprobcov,"# Age");      for(i=1; i<=nlstate;i++){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        eip=0.;
   fprintf(ficresprobcov,"# Age");        vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
   for(i=1; i<=nlstate;i++)          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     for(j=1; j<=(nlstate+ndeath);j++){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     }        }
  /* fprintf(ficresprob,"\n");      fprintf(ficresstdeij,"\n");
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");      fprintf(ficrescveij,"%3.0f",age );
  */      for(i=1; i<=nlstate;i++)
  xp=vector(1,npar);        for(j=1; j<=nlstate;j++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          cptj= (j-1)*nlstate+i;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          for(i2=1; i2<=nlstate;i2++)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            for(j2=1; j2<=nlstate;j2++){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              cptj2= (j2-1)*nlstate+i2;
   first=1;              if(cptj2 <= cptj)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        }
     exit(0);      fprintf(ficrescveij,"\n");
   }     
   else{    }
     fprintf(ficgp,"\n# Routine varprob");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("Problem with html file: %s\n", optionfilehtm);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     exit(0);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   else{    fprintf(ficlog,"\n");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
     fprintf(fichtm,"\n");    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   }  
   /************ Variance ******************/
   cov[1]=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   tj=cptcoveff;  {
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    /* Variance of health expectancies */
   j1=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   for(t=1; t<=tj;t++){    /* double **newm;*/
     for(i1=1; i1<=ncodemax[t];i1++){     double **dnewm,**doldm;
       j1++;    double **dnewmp,**doldmp;
       if  (cptcovn>0) {    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficresprob, "\n#********** Variable ");     int k, cptcode;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double *xp;
         fprintf(ficresprob, "**********\n#\n");    double **gp, **gm;  /* for var eij */
         fprintf(ficresprobcov, "\n#********** Variable ");     double ***gradg, ***trgradg; /*for var eij */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **gradgp, **trgradgp; /* for var p point j */
         fprintf(ficresprobcov, "**********\n#\n");    double *gpp, *gmp; /* for var p point j */
             double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficgp, "\n#********** Variable ");     double ***p3mat;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double age,agelim, hf;
         fprintf(ficgp, "**********\n#\n");    double ***mobaverage;
             int theta;
             char digit[4];
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     char digitp[25];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    char fileresprobmorprev[FILENAMELENGTH];
           
         fprintf(ficresprobcor, "\n#********** Variable ");        if(popbased==1){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if(mobilav!=0)
         fprintf(ficresprobcor, "**********\n#");            strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
           }
       for (age=bage; age<=fage; age ++){     else
         cov[2]=age;      strcpy(digitp,"-stablbased-");
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (k=1; k<=cptcovprod;k++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));    strcpy(fileresprobmorprev,"prmorprev");
         gm=vector(1,(nlstate)*(nlstate+ndeath));    sprintf(digit,"%-d",ij);
         /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         for(theta=1; theta <=npar; theta++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           for(i=1; i<=npar; i++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    strcat(fileresprobmorprev,fileres);
               if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                 fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           k=0;    }
           for(i=1; i<= (nlstate); i++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               gp[k]=pmmij[i][j];    pstamp(ficresprobmorprev);
             }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(i=1; i<=npar; i++)      fprintf(ficresprobmorprev," p.%-d SE",j);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);      for(i=1; i<=nlstate;i++)
             fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }  
           k=0;    fprintf(ficresprobmorprev,"\n");
           for(i=1; i<=(nlstate); i++){    fprintf(ficgp,"\n# Routine varevsij");
             for(j=1; j<=(nlstate+ndeath);j++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               k=k+1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               gm[k]=pmmij[i][j];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             }  /*   } */
           }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          pstamp(ficresvij);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      if(popbased==1)
         }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           for(theta=1; theta <=npar; theta++)    fprintf(ficresvij,"# Age");
             trgradg[j][theta]=gradg[theta][j];    for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate;j++)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficresvij,"\n");
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    xp=vector(1,npar);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    dnewm=matrix(1,nlstate,1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           
         k=0;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for(i=1; i<=(nlstate); i++){    gpp=vector(nlstate+1,nlstate+ndeath);
           for(j=1; j<=(nlstate+ndeath);j++){    gmp=vector(nlstate+1,nlstate+ndeath);
             k=k+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             mu[k][(int) age]=pmmij[i][j];   
           }    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    else  hstepm=estepm;  
             varpij[i][j][(int)age] = doldm[i][j];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         /*printf("\n%d ",(int)age);       nhstepm is the number of hstepm from age to agelim
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       nstepm is the number of stepm from age to agelin.
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       and note for a fixed period like k years */
           }*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficresprob,"\n%d ",(int)age);       means that if the survival funtion is printed every two years of age and if
         fprintf(ficresprobcov,"\n%d ",(int)age);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         fprintf(ficresprobcor,"\n%d ",(int)age);       results. So we changed our mind and took the option of the best precision.
     */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    agelim = AGESUP;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=0;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (k=1; k<=(nlstate);k++){      gp=matrix(0,nhstepm,1,nlstate);
           for (l=1; l<=(nlstate+ndeath);l++){       gm=matrix(0,nhstepm,1,nlstate);
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(theta=1; theta <=npar; theta++){
             for (j=1; j<=i;j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }/* end of loop for state */  
       } /* end of loop for age */        if (popbased==1) {
           if(mobilav ==0){
       /* Confidence intervalle of pij  */            for(i=1; i<=nlstate;i++)
       /*              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficgp,"\nset noparametric;unset label");          }else{ /* mobilav */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          }
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);   
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        for(j=1; j<= nlstate; j++){
       */          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       first1=1;          }
       for (k2=1; k2<=(nlstate);k2++){        }
         for (l2=1; l2<=(nlstate+ndeath);l2++){         /* This for computing probability of death (h=1 means
           if(l2==k2) continue;           computed over hstepm matrices product = hstepm*stepm months)
           j=(k2-1)*(nlstate+ndeath)+l2;           as a weighted average of prlim.
           for (k1=1; k1<=(nlstate);k1++){        */
             for (l1=1; l1<=(nlstate+ndeath);l1++){         for(j=nlstate+1;j<=nlstate+ndeath;j++){
               if(l1==k1) continue;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               i=(k1-1)*(nlstate+ndeath)+l1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               if(i<=j) continue;        }    
               for (age=bage; age<=fage; age ++){         /* end probability of death */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   mu1=mu[i][(int) age]/stepm*YEARM ;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   mu2=mu[j][(int) age]/stepm*YEARM;   
                   c12=cv12/sqrt(v1*v2);        if (popbased==1) {
                   /* Computing eigen value of matrix of covariance */          if(mobilav ==0){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            for(i=1; i<=nlstate;i++)
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              prlim[i][i]=probs[(int)age][i][ij];
                   /* Eigen vectors */          }else{ /* mobilav */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            for(i=1; i<=nlstate;i++)
                   /*v21=sqrt(1.-v11*v11); *//* error */              prlim[i][i]=mobaverage[(int)age][i][ij];
                   v21=(lc1-v1)/cv12*v11;          }
                   v12=-v21;        }
                   v22=v11;  
                   tnalp=v21/v11;        for(j=1; j<= nlstate; j++){
                   if(first1==1){          for(h=0; h<=nhstepm; h++){
                     first1=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   }          }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        }
                   /*printf(fignu*/        /* This for computing probability of death (h=1 means
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */           computed over hstepm matrices product = hstepm*stepm months)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */           as a weighted average of prlim.
                   if(first==1){        */
                     first=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\nset parametric;unset label");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        }    
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        /* end probability of death */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        for(j=1; j<= nlstate; j++) /* vareij */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);          for(h=0; h<=nhstepm; h++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   }else{        }
                     first=0;  
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);      } /* End theta */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for(h=0; h<=nhstepm; h++) /* veij */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        for(j=1; j<=nlstate;j++)
                   }/* if first */          for(theta=1; theta <=npar; theta++)
                 } /* age mod 5 */            trgradg[h][j][theta]=gradg[h][theta][j];
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               first=1;        for(theta=1; theta <=npar; theta++)
             } /*l12 */          trgradgp[j][theta]=gradgp[theta][j];
           } /* k12 */   
         } /*l1 */  
       }/* k1 */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     } /* loop covariates */      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          vareij[i][j][(int)age] =0.;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
   free_vector(xp,1,npar);      for(h=0;h<=nhstepm;h++){
   fclose(ficresprob);        for(k=0;k<=nhstepm;k++){
   fclose(ficresprobcov);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fclose(ficresprobcor);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fclose(ficgp);          for(i=1;i<=nlstate;i++)
   fclose(fichtm);            for(j=1;j<=nlstate;j++)
 }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
 /******************* Printing html file ***********/   
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      /* pptj */
                   int lastpass, int stepm, int weightopt, char model[],\      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   int popforecast, int estepm ,\      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   double jprev1, double mprev1,double anprev1, \        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   double jprev2, double mprev2,double anprev2){          varppt[j][i]=doldmp[j][i];
   int jj1, k1, i1, cpt;      /* end ppptj */
   /*char optionfilehtm[FILENAMELENGTH];*/      /*  x centered again */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with %s \n",optionfilehtm), exit(0);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);   
   }      if (popbased==1) {
         if(mobilav ==0){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \          for(i=1; i<=nlstate;i++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \            prlim[i][i]=probs[(int)age][i][ij];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \        }else{ /* mobilav */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \          for(i=1; i<=nlstate;i++)
  - Life expectancies by age and initial health status (estepm=%2d months): \            prlim[i][i]=mobaverage[(int)age][i][ij];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      }
                
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months)
  m=cptcoveff;         as a weighted average of prlim.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
  jj1=0;        for(i=1,gmp[j]=0.;i<= nlstate; i++)
  for(k1=1; k1<=m;k1++){          gmp[j] += prlim[i][i]*p3mat[i][j][1];
    for(i1=1; i1<=ncodemax[k1];i1++){      }    
      jj1++;      /* end probability of death */
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for (cpt=1; cpt<=cptcoveff;cpt++)       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for(i=1; i<=nlstate;i++){
      }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      /* Pij */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \      }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           fprintf(ficresprobmorprev,"\n");
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\      fprintf(ficresvij,"%.0f ",age );
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \      for(i=1; i<=nlstate;i++)
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         for(j=1; j<=nlstate;j++){
        /* Stable prevalence in each health state */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      fprintf(ficresvij,"\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_matrix(gp,0,nhstepm,1,nlstate);
        }      free_matrix(gm,0,nhstepm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    } /* End age */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    free_vector(gpp,nlstate+1,nlstate+ndeath);
 health expectancies in states (1) and (2): e%s%d.png<br>\    free_vector(gmp,nlstate+1,nlstate+ndeath);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    } /* end i1 */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  }/* End k1 */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
  fprintf(fichtm,"</ul>");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  
 /*      <br>",fileres,fileres,fileres,fileres); */    free_vector(xp,1,npar);
 /*  else  */    free_matrix(doldm,1,nlstate,1,nlstate);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    free_matrix(dnewm,1,nlstate,1,npar);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  m=cptcoveff;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
  jj1=0;    fflush(ficgp);
  for(k1=1; k1<=m;k1++){    fflush(fichtm);
    for(i1=1; i1<=ncodemax[k1];i1++){  }  /* end varevsij */
      jj1++;  
      if (cptcovn > 0) {  /************ Variance of prevlim ******************/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        for (cpt=1; cpt<=cptcoveff;cpt++)   {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* Variance of prevalence limit */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      }    double **newm;
      for(cpt=1; cpt<=nlstate;cpt++) {    double **dnewm,**doldm;
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\    int i, j, nhstepm, hstepm;
 interval) in state (%d): v%s%d%d.png <br>\    int k, cptcode;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double *xp;
      }    double *gp, *gm;
    } /* end i1 */    double **gradg, **trgradg;
  }/* End k1 */    double age,agelim;
  fprintf(fichtm,"</ul>");    int theta;
 fclose(fichtm);   
 }    pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 /******************* Gnuplot file **************/    fprintf(ficresvpl,"# Age");
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficresvpl,"\n");
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    xp=vector(1,npar);
     printf("Problem with file %s",optionfilegnuplot);    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    doldm=matrix(1,nlstate,1,nlstate);
   }   
     hstepm=1*YEARM; /* Every year of age */
   /*#ifdef windows */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     fprintf(ficgp,"cd \"%s\" \n",pathc);    agelim = AGESUP;
     /*#endif */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 m=pow(2,cptcoveff);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         if (stepm >= YEARM) hstepm=1;
  /* 1eme*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      gradg=matrix(1,npar,1,nlstate);
    for (k1=1; k1<= m ; k1 ++) {      gp=vector(1,nlstate);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      gm=vector(1,nlstate);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
       for(theta=1; theta <=npar; theta++){
      for (i=1; i<= nlstate ; i ++) {        for(i=1; i<=npar; i++){ /* Computes gradient */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        else fprintf(ficgp," \%%*lf (\%%*lf)");        }
      }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=1;i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {          gp[i] = prlim[i][i];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     
        else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++) /* Computes gradient */
      }           xp[i] = x[i] - (i==theta ?delti[theta]:0);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      for (i=1; i<= nlstate ; i ++) {        for(i=1;i<=nlstate;i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          gm[i] = prlim[i][i];
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }          for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    }      } /* End theta */
   }  
   /*2 eme*/      trgradg =matrix(1,nlstate,1,npar);
     
   for (k1=1; k1<= m ; k1 ++) {       for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        for(theta=1; theta <=npar; theta++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          trgradg[j][theta]=gradg[theta][j];
       
     for (i=1; i<= nlstate+1 ; i ++) {      for(i=1;i<=nlstate;i++)
       k=2*i;        varpl[i][(int)age] =0.;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for (j=1; j<= nlstate+1 ; j ++) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1;i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficresvpl,"%.0f ",age );
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficresvpl,"\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      free_vector(gp,1,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      free_vector(gm,1,nlstate);
       }         free_matrix(gradg,1,npar,1,nlstate);
       fprintf(ficgp,"\" t\"\" w l 0,");      free_matrix(trgradg,1,nlstate,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    } /* End age */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(xp,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(doldm,1,nlstate,1,npar);
       }       free_matrix(dnewm,1,nlstate,1,nlstate);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  }
     }  
   }  /************ Variance of one-step probabilities  ******************/
     void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   /*3eme*/  {
       int i, j=0,  i1, k1, l1, t, tj;
   for (k1=1; k1<= m ; k1 ++) {     int k2, l2, j1,  z1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int k=0,l, cptcode;
       k=2+nlstate*(2*cpt-2);    int first=1, first1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double **dnewm,**doldm;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double *xp;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double *gp, *gm;
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double **gradg, **trgradg;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double **mu;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double age,agelim, cov[NCOVMAX];
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             int theta;
       */    char fileresprob[FILENAMELENGTH];
       for (i=1; i< nlstate ; i ++) {    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    char fileresprobcor[FILENAMELENGTH];
           
       }     double ***varpij;
     }  
   }    strcpy(fileresprob,"prob");
       strcat(fileresprob,fileres);
   /* CV preval stable (period) */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {       printf("Problem with resultfile: %s\n", fileresprob);
     for (cpt=1; cpt<=nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       k=3;    }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    strcpy(fileresprobcov,"probcov");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    strcat(fileresprobcov,fileres);
           if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++)      printf("Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
           strcpy(fileresprobcor,"probcor");
       l=3+(nlstate+ndeath)*cpt;    strcat(fileresprobcor,fileres);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
         l=3+(nlstate+ndeath)*cpt;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficgp,"+$%d",l+i+1);    }
       }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /* proba elementaires */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(i=1,jk=1; i <=nlstate; i++){    pstamp(ficresprob);
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       if (k != i) {    fprintf(ficresprob,"# Age");
         for(j=1; j <=ncovmodel; j++){    pstamp(ficresprobcov);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           jk++;     fprintf(ficresprobcov,"# Age");
           fprintf(ficgp,"\n");    pstamp(ficresprobcor);
         }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       }    fprintf(ficresprobcor,"# Age");
     }  
    }  
     for(i=1; i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for(j=1; j<=(nlstate+ndeath);j++){
      for(jk=1; jk <=m; jk++) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);         fprintf(ficresprobcov," p%1d-%1d ",i,j);
        if (ng==2)        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      }  
        else   /* fprintf(ficresprob,"\n");
          fprintf(ficgp,"\nset title \"Probability\"\n");    fprintf(ficresprobcov,"\n");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    fprintf(ficresprobcor,"\n");
        i=1;   */
        for(k2=1; k2<=nlstate; k2++) {   xp=vector(1,npar);
          k3=i;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            if (k != k2){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
              if(ng==2)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    first=1;
              else    fprintf(ficgp,"\n# Routine varprob");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
              ij=1;    fprintf(fichtm,"\n");
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                  ij++;    file %s<br>\n",optionfilehtmcov);
                }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                else  and drawn. It helps understanding how is the covariance between two incidences.\
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
              }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
              fprintf(ficgp,")/(1");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
              for(k1=1; k1 <=nlstate; k1++){     standard deviations wide on each axis. <br>\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                ij=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                for(j=3; j <=ncovmodel; j++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    cov[1]=1;
                    ij++;    tj=cptcoveff;
                  }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                  else    j1=0;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for(t=1; t<=tj;t++){
                }      for(i1=1; i1<=ncodemax[t];i1++){
                fprintf(ficgp,")");        j1++;
              }        if  (cptcovn>0) {
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          fprintf(ficresprob, "\n#********** Variable ");
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              i=i+ncovmodel;          fprintf(ficresprob, "**********\n#\n");
            }          fprintf(ficresprobcov, "\n#********** Variable ");
          } /* end k */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        } /* end k2 */          fprintf(ficresprobcov, "**********\n#\n");
      } /* end jk */         
    } /* end ng */          fprintf(ficgp, "\n#********** Variable ");
    fclose(ficgp);           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }  /* end gnuplot */          fprintf(ficgp, "**********\n#\n");
          
          
 /*************** Moving average **************/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int i, cpt, cptcod;         
   int modcovmax =1;          fprintf(ficresprobcor, "\n#********** Variable ");    
   int mobilavrange, mob;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double age;          fprintf(ficresprobcor, "**********\n#");    
         }
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose        
                            a covariate has 2 modalities */        for (age=bage; age<=fage; age ++){
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if(mobilav==1) mobilavrange=5; /* default */          }
     else mobilavrange=mobilav;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (age=bage; age<=fage; age++)          for (k=1; k<=cptcovprod;k++)
       for (i=1; i<=nlstate;i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for (cptcod=1;cptcod<=modcovmax;cptcod++)         
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     /* We keep the original values on the extreme ages bage, fage and for           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2          gp=vector(1,(nlstate)*(nlstate+ndeath));
        we use a 5 terms etc. until the borders are no more concerned.           gm=vector(1,(nlstate)*(nlstate+ndeath));
     */      
     for (mob=3;mob <=mobilavrange;mob=mob+2){          for(theta=1; theta <=npar; theta++){
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){            for(i=1; i<=npar; i++)
         for (i=1; i<=nlstate;i++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){           
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){           
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];            k=0;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];            for(i=1; i<= (nlstate); i++){
               }              for(j=1; j<=(nlstate+ndeath);j++){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                k=k+1;
           }                gp[k]=pmmij[i][j];
         }              }
       }/* end age */            }
     }/* end mob */           
   }else return -1;            for(i=1; i<=npar; i++)
   return 0;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 }/* End movingaverage */     
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
 /************** Forecasting ******************/            for(i=1; i<=(nlstate); i++){
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){              for(j=1; j<=(nlstate+ndeath);j++){
   /* proj1, year, month, day of starting projection                 k=k+1;
      agemin, agemax range of age                gm[k]=pmmij[i][j];
      dateprev1 dateprev2 range of dates during which prevalence is computed              }
      anproj2 year of en of projection (same day and month as proj1).            }
   */       
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
   int *popage;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   double agec; /* generic age */          }
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   double ***p3mat;            for(theta=1; theta <=npar; theta++)
   double ***mobaverage;              trgradg[j][theta]=gradg[theta][j];
   char fileresf[FILENAMELENGTH];         
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
   agelim=AGESUP;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcpy(fileresf,"f");           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(fileresf,fileres);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);         
   }          k=0;
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for(i=1; i<=(nlstate); i++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              mu[k][(int) age]=pmmij[i][j];
             }
   if (mobilav!=0) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              varpij[i][j][(int)age] = doldm[i][j];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if (stepm<=12) stepsize=1;            }*/
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   else  hstepm=estepm;             fprintf(ficresprobcor,"\n%d ",(int)age);
   
   hstepm=hstepm/stepm;           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                                fractional in yp1 */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   anprojmean=yp;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   yp2=modf((yp1*12),&yp);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);          i=0;
   jprojmean=yp;          for (k=1; k<=(nlstate);k++){
   if(jprojmean==0) jprojmean=1;            for (l=1; l<=(nlstate+ndeath);l++){
   if(mprojmean==0) jprojmean=1;              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   i1=cptcoveff;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if (cptcovn < 1){i1=1;}              for (j=1; j<=i;j++){
                   fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                 }
   fprintf(ficresf,"#****** Routine prevforecast **\n");            }
           }/* end of loop for state */
 /*            if (h==(int)(YEARM*yearp)){ */        } /* end of loop for age */
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* Confidence intervalle of pij  */
       k=k+1;        /*
       fprintf(ficresf,"\n#******");          fprintf(ficgp,"\nset noparametric;unset label");
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       fprintf(ficresf,"******\n");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(j=1; j<=nlstate+ndeath;j++){           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         for(i=1; i<=nlstate;i++)                      */
           fprintf(ficresf," p%d%d",i,j);  
         fprintf(ficresf," p.%d",j);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         for (k2=1; k2<=(nlstate);k2++){
         fprintf(ficresf,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);               if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
         for (agec=fage; agec>=(ageminpar-1); agec--){             for (k1=1; k1<=(nlstate);k1++){
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);               for (l1=1; l1<=(nlstate+ndeath);l1++){
           nhstepm = nhstepm/hstepm;                 if(l1==k1) continue;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                i=(k1-1)*(nlstate+ndeath)+l1;
           oldm=oldms;savm=savms;                if(i<=j) continue;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                  for (age=bage; age<=fage; age ++){
                           if ((int)age %5==0){
           for (h=0; h<=nhstepm; h++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             if (h*hstepm/YEARM*stepm ==yearp) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               fprintf(ficresf,"\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               for(j=1;j<=cptcoveff;j++)                     mu1=mu[i][(int) age]/stepm*YEARM ;
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    mu2=mu[j][(int) age]/stepm*YEARM;
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                    c12=cv12/sqrt(v1*v2);
             }                     /* Computing eigen value of matrix of covariance */
             for(j=1; j<=nlstate+ndeath;j++) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               ppij=0.;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               for(i=1; i<=nlstate;i++) {                    /* Eigen vectors */
                 if (mobilav==1)                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];                    /*v21=sqrt(1.-v11*v11); *//* error */
                 else {                    v21=(lc1-v1)/cv12*v11;
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                    v12=-v21;
                 }                    v22=v11;
                 if (h*hstepm/YEARM*stepm== yearp) {                    tnalp=v21/v11;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                    if(first1==1){
                 }                      first1=0;
               } /* end i */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               if (h*hstepm/YEARM*stepm==yearp) {                    }
                 fprintf(ficresf," %.3f", ppij);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               }                    /*printf(fignu*/
             }/* end j */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           } /* end h */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first==1){
         } /* end agec */                      first=0;
       } /* end yearp */                      fprintf(ficgp,"\nset parametric;unset label");
     } /* end cptcod */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   } /* end  cptcov */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                              fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fclose(ficresf);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 /************** Forecasting *****not tested NB*************/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                         fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int *popage;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double calagedatem, agelim, kk1, kk2;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double *popeffectif,*popcount;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double ***p3mat,***tabpop,***tabpopprev;                    }else{
   double ***mobaverage;                      first=0;
   char filerespop[FILENAMELENGTH];                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   agelim=AGESUP;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                       }/* if first */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                  } /* age mod 5 */
                   } /* end loop age */
                   fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(filerespop,"pop");                 first=1;
   strcat(filerespop,fileres);              } /*l12 */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            } /* k12 */
     printf("Problem with forecast resultfile: %s\n", filerespop);          } /*l1 */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        }/* k1 */
   }      } /* loop covariates */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   if (mobilav!=0) {    free_vector(xp,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprob);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    fclose(ficresprobcov);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    fclose(ficresprobcor);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    fflush(ficgp);
     }    fflush(fichtmcov);
   }  }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  /******************* Printing html file ***********/
     void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   agelim=AGESUP;                    int lastpass, int stepm, int weightopt, char model[],\
                       int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   hstepm=1;                    int popforecast, int estepm ,\
   hstepm=hstepm/stepm;                     double jprev1, double mprev1,double anprev1, \
                       double jprev2, double mprev2,double anprev2){
   if (popforecast==1) {    int jj1, k1, i1, cpt;
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     }   </ul>");
     popage=ivector(0,AGESUP);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     popeffectif=vector(0,AGESUP);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     popcount=vector(0,AGESUP);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
          fprintf(fichtm,"\
     i=1;      - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         fprintf(fichtm,"\
     imx=i;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){     <a href=\"%s\">%s</a> <br>\n",
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       k=k+1;     fprintf(fichtm,"\
       fprintf(ficrespop,"\n#******");   - Population projections by age and states: \
       for(j=1;j<=cptcoveff;j++) {     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");   m=cptcoveff;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          jj1=0;
       for (cpt=0; cpt<=0;cpt++) {    for(k1=1; k1<=m;k1++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(i1=1; i1<=ncodemax[k1];i1++){
                jj1++;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        if (cptcovn > 0) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           nhstepm = nhstepm/hstepm;          for (cpt=1; cpt<=cptcoveff;cpt++)
                      fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           oldm=oldms;savm=savms;       }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         /* Pij */
                fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           for (h=0; h<=nhstepm; h++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
             if (h==(int) (calagedatem+YEARM*cpt)) {       /* Quasi-incidences */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             }    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
             for(j=1; j<=nlstate+ndeath;j++) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
               kk1=0.;kk2=0;         /* Period (stable) prevalence in each health state */
               for(i=1; i<=nlstate;i++) {                       for(cpt=1; cpt<nlstate;cpt++){
                 if (mobilav==1)            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
                 else {         }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       for(cpt=1; cpt<=nlstate;cpt++) {
                 }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
               }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
               if (h==(int)(calagedatem+12*cpt)){       }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     } /* end i1 */
                   /*fprintf(ficrespop," %.3f", kk1);   }/* End k1 */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   fprintf(fichtm,"</ul>");
               }  
             }  
             for(i=1; i<=nlstate;i++){   fprintf(fichtm,"\
               kk1=0.;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                 for(j=1; j<=nlstate;j++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
             }   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }   fprintf(fichtm,"\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       }   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /******/     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(fichtm,"\
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      <a href=\"%s\">%s</a> <br>\n</li>",
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\
              - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           oldm=oldms;savm=savms;   fprintf(fichtm,"\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
           for (h=0; h<=nhstepm; h++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             if (h==(int) (calagedatem+YEARM*cpt)) {   fprintf(fichtm,"\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
             }            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  /*  if(popforecast==1) fprintf(fichtm,"\n */
               for(i=1; i<=nlstate;i++) {                /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
               }  /*      <br>",fileres,fileres,fileres,fileres); */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          /*  else  */
             }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           }   fflush(fichtm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
       }   m=cptcoveff;
    }    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
     jj1=0;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   if (popforecast==1) {       jj1++;
     free_ivector(popage,0,AGESUP);       if (cptcovn > 0) {
     free_vector(popeffectif,0,AGESUP);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     free_vector(popcount,0,AGESUP);         for (cpt=1; cpt<=cptcoveff;cpt++)
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       }
   fclose(ficrespop);       for(cpt=1; cpt<=nlstate;cpt++) {
 } /* End of popforecast */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 /***********************************************/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 /**************** Main Program *****************/       }
 /***********************************************/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
 int main(int argc, char *argv[])  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 {     } /* end i1 */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);   }/* End k1 */
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;   fprintf(fichtm,"</ul>");
   int jj;   fflush(fichtm);
   int numlinepar=0; /* Current linenumber of parameter file */  }
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   double fret;  
   double **xi,tmp,delta;    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   double dum; /* Dummy variable */    int ng;
   double ***p3mat;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   double ***mobaverage;  /*     printf("Problem with file %s",optionfilegnuplot); */
   int *indx;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   char line[MAXLINE], linepar[MAXLINE];  /*   } */
   char path[132],pathc[132],pathcd[132],pathtot[132],model[132];  
   int firstobs=1, lastobs=10;    /*#ifdef windows */
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int c,  h , cpt,l;      /*#endif */
   int ju,jl, mi;    m=pow(2,cptcoveff);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     strcpy(dirfileres,optionfilefiname);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    strcpy(optfileres,"vpl");
   int mobilav=0,popforecast=0;   /* 1eme*/
   int hstepm, nhstepm;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;     for (k1=1; k1<= m ; k1 ++) {
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   double bage, fage, age, agelim, agebase;       fprintf(ficgp,"set xlabel \"Age\" \n\
   double ftolpl=FTOL;  set ylabel \"Probability\" \n\
   double **prlim;  set ter png small\n\
   double *severity;  set size 0.65,0.65\n\
   double ***param; /* Matrix of parameters */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   double  *p;  
   double **matcov; /* Matrix of covariance */       for (i=1; i<= nlstate ; i ++) {
   double ***delti3; /* Scale */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double *delti; /* Scale */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   double ***eij, ***vareij;       }
   double **varpl; /* Variances of prevalence limits by age */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   double *epj, vepp;       for (i=1; i<= nlstate ; i ++) {
   double kk1, kk2;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   char *alph[]={"a","a","b","c","d","e"}, str[4];       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   char z[1]="c", occ;         else fprintf(ficgp," \%%*lf (\%%*lf)");
 #include <sys/time.h>       }  
 #include <time.h>       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     }
   char *strt, *strtend;    }
   char *stratrunc;    /*2 eme*/
   int lstra;   
     for (k1=1; k1<= m ; k1 ++) {
   long total_usecs;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   struct timeval start_time, end_time, curr_time;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   struct timezone tzp;     
   extern int gettimeofday();      for (i=1; i<= nlstate+1 ; i ++) {
   struct tm tmg, tm, *gmtime(), *localtime();        k=2*i;
   long time_value;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   extern long time();        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   (void) gettimeofday(&start_time,&tzp);        }  
   tm = *localtime(&start_time.tv_sec);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   tmg = *gmtime(&start_time.tv_sec);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strt=asctime(&tm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*  printf("Localtime (at start)=%s",strt); */        for (j=1; j<= nlstate+1 ; j ++) {
 /*  tp.tv_sec = tp.tv_sec +86400; */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /*  tm = *localtime(&start_time.tv_sec); */          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        }  
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        fprintf(ficgp,"\" t\"\" w l 0,");
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*   tp.tv_sec = mktime(&tmg); */        for (j=1; j<= nlstate+1 ; j ++) {
 /*   strt=asctime(&tmg); */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /*   printf("Time(after) =%s",strt);  */          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*  (void) time (&time_value);        }  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 *  tm = *localtime(&time_value);        else fprintf(ficgp,"\" t\"\" w l 0,");
 *  strt=asctime(&tm);      }
 *  printf("tim_value=%d,asctime=%s\n",time_value,strt);     }
 */   
     /*3eme*/
   getcwd(pathcd, size);   
     for (k1=1; k1<= m ; k1 ++) {
   printf("\n%s\n%s",version,fullversion);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   if(argc <=1){        /*       k=2+nlstate*(2*cpt-2); */
     printf("\nEnter the parameter file name: ");        k=2+(nlstate+1)*(cpt-1);
     scanf("%s",pathtot);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   }        fprintf(ficgp,"set ter png small\n\
   else{  set size 0.65,0.65\n\
     strcpy(pathtot,argv[1]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   /*cygwin_split_path(pathtot,path,optionfile);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /* cutv(path,optionfile,pathtot,'\\');*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);         
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        */
   chdir(path);        for (i=1; i< nlstate ; i ++) {
   replace(pathc,path);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   /*-------- arguments in the command line --------*/         
         }
   /* Log file */        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   strcat(filelog, optionfilefiname);      }
   strcat(filelog,".log");    /* */    }
   if((ficlog=fopen(filelog,"w"))==NULL)    {   
     printf("Problem with logfile %s\n",filelog);    /* CV preval stable (period) */
     goto end;    for (k1=1; k1<= m ; k1 ++) {
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
   fprintf(ficlog,"Log filename:%s\n",filelog);        k=3;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fprintf(ficlog,"\nEnter the parameter file name: ");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  set ter png small\nset size 0.65,0.65\n\
   printf("Localtime (at start)=%s",strt);   unset log y\n\
   fprintf(ficlog,"Localtime (at start)=%s",strt);   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fflush(ficlog);       
         for (i=1; i< nlstate ; i ++)
   /* */          fprintf(ficgp,"+$%d",k+i+1);
   strcpy(fileres,"r");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   strcat(fileres, optionfilefiname);       
   strcat(fileres,".txt");    /* Other files have txt extension */        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /*---------arguments file --------*/        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          fprintf(ficgp,"+$%d",l+i+1);
     printf("Problem with optionfile %s\n",optionfile);        }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
     fflush(ficlog);      }
     goto end;    }  
   }   
     /* proba elementaires */
   strcpy(filereso,"o");    for(i=1,jk=1; i <=nlstate; i++){
   strcat(filereso,fileres);      for(k=1; k <=(nlstate+ndeath); k++){
   if((ficparo=fopen(filereso,"w"))==NULL) {        if (k != i) {
     printf("Problem with Output resultfile: %s\n", filereso);          for(j=1; j <=ncovmodel; j++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     fflush(ficlog);            jk++;
     goto end;            fprintf(ficgp,"\n");
   }          }
         }
   /* Reads comments: lines beginning with '#' */      }
   numlinepar=0;     }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     fgets(line, MAXLINE, ficpar);       for(jk=1; jk <=m; jk++) {
     numlinepar++;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
     puts(line);         if (ng==2)
     fputs(line,ficparo);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     fputs(line,ficlog);         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
   ungetc(c,ficpar);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);         for(k2=1; k2<=nlstate; k2++) {
   numlinepar++;           k3=i;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);           for(k=1; k<=(nlstate+ndeath); k++) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);             if (k != k2){
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);               if(ng==2)
   fflush(ficlog);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   while((c=getc(ficpar))=='#' && c!= EOF){               else
     ungetc(c,ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     fgets(line, MAXLINE, ficpar);               ij=1;
     numlinepar++;               for(j=3; j <=ncovmodel; j++) {
     puts(line);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     fputs(line,ficparo);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fputs(line,ficlog);                   ij++;
   }                 }
   ungetc(c,ficpar);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
   covar=matrix(0,NCOVMAX,1,n);                fprintf(ficgp,")/(1");
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/               
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;               for(k1=1; k1 <=nlstate; k1++){  
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                 ij=1;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                 for(j=3; j <=ncovmodel; j++){
                      if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   /* Read guess parameters */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /* Reads comments: lines beginning with '#' */                     ij++;
   while((c=getc(ficpar))=='#' && c!= EOF){                   }
     ungetc(c,ficpar);                   else
     fgets(line, MAXLINE, ficpar);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     numlinepar++;                 }
     puts(line);                 fprintf(ficgp,")");
     fputs(line,ficparo);               }
     fputs(line,ficlog);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   ungetc(c,ficpar);               i=i+ncovmodel;
              }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           } /* end k */
   for(i=1; i <=nlstate; i++){         } /* end k2 */
     j=0;       } /* end jk */
     for(jj=1; jj <=nlstate+ndeath; jj++){     } /* end ng */
       if(jj==i) continue;     fflush(ficgp);
       j++;  }  /* end gnuplot */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       if ((i1 != i) && (j1 != j)){  
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  /*************** Moving average **************/
         exit(1);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       }  
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, cpt, cptcod;
       if(mle==1)    int modcovmax =1;
         printf("%1d%1d",i,j);    int mobilavrange, mob;
       fprintf(ficlog,"%1d%1d",i,j);    double age;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
         if(mle==1){                             a covariate has 2 modalities */
           printf(" %lf",param[i][j][k]);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           fprintf(ficlog," %lf",param[i][j][k]);  
         }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         else      if(mobilav==1) mobilavrange=5; /* default */
           fprintf(ficlog," %lf",param[i][j][k]);      else mobilavrange=mobilav;
         fprintf(ficparo," %lf",param[i][j][k]);      for (age=bage; age<=fage; age++)
       }        for (i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       numlinepar++;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       if(mle==1)      /* We keep the original values on the extreme ages bage, fage and for
         printf("\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       fprintf(ficlog,"\n");         we use a 5 terms etc. until the borders are no more concerned.
       fprintf(ficparo,"\n");      */
     }      for (mob=3;mob <=mobilavrange;mob=mob+2){
   }          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fflush(ficlog);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   p=param[1][1];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                     mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   /* Reads comments: lines beginning with '#' */                }
   while((c=getc(ficpar))=='#' && c!= EOF){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     numlinepar++;        }/* end age */
     puts(line);      }/* end mob */
     fputs(line,ficparo);    }else return -1;
     fputs(line,ficlog);    return 0;
   }  }/* End movingaverage */
   ungetc(c,ficpar);  
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /************** Forecasting ******************/
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   for(i=1; i <=nlstate; i++){    /* proj1, year, month, day of starting projection
     for(j=1; j <=nlstate+ndeath-1; j++){       agemin, agemax range of age
       fscanf(ficpar,"%1d%1d",&i1,&j1);       dateprev1 dateprev2 range of dates during which prevalence is computed
       if ((i1-i)*(j1-j)!=0){       anproj2 year of en of projection (same day and month as proj1).
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    */
         exit(1);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       }    int *popage;
       printf("%1d%1d",i,j);    double agec; /* generic age */
       fprintf(ficparo,"%1d%1d",i1,j1);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       fprintf(ficlog,"%1d%1d",i1,j1);    double *popeffectif,*popcount;
       for(k=1; k<=ncovmodel;k++){    double ***p3mat;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double ***mobaverage;
         printf(" %le",delti3[i][j][k]);    char fileresf[FILENAMELENGTH];
         fprintf(ficparo," %le",delti3[i][j][k]);  
         fprintf(ficlog," %le",delti3[i][j][k]);    agelim=AGESUP;
       }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fscanf(ficpar,"\n");   
       numlinepar++;    strcpy(fileresf,"f");
       printf("\n");    strcat(fileresf,fileres);
       fprintf(ficparo,"\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
       fprintf(ficlog,"\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
   fflush(ficlog);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   delti=delti3[1][1];  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);      }
     numlinepar++;    }
     puts(line);  
     fputs(line,ficparo);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fputs(line,ficlog);    if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
       }
   matcov=matrix(1,npar,1,npar);    else  hstepm=estepm;  
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    hstepm=hstepm/stepm;
     if(mle==1)    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       printf("%s",str);                                 fractional in yp1 */
     fprintf(ficlog,"%s",str);    anprojmean=yp;
     fprintf(ficparo,"%s",str);    yp2=modf((yp1*12),&yp);
     for(j=1; j <=i; j++){    mprojmean=yp;
       fscanf(ficpar," %le",&matcov[i][j]);    yp1=modf((yp2*30.5),&yp);
       if(mle==1){    jprojmean=yp;
         printf(" %.5le",matcov[i][j]);    if(jprojmean==0) jprojmean=1;
       }    if(mprojmean==0) jprojmean=1;
       fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
     fscanf(ficpar,"\n");   
     numlinepar++;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     if(mle==1)   
       printf("\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   for(i=1; i <=npar; i++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     for(j=i+1;j<=npar;j++)        k=k+1;
       matcov[i][j]=matcov[j][i];        fprintf(ficresf,"\n#******");
            for(j=1;j<=cptcoveff;j++) {
   if(mle==1)          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("\n");        }
   fprintf(ficlog,"\n");        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   fflush(ficlog);        for(j=1; j<=nlstate+ndeath;j++){
           for(i=1; i<=nlstate;i++)              
   /*-------- Rewriting paramater file ----------*/            fprintf(ficresf," p%d%d",i,j);
   strcpy(rfileres,"r");    /* "Rparameterfile */          fprintf(ficresf," p.%d",j);
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
   strcat(rfileres,".");    /* */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficresf,"\n");
   if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
     printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          for (agec=fage; agec>=(ageminpar-1); agec--){
   }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   fprintf(ficres,"#%s\n",version);            nhstepm = nhstepm/hstepm;
                 p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*-------- data file ----------*/            oldm=oldms;savm=savms;
   if((fic=fopen(datafile,"r"))==NULL)    {            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("Problem with datafile: %s\n", datafile);goto end;         
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   n= lastobs;                for(j=1;j<=cptcoveff;j++)
   severity = vector(1,maxwav);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   outcome=imatrix(1,maxwav+1,1,n);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   num=lvector(1,n);              }
   moisnais=vector(1,n);              for(j=1; j<=nlstate+ndeath;j++) {
   annais=vector(1,n);                ppij=0.;
   moisdc=vector(1,n);                for(i=1; i<=nlstate;i++) {
   andc=vector(1,n);                  if (mobilav==1)
   agedc=vector(1,n);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   cod=ivector(1,n);                  else {
   weight=vector(1,n);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  }
   mint=matrix(1,maxwav,1,n);                  if (h*hstepm/YEARM*stepm== yearp) {
   anint=matrix(1,maxwav,1,n);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   s=imatrix(1,maxwav+1,1,n);                  }
   tab=ivector(1,NCOVMAX);                } /* end i */
   ncodemax=ivector(1,8);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   i=1;                }
   while (fgets(line, MAXLINE, fic) != NULL)    {              }/* end j */
     if ((i >= firstobs) && (i <=lastobs)) {            } /* end h */
                     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (j=maxwav;j>=1;j--){          } /* end agec */
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         } /* end yearp */
         strcpy(line,stra);      } /* end cptcod */
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } /* end  cptcov */
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresf);
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  }
   
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /************** Forecasting *****not tested NB*************/
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       for (j=ncovcol;j>=1;j--){    int *popage;
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double calagedatem, agelim, kk1, kk2;
       }     double *popeffectif,*popcount;
       lstra=strlen(stra);    double ***p3mat,***tabpop,***tabpopprev;
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    double ***mobaverage;
         stratrunc = &(stra[lstra-9]);    char filerespop[FILENAMELENGTH];
         num[i]=atol(stratrunc);  
       }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       else    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         num[i]=atol(stra);    agelim=AGESUP;
             calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
       i=i+1;   
     }    strcpy(filerespop,"pop");
   }    strcat(filerespop,fileres);
   /* printf("ii=%d", ij);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
      scanf("%d",i);*/      printf("Problem with forecast resultfile: %s\n", filerespop);
   imx=i-1; /* Number of individuals */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   /* for (i=1; i<=imx; i++){    printf("Computing forecasting: result on file '%s' \n", filerespop);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }*/  
    /*  for (i=1; i<=imx; i++){    if (mobilav!=0) {
      if (s[4][i]==9)  s[4][i]=-1;       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  for (i=1; i<=imx; i++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;    }
      else weight[i]=1;*/  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   /* Calculation of the number of parameter from char model*/    if (stepm<=12) stepsize=1;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */   
   Tprod=ivector(1,15);     agelim=AGESUP;
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    hstepm=1;
   Tage=ivector(1,15);          hstepm=hstepm/stepm;
       
   if (strlen(model) >1){ /* If there is at least 1 covariate */    if (popforecast==1) {
     j=0, j1=0, k1=1, k2=1;      if((ficpop=fopen(popfile,"r"))==NULL) {
     j=nbocc(model,'+'); /* j=Number of '+' */        printf("Problem with population file : %s\n",popfile);exit(0);
     j1=nbocc(model,'*'); /* j1=Number of '*' */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     cptcovn=j+1;       }
     cptcovprod=j1; /*Number of products */      popage=ivector(0,AGESUP);
           popeffectif=vector(0,AGESUP);
     strcpy(modelsav,model);       popcount=vector(0,AGESUP);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     
       printf("Error. Non available option model=%s ",model);      i=1;  
       fprintf(ficlog,"Error. Non available option model=%s ",model);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       goto end;     
     }      imx=i;
           for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     /* This loop fills the array Tvar from the string 'model'.*/    }
   
     for(i=(j+1); i>=1;i--){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        k=k+1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficrespop,"\n#******");
       /*scanf("%d",i);*/        for(j=1;j<=cptcoveff;j++) {
       if (strchr(strb,'*')) {  /* Model includes a product */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        }
         if (strcmp(strc,"age")==0) { /* Vn*age */        fprintf(ficrespop,"******\n");
           cptcovprod--;        fprintf(ficrespop,"# Age");
           cutv(strb,stre,strd,'V');        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
           cptcovage++;       
             Tage[cptcovage]=i;        for (cpt=0; cpt<=0;cpt++) {
             /*printf("stre=%s ", stre);*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
         }         
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
           cptcovprod--;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
           cutv(strb,stre,strc,'V');            nhstepm = nhstepm/hstepm;
           Tvar[i]=atoi(stre);           
           cptcovage++;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tage[cptcovage]=i;            oldm=oldms;savm=savms;
         }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         else {  /* Age is not in the model */         
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            for (h=0; h<=nhstepm; h++){
           Tvar[i]=ncovcol+k1;              if (h==(int) (calagedatem+YEARM*cpt)) {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           Tprod[k1]=i;              }
           Tvard[k1][1]=atoi(strc); /* m*/              for(j=1; j<=nlstate+ndeath;j++) {
           Tvard[k1][2]=atoi(stre); /* n */                kk1=0.;kk2=0;
           Tvar[cptcovn+k2]=Tvard[k1][1];                for(i=1; i<=nlstate;i++) {              
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                   if (mobilav==1)
           for (k=1; k<=lastobs;k++)                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  else {
           k1++;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           k2=k2+2;                  }
         }                }
       }                if (h==(int)(calagedatem+12*cpt)){
       else { /* no more sum */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                    /*fprintf(ficrespop," %.3f", kk1);
        /*  scanf("%d",i);*/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       cutv(strd,strc,strb,'V');                }
       Tvar[i]=atoi(strc);              }
       }              for(i=1; i<=nlstate;i++){
       strcpy(modelsav,stra);                  kk1=0.;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                  for(j=1; j<=nlstate;j++){
         scanf("%d",i);*/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
     } /* end of loop + */                  }
   } /* end model */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                 }
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.  
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            }
   printf("cptcovprod=%d ", cptcovprod);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          }
         }
   scanf("%d ",i);   
   fclose(fic);*/    /******/
   
     /*  if(mle==1){*/        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     for(i=1;i<=n;i++) weight[i]=1.0;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     /*-calculation of age at interview from date of interview and age at death -*/            nhstepm = nhstepm/hstepm;
   agev=matrix(1,maxwav,1,imx);           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (i=1; i<=imx; i++) {            oldm=oldms;savm=savms;
     for(m=2; (m<= maxwav); m++) {            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){            for (h=0; h<=nhstepm; h++){
         anint[m][i]=9999;              if (h==(int) (calagedatem+YEARM*cpt)) {
         s[m][i]=-1;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       }              }
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){              for(j=1; j<=nlstate+ndeath;j++) {
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);                kk1=0.;kk2=0;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);                for(i=1; i<=nlstate;i++) {              
         s[m][i]=-1;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       }                }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);               }
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);             }
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }          }
     }        }
   }     }
     }
   for (i=1; i<=imx; i++)  {   
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){    if (popforecast==1) {
         if (s[m][i] >= nlstate+1) {      free_ivector(popage,0,AGESUP);
           if(agedc[i]>0)      free_vector(popeffectif,0,AGESUP);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      free_vector(popcount,0,AGESUP);
               agev[m][i]=agedc[i];    }
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             else {    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if ((int)andc[i]!=9999){    fclose(ficrespop);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  } /* End of popforecast */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  
                 agev[m][i]=-1;  int fileappend(FILE *fichier, char *optionfich)
               }  {
             }    if((fichier=fopen(optionfich,"a"))==NULL) {
         }      printf("Problem with file: %s\n", optionfich);
         else if(s[m][i] !=9){ /* Standard case, age in fractional      fprintf(ficlog,"Problem with file: %s\n", optionfich);
                                  years but with the precision of a      return (0);
                                  month */    }
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fflush(fichier);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    return (1);
             agev[m][i]=1;  }
           else if(agev[m][i] <agemin){   
             agemin=agev[m][i];  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /**************** function prwizard **********************/
           }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
           else if(agev[m][i] >agemax){  {
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* Wizard to print covariance matrix template */
           }  
           /*agev[m][i]=anint[m][i]-annais[i];*/    char ca[32], cb[32], cc[32];
           /*     agev[m][i] = age[i]+2*m;*/    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
         }    int numlinepar;
         else { /* =9 */  
           agev[m][i]=1;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           s[m][i]=-1;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         }    for(i=1; i <=nlstate; i++){
       }      jj=0;
       else /*= 0 Unknown */      for(j=1; j <=nlstate+ndeath; j++){
         agev[m][i]=1;        if(j==i) continue;
     }        jj++;
             /*ca[0]= k+'a'-1;ca[1]='\0';*/
   }        printf("%1d%1d",i,j);
   for (i=1; i<=imx; i++)  {        fprintf(ficparo,"%1d%1d",i,j);
     for(m=firstpass; (m<=lastpass); m++){        for(k=1; k<=ncovmodel;k++){
       if (s[m][i] > (nlstate+ndeath)) {          /*        printf(" %lf",param[i][j][k]); */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               /*        fprintf(ficparo," %lf",param[i][j][k]); */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               printf(" 0.");
         goto end;          fprintf(ficparo," 0.");
       }        }
     }        printf("\n");
   }        fprintf(ficparo,"\n");
       }
   /*for (i=1; i<=imx; i++){    }
   for (m=firstpass; (m<lastpass); m++){    printf("# Scales (for hessian or gradient estimation)\n");
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(i=1; i <=nlstate; i++){
 }*/      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        if(j==i) continue;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
   free_vector(severity,1,maxwav);        printf("%1d%1d",i,j);
   free_imatrix(outcome,1,maxwav+1,1,n);        fflush(stdout);
   free_vector(moisnais,1,n);        for(k=1; k<=ncovmodel;k++){
   free_vector(annais,1,n);          /*      printf(" %le",delti3[i][j][k]); */
   /* free_matrix(mint,1,maxwav,1,n);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
      free_matrix(anint,1,maxwav,1,n);*/          printf(" 0.");
   free_vector(moisdc,1,n);          fprintf(ficparo," 0.");
   free_vector(andc,1,n);        }
         numlinepar++;
            printf("\n");
   wav=ivector(1,imx);        fprintf(ficparo,"\n");
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      }
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    }
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    printf("# Covariance matrix\n");
      /* # 121 Var(a12)\n\ */
   /* Concatenates waves */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   Tcode=ivector(1,100);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   ncodemax[1]=1;    fflush(stdout);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficparo,"# Covariance matrix\n");
           /* # 121 Var(a12)\n\ */
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                                  the estimations*/    /* #   ...\n\ */
   h=0;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   m=pow(2,cptcoveff);   
      for(itimes=1;itimes<=2;itimes++){
   for(k=1;k<=cptcoveff; k++){      jj=0;
     for(i=1; i <=(m/pow(2,k));i++){      for(i=1; i <=nlstate; i++){
       for(j=1; j <= ncodemax[k]; j++){        for(j=1; j <=nlstate+ndeath; j++){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          if(j==i) continue;
           h++;          for(k=1; k<=ncovmodel;k++){
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            jj++;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            ca[0]= k+'a'-1;ca[1]='\0';
         }             if(itimes==1){
       }              printf("#%1d%1d%d",i,j,k);
     }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   }             }else{
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);               printf("%1d%1d%d",i,j,k);
      codtab[1][2]=1;codtab[2][2]=2; */              fprintf(ficparo,"%1d%1d%d",i,j,k);
   /* for(i=1; i <=m ;i++){               /*  printf(" %.5le",matcov[i][j]); */
      for(k=1; k <=cptcovn; k++){            }
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            ll=0;
      }            for(li=1;li <=nlstate; li++){
      printf("\n");              for(lj=1;lj <=nlstate+ndeath; lj++){
      }                if(lj==li) continue;
      scanf("%d",i);*/                for(lk=1;lk<=ncovmodel;lk++){
                       ll++;
   /* Calculates basic frequencies. Computes observed prevalence at single age                  if(ll<=jj){
      and prints on file fileres'p'. */                    cb[0]= lk +'a'-1;cb[1]='\0';
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);                    if(ll<jj){
                       if(itimes==1){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      }else{
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                        printf(" 0.");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                        fprintf(ficparo," 0.");
                           }
                        }else{
   /* For Powell, parameters are in a vector p[] starting at p[1]                      if(itimes==1){
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                        printf(" Var(%s%1d%1d)",ca,i,j);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
   globpr=0; /* To get ipmx number of contributions and sum of weights*/                        printf(" 0.");
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */                        fprintf(ficparo," 0.");
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);                      }
   for (k=1; k<=npar;k++)                    }
     printf(" %d %8.5f",k,p[k]);                  }
   printf("\n");                } /* end lk */
   globpr=1; /* to print the contributions */              } /* end lj */
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */            } /* end li */
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);            printf("\n");
   for (k=1; k<=npar;k++)            fprintf(ficparo,"\n");
     printf(" %d %8.5f",k,p[k]);            numlinepar++;
   printf("\n");          } /* end k*/
   if(mle>=1){ /* Could be 1 or 2 */        } /*end j */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      } /* end i */
   }    } /* end itimes */
       
   /*--------- results files --------------*/  } /* end of prwizard */
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /******************* Gompertz Likelihood ******************************/
     double gompertz(double x[])
   {
   jk=1;    double A,B,L=0.0,sump=0.,num=0.;
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int i,n=0; /* n is the size of the sample */
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (i=0;i<=imx-1 ; i++) {
   for(i=1,jk=1; i <=nlstate; i++){      sump=sump+weight[i];
     for(k=1; k <=(nlstate+ndeath); k++){      /*    sump=sump+1;*/
       if (k != i)       num=num+1;
         {    }
           printf("%d%d ",i,k);   
           fprintf(ficlog,"%d%d ",i,k);   
           fprintf(ficres,"%1d%1d ",i,k);    /* for (i=0; i<=imx; i++)
           for(j=1; j <=ncovmodel; j++){       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
             printf("%f ",p[jk]);  
             fprintf(ficlog,"%f ",p[jk]);    for (i=1;i<=imx ; i++)
             fprintf(ficres,"%f ",p[jk]);      {
             jk++;         if (cens[i] == 1 && wav[i]>1)
           }          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
           printf("\n");       
           fprintf(ficlog,"\n");        if (cens[i] == 0 && wav[i]>1)
           fprintf(ficres,"\n");          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
         }               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     }       
   }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   if(mle!=0){        if (wav[i] > 1 ) { /* ??? */
     /* Computing hessian and covariance matrix */          L=L+A*weight[i];
     ftolhess=ftol; /* Usually correct */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     hesscov(matcov, p, npar, delti, ftolhess, func);        }
   }      }
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
   printf("# Scales (for hessian or gradient estimation)\n");   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");   
   for(i=1,jk=1; i <=nlstate; i++){    return -2*L*num/sump;
     for(j=1; j <=nlstate+ndeath; j++){  }
       if (j!=i) {  
         fprintf(ficres,"%1d%1d",i,j);  /******************* Printing html file ***********/
         printf("%1d%1d",i,j);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficlog,"%1d%1d",i,j);                    int lastpass, int stepm, int weightopt, char model[],\
         for(k=1; k<=ncovmodel;k++){                    int imx,  double p[],double **matcov,double agemortsup){
           printf(" %.5e",delti[jk]);    int i,k;
           fprintf(ficlog," %.5e",delti[jk]);  
           fprintf(ficres," %.5e",delti[jk]);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
           jk++;    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         }    for (i=1;i<=2;i++)
         printf("\n");      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"\n");    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         fprintf(ficres,"\n");    fprintf(fichtm,"</ul>");
       }  
     }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   }  
       fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
   if(mle==1)   for (k=agegomp;k<(agemortsup-2);k++)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
   for(i=1,k=1;i<=npar;i++){   
     /*  if (k>nlstate) k=1;    fflush(fichtm);
         i1=(i-1)/(ncovmodel*nlstate)+1;   }
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
         printf("%s%d%d",alph[k],i1,tab[i]);  /******************* Gnuplot file **************/
     */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fprintf(ficres,"%3d",i);  
     if(mle==1)    char dirfileres[132],optfileres[132];
       printf("%3d",i);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficlog,"%3d",i);    int ng;
     for(j=1; j<=i;j++){  
       fprintf(ficres," %.5e",matcov[i][j]);  
       if(mle==1)    /*#ifdef windows */
         printf(" %.5e",matcov[i][j]);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficlog," %.5e",matcov[i][j]);      /*#endif */
     }  
     fprintf(ficres,"\n");  
     if(mle==1)    strcpy(dirfileres,optionfilefiname);
       printf("\n");    strcpy(optfileres,"vpl");
     fprintf(ficlog,"\n");    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     k++;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   }    fprintf(ficgp, "set ter png small\n set log y\n");
        fprintf(ficgp, "set size 0.65,0.65\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  
   
   estepm=0;  /***********************************************/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /**************** Main Program *****************/
   if (estepm==0 || estepm < stepm) estepm=stepm;  /***********************************************/
   if (fage <= 2) {  
     bage = ageminpar;  int main(int argc, char *argv[])
     fage = agemaxpar;  {
   }    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
        int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    int linei, month, year,iout;
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int jj, ll, li, lj, lk, imk;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int numlinepar=0; /* Current linenumber of parameter file */
        int itimes;
   while((c=getc(ficpar))=='#' && c!= EOF){    int NDIM=2;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    char ca[32], cb[32], cc[32];
     puts(line);    char dummy[]="                         ";
     fputs(line,ficparo);    /*  FILE *fichtm; *//* Html File */
   }    /* FILE *ficgp;*/ /*Gnuplot File */
   ungetc(c,ficpar);    struct stat info;
       double agedeb, agefin,hf;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    double fret;
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    double **xi,tmp,delta;
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
        double dum; /* Dummy variable */
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat;
     ungetc(c,ficpar);    double ***mobaverage;
     fgets(line, MAXLINE, ficpar);    int *indx;
     puts(line);    char line[MAXLINE], linepar[MAXLINE];
     fputs(line,ficparo);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   }    char pathr[MAXLINE], pathimach[MAXLINE];
   ungetc(c,ficpar);    char **bp, *tok, *val; /* pathtot */
      int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    int c,  h , cpt,l;
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   fprintf(ficparo,"pop_based=%d\n",popbased);       int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   fprintf(ficres,"pop_based=%d\n",popbased);       int mobilav=0,popforecast=0;
       int hstepm, nhstepm;
   while((c=getc(ficpar))=='#' && c!= EOF){    int agemortsup;
     ungetc(c,ficpar);    float  sumlpop=0.;
     fgets(line, MAXLINE, ficpar);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     puts(line);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     fputs(line,ficparo);  
   }    double bage, fage, age, agelim, agebase;
   ungetc(c,ficpar);    double ftolpl=FTOL;
     double **prlim;
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    double *severity;
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    double ***param; /* Matrix of parameters */
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    double  *p;
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    double **matcov; /* Matrix of covariance */
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    double ***delti3; /* Scale */
   /* day and month of proj2 are not used but only year anproj2.*/    double *delti; /* Scale */
     double ***eij, ***vareij;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **varpl; /* Variances of prevalence limits by age */
     ungetc(c,ficpar);    double *epj, vepp;
     fgets(line, MAXLINE, ficpar);    double kk1, kk2;
     puts(line);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     fputs(line,ficparo);    double **ximort;
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   ungetc(c,ficpar);    int *dcwave;
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    char z[1]="c", occ;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);    char *stratrunc;
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    int lstra;
   
   /*------------ gnuplot -------------*/    long total_usecs;
   strcpy(optionfilegnuplot,optionfilefiname);   
   strcat(optionfilegnuplot,".gp");  /*   setlocale (LC_ALL, ""); */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     printf("Problem with file %s",optionfilegnuplot);  /*   textdomain (PACKAGE); */
   }  /*   setlocale (LC_CTYPE, ""); */
   else{  /*   setlocale (LC_MESSAGES, ""); */
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     fprintf(ficgp,"set missing 'NaNq'\n");    (void) gettimeofday(&start_time,&tzp);
   }    curr_time=start_time;
   fclose(ficgp);    tm = *localtime(&start_time.tv_sec);
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    tmg = *gmtime(&start_time.tv_sec);
   /*--------- index.htm --------*/    strcpy(strstart,asctime(&tm));
   
   strcpy(optionfilehtm,optionfile);  /*  printf("Localtime (at start)=%s",strstart); */
   strcat(optionfilehtm,".htm");  /*  tp.tv_sec = tp.tv_sec +86400; */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  /*  tm = *localtime(&start_time.tv_sec); */
     printf("Problem with %s \n",optionfilehtm), exit(0);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\  /*   tp.tv_sec = mktime(&tmg); */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  /*   strt=asctime(&tmg); */
 \n\  /*   printf("Time(after) =%s",strstart);  */
 Total number of observations=%d <br>\n\  /*  (void) time (&time_value);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\  *  tm = *localtime(&time_value);
 <hr  size=\"2\" color=\"#EC5E5E\">\  *  strstart=asctime(&tm);
  <ul><li><h4>Parameter files</h4>\n\  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\  */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\    nberr=0; /* Number of errors and warnings */
           version,title,datafile,firstpass,lastpass,stepm, weightopt,\    nbwarn=0;
           model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\    getcwd(pathcd, size);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      printf("\nEnter the parameter file name: ");
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      fgets(pathr,FILENAMELENGTH,stdin);
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      i=strlen(pathr);
        if(pathr[i-1]=='\n')
   /*------------ free_vector  -------------*/        pathr[i-1]='\0';
   chdir(path);     for (tok = pathr; tok != NULL; ){
          printf("Pathr |%s|\n",pathr);
   free_ivector(wav,1,imx);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        printf("val= |%s| pathr=%s\n",val,pathr);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        strcpy (pathtot, val);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           if(pathr[0] == '\0') break; /* Dirty */
   free_lvector(num,1,n);      }
   free_vector(agedc,1,n);    }
   /*free_matrix(covar,0,NCOVMAX,1,n);*/    else{
   /*free_matrix(covar,1,NCOVMAX,1,n);*/      strcpy(pathtot,argv[1]);
   fclose(ficparo);    }
   fclose(ficres);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   /*--------------- Prevalence limit  (stable prevalence) --------------*/    /* cutv(path,optionfile,pathtot,'\\');*/
     
   strcpy(filerespl,"pl");    /* Split argv[0], imach program to get pathimach */
   strcat(filerespl,fileres);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;   /*   strcpy(pathimach,argv[0]); */
   }    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficrespl,"#Stable prevalence \n");    chdir(path); /* Can be a relative path */
   fprintf(ficrespl,"#Age ");    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      printf("Current directory %s!\n",pathcd);
   fprintf(ficrespl,"\n");    strcpy(command,"mkdir ");
       strcat(command,optionfilefiname);
   prlim=matrix(1,nlstate,1,nlstate);    if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   agebase=ageminpar;      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   agelim=agemaxpar;      /* fclose(ficlog); */
   ftolpl=1.e-10;  /*     exit(1); */
   i1=cptcoveff;    }
   if (cptcovn < 1){i1=1;}  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){  /*   } */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /*-------- arguments in the command line --------*/
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
       fprintf(ficrespl,"\n#******");    /* Log file */
       printf("\n#******");    strcat(filelog, optionfilefiname);
       fprintf(ficlog,"\n#******");    strcat(filelog,".log");    /* */
       for(j=1;j<=cptcoveff;j++) {    if((ficlog=fopen(filelog,"w"))==NULL)    {
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with logfile %s\n",filelog);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      goto end;
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    fprintf(ficlog,"Log filename:%s\n",filelog);
       fprintf(ficrespl,"******\n");    fprintf(ficlog,"\n%s\n%s",version,fullversion);
       printf("******\n");    fprintf(ficlog,"\nEnter the parameter file name: \n");
       fprintf(ficlog,"******\n");    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
            path=%s \n\
       for (age=agebase; age<=agelim; age++){   optionfile=%s\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   optionfilext=%s\n\
         fprintf(ficrespl,"%.0f ",age );   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Local time (at start):%s",strstart);
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Local time (at start): %s",strstart);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fflush(ficlog);
         fprintf(ficrespl,"\n");  /*   (void) gettimeofday(&curr_time,&tzp); */
       }  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     }  
   }    /* */
   fclose(ficrespl);    strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
   /*------------- h Pij x at various ages ------------*/    strcat(fileres,".txt");    /* Other files have txt extension */
     
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /*---------arguments file --------*/
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      printf("Problem with optionfile %s\n",optionfile);
   }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   printf("Computing pij: result on file '%s' \n", filerespij);      fflush(ficlog);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      goto end;
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/  
   
   agelim=AGESUP;    strcpy(filereso,"o");
   hstepm=stepsize*YEARM; /* Every year of age */    strcat(filereso,fileres);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
   /* hstepm=1;   aff par mois*/      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      goto end;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /* Reads comments: lines beginning with '#' */
       fprintf(ficrespij,"\n#****** ");    numlinepar=0;
       for(j=1;j<=cptcoveff;j++)     while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ungetc(c,ficpar);
       fprintf(ficrespij,"******\n");      fgets(line, MAXLINE, ficpar);
               numlinepar++;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      puts(line);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fputs(line,ficparo);
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fputs(line,ficlog);
     }
         /*        nhstepm=nhstepm*YEARM; aff par mois*/    ungetc(c,ficpar);
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         oldm=oldms;savm=savms;    numlinepar++;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           for(j=1; j<=nlstate+ndeath;j++)    fflush(ficlog);
             fprintf(ficrespij," %1d-%1d",i,j);    while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficrespij,"\n");      ungetc(c,ficpar);
         for (h=0; h<=nhstepm; h++){      fgets(line, MAXLINE, ficpar);
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      numlinepar++;
           for(i=1; i<=nlstate;i++)      puts(line);
             for(j=1; j<=nlstate+ndeath;j++)      fputs(line,ficparo);
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fputs(line,ficlog);
           fprintf(ficrespij,"\n");    }
         }    ungetc(c,ficpar);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         fprintf(ficrespij,"\n");     
       }    covar=matrix(0,NCOVMAX,1,n);
     }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   fclose(ficrespij);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
   /*---------- Forecasting ------------------*/    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   if(prevfcast==1){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     /*    if(stepm ==1){*/      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 /*      }  */      fclose (ficparo);
 /*      else{ */      fclose (ficlog);
 /*        erreur=108; */      goto end;
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      exit(0);
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    }
 /*      } */    else if(mle==-3) {
   }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   /*---------- Health expectancies and variances ------------*/      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
   strcpy(filerest,"t");    }
   strcat(filerest,fileres);    else{
   if((ficrest=fopen(filerest,"w"))==NULL) {      /* Read guess parameters */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* Reads comments: lines beginning with '#' */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         fgets(line, MAXLINE, ficpar);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);         numlinepar++;
         puts(line);
         fputs(line,ficparo);
   strcpy(filerese,"e");        fputs(line,ficlog);
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {      ungetc(c,ficpar);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   }      for(i=1; i <=nlstate; i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        j=0;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
   strcpy(fileresv,"v");          j++;
   strcat(fileresv,fileres);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          if ((i1 != i) && (j1 != j)){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  It might be a problem of design; if ncovcol and the model are correct\n \
   }  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            exit(1);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          }
           fprintf(ficparo,"%1d%1d",i1,j1);
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */          if(mle==1)
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            printf("%1d%1d",i,j);
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\          fprintf(ficlog,"%1d%1d",i,j);
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);          for(k=1; k<=ncovmodel;k++){
   */            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
   if (mobilav!=0) {              printf(" %lf",param[i][j][k]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficlog," %lf",param[i][j][k]);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            else
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              fprintf(ficlog," %lf",param[i][j][k]);
     }            fprintf(ficparo," %lf",param[i][j][k]);
   }          }
           fscanf(ficpar,"\n");
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if(mle==1)
       k=k+1;             printf("\n");
       fprintf(ficrest,"\n#****** ");          fprintf(ficlog,"\n");
       for(j=1;j<=cptcoveff;j++)           fprintf(ficparo,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");      }  
       fflush(ficlog);
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)       p=param[1][1];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
       fprintf(ficreseij,"******\n");      /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficresvij,"\n#****** ");        ungetc(c,ficpar);
       for(j=1;j<=cptcoveff;j++)         fgets(line, MAXLINE, ficpar);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        numlinepar++;
       fprintf(ficresvij,"******\n");        puts(line);
         fputs(line,ficparo);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fputs(line,ficlog);
       oldm=oldms;savm=savms;      }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        ungetc(c,ficpar);
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i <=nlstate; i++){
       oldm=oldms;savm=savms;        for(j=1; j <=nlstate+ndeath-1; j++){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);          fscanf(ficpar,"%1d%1d",&i1,&j1);
       if(popbased==1){          if ((i1-i)*(j1-j)!=0){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       }            exit(1);
           }
            printf("%1d%1d",i,j);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficparo,"%1d%1d",i1,j1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficlog,"%1d%1d",i1,j1);
       fprintf(ficrest,"\n");          for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
       epj=vector(1,nlstate+1);            printf(" %le",delti3[i][j][k]);
       for(age=bage; age <=fage ;age++){            fprintf(ficparo," %le",delti3[i][j][k]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficlog," %le",delti3[i][j][k]);
         if (popbased==1) {          }
           if(mobilav ==0){          fscanf(ficpar,"\n");
             for(i=1; i<=nlstate;i++)          numlinepar++;
               prlim[i][i]=probs[(int)age][i][k];          printf("\n");
           }else{ /* mobilav */           fprintf(ficparo,"\n");
             for(i=1; i<=nlstate;i++)          fprintf(ficlog,"\n");
               prlim[i][i]=mobaverage[(int)age][i][k];        }
           }      }
         }      fflush(ficlog);
           
         fprintf(ficrest," %4.0f",age);      delti=delti3[1][1];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   
           }      /* Reads comments: lines beginning with '#' */
           epj[nlstate+1] +=epj[j];      while((c=getc(ficpar))=='#' && c!= EOF){
         }        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         for(i=1, vepp=0.;i <=nlstate;i++)        numlinepar++;
           for(j=1;j <=nlstate;j++)        puts(line);
             vepp += vareij[i][j][(int)age];        fputs(line,ficparo);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fputs(line,ficlog);
         for(j=1;j <=nlstate;j++){      }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      ungetc(c,ficpar);
         }   
         fprintf(ficrest,"\n");      matcov=matrix(1,npar,1,npar);
       }      for(i=1; i <=npar; i++){
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fscanf(ficpar,"%s",&str);
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if(mle==1)
       free_vector(epj,1,nlstate+1);          printf("%s",str);
     }        fprintf(ficlog,"%s",str);
   }        fprintf(ficparo,"%s",str);
   free_vector(weight,1,n);        for(j=1; j <=i; j++){
   free_imatrix(Tvard,1,15,1,2);          fscanf(ficpar," %le",&matcov[i][j]);
   free_imatrix(s,1,maxwav+1,1,n);          if(mle==1){
   free_matrix(anint,1,maxwav,1,n);             printf(" %.5le",matcov[i][j]);
   free_matrix(mint,1,maxwav,1,n);          }
   free_ivector(cod,1,n);          fprintf(ficlog," %.5le",matcov[i][j]);
   free_ivector(tab,1,NCOVMAX);          fprintf(ficparo," %.5le",matcov[i][j]);
   fclose(ficreseij);        }
   fclose(ficresvij);        fscanf(ficpar,"\n");
   fclose(ficrest);        numlinepar++;
   fclose(ficpar);        if(mle==1)
             printf("\n");
   /*------- Variance of stable prevalence------*/           fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);      for(i=1; i <=npar; i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(j=i+1;j<=npar;j++)
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);          matcov[i][j]=matcov[j][i];
     exit(0);     
   }      if(mle==1)
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        printf("\n");
       fprintf(ficlog,"\n");
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fflush(ficlog);
       k=k+1;     
       fprintf(ficresvpl,"\n#****** ");      /*-------- Rewriting parameter file ----------*/
       for(j=1;j<=cptcoveff;j++)       strcpy(rfileres,"r");    /* "Rparameterfile */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       fprintf(ficresvpl,"******\n");      strcat(rfileres,".");    /* */
             strcat(rfileres,optionfilext);    /* Other files have txt extension */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      if((ficres =fopen(rfileres,"w"))==NULL) {
       oldm=oldms;savm=savms;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      }
     }      fprintf(ficres,"#%s\n",version);
   }    }    /* End of mle != -3 */
   
   fclose(ficresvpl);    /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
   /*---------- End : free ----------------*/      printf("Problem while opening datafile: %s\n", datafile);goto end;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    n= lastobs;
       severity = vector(1,maxwav);
   free_matrix(covar,0,NCOVMAX,1,n);    outcome=imatrix(1,maxwav+1,1,n);
   free_matrix(matcov,1,npar,1,npar);    num=lvector(1,n);
   /*free_vector(delti,1,npar);*/    moisnais=vector(1,n);
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     annais=vector(1,n);
   free_matrix(agev,1,maxwav,1,imx);    moisdc=vector(1,n);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    andc=vector(1,n);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agedc=vector(1,n);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    cod=ivector(1,n);
     weight=vector(1,n);
   free_ivector(ncodemax,1,8);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   free_ivector(Tvar,1,15);    mint=matrix(1,maxwav,1,n);
   free_ivector(Tprod,1,15);    anint=matrix(1,maxwav,1,n);
   free_ivector(Tvaraff,1,15);    s=imatrix(1,maxwav+1,1,n);
   free_ivector(Tage,1,15);    tab=ivector(1,NCOVMAX);
   free_ivector(Tcode,1,100);    ncodemax=ivector(1,8);
   
   /*  fclose(fichtm);*/    i=1;
   /*  fclose(ficgp);*/ /* ALready done */    linei=0;
       while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
   if(erreur >0){      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     printf("End of Imach with error or warning %d\n",erreur);        if(line[j] == '\t')
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          line[j] = ' ';
   }else{      }
    printf("End of Imach\n");      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
    fprintf(ficlog,"End of Imach\n");        ;
   }      };
   printf("See log file on %s\n",filelog);      line[j+1]=0;  /* Trims blanks at end of line */
   fclose(ficlog);      if(line[0]=='#'){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficlog,"Comment line\n%s\n",line);
   (void) gettimeofday(&end_time,&tzp);        printf("Comment line\n%s\n",line);
   tm = *localtime(&end_time.tv_sec);        continue;
   tmg = *gmtime(&end_time.tv_sec);      }
   strtend=asctime(&tm);  
   printf("Localtime at start %s and at end=%s",strt, strtend);       for (j=maxwav;j>=1;j--){
   fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend);         cutv(stra, strb,line,' ');
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/        errno=0;
         lval=strtol(strb,&endptr,10);
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);        if( strb[0]=='\0' || (*endptr != '\0')){
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   /*------ End -----------*/          exit(1);
         }
   end:        s[j][i]=lval;
 #ifdef windows       
   /* chdir(pathcd);*/        strcpy(line,stra);
 #endif         cutv(stra, strb,line,' ');
  /*system("wgnuplot graph.plt");*/        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }
  /*system("cd ../gp37mgw");*/        else  if(iout=sscanf(strb,"%s.") != 0){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          month=99;
   strcpy(plotcmd,GNUPLOTPROGRAM);          year=9999;
   strcat(plotcmd," ");        }else{
   strcat(plotcmd,optionfilegnuplot);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);          exit(1);
   system(plotcmd);        }
   printf(" Wait...");        anint[j][i]= (double) year;
         mint[j][i]= (double)month;
  /*#ifdef windows*/        strcpy(line,stra);
   while (z[0] != 'q') {      } /* ENd Waves */
     /* chdir(path); */     
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      cutv(stra, strb,line,' ');
     scanf("%s",z);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     if (z[0] == 'c') system("./imach");      }
     else if (z[0] == 'e') system(optionfilehtm);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     else if (z[0] == 'g') system(plotcmd);        month=99;
     else if (z[0] == 'q') exit(0);        year=9999;
   }      }else{
   /*#endif */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 }        exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.85  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>