Diff for /imach/src/imach.c between versions 1.14 and 1.85

version 1.14, 2002/02/20 17:05:44 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.85  2003/06/17 13:12:43  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Check when date of death was earlier that
   or degree of  disability. At least a second wave of interviews    current date of interview. It may happen when the death was just
   ("longitudinal") should  measure each new individual health status.    prior to the death. In this case, dh was negative and likelihood
   Health expectancies are computed from the transistions observed between    was wrong (infinity). We still send an "Error" but patch by
   waves and are computed for each degree of severity of disability (number    assuming that the date of death was just one stepm after the
   of life states). More degrees you consider, more time is necessary to    interview.
   reach the Maximum Likelihood of the parameters involved in the model.    (Repository): Because some people have very long ID (first column)
   The simplest model is the multinomial logistic model where pij is    we changed int to long in num[] and we added a new lvector for
   the probabibility to be observed in state j at the second wave conditional    memory allocation. But we also truncated to 8 characters (left
   to be observed in state i at the first wave. Therefore the model is:    truncation)
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): No more line truncation errors.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.84  2003/06/13 21:44:43  brouard
     *Covariates have to be included here again* invites you to do it.    * imach.c (Repository): Replace "freqsummary" at a correct
   More covariates you add, less is the speed of the convergence.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   The advantage that this computer programme claims, comes from that if the    parcimony.
   delay between waves is not identical for each individual, or if some    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.83  2003/06/10 13:39:11  lievre
   hPijx is the probability to be    *** empty log message ***
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.82  2003/06/05 15:57:20  brouard
   unobserved intermediate  states. This elementary transition (by month or    Add log in  imach.c and  fullversion number is now printed.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  */
   and the contribution of each individual to the likelihood is simply hPijx.  /*
      Interpolated Markov Chain
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Short summary of the programme:
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    This program computes Healthy Life Expectancies from
            Institut national d'études démographiques, Paris.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   This software have been partly granted by Euro-REVES, a concerted action    first survey ("cross") where individuals from different ages are
   from the European Union.    interviewed on their health status or degree of disability (in the
   It is copyrighted identically to a GNU software product, ie programme and    case of a health survey which is our main interest) -2- at least a
   software can be distributed freely for non commercial use. Latest version    second wave of interviews ("longitudinal") which measure each change
   can be accessed at http://euroreves.ined.fr/imach .    (if any) in individual health status.  Health expectancies are
   **********************************************************************/    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 #include <math.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <stdio.h>    simplest model is the multinomial logistic model where pij is the
 #include <stdlib.h>    probability to be observed in state j at the second wave
 #include <unistd.h>    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXLINE 256    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FILENAMELENGTH 80    complex model than "constant and age", you should modify the program
 /*#define DEBUG*/    where the markup *Covariates have to be included here again* invites
 #define windows    you to do it.  More covariates you add, slower the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    convergence.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The advantage of this computer programme, compared to a simple
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    multinomial logistic model, is clear when the delay between waves is not
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define NINTERVMAX 8    account using an interpolation or extrapolation.  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx is the probability to be observed in state i at age x+h
 #define NCOVMAX 8 /* Maximum number of covariates */    conditional to the observed state i at age x. The delay 'h' can be
 #define MAXN 20000    split into an exact number (nh*stepm) of unobserved intermediate
 #define YEARM 12. /* Number of months per year */    states. This elementary transition (by month, quarter,
 #define AGESUP 130    semester or year) is modelled as a multinomial logistic.  The hPx
 #define AGEBASE 40    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
     hPijx.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Also this programme outputs the covariance matrix of the parameters but also
 int npar=NPARMAX;    of the life expectancies. It also computes the stable prevalence. 
 int nlstate=2; /* Number of live states */    
 int ndeath=1; /* Number of dead states */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */             Institut national d'études démographiques, Paris.
 int popbased=0, fprev,lprev;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 int *wav; /* Number of waves for this individuual 0 is possible */    It is copyrighted identically to a GNU software product, ie programme and
 int maxwav; /* Maxim number of waves */    software can be distributed freely for non commercial use. Latest version
 int jmin, jmax; /* min, max spacing between 2 waves */    can be accessed at http://euroreves.ined.fr/imach .
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double jmean; /* Mean space between 2 waves */    
 double **oldm, **newm, **savm; /* Working pointers to matrices */    **********************************************************************/
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  /*
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    main
 FILE *ficgp, *fichtm,*ficresprob;    read parameterfile
 FILE *ficreseij;    read datafile
   char filerese[FILENAMELENGTH];    concatwav
  FILE  *ficresvij;    freqsummary
   char fileresv[FILENAMELENGTH];    if (mle >= 1)
  FILE  *ficresvpl;      mlikeli
   char fileresvpl[FILENAMELENGTH];    print results files
     if mle==1 
 #define NR_END 1       computes hessian
 #define FREE_ARG char*    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FTOL 1.0e-10        begin-prev-date,...
     open gnuplot file
 #define NRANSI    open html file
 #define ITMAX 200    stable prevalence
      for age prevalim()
 #define TOL 2.0e-4    h Pij x
     variance of p varprob
 #define CGOLD 0.3819660    forecasting if prevfcast==1 prevforecast call prevalence()
 #define ZEPS 1.0e-10    health expectancies
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Variance-covariance of DFLE
     prevalence()
 #define GOLD 1.618034     movingaverage()
 #define GLIMIT 100.0    varevsij() 
 #define TINY 1.0e-20    if popbased==1 varevsij(,popbased)
     total life expectancies
 static double maxarg1,maxarg2;    Variance of stable prevalence
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   end
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  */
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  
    
 static double sqrarg;  #include <math.h>
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <stdio.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <stdlib.h>
   #include <unistd.h>
 int imx;  
 int stepm;  #define MAXLINE 256
 /* Stepm, step in month: minimum step interpolation*/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int m,nb;  #define FILENAMELENGTH 132
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*#define DEBUG*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*#define windows*/
 double **pmmij, ***probs, ***mobaverage;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double *weight;  
 int **s; /* Status */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double *agedc, **covar, idx;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #define NINTERVMAX 8
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double ftolhess; /* Tolerance for computing hessian */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /**************** split *************************/  #define MAXN 20000
 static  int split( char *path, char *dirc, char *name )  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
    char *s;                             /* pointer */  #define AGEBASE 40
    int  l1, l2;                         /* length counters */  #ifdef unix
   #define DIRSEPARATOR '/'
    l1 = strlen( path );                 /* length of path */  #define ODIRSEPARATOR '\\'
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #else
    s = strrchr( path, '\\' );           /* find last / */  #define DIRSEPARATOR '\\'
    if ( s == NULL ) {                   /* no directory, so use current */  #define ODIRSEPARATOR '/'
 #if     defined(__bsd__)                /* get current working directory */  #endif
       extern char       *getwd( );  
   /* $Id$ */
       if ( getwd( dirc ) == NULL ) {  /* $State$ */
 #else  
       extern char       *getcwd( );  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int erreur; /* Error number */
 #endif  int nvar;
          return( GLOCK_ERROR_GETCWD );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       }  int npar=NPARMAX;
       strcpy( name, path );             /* we've got it */  int nlstate=2; /* Number of live states */
    } else {                             /* strip direcotry from path */  int ndeath=1; /* Number of dead states */
       s++;                              /* after this, the filename */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       l2 = strlen( s );                 /* length of filename */  int popbased=0;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  int *wav; /* Number of waves for this individuual 0 is possible */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int maxwav; /* Maxim number of waves */
       dirc[l1-l2] = 0;                  /* add zero */  int jmin, jmax; /* min, max spacing between 2 waves */
    }  int mle, weightopt;
    l1 = strlen( dirc );                 /* length of directory */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    return( 0 );                         /* we're done */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /******************************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void replace(char *s, char*t)  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   int i;  double fretone; /* Only one call to likelihood */
   int lg=20;  long ipmx; /* Number of contributions */
   i=0;  double sw; /* Sum of weights */
   lg=strlen(t);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for(i=0; i<= lg; i++) {  FILE *ficresilk;
     (s[i] = t[i]);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if (t[i]== '\\') s[i]='/';  FILE *ficresprobmorprev;
   }  FILE *fichtm; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 int nbocc(char *s, char occ)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   int i,j=0;  FILE  *ficresvpl;
   int lg=20;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   lg=strlen(s);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return j;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char popfile[FILENAMELENGTH];
 {  
   int i,lg,j,p=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  #define NR_END 1
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   
   lg=strlen(t);  #define NRANSI 
   for(j=0; j<p; j++) {  #define ITMAX 200 
     (u[j] = t[j]);  
   }  #define TOL 2.0e-4 
      u[p]='\0';  
   #define CGOLD 0.3819660 
    for(j=0; j<= lg; j++) {  #define ZEPS 1.0e-10 
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /********************** nrerror ********************/  #define TINY 1.0e-20 
   
 void nrerror(char error_text[])  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   fprintf(stderr,"ERREUR ...\n");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   fprintf(stderr,"%s\n",error_text);    
   exit(1);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double *v;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  int imx; 
   return v-nl+NR_END;  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /************************ free vector ******************/  int estepm;
 void free_vector(double*v, int nl, int nh)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   free((FREE_ARG)(v+nl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /************************ivector *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 int *ivector(long nl,long nh)  double **pmmij, ***probs;
 {  double dateintmean=0;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double *weight;
   if (!v) nrerror("allocation failure in ivector");  int **s; /* Status */
   return v-nl+NR_END;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************free ivector **************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void free_ivector(int *v, long nl, long nh)  double ftolhess; /* Tolerance for computing hessian */
 {  
   free((FREE_ARG)(v+nl-NR_END));  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /******************* imatrix *******************************/    char  *ss;                            /* pointer */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    l1 = strlen(path );                   /* length of path */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int **m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
   /* allocate pointers to rows */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   if (!m) nrerror("allocation failure 1 in matrix()");      /* get current working directory */
   m += NR_END;      /*    extern  char* getcwd ( char *buf , int len);*/
   m -= nrl;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
        }
   /* allocate rows and set pointers to them */      strcpy( name, path );               /* we've got it */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    } else {                              /* strip direcotry from path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      ss++;                               /* after this, the filename */
   m[nrl] += NR_END;      l2 = strlen( ss );                  /* length of filename */
   m[nrl] -= ncl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
        dirc[l1-l2] = 0;                    /* add zero */
   /* return pointer to array of pointers to rows */    }
   return m;    l1 = strlen( dirc );                  /* length of directory */
 }    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /****************** free_imatrix *************************/  #else
 void free_imatrix(m,nrl,nrh,ncl,nch)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
       int **m;  #endif
       long nch,ncl,nrh,nrl;    */
      /* free an int matrix allocated by imatrix() */    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG) (m+nrl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /******************* matrix *******************************/    finame[l1-l2]= 0;
 double **matrix(long nrl, long nrh, long ncl, long nch)    return( 0 );                          /* we're done */
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  
   /******************************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  void replace(char *s, char*t)
   m += NR_END;  {
   m -= nrl;    int i;
     int lg=20;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(t);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   return m;  }
 }  
   int nbocc(char *s, char occ)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int i,j=0;
 {    int lg=20;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    i=0;
   free((FREE_ARG)(m+nrl-NR_END));    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /******************* ma3x *******************************/    }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    return j;
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  void cutv(char *u,char *v, char*t, char occ)
   {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!m) nrerror("allocation failure 1 in matrix()");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m += NR_END;       gives u="abcedf" and v="ghi2j" */
   m -= nrl;    int i,lg,j,p=0;
     i=0;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  
     lg=strlen(t);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       u[p]='\0';
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;     for(j=0; j<= lg; j++) {
   for (j=ncl+1; j<=nch; j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
     m[nrl][j]=m[nrl][j-1]+nlay;    }
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /********************** nrerror ********************/
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  void nrerror(char error_text[])
   }  {
   return m;    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    double *v;
   free((FREE_ARG)(m+nrl-NR_END));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /************************ free vector ******************/
 extern double (*nrfunc)(double []);  void free_vector(double*v, int nl, int nh)
    {
 double f1dim(double x)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int j;  
   double f;  /************************ivector *******************************/
   double *xt;  int *ivector(long nl,long nh)
    {
   xt=vector(1,ncom);    int *v;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   f=(*nrfunc)(xt);    if (!v) nrerror("allocation failure in ivector");
   free_vector(xt,1,ncom);    return v-nl+NR_END;
   return f;  }
 }  
   /******************free ivector **************************/
 /*****************brent *************************/  void free_ivector(int *v, long nl, long nh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /************************lvector *******************************/
   double ftemp;  long *lvector(long nl,long nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   a=(ax < cx ? ax : cx);    if (!v) nrerror("allocation failure in ivector");
   b=(ax > cx ? ax : cx);    return v-nl+NR_END;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /******************free lvector **************************/
     xm=0.5*(a+b);  void free_lvector(long *v, long nl, long nh)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(v+nl-NR_END));
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************* imatrix *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #endif       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  { 
       *xmin=x;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       return fx;    int **m; 
     }    
     ftemp=fu;    /* allocate pointers to rows */ 
     if (fabs(e) > tol1) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       r=(x-w)*(fx-fv);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       q=(x-v)*(fx-fw);    m += NR_END; 
       p=(x-v)*q-(x-w)*r;    m -= nrl; 
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    
       q=fabs(q);    /* allocate rows and set pointers to them */ 
       etemp=e;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       e=d;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl] += NR_END; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] -= ncl; 
       else {    
         d=p/q;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    /* return pointer to array of pointers to rows */ 
           d=SIGN(tol1,xm-x);    return m; 
       }  } 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        int **m;
     fu=(*f)(u);        long nch,ncl,nrh,nrl; 
     if (fu <= fx) {       /* free an int matrix allocated by imatrix() */ 
       if (u >= x) a=x; else b=x;  { 
       SHFT(v,w,x,u)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         SHFT(fv,fw,fx,fu)    free((FREE_ARG) (m+nrl-NR_END)); 
         } else {  } 
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************* matrix *******************************/
             v=w;  double **matrix(long nrl, long nrh, long ncl, long nch)
             w=u;  {
             fv=fw;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             fw=fu;    double **m;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             fv=fu;    if (!m) nrerror("allocation failure 1 in matrix()");
           }    m += NR_END;
         }    m -= nrl;
   }  
   nrerror("Too many iterations in brent");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *xmin=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return fx;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /****************** mnbrak ***********************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
             double (*func)(double))     */
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   if (*fb > *fa) {    free((FREE_ARG)(m+nrl-NR_END));
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /******************* ma3x *******************************/
   *cx=(*bx)+GOLD*(*bx-*ax);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     r=(*bx-*ax)*(*fb-*fc);    double ***m;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m) nrerror("allocation failure 1 in matrix()");
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m += NR_END;
     if ((*bx-u)*(u-*cx) > 0.0) {    m -= nrl;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fu < *fc) {    m[nrl] += NR_END;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl] -= ncl;
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else {    m[nrl][ncl] += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl][ncl] -= nll;
       fu=(*func)(u);    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 /*************** linmin ************************/    }
     return m; 
 int ncom;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double *pcom,*xicom;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double (*nrfunc)(double []);    */
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /*************************free ma3x ************************/
   double brent(double ax, double bx, double cx,  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
               double *fc, double (*func)(double));    free((FREE_ARG)(m+nrl-NR_END));
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /***************** f1dim *************************/
    extern int ncom; 
   ncom=n;  extern double *pcom,*xicom;
   pcom=vector(1,n);  extern double (*nrfunc)(double []); 
   xicom=vector(1,n);   
   nrfunc=func;  double f1dim(double x) 
   for (j=1;j<=n;j++) {  { 
     pcom[j]=p[j];    int j; 
     xicom[j]=xi[j];    double f;
   }    double *xt; 
   ax=0.0;   
   xx=1.0;    xt=vector(1,ncom); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    f=(*nrfunc)(xt); 
 #ifdef DEBUG    free_vector(xt,1,ncom); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return f; 
 #endif  } 
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /*****************brent *************************/
     p[j] += xi[j];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   free_vector(xicom,1,n);    int iter; 
   free_vector(pcom,1,n);    double a,b,d,etemp;
 }    double fu,fv,fw,fx;
     double ftemp;
 /*************** powell ************************/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double e=0.0; 
             double (*func)(double []))   
 {    a=(ax < cx ? ax : cx); 
   void linmin(double p[], double xi[], int n, double *fret,    b=(ax > cx ? ax : cx); 
               double (*func)(double []));    x=w=v=bx; 
   int i,ibig,j;    fw=fv=fx=(*f)(x); 
   double del,t,*pt,*ptt,*xit;    for (iter=1;iter<=ITMAX;iter++) { 
   double fp,fptt;      xm=0.5*(a+b); 
   double *xits;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   pt=vector(1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   ptt=vector(1,n);      printf(".");fflush(stdout);
   xit=vector(1,n);      fprintf(ficlog,".");fflush(ficlog);
   xits=vector(1,n);  #ifdef DEBUG
   *fret=(*func)(p);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) pt[j]=p[j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (*iter=1;;++(*iter)) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     fp=(*fret);  #endif
     ibig=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     del=0.0;        *xmin=x; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        return fx; 
     for (i=1;i<=n;i++)      } 
       printf(" %d %.12f",i, p[i]);      ftemp=fu;
     printf("\n");      if (fabs(e) > tol1) { 
     for (i=1;i<=n;i++) {        r=(x-w)*(fx-fv); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        q=(x-v)*(fx-fw); 
       fptt=(*fret);        p=(x-v)*q-(x-w)*r; 
 #ifdef DEBUG        q=2.0*(q-r); 
       printf("fret=%lf \n",*fret);        if (q > 0.0) p = -p; 
 #endif        q=fabs(q); 
       printf("%d",i);fflush(stdout);        etemp=e; 
       linmin(p,xit,n,fret,func);        e=d; 
       if (fabs(fptt-(*fret)) > del) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         del=fabs(fptt-(*fret));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         ibig=i;        else { 
       }          d=p/q; 
 #ifdef DEBUG          u=x+d; 
       printf("%d %.12e",i,(*fret));          if (u-a < tol2 || b-u < tol2) 
       for (j=1;j<=n;j++) {            d=SIGN(tol1,xm-x); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        } 
         printf(" x(%d)=%.12e",j,xit[j]);      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(j=1;j<=n;j++)      } 
         printf(" p=%.12e",p[j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf("\n");      fu=(*f)(u); 
 #endif      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        SHFT(v,w,x,u) 
 #ifdef DEBUG          SHFT(fv,fw,fx,fu) 
       int k[2],l;          } else { 
       k[0]=1;            if (u < x) a=u; else b=u; 
       k[1]=-1;            if (fu <= fw || w == x) { 
       printf("Max: %.12e",(*func)(p));              v=w; 
       for (j=1;j<=n;j++)              w=u; 
         printf(" %.12e",p[j]);              fv=fw; 
       printf("\n");              fw=fu; 
       for(l=0;l<=1;l++) {            } else if (fu <= fv || v == x || v == w) { 
         for (j=1;j<=n;j++) {              v=u; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];              fv=fu; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            } 
         }          } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    } 
       }    nrerror("Too many iterations in brent"); 
 #endif    *xmin=x; 
     return fx; 
   } 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /****************** mnbrak ***********************/
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       return;              double (*func)(double)) 
     }  { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double ulim,u,r,q, dum;
     for (j=1;j<=n;j++) {    double fu; 
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];    *fa=(*func)(*ax); 
       pt[j]=p[j];    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     fptt=(*func)(ptt);      SHFT(dum,*ax,*bx,dum) 
     if (fptt < fp) {        SHFT(dum,*fb,*fa,dum) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        } 
       if (t < 0.0) {    *cx=(*bx)+GOLD*(*bx-*ax); 
         linmin(p,xit,n,fret,func);    *fc=(*func)(*cx); 
         for (j=1;j<=n;j++) {    while (*fb > *fc) { 
           xi[j][ibig]=xi[j][n];      r=(*bx-*ax)*(*fb-*fc); 
           xi[j][n]=xit[j];      q=(*bx-*cx)*(*fb-*fa); 
         }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         for(j=1;j<=n;j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
           printf(" %.12e",xit[j]);        fu=(*func)(u); 
         printf("\n");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
       }        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /**** Prevalence limit ****************/        u=ulim; 
         fu=(*func)(u); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      } else { 
 {        u=(*cx)+GOLD*(*cx-*bx); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        fu=(*func)(u); 
      matrix by transitions matrix until convergence is reached */      } 
       SHFT(*ax,*bx,*cx,u) 
   int i, ii,j,k;        SHFT(*fa,*fb,*fc,fu) 
   double min, max, maxmin, maxmax,sumnew=0.;        } 
   double **matprod2();  } 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /*************** linmin ************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   int ncom; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  double *pcom,*xicom;
     for (j=1;j<=nlstate+ndeath;j++){  double (*nrfunc)(double []); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
    cov[1]=1.;    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double f1dim(double x); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     newm=savm;                double *fc, double (*func)(double)); 
     /* Covariates have to be included here again */    int j; 
      cov[2]=agefin;    double xx,xmin,bx,ax; 
      double fx,fb,fa;
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    ncom=n; 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    pcom=vector(1,n); 
       }    xicom=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    nrfunc=func; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovprod;k++)      pcom[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      xicom[j]=xi[j]; 
     } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    ax=0.0; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     savm=oldm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     oldm=newm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     maxmax=0.;  #endif
     for(j=1;j<=nlstate;j++){    for (j=1;j<=n;j++) { 
       min=1.;      xi[j] *= xmin; 
       max=0.;      p[j] += xi[j]; 
       for(i=1; i<=nlstate; i++) {    } 
         sumnew=0;    free_vector(xicom,1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free_vector(pcom,1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);  } 
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       maxmin=max-min;              double (*func)(double [])) 
       maxmax=FMAX(maxmax,maxmin);  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
     if(maxmax < ftolpl){                double (*func)(double [])); 
       return prlim;    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
 }    double *xits;
     pt=vector(1,n); 
 /*************** transition probabilities ***************/    ptt=vector(1,n); 
     xit=vector(1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   double s1, s2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /*double t34;*/    for (*iter=1;;++(*iter)) { 
   int i,j,j1, nc, ii, jj;      fp=(*fret); 
       ibig=0; 
     for(i=1; i<= nlstate; i++){      del=0.0; 
     for(j=1; j<i;j++){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         /*s2 += param[i][j][nc]*cov[nc];*/      fprintf(ficrespow,"%d %.12f",*iter,*fret);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (i=1;i<=n;i++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
       ps[i][j]=s2;        fprintf(ficrespow," %.12lf", p[i]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      }
     }      printf("\n");
     for(j=i+1; j<=nlstate+ndeath;j++){      fprintf(ficlog,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficrespow,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (i=1;i<=n;i++) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       ps[i][j]=(s2);  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
     /*ps[3][2]=1;*/  #endif
         printf("%d",i);fflush(stdout);
   for(i=1; i<= nlstate; i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
      s1=0;        linmin(p,xit,n,fret,func); 
     for(j=1; j<i; j++)        if (fabs(fptt-(*fret)) > del) { 
       s1+=exp(ps[i][j]);          del=fabs(fptt-(*fret)); 
     for(j=i+1; j<=nlstate+ndeath; j++)          ibig=i; 
       s1+=exp(ps[i][j]);        } 
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("%d %.12e",i,(*fret));
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf(" x(%d)=%.12e",j,xit[j]);
   } /* end i */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        for(j=1;j<=n;j++) {
     for(jj=1; jj<= nlstate+ndeath; jj++){          printf(" p=%.12e",p[j]);
       ps[ii][jj]=0;          fprintf(ficlog," p=%.12e",p[j]);
       ps[ii][ii]=1;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
       } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
      printf("%lf ",ps[ii][jj]);        int k[2],l;
    }        k[0]=1;
     printf("\n ");        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
 /*        for (j=1;j<=n;j++) {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          printf(" %.12e",p[j]);
   goto end;*/          fprintf(ficlog," %.12e",p[j]);
     return ps;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /**************** Product of 2 matrices ******************/        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          }
   /* in, b, out are matrice of pointers which should have been initialized          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      before: only the contents of out is modified. The function returns          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      a pointer to pointers identical to out */        }
   long i, j, k;  #endif
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        free_vector(xit,1,n); 
         out[i][k] +=in[i][j]*b[j][k];        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   return out;        free_vector(pt,1,n); 
 }        return; 
       } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 /************* Higher Matrix Product ***************/      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        xit[j]=p[j]-pt[j]; 
 {        pt[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } 
      duration (i.e. until      fptt=(*func)(ptt); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      if (fptt < fp) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      (typically every 2 years instead of every month which is too big).        if (t < 0.0) { 
      Model is determined by parameters x and covariates have to be          linmin(p,xit,n,fret,func); 
      included manually here.          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
      */            xi[j][n]=xit[j]; 
           }
   int i, j, d, h, k;  #ifdef DEBUG
   double **out, cov[NCOVMAX];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **newm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /* Hstepm could be zero and should return the unit matrix */            printf(" %.12e",xit[j]);
   for (i=1;i<=nlstate+ndeath;i++)            fprintf(ficlog," %.12e",xit[j]);
     for (j=1;j<=nlstate+ndeath;j++){          }
       oldm[i][j]=(i==j ? 1.0 : 0.0);          printf("\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
     }  #endif
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){      } 
     for(d=1; d <=hstepm; d++){    } 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /**** Prevalence limit (stable prevalence)  ****************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for (k=1; k<=cptcovprod;k++)       matrix by transitions matrix until convergence is reached */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double **matprod2();
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double **out, cov[NCOVMAX], **pmij();
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double **newm;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double agefin, delaymax=50 ; /* Max number of years to converge */
       savm=oldm;  
       oldm=newm;    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate+ndeath; i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate+ndeath;j++) {      }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);     cov[1]=1.;
          */   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   } /* end h */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   return po;      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
     
 /*************** log-likelihood *************/        for (k=1; k<=cptcovn;k++) {
 double func( double *x)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i, ii, j, k, mi, d, kk;        }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double **out;        for (k=1; k<=cptcovprod;k++)
   double sw; /* Sum of weights */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double lli; /* Individual log likelihood */  
   long ipmx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /*extern weight */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* We are differentiating ll according to initial status */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);      savm=oldm;
   */      oldm=newm;
   cov[1]=1.;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;        min=1.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        max=0.;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(i=1; i<=nlstate; i++) {
     for(mi=1; mi<= wav[i]-1; mi++){          sumnew=0;
       for (ii=1;ii<=nlstate+ndeath;ii++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(d=0; d<dh[mi][i]; d++){          max=FMAX(max,prlim[i][j]);
         newm=savm;          min=FMIN(min,prlim[i][j]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
         for (kk=1; kk<=cptcovage;kk++) {        maxmin=max-min;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        maxmax=FMAX(maxmax,maxmin);
         }      }
              if(maxmax < ftolpl){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        return prlim;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;    }
         oldm=newm;  }
          
          /*************** transition probabilities ***************/ 
       } /* end mult */  
        double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double s1, s2;
       ipmx +=1;    /*double t34;*/
       sw += weight[i];    int i,j,j1, nc, ii, jj;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */      for(i=1; i<= nlstate; i++){
   } /* end of individual */      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          /*s2 += param[i][j][nc]*cov[nc];*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   return -l;        }
 }        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
 /*********** Maximum Likelihood Estimation ***************/      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   int i,j, iter;        }
   double **xi,*delti;        ps[i][j]=s2;
   double fret;      }
   xi=matrix(1,npar,1,npar);    }
   for (i=1;i<=npar;i++)      /*ps[3][2]=1;*/
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    for(i=1; i<= nlstate; i++){
   printf("Powell\n");       s1=0;
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
 }      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 /**** Computes Hessian and covariance matrix ***/      for(j=i+1; j<=nlstate+ndeath; j++)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        ps[i][j]= exp(ps[i][j])*ps[i][i];
 {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double  **a,**y,*x,pd;    } /* end i */
   double **hess;  
   int i, j,jk;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int *indx;      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   double hessii(double p[], double delta, int theta, double delti[]);        ps[ii][ii]=1;
   double hessij(double p[], double delti[], int i, int j);      }
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   
   hess=matrix(1,npar,1,npar);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   printf("\nCalculation of the hessian matrix. Wait...\n");       printf("%lf ",ps[ii][jj]);
   for (i=1;i<=npar;i++){     }
     printf("%d",i);fflush(stdout);      printf("\n ");
     hess[i][i]=hessii(p,ftolhess,i,delti);      }
     /*printf(" %f ",p[i]);*/      printf("\n ");printf("%lf ",cov[2]);*/
     /*printf(" %lf ",hess[i][i]);*/  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
      goto end;*/
   for (i=1;i<=npar;i++) {      return ps;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /**************** Product of 2 matrices ******************/
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         /*printf(" %lf ",hess[i][j]);*/  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   printf("\n");       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    long i, j, k;
      for(i=nrl; i<= nrh; i++)
   a=matrix(1,npar,1,npar);      for(k=ncolol; k<=ncoloh; k++)
   y=matrix(1,npar,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   x=vector(1,npar);          out[i][k] +=in[i][j]*b[j][k];
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)    return out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {  /************* Higher Matrix Product ***************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the transition matrix starting at age 'age' over 
       matcov[i][j]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   printf("\n#Hessian matrix#\n");       (typically every 2 years instead of every month which is too big 
   for (i=1;i<=npar;i++) {       for the memory).
     for (j=1;j<=npar;j++) {       Model is determined by parameters x and covariates have to be 
       printf("%.3e ",hess[i][j]);       included manually here. 
     }  
     printf("\n");       */
   }  
     int i, j, d, h, k;
   /* Recompute Inverse */    double **out, cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   /*  printf("\n#Hessian matrix recomputed#\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     lubksb(a,npar,indx,x);    for(h=1; h <=nhstepm; h++){
     for (i=1;i<=npar;i++){      for(d=1; d <=hstepm; d++){
       y[i][j]=x[i];        newm=savm;
       printf("%.3e ",y[i][j]);        /* Covariates have to be included here again */
     }        cov[1]=1.;
     printf("\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   */        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(a,1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_matrix(y,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 /*************** hessian matrix ****************/        oldm=newm;
 double hessii( double x[], double delta, int theta, double delti[])      }
 {      for(i=1; i<=nlstate+ndeath; i++)
   int i;        for(j=1;j<=nlstate+ndeath;j++) {
   int l=1, lmax=20;          po[i][j][h]=newm[i][j];
   double k1,k2;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double p2[NPARMAX+1];           */
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    } /* end h */
   double fx;    return po;
   int k=0,kmax=10;  }
   double l1;  
   
   fx=func(x);  /*************** log-likelihood *************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  double func( double *x)
   for(l=0 ; l <=lmax; l++){  {
     l1=pow(10,l);    int i, ii, j, k, mi, d, kk;
     delts=delt;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(k=1 ; k <kmax; k=k+1){    double **out;
       delt = delta*(l1*k);    double sw; /* Sum of weights */
       p2[theta]=x[theta] +delt;    double lli; /* Individual log likelihood */
       k1=func(p2)-fx;    int s1, s2;
       p2[theta]=x[theta]-delt;    double bbh, survp;
       k2=func(p2)-fx;    long ipmx;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /*extern weight */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 #ifdef DEBUG    /*for(i=1;i<imx;i++) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      printf(" %d\n",s[4][i]);
 #endif    */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    cov[1]=1.;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if(mle==1){
         k=kmax; l=lmax*10.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(mi=1; mi<= wav[i]-1; mi++){
         delts=delt;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   delti[theta]=delts;            }
   return res;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int l=1, l1, lmax=20;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double k1,k2,k3,k4,res,fx;            savm=oldm;
   double p2[NPARMAX+1];            oldm=newm;
   int k;          } /* end mult */
         
   fx=func(x);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (k=1; k<=2; k++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (i=1;i<=npar;i++) p2[i]=x[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     k1=func(p2)-fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetai]=x[thetai]+delti[thetai]/k;           * probability in order to take into account the bias as a fraction of the way
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     k2=func(p2)-fx;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           */
     k3=func(p2)-fx;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /* bias is positive if real duration
     k4=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           */
 #ifdef DEBUG          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          if( s2 > nlstate){ 
 #endif            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   }               to the likelihood is the probability to die between last step unit time and current 
   return res;               step unit time, which is also the differences between probability to die before dh 
 }               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 /************** Inverse of matrix **************/          as if date of death was unknown. Death was treated as any other
 void ludcmp(double **a, int n, int *indx, double *d)          health state: the date of the interview describes the actual state
 {          and not the date of a change in health state. The former idea was
   int i,imax,j,k;          to consider that at each interview the state was recorded
   double big,dum,sum,temp;          (healthy, disable or death) and IMaCh was corrected; but when we
   double *vv;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   vv=vector(1,n);          contribution is smaller and very dependent of the step unit
   *d=1.0;          stepm. It is no more the probability to die between last interview
   for (i=1;i<=n;i++) {          and month of death but the probability to survive from last
     big=0.0;          interview up to one month before death multiplied by the
     for (j=1;j<=n;j++)          probability to die within a month. Thanks to Chris
       if ((temp=fabs(a[i][j])) > big) big=temp;          Jackson for correcting this bug.  Former versions increased
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          mortality artificially. The bad side is that we add another loop
     vv[i]=1.0/big;          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
   for (j=1;j<=n;j++) {            */
     for (i=1;i<j;i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
       sum=a[i][j];          }else{
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       a[i][j]=sum;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
     big=0.0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=j;i<=n;i++) {          /*if(lli ==000.0)*/
       sum=a[i][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<j;k++)          ipmx +=1;
         sum -= a[i][k]*a[k][j];          sw += weight[i];
       a[i][j]=sum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        } /* end of wave */
         big=dum;      } /* end of individual */
         imax=i;    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != imax) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1;k<=n;k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         dum=a[imax][k];            for (j=1;j<=nlstate+ndeath;j++){
         a[imax][k]=a[j][k];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         a[j][k]=dum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       *d = -(*d);          for(d=0; d<=dh[mi][i]; d++){
       vv[imax]=vv[j];            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     indx[j]=imax;            for (kk=1; kk<=cptcovage;kk++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (j != n) {            }
       dum=1.0/(a[j][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=j+1;i<=n;i++) a[i][j] *= dum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   free_vector(vv,1,n);  /* Doesn't work */          } /* end mult */
 ;        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 void lubksb(double **a, int n, int *indx, double b[])           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i,ii=0,ip,j;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (i=1;i<=n;i++) {           * probability in order to take into account the bias as a fraction of the way
     ip=indx[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     sum=b[ip];           * -stepm/2 to stepm/2 .
     b[ip]=b[i];           * For stepm=1 the results are the same as for previous versions of Imach.
     if (ii)           * For stepm > 1 the results are less biased than in previous versions. 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           */
     else if (sum) ii=i;          s1=s[mw[mi][i]][i];
     b[i]=sum;          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=n;i>=1;i--) {          /* bias is positive if real duration
     sum=b[i];           * is higher than the multiple of stepm and negative otherwise.
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           */
     b[i]=sum/a[i][i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************ Frequencies ********************/          /*if(lli ==000.0)*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos;    }  else if(mle==3){  /* exponential inter-extrapolation */
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
  probs= ma3x(1,130 ,1,8, 1,8);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<dh[mi][i]; d++){
     exit(0);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   j=cptcoveff;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for(k1=1; k1<=j;k1++){            oldm=newm;
    for(i1=1; i1<=ncodemax[k1];i1++){          } /* end mult */
        j1++;        
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          scanf("%d", i);*/          /* But now since version 0.9 we anticipate for bias and large stepm.
         for (i=-1; i<=nlstate+ndeath; i++)             * If stepm is larger than one month (smallest stepm) and if the exact delay 
          for (jk=-1; jk<=nlstate+ndeath; jk++)             * (in months) between two waves is not a multiple of stepm, we rounded to 
            for(m=agemin; m <= agemax+3; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
              freq[i][jk][m]=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
        for (i=1; i<=imx; i++) {           * probability in order to take into account the bias as a fraction of the way
          bool=1;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
          if  (cptcovn>0) {           * -stepm/2 to stepm/2 .
            for (z1=1; z1<=cptcoveff; z1++)           * For stepm=1 the results are the same as for previous versions of Imach.
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * For stepm > 1 the results are less biased than in previous versions. 
                bool=0;           */
          }          s1=s[mw[mi][i]][i];
           if (bool==1) {          s2=s[mw[mi+1][i]][i];
            for(m=fprev; m<=lprev; m++){          bbh=(double)bh[mi][i]/(double)stepm; 
              if(agev[m][i]==0) agev[m][i]=agemax+1;          /* bias is positive if real duration
              if(agev[m][i]==1) agev[m][i]=agemax+2;           * is higher than the multiple of stepm and negative otherwise.
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
            }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
        }          /*if(lli ==000.0)*/
         if  (cptcovn>0) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          fprintf(ficresp, "\n#********** Variable ");          ipmx +=1;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          sw += weight[i];
        fprintf(ficresp, "**********\n#");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
        for(i=1; i<=nlstate;i++)      } /* end of individual */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        fprintf(ficresp, "\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     if(i==(int)agemax+3)          for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("Total");            for (j=1;j<=nlstate+ndeath;j++){
     else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Age %d", i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){            }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(d=0; d<dh[mi][i]; d++){
         pp[jk] += freq[jk][m][i];            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1, pos=0; m <=0 ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         pos += freq[jk][m][i];            }
       if(pp[jk]>=1.e-10)          
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            savm=oldm;
     }            oldm=newm;
           } /* end mult */
      for(jk=1; jk <=nlstate ; jk++){        
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
         pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
      }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     for(jk=1,pos=0; jk <=nlstate ; jk++)          }else{
       pos += pp[jk];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(jk=1; jk <=nlstate ; jk++){          }
       if(pos>=1.e-5)          ipmx +=1;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if( i <= (int) agemax){        } /* end of wave */
         if(pos>=1.e-5){      } /* end of individual */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=-1; jk <=nlstate+ndeath; jk++)            }
       for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<dh[mi][i]; d++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
     if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     }          
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fclose(ficresp);            savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm=newm;
   free_vector(pp,1,nlstate);          } /* end mult */
         
 }  /* End of Freq */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************* Waves Concatenation ***************/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      Death is a valid wave (if date is known).        } /* end of wave */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of individual */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* End of if */
      and mw[mi+1][i]. dh depends on stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, mi, m;    return -l;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  }
      double sum=0., jmean=0.;*/  
   /*************** log-likelihood *************/
   int j, k=0,jk, ju, jl;  double funcone( double *x)
   double sum=0.;  {
   jmin=1e+5;    int i, ii, j, k, mi, d, kk;
   jmax=-1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   jmean=0.;    double **out;
   for(i=1; i<=imx; i++){    double lli; /* Individual log likelihood */
     mi=0;    int s1, s2;
     m=firstpass;    double bbh, survp;
     while(s[m][i] <= nlstate){    /*extern weight */
       if(s[m][i]>=1)    /* We are differentiating ll according to initial status */
         mw[++mi][i]=m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(m >=lastpass)    /*for(i=1;i<imx;i++) 
         break;      printf(" %d\n",s[4][i]);
       else    */
         m++;    cov[1]=1.;
     }/* end while */  
     if (s[m][i] > nlstate){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Only death is a correct wave */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mw[mi][i]=m;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          }
   }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   for(i=1; i<=imx; i++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(mi=1; mi<wav[i];mi++){          for (kk=1; kk<=cptcovage;kk++) {
       if (stepm <=0)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dh[mi][i]=1;          }
       else{          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (s[mw[mi+1][i]][i] > nlstate) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (agedc[i] < 2*AGESUP) {          savm=oldm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          oldm=newm;
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;        s1=s[mw[mi][i]][i];
           if (j <= jmin) jmin=j;        s2=s[mw[mi+1][i]][i];
           sum=sum+j;        bbh=(double)bh[mi][i]/(double)stepm; 
           /* if (j<10) printf("j=%d num=%d ",j,i); */        /* bias is positive if real duration
           }         * is higher than the multiple of stepm and negative otherwise.
         }         */
         else{        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli=log(out[s1][s2] - savm[s1][s2]);
           k=k+1;        } else if (mle==1){
           if (j >= jmax) jmax=j;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           else if (j <= jmin)jmin=j;        } else if(mle==2){
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           sum=sum+j;        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         jk= j/stepm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         jl= j -jk*stepm;          lli=log(out[s1][s2]); /* Original formula */
         ju= j -(jk+1)*stepm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if(jl <= -ju)          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=jk;        } /* End of if */
         else        ipmx +=1;
           dh[mi][i]=jk+1;        sw += weight[i];
         if(dh[mi][i]==0)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=1; /* At least one step */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
     }          fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
   }                  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   jmean=sum/k;          for(k=1,l=0.; k<=nlstate; k++) 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            fprintf(ficresilk," %10.6f",ll[k]);
  }          fprintf(ficresilk,"\n");
 /*********** Tricode ****************************/        }
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of wave */
 {    } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int cptcode=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   cptcoveff=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   for (k=0; k<19; k++) Ndum[k]=0;  }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for (i=1; i<=imx; i++) {  {
       ij=(int)(covar[Tvar[j]][i]);    /* This routine should help understanding what is done with the selection of individuals/waves and
       Ndum[ij]++;       to check the exact contribution to the likelihood.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/       Plotting could be done.
       if (ij > cptcode) cptcode=ij;     */
     }    int k;
     if(globpr !=0){ /* Just counts and sums no printings */
     for (i=0; i<=cptcode; i++) {      strcpy(fileresilk,"ilk"); 
       if(Ndum[i]!=0) ncodemax[j]++;      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     ij=1;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
       for (k=0; k<=19; k++) {      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
         if (Ndum[k] != 0) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           nbcode[Tvar[j]][ij]=k;      for(k=1; k<=nlstate; k++) 
           ij++;        fprintf(ficresilk," ll[%d]",k);
         }      fprintf(ficresilk,"\n");
         if (ij > ncodemax[j]) break;    }
       }    
     }    *fretone=(*funcone)(p);
   }      if(globpr !=0)
       fclose(ficresilk);
  for (k=0; k<19; k++) Ndum[k]=0;    return;
   }
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  /*********** Maximum Likelihood Estimation ***************/
       Ndum[ij]++;  
     }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
  ij=1;    int i,j, iter;
  for (i=1; i<=10; i++) {    double **xi;
    if((Ndum[i]!=0) && (i<=ncov)){    double fret;
      Tvaraff[ij]=i;    double fretone; /* Only one call to likelihood */
      ij++;    char filerespow[FILENAMELENGTH];
    }    xi=matrix(1,npar,1,npar);
  }    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
     cptcoveff=ij-1;        xi[i][j]=(i==j ? 1.0 : 0.0);
 }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
 /*********** Health Expectancies ****************/    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      printf("Problem with resultfile: %s\n", filerespow);
 {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /* Health expectancies */    }
   int i, j, nhstepm, hstepm, h;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double age, agelim,hf;    for (i=1;i<=nlstate;i++)
   double ***p3mat;      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficrespow,"\n");
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);    fclose(ficrespow);
   fprintf(ficreseij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=1*YEARM; /*  Every j years of age (in month) */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   }
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /**** Computes Hessian and covariance matrix ***/
     /* nhstepm age range expressed in number of stepm */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  {
     /* Typically if 20 years = 20*12/6=40 stepm */    double  **a,**y,*x,pd;
     if (stepm >= YEARM) hstepm=1;    double **hess;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    int i, j,jk;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int *indx;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double hessii(double p[], double delta, int theta, double delti[]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    hess=matrix(1,npar,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  
           eij[i][j][(int)age] +=p3mat[i][j][h];    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
     hf=1;      printf("%d",i);fflush(stdout);
     if (stepm >= YEARM) hf=stepm/YEARM;      fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficreseij,"%.0f",age );      hess[i][i]=hessii(p,ftolhess,i,delti);
     for(i=1; i<=nlstate;i++)      /*printf(" %f ",p[i]);*/
       for(j=1; j<=nlstate;j++){      /*printf(" %lf ",hess[i][i]);*/
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    }
       }    
     fprintf(ficreseij,"\n");    for (i=1;i<=npar;i++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)  {
   }        if (j>i) { 
 }          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 /************ Variance ******************/          hess[i][j]=hessij(p,delti,i,j);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          hess[j][i]=hess[i][j];    
 {          /*printf(" %lf ",hess[i][j]);*/
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      }
   double **newm;    }
   double **dnewm,**doldm;    printf("\n");
   int i, j, nhstepm, hstepm, h;    fprintf(ficlog,"\n");
   int k, cptcode;  
   double *xp;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **gp, **gm;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double ***gradg, ***trgradg;    
   double ***p3mat;    a=matrix(1,npar,1,npar);
   double age,agelim;    y=matrix(1,npar,1,npar);
   int theta;    x=vector(1,npar);
     indx=ivector(1,npar);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for (i=1;i<=npar;i++)
   fprintf(ficresvij,"# Age");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for(i=1; i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (j=1;j<=npar;j++) {
   fprintf(ficresvij,"\n");      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   xp=vector(1,npar);      lubksb(a,npar,indx,x);
   dnewm=matrix(1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   doldm=matrix(1,nlstate,1,nlstate);        matcov[i][j]=x[i];
        }
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    printf("\n#Hessian matrix#\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\n#Hessian matrix#\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++) { 
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("%.3e ",hess[i][j]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"%.3e ",hess[i][j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      }
     gp=matrix(0,nhstepm,1,nlstate);      printf("\n");
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"\n");
     }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* Recompute Inverse */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     /*  printf("\n#Hessian matrix recomputed#\n");
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
            lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++){ 
         for(h=0; h<=nhstepm; h++){        y[i][j]=x[i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        printf("%.3e ",y[i][j]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
       }      printf("\n");
          fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
       if (popbased==1) {    free_vector(x,1,npar);
         for(i=1; i<=nlstate;i++)    free_ivector(indx,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    free_matrix(hess,1,npar,1,npar);
       }  
   
       for(j=1; j<= nlstate; j++){  }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /*************** hessian matrix ****************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  double hessii( double x[], double delta, int theta, double delti[])
         }  {
       }    int i;
     int l=1, lmax=20;
       for(j=1; j<= nlstate; j++)    double k1,k2;
         for(h=0; h<=nhstepm; h++){    double p2[NPARMAX+1];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double res;
         }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     } /* End theta */    double fx;
     int k=0,kmax=10;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double l1;
   
     for(h=0; h<=nhstepm; h++)    fx=func(x);
       for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         for(theta=1; theta <=npar; theta++)    for(l=0 ; l <=lmax; l++){
           trgradg[h][j][theta]=gradg[h][theta][j];      l1=pow(10,l);
       delts=delt;
     for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
       for(j=1;j<=nlstate;j++)        delt = delta*(l1*k);
         vareij[i][j][(int)age] =0.;        p2[theta]=x[theta] +delt;
     for(h=0;h<=nhstepm;h++){        k1=func(p2)-fx;
       for(k=0;k<=nhstepm;k++){        p2[theta]=x[theta]-delt;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        k2=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for(i=1;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for(j=1;j<=nlstate;j++)        
             vareij[i][j][(int)age] += doldm[i][j];  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     h=1;  #endif
     if (stepm >= YEARM) h=stepm/YEARM;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fprintf(ficresvij,"%.0f ",age );        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1; i<=nlstate;i++)          k=kmax;
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
     fprintf(ficresvij,"\n");        }
     free_matrix(gp,0,nhstepm,1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_matrix(gm,0,nhstepm,1,nlstate);          delts=delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */    delti[theta]=delts;
      return res; 
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);  }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   double hessij( double x[], double delti[], int thetai,int thetaj)
 }  {
     int i;
 /************ Variance of prevlim ******************/    int l=1, l1, lmax=20;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double k1,k2,k3,k4,res,fx;
 {    double p2[NPARMAX+1];
   /* Variance of prevalence limit */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    fx=func(x);
   double **dnewm,**doldm;    for (k=1; k<=2; k++) {
   int i, j, nhstepm, hstepm;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int k, cptcode;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *xp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *gp, *gm;      k1=func(p2)-fx;
   double **gradg, **trgradg;    
   double age,agelim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k2=func(p2)-fx;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    
   fprintf(ficresvpl,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresvpl," %1d-%1d",i,i);      k3=func(p2)-fx;
   fprintf(ficresvpl,"\n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   dnewm=matrix(1,nlstate,1,npar);      k4=func(p2)-fx;
   doldm=matrix(1,nlstate,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   hstepm=1*YEARM; /* Every year of age */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   agelim = AGESUP;  #endif
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    return res;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  /************** Inverse of matrix **************/
     gp=vector(1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
     gm=vector(1,nlstate);  { 
     int i,imax,j,k; 
     for(theta=1; theta <=npar; theta++){    double big,dum,sum,temp; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double *vv; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   
       }    vv=vector(1,n); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    *d=1.0; 
       for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
         gp[i] = prlim[i][i];      big=0.0; 
          for (j=1;j<=n;j++) 
       for(i=1; i<=npar; i++) /* Computes gradient */        if ((temp=fabs(a[i][j])) > big) big=temp; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      vv[i]=1.0/big; 
       for(i=1;i<=nlstate;i++)    } 
         gm[i] = prlim[i][i];    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
       for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     } /* End theta */        a[i][j]=sum; 
       } 
     trgradg =matrix(1,nlstate,1,npar);      big=0.0; 
       for (i=j;i<=n;i++) { 
     for(j=1; j<=nlstate;j++)        sum=a[i][j]; 
       for(theta=1; theta <=npar; theta++)        for (k=1;k<j;k++) 
         trgradg[j][theta]=gradg[theta][j];          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for(i=1;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       varpl[i][(int)age] =0.;          big=dum; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          imax=i; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        } 
     for(i=1;i<=nlstate;i++)      } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     fprintf(ficresvpl,"%.0f ",age );          dum=a[imax][k]; 
     for(i=1; i<=nlstate;i++)          a[imax][k]=a[j][k]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          a[j][k]=dum; 
     fprintf(ficresvpl,"\n");        } 
     free_vector(gp,1,nlstate);        *d = -(*d); 
     free_vector(gm,1,nlstate);        vv[imax]=vv[j]; 
     free_matrix(gradg,1,npar,1,nlstate);      } 
     free_matrix(trgradg,1,nlstate,1,npar);      indx[j]=imax; 
   } /* End age */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   free_vector(xp,1,npar);        dum=1.0/(a[j][j]); 
   free_matrix(doldm,1,nlstate,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      } 
     } 
 }    free_vector(vv,1,n);  /* Doesn't work */
   ;
 /************ Variance of one-step probabilities  ******************/  } 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {  void lubksb(double **a, int n, int *indx, double b[]) 
   int i, j;  { 
   int k=0, cptcode;    int i,ii=0,ip,j; 
   double **dnewm,**doldm;    double sum; 
   double *xp;   
   double *gp, *gm;    for (i=1;i<=n;i++) { 
   double **gradg, **trgradg;      ip=indx[i]; 
   double age,agelim, cov[NCOVMAX];      sum=b[ip]; 
   int theta;      b[ip]=b[i]; 
   char fileresprob[FILENAMELENGTH];      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprob,"prob");      else if (sum) ii=i; 
   strcat(fileresprob,fileres);      b[i]=sum; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } 
     printf("Problem with resultfile: %s\n", fileresprob);    for (i=n;i>=1;i--) { 
   }      sum=b[i]; 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
     } 
   xp=vector(1,npar);  } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   cov[1]=1;  {  /* Some frequencies */
   for (age=bage; age<=fage; age ++){    
     cov[2]=age;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     gradg=matrix(1,npar,1,9);    int first;
     trgradg=matrix(1,9,1,npar);    double ***freq; /* Frequencies */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double *pp, **prop;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        FILE *ficresp;
     for(theta=1; theta <=npar; theta++){    char fileresp[FILENAMELENGTH];
       for(i=1; i<=npar; i++)    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    pp=vector(1,nlstate);
          prop=matrix(1,nlstate,iagemin,iagemax+3);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
       k=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(i=1; i<= (nlstate+ndeath); i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            k=k+1;      exit(0);
           gp[k]=pmmij[i][j];    }
         }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       }    j1=0;
     
       for(i=1; i<=npar; i++)    j=cptcoveff;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
     first=1;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;    for(k1=1; k1<=j;k1++){
       for(i=1; i<=(nlstate+ndeath); i++){      for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1; j<=(nlstate+ndeath);j++){        j1++;
           k=k+1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           gm[k]=pmmij[i][j];          scanf("%d", i);*/
         }        for (i=-1; i<=nlstate+ndeath; i++)  
       }          for (jk=-1; jk<=nlstate+ndeath; jk++)  
                  for(m=iagemin; m <= iagemax+3; m++)
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              freq[i][jk][m]=0;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          prop[i][m]=0;
       for(theta=1; theta <=npar; theta++)        
       trgradg[j][theta]=gradg[theta][j];        dateintsum=0;
          k2cpt=0;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        for (i=1; i<=imx; i++) {
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          bool=1;
           if  (cptcovn>0) {
      pmij(pmmij,cov,ncovmodel,x,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      k=0;                bool=0;
      for(i=1; i<=(nlstate+ndeath); i++){          }
        for(j=1; j<=(nlstate+ndeath);j++){          if (bool==1){
          k=k+1;            for(m=firstpass; m<=lastpass; m++){
          gm[k]=pmmij[i][j];              k2=anint[m][i]+(mint[m][i]/12.);
         }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                      if(agev[m][i]==1) agev[m][i]=iagemax+2;
      /*printf("\n%d ",(int)age);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                if (m<lastpass) {
                          freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                }
      }*/                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficresprob,"\n%d ",(int)age);                  dateintsum=dateintsum+k2;
                   k2cpt++;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                /*}*/
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            }
   }          }
         }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));         
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable "); 
  free_vector(xp,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 fclose(ficresprob);          fprintf(ficresp, "**********\n#");
  exit(0);        }
 }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 /***********************************************/        fprintf(ficresp, "\n");
 /**************** Main Program *****************/        
 /***********************************************/        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
 /*int main(int argc, char *argv[])*/            fprintf(ficlog,"Total");
 int main()          }else{
 {            if(first==1){
               first=0;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              printf("See log file for details...\n");
   double agedeb, agefin,hf;            }
   double agemin=1.e20, agemax=-1.e20;            fprintf(ficlog,"Age %d", i);
           }
   double fret;          for(jk=1; jk <=nlstate ; jk++){
   double **xi,tmp,delta;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
   double dum; /* Dummy variable */          }
   double ***p3mat;          for(jk=1; jk <=nlstate ; jk++){
   int *indx;            for(m=-1, pos=0; m <=0 ; m++)
   char line[MAXLINE], linepar[MAXLINE];              pos += freq[jk][m][i];
   char title[MAXLINE];            if(pp[jk]>=1.e-10){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];              if(first==1){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char filerest[FILENAMELENGTH];              }
   char fileregp[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            }else{
   int firstobs=1, lastobs=10;              if(first==1)
   int sdeb, sfin; /* Status at beginning and end */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int c,  h , cpt,l;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int ju,jl, mi;            }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0, fprevfore=1, lprevfore=1;          for(jk=1; jk <=nlstate ; jk++){
   int hstepm, nhstepm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   double bage, fage, age, agelim, agebase;          }       
   double ftolpl=FTOL;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double **prlim;            pos += pp[jk];
   double *severity;            posprop += prop[jk][i];
   double ***param; /* Matrix of parameters */          }
   double  *p;          for(jk=1; jk <=nlstate ; jk++){
   double **matcov; /* Matrix of covariance */            if(pos>=1.e-5){
   double ***delti3; /* Scale */              if(first==1)
   double *delti; /* Scale */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double ***eij, ***vareij;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **varpl; /* Variances of prevalence limits by age */            }else{
   double *epj, vepp;              if(first==1)
   double kk1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";            }
   char *alph[]={"a","a","b","c","d","e"}, str[4];            if( i <= iagemax){
               if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   char z[1]="c", occ;                /*probs[i][jk][j1]= pp[jk]/pos;*/
 #include <sys/time.h>                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 #include <time.h>              }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              else
   /* long total_usecs;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   struct timeval start_time, end_time;            }
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   printf("\nIMACH, Version 0.64b");              if(freq[jk][m][i] !=0 ) {
   printf("\nEnter the parameter file name: ");              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 #ifdef windows                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   scanf("%s",pathtot);              }
   getcwd(pathcd, size);          if(i <= iagemax)
   /*cygwin_split_path(pathtot,path,optionfile);            fprintf(ficresp,"\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          if(first==1)
   /* cutv(path,optionfile,pathtot,'\\');*/            printf("Others in log...\n");
           fprintf(ficlog,"\n");
 split(pathtot, path,optionfile);        }
   chdir(path);      }
   replace(pathc,path);    }
 #endif    dateintmean=dateintsum/k2cpt; 
 #ifdef unix   
   scanf("%s",optionfile);    fclose(ficresp);
 #endif    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
 /*-------- arguments in the command line --------*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   strcpy(fileres,"r");  }
   strcat(fileres, optionfile);  
   /************ Prevalence ********************/
   /*---------arguments file --------*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     printf("Problem with optionfile %s\n",optionfile);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     goto end;       We still use firstpass and lastpass as another selection.
   }    */
    
   strcpy(filereso,"o");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   strcat(filereso,fileres);    double ***freq; /* Frequencies */
   if((ficparo=fopen(filereso,"w"))==NULL) {    double *pp, **prop;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double pos,posprop; 
   }    double  y2; /* in fractional years */
     int iagemin, iagemax;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    iagemin= (int) agemin;
     ungetc(c,ficpar);    iagemax= (int) agemax;
     fgets(line, MAXLINE, ficpar);    /*pp=vector(1,nlstate);*/
     puts(line);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fputs(line,ficparo);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
   ungetc(c,ficpar);    
     j=cptcoveff;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for(k1=1; k1<=j;k1++){
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[k1];i1++){
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        
     puts(line);        for (i=1; i<=nlstate; i++)  
     fputs(line,ficparo);          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0.0;
   ungetc(c,ficpar);       
          for (i=1; i<=imx; i++) { /* Each individual */
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);          bool=1;
  while((c=getc(ficpar))=='#' && c!= EOF){          if  (cptcovn>0) {
     ungetc(c,ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     fgets(line, MAXLINE, ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     puts(line);                bool=0;
     fputs(line,ficparo);          } 
   }          if (bool==1) { 
   ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   covar=matrix(0,NCOVMAX,1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   cptcovn=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   ncovmodel=2+cptcovn;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   /* Read guess parameters */              }
   /* Reads comments: lines beginning with '#' */            } /* end selection of waves */
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        for(i=iagemin; i <= iagemax+3; i++){  
     puts(line);          
     fputs(line,ficparo);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
   ungetc(c,ficpar);          } 
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=1; jk <=nlstate ; jk++){     
     for(i=1; i <=nlstate; i++)            if( i <=  iagemax){ 
     for(j=1; j <=nlstate+ndeath-1; j++){              if(posprop>=1.e-5){ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);                probs[i][jk][j1]= prop[jk][i]/posprop;
       fprintf(ficparo,"%1d%1d",i1,j1);              } 
       printf("%1d%1d",i,j);            } 
       for(k=1; k<=ncovmodel;k++){          }/* end jk */ 
         fscanf(ficpar," %lf",&param[i][j][k]);        }/* end i */ 
         printf(" %lf",param[i][j][k]);      } /* end i1 */
         fprintf(ficparo," %lf",param[i][j][k]);    } /* end k1 */
       }    
       fscanf(ficpar,"\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       printf("\n");    /*free_vector(pp,1,nlstate);*/
       fprintf(ficparo,"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     }  }  /* End of prevalence */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /************* Waves Concatenation ***************/
   
   p=param[1][1];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   /* Reads comments: lines beginning with '#' */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   while((c=getc(ficpar))=='#' && c!= EOF){       Death is a valid wave (if date is known).
     ungetc(c,ficpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fgets(line, MAXLINE, ficpar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     puts(line);       and mw[mi+1][i]. dh depends on stepm.
     fputs(line,ficparo);       */
   }  
   ungetc(c,ficpar);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       double sum=0., jmean=0.;*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int first;
   for(i=1; i <=nlstate; i++){    int j, k=0,jk, ju, jl;
     for(j=1; j <=nlstate+ndeath-1; j++){    double sum=0.;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    first=0;
       printf("%1d%1d",i,j);    jmin=1e+5;
       fprintf(ficparo,"%1d%1d",i1,j1);    jmax=-1;
       for(k=1; k<=ncovmodel;k++){    jmean=0.;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for(i=1; i<=imx; i++){
         printf(" %le",delti3[i][j][k]);      mi=0;
         fprintf(ficparo," %le",delti3[i][j][k]);      m=firstpass;
       }      while(s[m][i] <= nlstate){
       fscanf(ficpar,"\n");        if(s[m][i]>=1)
       printf("\n");          mw[++mi][i]=m;
       fprintf(ficparo,"\n");        if(m >=lastpass)
     }          break;
   }        else
   delti=delti3[1][1];          m++;
        }/* end while */
   /* Reads comments: lines beginning with '#' */      if (s[m][i] > nlstate){
   while((c=getc(ficpar))=='#' && c!= EOF){        mi++;     /* Death is another wave */
     ungetc(c,ficpar);        /* if(mi==0)  never been interviewed correctly before death */
     fgets(line, MAXLINE, ficpar);           /* Only death is a correct wave */
     puts(line);        mw[mi][i]=m;
     fputs(line,ficparo);      }
   }  
   ungetc(c,ficpar);      wav[i]=mi;
        if(mi==0){
   matcov=matrix(1,npar,1,npar);        if(first==0){
   for(i=1; i <=npar; i++){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fscanf(ficpar,"%s",&str);          first=1;
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);        if(first==1){
     for(j=1; j <=i; j++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fscanf(ficpar," %le",&matcov[i][j]);        }
       printf(" %.5le",matcov[i][j]);      } /* end mi==0 */
       fprintf(ficparo," %.5le",matcov[i][j]);    } /* End individuals */
     }  
     fscanf(ficpar,"\n");    for(i=1; i<=imx; i++){
     printf("\n");      for(mi=1; mi<wav[i];mi++){
     fprintf(ficparo,"\n");        if (stepm <=0)
   }          dh[mi][i]=1;
   for(i=1; i <=npar; i++)        else{
     for(j=i+1;j<=npar;j++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       matcov[i][j]=matcov[j][i];            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   printf("\n");              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*-------- data file ----------*/                j=1; /* Careful Patch */
     if((ficres =fopen(fileres,"w"))==NULL) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
       printf("Problem with resultfile: %s\n", fileres);goto end;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficres,"#%s\n",version);              }
                  k=k+1;
     if((fic=fopen(datafile,"r"))==NULL)    {              if (j >= jmax) jmax=j;
       printf("Problem with datafile: %s\n", datafile);goto end;              if (j <= jmin) jmin=j;
     }              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     n= lastobs;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);          }
     num=ivector(1,n);          else{
     moisnais=vector(1,n);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     annais=vector(1,n);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     moisdc=vector(1,n);            k=k+1;
     andc=vector(1,n);            if (j >= jmax) jmax=j;
     agedc=vector(1,n);            else if (j <= jmin)jmin=j;
     cod=ivector(1,n);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     weight=vector(1,n);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if(j<0){
     mint=matrix(1,maxwav,1,n);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     anint=matrix(1,maxwav,1,n);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     s=imatrix(1,maxwav+1,1,n);            }
     adl=imatrix(1,maxwav+1,1,n);                sum=sum+j;
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);          jk= j/stepm;
           jl= j -jk*stepm;
     i=1;          ju= j -(jk+1)*stepm;
     while (fgets(line, MAXLINE, fic) != NULL)    {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       if ((i >= firstobs) && (i <=lastobs)) {            if(jl==0){
                      dh[mi][i]=jk;
         for (j=maxwav;j>=1;j--){              bh[mi][i]=0;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }else{ /* We want a negative bias in order to only have interpolation ie
           strcpy(line,stra);                    * at the price of an extra matrix product in likelihood */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              dh[mi][i]=jk+1;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              bh[mi][i]=ju;
         }            }
                  }else{
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            if(jl <= -ju){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                                   * is higher than the multiple of stepm and negative otherwise.
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                                   */
             }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            else{
         for (j=ncov;j>=1;j--){              dh[mi][i]=jk+1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              bh[mi][i]=ju;
         }            }
         num[i]=atol(stra);            if(dh[mi][i]==0){
                      dh[mi][i]=1; /* At least one step */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              bh[mi][i]=ju; /* At least one step */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
         i=i+1;          } /* end if mle */
       }        }
     }      } /* end wave */
     /* printf("ii=%d", ij);    }
        scanf("%d",i);*/    jmean=sum/k;
   imx=i-1; /* Number of individuals */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /* for (i=1; i<=imx; i++){   }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*********** Tricode ****************************/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
   /* Calculation of the number of parameter from char model*/    int cptcode=0;
   Tvar=ivector(1,15);    cptcoveff=0; 
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   Tvard=imatrix(1,15,1,2);    for (k=1; k<=7; k++) ncodemax[k]=0;
   Tage=ivector(1,15);        
        for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   if (strlen(model) >1){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     j=0, j1=0, k1=1, k2=1;                                 modality*/ 
     j=nbocc(model,'+');        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     j1=nbocc(model,'*');        Ndum[ij]++; /*store the modality */
     cptcovn=j+1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     cptcovprod=j1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                             Tvar[j]. If V=sex and male is 0 and 
                                             female is 1, then  cptcode=1.*/
     strcpy(modelsav,model);      }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);      for (i=0; i<=cptcode; i++) {
       goto end;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
      
     for(i=(j+1); i>=1;i--){      ij=1; 
       cutv(stra,strb,modelsav,'+');      for (i=1; i<=ncodemax[j]; i++) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        for (k=0; k<= maxncov; k++) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          if (Ndum[k] != 0) {
       /*scanf("%d",i);*/            nbcode[Tvar[j]][ij]=k; 
       if (strchr(strb,'*')) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         cutv(strd,strc,strb,'*');            
         if (strcmp(strc,"age")==0) {            ij++;
           cptcovprod--;          }
           cutv(strb,stre,strd,'V');          if (ij > ncodemax[j]) break; 
           Tvar[i]=atoi(stre);        }  
           cptcovage++;      } 
             Tage[cptcovage]=i;    }  
             /*printf("stre=%s ", stre);*/  
         }   for (k=0; k< maxncov; k++) Ndum[k]=0;
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;   for (i=1; i<=ncovmodel-2; i++) { 
           cutv(strb,stre,strc,'V');     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           Tvar[i]=atoi(stre);     ij=Tvar[i];
           cptcovage++;     Ndum[ij]++;
           Tage[cptcovage]=i;   }
         }  
         else {   ij=1;
           cutv(strb,stre,strc,'V');   for (i=1; i<= maxncov; i++) {
           Tvar[i]=ncov+k1;     if((Ndum[i]!=0) && (i<=ncovcol)){
           cutv(strb,strc,strd,'V');       Tvaraff[ij]=i; /*For printing */
           Tprod[k1]=i;       ij++;
           Tvard[k1][1]=atoi(strc);     }
           Tvard[k1][2]=atoi(stre);   }
           Tvar[cptcovn+k2]=Tvard[k1][1];   
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   cptcoveff=ij-1; /*Number of simple covariates*/
           for (k=1; k<=lastobs;k++)  }
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  /*********** Health Expectancies ****************/
           k2=k2+2;  
         }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       }  
       else {  {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* Health expectancies */
        /*  scanf("%d",i);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       cutv(strd,strc,strb,'V');    double age, agelim, hf;
       Tvar[i]=atoi(strc);    double ***p3mat,***varhe;
       }    double **dnewm,**doldm;
       strcpy(modelsav,stra);      double *xp;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double **gp, **gm;
         scanf("%d",i);*/    double ***gradg, ***trgradg;
     }    int theta;
 }  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    xp=vector(1,npar);
   printf("cptcovprod=%d ", cptcovprod);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   scanf("%d ",i);*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fclose(fic);    
     fprintf(ficreseij,"# Health expectancies\n");
     /*  if(mle==1){*/    fprintf(ficreseij,"# Age");
     if (weightopt != 1) { /* Maximisation without weights*/    for(i=1; i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;      for(j=1; j<=nlstate;j++)
     }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficreseij,"\n");
     agev=matrix(1,maxwav,1,imx);  
     if(estepm < stepm){
    for (i=1; i<=imx; i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
      for(m=2; (m<= maxwav); m++)    }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    else  hstepm=estepm;   
          anint[m][i]=9999;    /* We compute the life expectancy from trapezoids spaced every estepm months
          s[m][i]=-1;     * This is mainly to measure the difference between two models: for example
        }     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
     for (i=1; i<=imx; i++)  {     * progression in between and thus overestimating or underestimating according
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     * to the curvature of the survival function. If, for the same date, we 
       for(m=1; (m<= maxwav); m++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         if(s[m][i] >0){     * to compare the new estimate of Life expectancy with the same linear 
           if (s[m][i] == nlstate+1) {     * hypothesis. A more precise result, taking into account a more precise
             if(agedc[i]>0)     * curvature will be obtained if estepm is as small as stepm. */
               if(moisdc[i]!=99 && andc[i]!=9999)  
               agev[m][i]=agedc[i];    /* For example we decided to compute the life expectancy with the smallest unit */
             else {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               if (andc[i]!=9999){       nhstepm is the number of hstepm from age to agelim 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       nstepm is the number of stepm from age to agelin. 
               agev[m][i]=-1;       Look at hpijx to understand the reason of that which relies in memory size
               }       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           else if(s[m][i] !=9){ /* Should no more exist */       means that if the survival funtion is printed only each two years of age and if
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             if(mint[m][i]==99 || anint[m][i]==9999)       results. So we changed our mind and took the option of the best precision.
               agev[m][i]=1;    */
             else if(agev[m][i] <agemin){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    agelim=AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             else if(agev[m][i] >agemax){      /* nhstepm age range expressed in number of stepm */
               agemax=agev[m][i];      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             /*agev[m][i]=anint[m][i]-annais[i];*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             /*   agev[m][i] = age[i]+2*m;*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           else { /* =9 */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
             agev[m][i]=1;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             s[m][i]=-1;  
           }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         else /*= 0 Unknown */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           agev[m][i]=1;   
       }  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }  
     for (i=1; i<=imx; i++)  {      /* Computing Variances of health expectancies */
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {       for(theta=1; theta <=npar; theta++){
           printf("Error: Wrong value in nlstate or ndeath\n");          for(i=1; i<=npar; i++){ 
           goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }    
         cptj=0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
     free_vector(severity,1,maxwav);            cptj=cptj+1;
     free_imatrix(outcome,1,maxwav+1,1,n);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     free_vector(moisnais,1,n);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     free_vector(annais,1,n);            }
     free_matrix(mint,1,maxwav,1,n);          }
     free_matrix(anint,1,maxwav,1,n);        }
     free_vector(moisdc,1,n);       
     free_vector(andc,1,n);       
         for(i=1; i<=npar; i++) 
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     wav=ivector(1,imx);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        cptj=0;
            for(j=1; j<= nlstate; j++){
     /* Concatenates waves */          for(i=1;i<=nlstate;i++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
       Tcode=ivector(1,100);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
              for(j=1; j<= nlstate*nlstate; j++)
    codtab=imatrix(1,100,1,10);          for(h=0; h<=nhstepm-1; h++){
    h=0;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
    m=pow(2,cptcoveff);          }
         } 
    for(k=1;k<=cptcoveff; k++){     
      for(i=1; i <=(m/pow(2,k));i++){  /* End theta */
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
            h++;  
            if (h>m) h=1;codtab[h][k]=j;       for(h=0; h<=nhstepm-1; h++)
          }        for(j=1; j<=nlstate*nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
      }            trgradg[h][j][theta]=gradg[h][theta][j];
    }       
   
        for(i=1;i<=nlstate*nlstate;i++)
    /*for(i=1; i <=m ;i++){        for(j=1;j<=nlstate*nlstate;j++)
      for(k=1; k <=cptcovn; k++){          varhe[i][j][(int)age] =0.;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);  
      }       printf("%d|",(int)age);fflush(stdout);
      printf("\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    }       for(h=0;h<=nhstepm-1;h++){
    scanf("%d",i);*/        for(k=0;k<=nhstepm-1;k++){
              matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
    /* Calculates basic frequencies. Computes observed prevalence at single age          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        and prints on file fileres'p'. */          for(i=1;i<=nlstate*nlstate;i++)
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing expectancies */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<=nlstate;j++)
                for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     if(mle==1){          }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }      fprintf(ficreseij,"%3.0f",age );
          cptj=0;
     /*--------- results files --------------*/      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        for(j=1; j<=nlstate;j++){
              cptj++;
    jk=1;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
    fprintf(ficres,"# Parameters\n");        }
    printf("# Parameters\n");      fprintf(ficreseij,"\n");
    for(i=1,jk=1; i <=nlstate; i++){     
      for(k=1; k <=(nlstate+ndeath); k++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        if (k != i)      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            printf("%d%d ",i,k);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
            fprintf(ficres,"%1d%1d ",i,k);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    printf("\n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficlog,"\n");
              jk++;  
            }    free_vector(xp,1,npar);
            printf("\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            fprintf(ficres,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
          }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }  }
    }  
  if(mle==1){  /************ Variance ******************/
     /* Computing hessian and covariance matrix */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     ftolhess=ftol; /* Usually correct */  {
     hesscov(matcov, p, npar, delti, ftolhess, func);    /* Variance of health expectancies */
  }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fprintf(ficres,"# Scales\n");    /* double **newm;*/
     printf("# Scales\n");    double **dnewm,**doldm;
      for(i=1,jk=1; i <=nlstate; i++){    double **dnewmp,**doldmp;
       for(j=1; j <=nlstate+ndeath; j++){    int i, j, nhstepm, hstepm, h, nstepm ;
         if (j!=i) {    int k, cptcode;
           fprintf(ficres,"%1d%1d",i,j);    double *xp;
           printf("%1d%1d",i,j);    double **gp, **gm;  /* for var eij */
           for(k=1; k<=ncovmodel;k++){    double ***gradg, ***trgradg; /*for var eij */
             printf(" %.5e",delti[jk]);    double **gradgp, **trgradgp; /* for var p point j */
             fprintf(ficres," %.5e",delti[jk]);    double *gpp, *gmp; /* for var p point j */
             jk++;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           }    double ***p3mat;
           printf("\n");    double age,agelim, hf;
           fprintf(ficres,"\n");    double ***mobaverage;
         }    int theta;
       }    char digit[4];
       }    char digitp[25];
      
     k=1;    char fileresprobmorprev[FILENAMELENGTH];
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");    if(popbased==1){
     for(i=1;i<=npar;i++){      if(mobilav!=0)
       /*  if (k>nlstate) k=1;        strcpy(digitp,"-populbased-mobilav-");
       i1=(i-1)/(ncovmodel*nlstate)+1;      else strcpy(digitp,"-populbased-nomobil-");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    else 
       fprintf(ficres,"%3d",i);      strcpy(digitp,"-stablbased-");
       printf("%3d",i);  
       for(j=1; j<=i;j++){    if (mobilav!=0) {
         fprintf(ficres," %.5e",matcov[i][j]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf(" %.5e",matcov[i][j]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficres,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       printf("\n");      }
       k++;    }
     }  
        strcpy(fileresprobmorprev,"prmorprev"); 
     while((c=getc(ficpar))=='#' && c!= EOF){    sprintf(digit,"%-d",ij);
       ungetc(c,ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       puts(line);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fputs(line,ficparo);    strcat(fileresprobmorprev,fileres);
     }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    }
        printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if (fage <= 2) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       bage = agemin;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fage = agemax;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
        fprintf(ficresprobmorprev,"\n");
 /*------------ gnuplot -------------*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 chdir(pathcd);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   if((ficgp=fopen("graph.plt","w"))==NULL) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     printf("Problem with file graph.gp");goto end;      exit(0);
   }    }
 #ifdef windows    else{
   fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(ficgp,"\n# Routine varevsij");
 #endif    }
 m=pow(2,cptcoveff);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
        printf("Problem with html file: %s\n", optionfilehtm);
  /* 1eme*/      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   for (cpt=1; cpt<= nlstate ; cpt ++) {      exit(0);
    for (k1=1; k1<= m ; k1 ++) {    }
     else{
 #ifdef windows      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 #endif    }
 #ifdef unix    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
 for (i=1; i<= nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 }    fprintf(ficresvij,"\n");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    xp=vector(1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate,1,nlstate);
 }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    gpp=vector(nlstate+1,nlstate+ndeath);
 }      gmp=vector(nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 #ifdef unix    
 fprintf(ficgp,"\nset ter gif small size 400,300");    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
    }    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   /*2 eme*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   for (k1=1; k1<= m ; k1 ++) {       nstepm is the number of stepm from age to agelin. 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like k years */
     for (i=1; i<= nlstate+1 ; i ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       k=2*i;       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       means that if the survival funtion is printed every two years of age and if
       for (j=1; j<= nlstate+1 ; j ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       results. So we changed our mind and took the option of the best precision.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    agelim = AGESUP;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for (j=1; j<= nlstate+1 ; j ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 }        gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,"\" t\"\" w l 0,");      gm=matrix(0,nhstepm,1,nlstate);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(theta=1; theta <=npar; theta++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 }            xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }
       else fprintf(ficgp,"\" t\"\" w l 0,");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }        if (popbased==1) {
            if(mobilav ==0){
   /*3eme*/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   for (k1=1; k1<= m ; k1 ++) {          }else{ /* mobilav */ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for(i=1; i<=nlstate;i++)
       k=2+nlstate*(cpt-1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          }
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    
       }        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   /* CV preval stat */        }
   for (k1=1; k1<= m ; k1 ++) {        /* This for computing probability of death (h=1 means
     for (cpt=1; cpt<nlstate ; cpt ++) {           computed over hstepm matrices product = hstepm*stepm months) 
       k=3;           as a weighted average of prlim.
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        */
       for (i=1; i< nlstate ; i ++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,"+$%d",k+i+1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
              }    
       l=3+(nlstate+ndeath)*cpt;        /* end probability of death */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         l=3+(nlstate+ndeath)*cpt;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp,"+$%d",l+i+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if (popbased==1) {
     }          if(mobilav ==0){
   }              for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* proba elementaires */          }else{ /* mobilav */ 
    for(i=1,jk=1; i <=nlstate; i++){            for(i=1; i<=nlstate;i++)
     for(k=1; k <=(nlstate+ndeath); k++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       if (k != i) {          }
         for(j=1; j <=ncovmodel; j++){        }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/        for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(h=0; h<=nhstepm; h++){
           jk++;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,"\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
     }        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   for(jk=1; jk <=m; jk++) {        */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    i=1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    for(k2=1; k2<=nlstate; k2++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      k3=i;        }    
      for(k=1; k<=(nlstate+ndeath); k++) {        /* end probability of death */
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<= nlstate; j++) /* vareij */
 ij=1;          for(h=0; h<=nhstepm; h++){
         for(j=3; j <=ncovmodel; j++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           else        }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }      } /* End theta */
           fprintf(ficgp,")/(1");  
              trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(h=0; h<=nhstepm; h++) /* veij */
 ij=1;        for(j=1; j<=nlstate;j++)
           for(j=3; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            trgradg[h][j][theta]=gradg[h][theta][j];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           }        for(theta=1; theta <=npar; theta++)
           else          trgradgp[j][theta]=gradgp[theta][j];
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
           }  
           fprintf(ficgp,")");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      for(i=1;i<=nlstate;i++)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(j=1;j<=nlstate;j++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          vareij[i][j][(int)age] =0.;
         i=i+ncovmodel;  
        }      for(h=0;h<=nhstepm;h++){
      }        for(k=0;k<=nhstepm;k++){
    }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
   fclose(ficgp);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
 chdir(path);      }
     free_matrix(agev,1,maxwav,1,imx);    
     free_ivector(wav,1,imx);      /* pptj */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_imatrix(s,1,maxwav+1,1,n);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
              varppt[j][i]=doldmp[j][i];
          /* end ppptj */
     free_ivector(num,1,n);      /*  x centered again */
     free_vector(agedc,1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     free_vector(weight,1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/   
     fclose(ficparo);      if (popbased==1) {
     fclose(ficres);        if(mobilav ==0){
     /*  }*/          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
    /*________fin mle=1_________*/        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
          }
     /* No more information from the sample is required now */      }
   /* Reads comments: lines beginning with '#' */               
   while((c=getc(ficpar))=='#' && c!= EOF){      /* This for computing probability of death (h=1 means
     ungetc(c,ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fgets(line, MAXLINE, ficpar);         as a weighted average of prlim.
     puts(line);      */
     fputs(line,ficparo);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      /* end probability of death */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 /*--------- index.htm --------*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcpy(optionfilehtm,optionfile);        for(i=1; i<=nlstate;i++){
   strcat(optionfilehtm,".htm");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm);goto end;      } 
   }      fprintf(ficresprobmorprev,"\n");
   
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">      fprintf(ficresvij,"%.0f ",age );
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      for(i=1; i<=nlstate;i++)
 Total number of observations=%d <br>        for(j=1; j<=nlstate;j++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 <hr  size=\"2\" color=\"#EC5E5E\">        }
 <li>Outputs files<br><br>\n      fprintf(ficresvij,"\n");
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      free_matrix(gp,0,nhstepm,1,nlstate);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      free_matrix(gm,0,nhstepm,1,nlstate);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    } /* End age */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    free_vector(gpp,nlstate+1,nlstate+ndeath);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    free_vector(gmp,nlstate+1,nlstate+ndeath);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
  fprintf(fichtm," <li>Graphs</li><p>");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  m=cptcoveff;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
  j1=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
  for(k1=1; k1<=m;k1++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
        j1++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
        if (cptcovn > 0) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  */
          for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_vector(xp,1,npar);
        }    free_matrix(doldm,1,nlstate,1,nlstate);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    free_matrix(dnewm,1,nlstate,1,npar);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        for(cpt=1; cpt<nlstate;cpt++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        }    fclose(ficresprobmorprev);
     for(cpt=1; cpt<=nlstate;cpt++) {    fclose(ficgp);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fclose(fichtm);
 interval) in state (%d): v%s%d%d.gif <br>  }  /* end varevsij */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }  /************ Variance of prevlim ******************/
      for(cpt=1; cpt<=nlstate;cpt++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Variance of prevalence limit */
      }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double **newm;
 health expectancies in states (1) and (2): e%s%d.gif<br>    double **dnewm,**doldm;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    int i, j, nhstepm, hstepm;
 fprintf(fichtm,"\n</body>");    int k, cptcode;
    }    double *xp;
  }    double *gp, *gm;
 fclose(fichtm);    double **gradg, **trgradg;
     double age,agelim;
   /*--------------- Prevalence limit --------------*/    int theta;
       
   strcpy(filerespl,"pl");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   strcat(filerespl,fileres);    fprintf(ficresvpl,"# Age");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");    xp=vector(1,npar);
   fprintf(ficrespl,"#Age ");    dnewm=matrix(1,nlstate,1,npar);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficrespl,"\n");    
      hstepm=1*YEARM; /* Every year of age */
   prlim=matrix(1,nlstate,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim = AGESUP;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (stepm >= YEARM) hstepm=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   k=0;      gradg=matrix(1,npar,1,nlstate);
   agebase=agemin;      gp=vector(1,nlstate);
   agelim=agemax;      gm=vector(1,nlstate);
   ftolpl=1.e-10;  
   i1=cptcoveff;      for(theta=1; theta <=npar; theta++){
   if (cptcovn < 1){i1=1;}        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         k=k+1;        for(i=1;i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          gp[i] = prlim[i][i];
         fprintf(ficrespl,"\n#******");      
         for(j=1;j<=cptcoveff;j++)        for(i=1; i<=npar; i++) /* Computes gradient */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrespl,"******\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){          gm[i] = prlim[i][i];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );        for(i=1;i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           fprintf(ficrespl," %.5f", prlim[i][i]);      } /* End theta */
           fprintf(ficrespl,"\n");  
         }      trgradg =matrix(1,nlstate,1,npar);
       }  
     }      for(j=1; j<=nlstate;j++)
   fclose(ficrespl);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   /*------------- h Pij x at various ages ------------*/  
        for(i=1;i<=nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        varpl[i][(int)age] =0.;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   printf("Computing pij: result on file '%s' \n", filerespij);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresvpl,"%.0f ",age );
   /*if (stepm<=24) stepsize=2;*/      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   agelim=AGESUP;      fprintf(ficresvpl,"\n");
   hstepm=stepsize*YEARM; /* Every year of age */      free_vector(gp,1,nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
   k=0;      free_matrix(trgradg,1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    } /* End age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    free_vector(xp,1,npar);
         fprintf(ficrespij,"\n#****** ");    free_matrix(doldm,1,nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)    free_matrix(dnewm,1,nlstate,1,nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  }
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /************ Variance of one-step probabilities  ******************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j=0,  i1, k1, l1, t, tj;
           oldm=oldms;savm=savms;    int k2, l2, j1,  z1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int k=0,l, cptcode;
           fprintf(ficrespij,"# Age");    int first=1, first1;
           for(i=1; i<=nlstate;i++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
             for(j=1; j<=nlstate+ndeath;j++)    double **dnewm,**doldm;
               fprintf(ficrespij," %1d-%1d",i,j);    double *xp;
           fprintf(ficrespij,"\n");    double *gp, *gm;
           for (h=0; h<=nhstepm; h++){    double **gradg, **trgradg;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **mu;
             for(i=1; i<=nlstate;i++)    double age,agelim, cov[NCOVMAX];
               for(j=1; j<=nlstate+ndeath;j++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int theta;
             fprintf(ficrespij,"\n");    char fileresprob[FILENAMELENGTH];
           }    char fileresprobcov[FILENAMELENGTH];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresprobcor[FILENAMELENGTH];
           fprintf(ficrespij,"\n");  
         }    double ***varpij;
     }  
   }    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   fclose(ficrespij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /*---------- Forecasting ------------------*/    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   strcpy(fileresf,"f");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   strcat(fileresf,fileres);      printf("Problem with resultfile: %s\n", fileresprobcov);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    }
   }    strcpy(fileresprobcor,"probcor"); 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   /* Mobile average */      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /* for (agedeb=bage; agedeb<=fage; agedeb++)    }
     for (i=1; i<=nlstate;i++)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    fprintf(ficresprob,"# Age");
       for (i=1; i<=nlstate;i++)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(ficresprobcov,"# Age");
           mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcov,"# Age");
     for (agedeb=bage+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){      for(j=1; j<=(nlstate+ndeath);j++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         }      }  
       }   /* fprintf(ficresprob,"\n");
     }      fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
    */
   stepsize=(int) (stepm+YEARM-1)/YEARM;   xp=vector(1,npar);
   if (stepm<=24) stepsize=2;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   agelim=AGESUP;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   hstepm=stepsize*YEARM; /* Every year of age */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    first=1;
   hstepm=12;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
    k=0;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      exit(0);
       k=k+1;    }
       fprintf(ficresf,"\n#****** ");    else{
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficgp,"\n# Routine varprob");
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
            printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficresf,"******\n");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for (agedeb=fage; agedeb>=bage; agedeb--){      fprintf(fichtm,"\n");
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);  
        if (mobilav==1) {      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
         for(j=1; j<=nlstate;j++)      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         }  
         else {    }
           for(j=1; j<=nlstate;j++)  
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);    cov[1]=1;
         }    tj=cptcoveff;
            if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");    j1=0;
       }    for(t=1; t<=tj;t++){
       for (cpt=1; cpt<=NCOVMAX;cpt++)        for(i1=1; i1<=ncodemax[t];i1++){ 
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        j1++;
                if  (cptcovn>0) {
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresprob, "\n#********** Variable "); 
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         oldm=oldms;savm=savms;          fprintf(ficresprobcov, "**********\n#\n");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            
                          fprintf(ficgp, "\n#********** Variable "); 
         for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficgp, "**********\n#\n");
           if (h*hstepm/YEARM*stepm==cpt)          
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);          
                    fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for(j=1; j<=nlstate+ndeath;j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             kk1=0.;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             for(i=1; i<=nlstate;i++) {                  
               if (mobilav==1)          fprintf(ficresprobcor, "\n#********** Variable ");    
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];          fprintf(ficresprobcor, "**********\n#");    
             }            }
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);        
           }        for (age=bage; age<=fage; age ++){ 
         }          cov[2]=age;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (k=1; k<=cptcovprod;k++)
   fclose(ficresf);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*---------- Health expectancies and variances ------------*/          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   strcpy(filerest,"t");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcat(filerest,fileres);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficrest=fopen(filerest,"w"))==NULL) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      
   }          for(theta=1; theta <=npar; theta++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   strcpy(filerese,"e");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   strcat(filerese,fileres);            
   if((ficreseij=fopen(filerese,"w"))==NULL) {            k=0;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            for(i=1; i<= (nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                k=k+1;
                 gp[k]=pmmij[i][j];
  strcpy(fileresv,"v");              }
   strcat(fileresv,fileres);            }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   k=0;            k=0;
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=(nlstate); i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(j=1; j<=(nlstate+ndeath);j++){
       k=k+1;                k=k+1;
       fprintf(ficrest,"\n#****** ");                gm[k]=pmmij[i][j];
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficrest,"******\n");       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficreseij,"\n#****** ");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
       fprintf(ficresvij,"\n#****** ");              trgradg[j][theta]=gradg[theta][j];
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficresvij,"******\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       oldm=oldms;savm=savms;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;          pmij(pmmij,cov,ncovmodel,x,nlstate);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          
                k=0;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for(i=1; i<=(nlstate); i++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"\n");              k=k+1;
                      mu[k][(int) age]=pmmij[i][j];
       hf=1;            }
       if (stepm >= YEARM) hf=stepm/YEARM;          }
       epj=vector(1,nlstate+1);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       for(age=bage; age <=fage ;age++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              varpij[i][j][(int)age] = doldm[i][j];
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)          /*printf("\n%d ",(int)age);
             prlim[i][i]=probs[(int)age][i][k];            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         fprintf(ficrest," %.0f",age);            }*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficresprob,"\n%d ",(int)age);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          fprintf(ficresprobcov,"\n%d ",(int)age);
           }          fprintf(ficresprobcor,"\n%d ",(int)age);
           epj[nlstate+1] +=epj[j];  
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         for(i=1, vepp=0.;i <=nlstate;i++)            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for(j=1;j <=nlstate;j++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             vepp += vareij[i][j][(int)age];            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         for(j=1;j <=nlstate;j++){          }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          i=0;
         }          for (k=1; k<=(nlstate);k++){
         fprintf(ficrest,"\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
       }              i=i++;
     }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                      for (j=1; j<=i;j++){
                        fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
  fclose(ficreseij);            }
  fclose(ficresvij);          }/* end of loop for state */
   fclose(ficrest);        } /* end of loop for age */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);        /* Confidence intervalle of pij  */
   /*  scanf("%d ",i); */        /*
           fprintf(ficgp,"\nset noparametric;unset label");
   /*------- Variance limit prevalence------*/            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 strcpy(fileresvpl,"vpl");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   strcat(fileresvpl,fileres);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     exit(0);        */
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
  k=0;        for (k2=1; k2<=(nlstate);k2++){
  for(cptcov=1;cptcov<=i1;cptcov++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            if(l2==k2) continue;
      k=k+1;            j=(k2-1)*(nlstate+ndeath)+l2;
      fprintf(ficresvpl,"\n#****** ");            for (k1=1; k1<=(nlstate);k1++){
      for(j=1;j<=cptcoveff;j++)              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if(l1==k1) continue;
      fprintf(ficresvpl,"******\n");                i=(k1-1)*(nlstate+ndeath)+l1;
                      if(i<=j) continue;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                for (age=bage; age<=fage; age ++){ 
      oldm=oldms;savm=savms;                  if ((int)age %5==0){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
    }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   fclose(ficresvpl);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   /*---------- End : free ----------------*/                    /* Computing eigen value of matrix of covariance */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    /* Eigen vectors */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    v12=-v21;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    v22=v11;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    tnalp=v21/v11;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    if(first1==1){
                        first1=0;
   free_matrix(matcov,1,npar,1,npar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_vector(delti,1,npar);                    }
                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   printf("End of Imach\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    if(first==1){
                        first=0;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                      fprintf(ficgp,"\nset parametric;unset label");
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /*------ End -----------*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
  end:                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 #ifdef windows                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
  chdir(pathcd);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 #endif                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  system("..\\gp37mgw\\wgnuplot graph.plt");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 #ifdef windows                    }else{
   while (z[0] != 'q') {                      first=0;
     chdir(pathcd);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     scanf("%s",z);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if (z[0] == 'c') system("./imach");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     else if (z[0] == 'e') {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       chdir(path);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       system(optionfilehtm);                    }/* if first */
     }                  } /* age mod 5 */
     else if (z[0] == 'q') exit(0);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
 #endif                first=1;
 }              } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Localtime (at start)=%s",strt); 
     fprintf(ficlog,"Localtime (at start)=%s",strt); 
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.14  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>