Diff for /imach/src/imach.c between versions 1.6 and 1.85

version 1.6, 2001/05/02 17:47:10 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.85  2003/06/17 13:12:43  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Check when date of death was earlier that
   or degree of  disability. At least a second wave of interviews    current date of interview. It may happen when the death was just
   ("longitudinal") should  measure each new individual health status.    prior to the death. In this case, dh was negative and likelihood
   Health expectancies are computed from the transistions observed between    was wrong (infinity). We still send an "Error" but patch by
   waves and are computed for each degree of severity of disability (number    assuming that the date of death was just one stepm after the
   of life states). More degrees you consider, more time is necessary to    interview.
   reach the Maximum Likelihood of the parameters involved in the model.    (Repository): Because some people have very long ID (first column)
   The simplest model is the multinomial logistic model where pij is    we changed int to long in num[] and we added a new lvector for
   the probabibility to be observed in state j at the second wave conditional    memory allocation. But we also truncated to 8 characters (left
   to be observed in state i at the first wave. Therefore the model is:    truncation)
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): No more line truncation errors.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.84  2003/06/13 21:44:43  brouard
     *Covariates have to be included here again* invites you to do it.    * imach.c (Repository): Replace "freqsummary" at a correct
   More covariates you add, less is the speed of the convergence.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   The advantage that this computer programme claims, comes from that if the    parcimony.
   delay between waves is not identical for each individual, or if some    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.83  2003/06/10 13:39:11  lievre
   hPijx is the probability to be    *** empty log message ***
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.82  2003/06/05 15:57:20  brouard
   unobserved intermediate  states. This elementary transition (by month or    Add log in  imach.c and  fullversion number is now printed.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  */
   and the contribution of each individual to the likelihood is simply hPijx.  /*
      Interpolated Markov Chain
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Short summary of the programme:
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    This program computes Healthy Life Expectancies from
            Institut national d'études démographiques, Paris.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   This software have been partly granted by Euro-REVES, a concerted action    first survey ("cross") where individuals from different ages are
   from the European Union.    interviewed on their health status or degree of disability (in the
   It is copyrighted identically to a GNU software product, ie programme and    case of a health survey which is our main interest) -2- at least a
   software can be distributed freely for non commercial use. Latest version    second wave of interviews ("longitudinal") which measure each change
   can be accessed at http://euroreves.ined.fr/imach .    (if any) in individual health status.  Health expectancies are
   **********************************************************************/    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 #include <math.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <stdio.h>    simplest model is the multinomial logistic model where pij is the
 #include <stdlib.h>    probability to be observed in state j at the second wave
 #include <unistd.h>    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXLINE 256    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FILENAMELENGTH 80    complex model than "constant and age", you should modify the program
 /*#define DEBUG*/    where the markup *Covariates have to be included here again* invites
 #define windows    you to do it.  More covariates you add, slower the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    convergence.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The advantage of this computer programme, compared to a simple
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    multinomial logistic model, is clear when the delay between waves is not
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define NINTERVMAX 8    account using an interpolation or extrapolation.  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx is the probability to be observed in state i at age x+h
 #define NCOVMAX 8 /* Maximum number of covariates */    conditional to the observed state i at age x. The delay 'h' can be
 #define MAXN 20000    split into an exact number (nh*stepm) of unobserved intermediate
 #define YEARM 12. /* Number of months per year */    states. This elementary transition (by month, quarter,
 #define AGESUP 130    semester or year) is modelled as a multinomial logistic.  The hPx
 #define AGEBASE 40    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
     hPijx.
 int nvar;  
 static int cptcov;    Also this programme outputs the covariance matrix of the parameters but also
 int cptcovn, cptcovage=0;    of the life expectancies. It also computes the stable prevalence. 
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int ndeath=1; /* Number of dead states */             Institut national d'études démographiques, Paris.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 int *wav; /* Number of waves for this individuual 0 is possible */    It is copyrighted identically to a GNU software product, ie programme and
 int maxwav; /* Maxim number of waves */    software can be distributed freely for non commercial use. Latest version
 int mle, weightopt;    can be accessed at http://euroreves.ined.fr/imach .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **oldm, **newm, **savm; /* Working pointers to matrices */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    **********************************************************************/
 FILE *ficgp, *fichtm;  /*
 FILE *ficreseij;    main
   char filerese[FILENAMELENGTH];    read parameterfile
  FILE  *ficresvij;    read datafile
   char fileresv[FILENAMELENGTH];    concatwav
  FILE  *ficresvpl;    freqsummary
   char fileresvpl[FILENAMELENGTH];    if (mle >= 1)
       mlikeli
 #define NR_END 1    print results files
 #define FREE_ARG char*    if mle==1 
 #define FTOL 1.0e-10       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NRANSI        begin-prev-date,...
 #define ITMAX 200    open gnuplot file
     open html file
 #define TOL 2.0e-4    stable prevalence
      for age prevalim()
 #define CGOLD 0.3819660    h Pij x
 #define ZEPS 1.0e-10    variance of p varprob
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 #define GOLD 1.618034    Variance-covariance of DFLE
 #define GLIMIT 100.0    prevalence()
 #define TINY 1.0e-20     movingaverage()
     varevsij() 
 static double maxarg1,maxarg2;    if popbased==1 varevsij(,popbased)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    total life expectancies
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Variance of stable prevalence
     end
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  */
 #define rint(a) floor(a+0.5)  
   
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)   
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <math.h>
   #include <stdio.h>
 int imx;  #include <stdlib.h>
 int stepm;  #include <unistd.h>
 /* Stepm, step in month: minimum step interpolation*/  
   #define MAXLINE 256
 int m,nb;  #define GNUPLOTPROGRAM "gnuplot"
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define FILENAMELENGTH 132
 double **pmmij;  /*#define DEBUG*/
   /*#define windows*/
 double *weight;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **s; /* Status */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 static  int split( char *path, char *dirc, char *name )  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
    char *s;                             /* pointer */  #define YEARM 12. /* Number of months per year */
    int  l1, l2;                         /* length counters */  #define AGESUP 130
   #define AGEBASE 40
    l1 = strlen( path );                 /* length of path */  #ifdef unix
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '/'
    s = strrchr( path, '\\' );           /* find last / */  #define ODIRSEPARATOR '\\'
    if ( s == NULL ) {                   /* no directory, so use current */  #else
 #if     defined(__bsd__)                /* get current working directory */  #define DIRSEPARATOR '\\'
       extern char       *getwd( );  #define ODIRSEPARATOR '/'
   #endif
       if ( getwd( dirc ) == NULL ) {  
 #else  /* $Id$ */
       extern char       *getcwd( );  /* $State$ */
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
          return( GLOCK_ERROR_GETCWD );  int erreur; /* Error number */
       }  int nvar;
       strcpy( name, path );             /* we've got it */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    } else {                             /* strip direcotry from path */  int npar=NPARMAX;
       s++;                              /* after this, the filename */  int nlstate=2; /* Number of live states */
       l2 = strlen( s );                 /* length of filename */  int ndeath=1; /* Number of dead states */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       strcpy( name, s );                /* save file name */  int popbased=0;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  int *wav; /* Number of waves for this individuual 0 is possible */
    }  int maxwav; /* Maxim number of waves */
    l1 = strlen( dirc );                 /* length of directory */  int jmin, jmax; /* min, max spacing between 2 waves */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int mle, weightopt;
    return( 0 );                         /* we're done */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /******************************************/  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 void replace(char *s, char*t)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int i;  FILE *ficlog, *ficrespow;
   int lg=20;  int globpr; /* Global variable for printing or not */
   i=0;  double fretone; /* Only one call to likelihood */
   lg=strlen(t);  long ipmx; /* Number of contributions */
   for(i=0; i<= lg; i++) {  double sw; /* Sum of weights */
     (s[i] = t[i]);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if (t[i]== '\\') s[i]='/';  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 int nbocc(char *s, char occ)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int i,j=0;  FILE  *ficresvij;
   int lg=20;  char fileresv[FILENAMELENGTH];
   i=0;  FILE  *ficresvpl;
   lg=strlen(s);  char fileresvpl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char title[MAXLINE];
   if  (s[i] == occ ) j++;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   return j;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
 void cutv(char *u,char *v, char*t, char occ)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   int i,lg,j,p=0;  char popfile[FILENAMELENGTH];
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NR_END 1
   #define FREE_ARG char*
   lg=strlen(t);  #define FTOL 1.0e-10
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NRANSI 
   }  #define ITMAX 200 
      u[p]='\0';  
   #define TOL 2.0e-4 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /********************** nrerror ********************/  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void nrerror(char error_text[])  #define TINY 1.0e-20 
 {  
   fprintf(stderr,"ERREUR ...\n");  static double maxarg1,maxarg2;
   fprintf(stderr,"%s\n",error_text);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   exit(1);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
 /*********************** vector *******************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *vector(int nl, int nh)  #define rint(a) floor(a+0.5)
 {  
   double *v;  static double sqrarg;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!v) nrerror("allocation failure in vector");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return v-nl+NR_END;  
 }  int imx; 
   int stepm;
 /************************ free vector ******************/  /* Stepm, step in month: minimum step interpolation*/
 void free_vector(double*v, int nl, int nh)  
 {  int estepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /************************ivector *******************************/  long *num;
 int *ivector(long nl,long nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int *v;  double **pmmij, ***probs;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double dateintmean=0;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /******************free ivector **************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void free_ivector(int *v, long nl, long nh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free((FREE_ARG)(v+nl-NR_END));  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /******************* imatrix *******************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 int **imatrix(long nrl, long nrh, long ncl, long nch)  {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* allocate pointers to rows */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m -= nrl;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   /* allocate rows and set pointers to them */        return( GLOCK_ERROR_GETCWD );
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, path );               /* we've got it */
   m[nrl] += NR_END;    } else {                              /* strip direcotry from path */
   m[nrl] -= ncl;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   /* return pointer to array of pointers to rows */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   return m;      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /****************** free_imatrix *************************/    /*#ifdef windows
 void free_imatrix(m,nrl,nrh,ncl,nch)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       int **m;  #else
       long nch,ncl,nrh,nrl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
      /* free an int matrix allocated by imatrix() */  #endif
 {    */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG) (m+nrl-NR_END));    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /******************* matrix *******************************/    l2= strlen(ss)+1;
 double **matrix(long nrl, long nrh, long ncl, long nch)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return( 0 );                          /* we're done */
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************************************/
   m += NR_END;  
   m -= nrl;  void replace(char *s, char*t)
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int lg=20;
   m[nrl] += NR_END;    i=0;
   m[nrl] -= ncl;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      (s[i] = t[i]);
   return m;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i,j=0;
   free((FREE_ARG)(m+nrl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(s);
 /******************* ma3x *******************************/    for(i=0; i<= lg; i++) {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if  (s[i] == occ ) j++;
 {    }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return j;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m -= nrl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i,lg,j,p=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl] -= ncl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     lg=strlen(t);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      (u[j] = t[j]);
   m[nrl][ncl] += NR_END;    }
   m[nrl][ncl] -= nll;       u[p]='\0';
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /********************** nrerror ********************/
   }  
   return m;  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*************************free ma3x ************************/    fprintf(stderr,"%s\n",error_text);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    exit(EXIT_FAILURE);
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /*********************** vector *******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *vector(int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!v) nrerror("allocation failure in vector");
 extern int ncom;    return v-nl+NR_END;
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    /************************ free vector ******************/
 double f1dim(double x)  void free_vector(double*v, int nl, int nh)
 {  {
   int j;    free((FREE_ARG)(v+nl-NR_END));
   double f;  }
   double *xt;  
    /************************ivector *******************************/
   xt=vector(1,ncom);  int *ivector(long nl,long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    int *v;
   free_vector(xt,1,ncom);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   return f;    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   int iter;  {
   double a,b,d,etemp;    free((FREE_ARG)(v+nl-NR_END));
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /************************lvector *******************************/
   double e=0.0;  long *lvector(long nl,long nh)
    {
   a=(ax < cx ? ax : cx);    long *v;
   b=(ax > cx ? ax : cx);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   x=w=v=bx;    if (!v) nrerror("allocation failure in ivector");
   fw=fv=fx=(*f)(x);    return v-nl+NR_END;
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /******************free lvector **************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_lvector(long *v, long nl, long nh)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************* imatrix *******************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       *xmin=x;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       return fx;  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     ftemp=fu;    int **m; 
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    /* allocate pointers to rows */ 
       q=(x-v)*(fx-fw);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       p=(x-v)*q-(x-w)*r;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       q=2.0*(q-r);    m += NR_END; 
       if (q > 0.0) p = -p;    m -= nrl; 
       q=fabs(q);    
       etemp=e;    
       e=d;    /* allocate rows and set pointers to them */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       else {    m[nrl] += NR_END; 
         d=p/q;    m[nrl] -= ncl; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           d=SIGN(tol1,xm-x);    
       }    /* return pointer to array of pointers to rows */ 
     } else {    return m; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  } 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /****************** free_imatrix *************************/
     fu=(*f)(u);  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (fu <= fx) {        int **m;
       if (u >= x) a=x; else b=x;        long nch,ncl,nrh,nrl; 
       SHFT(v,w,x,u)       /* free an int matrix allocated by imatrix() */ 
         SHFT(fv,fw,fx,fu)  { 
         } else {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           if (u < x) a=u; else b=u;    free((FREE_ARG) (m+nrl-NR_END)); 
           if (fu <= fw || w == x) {  } 
             v=w;  
             w=u;  /******************* matrix *******************************/
             fv=fw;  double **matrix(long nrl, long nrh, long ncl, long nch)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             v=u;    double **m;
             fv=fu;  
           }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   nrerror("Too many iterations in brent");    m -= nrl;
   *xmin=x;  
   return fx;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /****************** mnbrak ***********************/    m[nrl] -= ncl;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             double (*func)(double))    return m;
 {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double ulim,u,r,q, dum;     */
   double fu;  }
    
   *fa=(*func)(*ax);  /*************************free matrix ************************/
   *fb=(*func)(*bx);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(m+nrl-NR_END));
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************* ma3x *******************************/
   while (*fb > *fc) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double ***m;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if ((*bx-u)*(u-*cx) > 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m -= nrl;
       fu=(*func)(u);  
       if (fu < *fc) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);  
     } else {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fu=(*func)(u);    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
     SHFT(*ax,*bx,*cx,u)    for (j=ncl+1; j<=nch; j++) 
       SHFT(*fa,*fb,*fc,fu)      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** linmin ************************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 int ncom;    }
 double *pcom,*xicom;    return m; 
 double (*nrfunc)(double []);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    */
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /*************************free ma3x ************************/
   double f1dim(double x);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double xx,xmin,bx,ax;    free((FREE_ARG)(m+nrl-NR_END));
   double fx,fb,fa;  }
    
   ncom=n;  /***************** f1dim *************************/
   pcom=vector(1,n);  extern int ncom; 
   xicom=vector(1,n);  extern double *pcom,*xicom;
   nrfunc=func;  extern double (*nrfunc)(double []); 
   for (j=1;j<=n;j++) {   
     pcom[j]=p[j];  double f1dim(double x) 
     xicom[j]=xi[j];  { 
   }    int j; 
   ax=0.0;    double f;
   xx=1.0;    double *xt; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    xt=vector(1,ncom); 
 #ifdef DEBUG    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
   for (j=1;j<=n;j++) {    return f; 
     xi[j] *= xmin;  } 
     p[j] += xi[j];  
   }  /*****************brent *************************/
   free_vector(xicom,1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   free_vector(pcom,1,n);  { 
 }    int iter; 
     double a,b,d,etemp;
 /*************** powell ************************/    double fu,fv,fw,fx;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double ftemp;
             double (*func)(double []))    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   void linmin(double p[], double xi[], int n, double *fret,   
               double (*func)(double []));    a=(ax < cx ? ax : cx); 
   int i,ibig,j;    b=(ax > cx ? ax : cx); 
   double del,t,*pt,*ptt,*xit;    x=w=v=bx; 
   double fp,fptt;    fw=fv=fx=(*f)(x); 
   double *xits;    for (iter=1;iter<=ITMAX;iter++) { 
   pt=vector(1,n);      xm=0.5*(a+b); 
   ptt=vector(1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   xit=vector(1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   xits=vector(1,n);      printf(".");fflush(stdout);
   *fret=(*func)(p);      fprintf(ficlog,".");fflush(ficlog);
   for (j=1;j<=n;j++) pt[j]=p[j];  #ifdef DEBUG
   for (*iter=1;;++(*iter)) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fp=(*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     ibig=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     del=0.0;  #endif
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=n;i++)        *xmin=x; 
       printf(" %d %.12f",i, p[i]);        return fx; 
     printf("\n");      } 
     for (i=1;i<=n;i++) {      ftemp=fu;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (fabs(e) > tol1) { 
       fptt=(*fret);        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       printf("fret=%lf \n",*fret);        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
       printf("%d",i);fflush(stdout);        if (q > 0.0) p = -p; 
       linmin(p,xit,n,fret,func);        q=fabs(q); 
       if (fabs(fptt-(*fret)) > del) {        etemp=e; 
         del=fabs(fptt-(*fret));        e=d; 
         ibig=i;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG        else { 
       printf("%d %.12e",i,(*fret));          d=p/q; 
       for (j=1;j<=n;j++) {          u=x+d; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          if (u-a < tol2 || b-u < tol2) 
         printf(" x(%d)=%.12e",j,xit[j]);            d=SIGN(tol1,xm-x); 
       }        } 
       for(j=1;j<=n;j++)      } else { 
         printf(" p=%.12e",p[j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("\n");      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (fu <= fx) { 
 #ifdef DEBUG        if (u >= x) a=x; else b=x; 
       int k[2],l;        SHFT(v,w,x,u) 
       k[0]=1;          SHFT(fv,fw,fx,fu) 
       k[1]=-1;          } else { 
       printf("Max: %.12e",(*func)(p));            if (u < x) a=u; else b=u; 
       for (j=1;j<=n;j++)            if (fu <= fw || w == x) { 
         printf(" %.12e",p[j]);              v=w; 
       printf("\n");              w=u; 
       for(l=0;l<=1;l++) {              fv=fw; 
         for (j=1;j<=n;j++) {              fw=fu; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            } else if (fu <= fv || v == x || v == w) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              v=u; 
         }              fv=fu; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            } 
       }          } 
 #endif    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
       free_vector(xit,1,n);    return fx; 
       free_vector(xits,1,n);  } 
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /****************** mnbrak ***********************/
       return;  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              double (*func)(double)) 
     for (j=1;j<=n;j++) {  { 
       ptt[j]=2.0*p[j]-pt[j];    double ulim,u,r,q, dum;
       xit[j]=p[j]-pt[j];    double fu; 
       pt[j]=p[j];   
     }    *fa=(*func)(*ax); 
     fptt=(*func)(ptt);    *fb=(*func)(*bx); 
     if (fptt < fp) {    if (*fb > *fa) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      SHFT(dum,*ax,*bx,dum) 
       if (t < 0.0) {        SHFT(dum,*fb,*fa,dum) 
         linmin(p,xit,n,fret,func);        } 
         for (j=1;j<=n;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
           xi[j][ibig]=xi[j][n];    *fc=(*func)(*cx); 
           xi[j][n]=xit[j];    while (*fb > *fc) { 
         }      r=(*bx-*ax)*(*fb-*fc); 
 #ifdef DEBUG      q=(*bx-*cx)*(*fb-*fa); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(j=1;j<=n;j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
           printf(" %.12e",xit[j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf("\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
 #endif        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
   }        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /**** Prevalence limit ****************/            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        u=ulim; 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else { 
      matrix by transitions matrix until convergence is reached */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   int i, ii,j,k;      } 
   double min, max, maxmin, maxmax,sumnew=0.;      SHFT(*ax,*bx,*cx,u) 
   double **matprod2();        SHFT(*fa,*fb,*fc,fu) 
   double **out, cov[NCOVMAX], **pmij();        } 
   double **newm;  } 
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************** linmin ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  int ncom; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
    
    cov[1]=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double brent(double ax, double bx, double cx, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){                 double (*f)(double), double tol, double *xmin); 
     newm=savm;    double f1dim(double x); 
     /* Covariates have to be included here again */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      cov[2]=agefin;                double *fc, double (*func)(double)); 
      int j; 
       for (k=1; k<=cptcovn;k++) {    double xx,xmin,bx,ax; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    double fx,fb,fa;
    
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/    ncom=n; 
       }    pcom=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    xicom=vector(1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrfunc=func; 
        for (j=1;j<=n;j++) { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     savm=oldm;    } 
     oldm=newm;    ax=0.0; 
     maxmax=0.;    xx=1.0; 
     for(j=1;j<=nlstate;j++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       min=1.;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         sumnew=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=1;j<=n;j++) { 
         max=FMAX(max,prlim[i][j]);      xi[j] *= xmin; 
         min=FMIN(min,prlim[i][j]);      p[j] += xi[j]; 
       }    } 
       maxmin=max-min;    free_vector(xicom,1,n); 
       maxmax=FMAX(maxmax,maxmin);    free_vector(pcom,1,n); 
     }  } 
     if(maxmax < ftolpl){  
       return prlim;  /*************** powell ************************/
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
 }  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 /*************** transition probabilities **********/                double (*func)(double [])); 
     int i,ibig,j; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double del,t,*pt,*ptt,*xit;
 {    double fp,fptt;
   double s1, s2;    double *xits;
   /*double t34;*/    pt=vector(1,n); 
   int i,j,j1, nc, ii, jj;    ptt=vector(1,n); 
     xit=vector(1,n); 
     for(i=1; i<= nlstate; i++){    xits=vector(1,n); 
     for(j=1; j<i;j++){    *fret=(*func)(p); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
         /*s2 += param[i][j][nc]*cov[nc];*/    for (*iter=1;;++(*iter)) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fp=(*fret); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      ibig=0; 
       }      del=0.0; 
       ps[i][j]=s2;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for(j=i+1; j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf(" %d %.12f",i, p[i]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog," %d %.12lf",i, p[i]);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficrespow," %.12lf", p[i]);
       }      }
       ps[i][j]=s2;      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");
   for(i=1; i<= nlstate; i++){      for (i=1;i<=n;i++) { 
      s1=0;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(j=1; j<i; j++)        fptt=(*fret); 
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath; j++)        printf("fret=%lf \n",*fret);
       s1+=exp(ps[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
     ps[i][i]=1./(s1+1.);  #endif
     for(j=1; j<i; j++)        printf("%d",i);fflush(stdout);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(j=i+1; j<=nlstate+ndeath; j++)        linmin(p,xit,n,fret,func); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fabs(fptt-(*fret)) > del) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          del=fabs(fptt-(*fret)); 
   } /* end i */          ibig=i; 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("%d %.12e",i,(*fret));
       ps[ii][jj]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
       ps[ii][ii]=1;        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){        for(j=1;j<=n;j++) {
      printf("%lf ",ps[ii][jj]);          printf(" p=%.12e",p[j]);
    }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n ");        }
     }        printf("\n");
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"\n");
 /*  #endif
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } 
   goto end;*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     return ps;  #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 /**************** Product of 2 matrices ******************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          printf(" %.12e",p[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          fprintf(ficlog," %.12e",p[j]);
   /* in, b, out are matrice of pointers which should have been initialized        }
      before: only the contents of out is modified. The function returns        printf("\n");
      a pointer to pointers identical to out */        fprintf(ficlog,"\n");
   long i, j, k;        for(l=0;l<=1;l++) {
   for(i=nrl; i<= nrh; i++)          for (j=1;j<=n;j++) {
     for(k=ncolol; k<=ncoloh; k++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         out[i][k] +=in[i][j]*b[j][k];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   return out;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   #endif
 /************* Higher Matrix Product ***************/  
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        free_vector(ptt,1,n); 
      duration (i.e. until        free_vector(pt,1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        return; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      Model is determined by parameters x and covariates have to be      for (j=1;j<=n;j++) { 
      included manually here.        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
      */        pt[j]=p[j]; 
       } 
   int i, j, d, h, k;      fptt=(*func)(ptt); 
   double **out, cov[NCOVMAX];      if (fptt < fp) { 
   double **newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */          linmin(p,xit,n,fret,func); 
   for (i=1;i<=nlstate+ndeath;i++)          for (j=1;j<=n;j++) { 
     for (j=1;j<=nlstate+ndeath;j++){            xi[j][ibig]=xi[j][n]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            xi[j][n]=xit[j]; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          }
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(h=1; h <=nhstepm; h++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(d=1; d <=hstepm; d++){          for(j=1;j<=n;j++){
       newm=savm;            printf(" %.12e",xit[j]);
       /* Covariates have to be included here again */            fprintf(ficlog," %.12e",xit[j]);
       cov[1]=1.;          }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          printf("\n");
       if (cptcovn>0){          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  #endif
     }        }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /**** Prevalence limit (stable prevalence)  ****************/
       oldm=newm;  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         po[i][j][h]=newm[i][j];       matrix by transitions matrix until convergence is reached */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
   } /* end h */    double **matprod2();
   return po;    double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   
 /*************** log-likelihood *************/    for (ii=1;ii<=nlstate+ndeath;ii++)
 double func( double *x)      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, ii, j, k, mi, d, kk;      }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;     cov[1]=1.;
   double sw; /* Sum of weights */   
   double lli; /* Individual log likelihood */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   long ipmx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /*extern weight */      newm=savm;
   /* We are differentiating ll according to initial status */      /* Covariates have to be included here again */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       cov[2]=agefin;
   /*for(i=1;i<imx;i++)    
 printf(" %d\n",s[4][i]);        for (k=1; k<=cptcovn;k++) {
   */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   cov[1]=1.;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovprod;k++)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             for(d=0; d<dh[mi][i]; d++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
               newm=savm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
               for (kk=1; kk<=cptcovage;kk++) {      savm=oldm;
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      oldm=newm;
                  /*printf("%d %d",kk,Tage[kk]);*/      maxmax=0.;
               }      for(j=1;j<=nlstate;j++){
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/        min=1.;
               /*cov[3]=pow(cov[2],2)/1000.;*/        max=0.;
         for(i=1; i<=nlstate; i++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          sumnew=0;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           savm=oldm;          prlim[i][j]= newm[i][j]/(1-sumnew);
           oldm=newm;          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
         }
       } /* end mult */        maxmin=max-min;
            maxmax=FMAX(maxmax,maxmin);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      if(maxmax < ftolpl){
       ipmx +=1;        return prlim;
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */  }
   } /* end of individual */  
   /*************** transition probabilities ***************/ 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    double s1, s2;
 }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   
 /*********** Maximum Likelihood Estimation ***************/      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {          /*s2 += param[i][j][nc]*cov[nc];*/
   int i,j, iter;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **xi,*delti;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double fret;        }
   xi=matrix(1,npar,1,npar);        ps[i][j]=s2;
   for (i=1;i<=npar;i++)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     for (j=1;j<=npar;j++)      }
       xi[i][j]=(i==j ? 1.0 : 0.0);      for(j=i+1; j<=nlstate+ndeath;j++){
   printf("Powell\n");        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   powell(p,xi,npar,ftol,&iter,&fret,func);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        ps[i][j]=s2;
       }
 }    }
       /*ps[3][2]=1;*/
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for(i=1; i<= nlstate; i++){
 {       s1=0;
   double  **a,**y,*x,pd;      for(j=1; j<i; j++)
   double **hess;        s1+=exp(ps[i][j]);
   int i, j,jk;      for(j=i+1; j<=nlstate+ndeath; j++)
   int *indx;        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
   double hessii(double p[], double delta, int theta, double delti[]);      for(j=1; j<i; j++)
   double hessij(double p[], double delti[], int i, int j);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(j=i+1; j<=nlstate+ndeath; j++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   hess=matrix(1,npar,1,npar);  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   printf("\nCalculation of the hessian matrix. Wait...\n");      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++){        ps[ii][jj]=0;
     printf("%d",i);fflush(stdout);        ps[ii][ii]=1;
     hess[i][i]=hessii(p,ftolhess,i,delti);      }
     /*printf(" %f ",p[i]);*/    }
   }  
   
   for (i=1;i<=npar;i++) {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=npar;j++)  {      for(jj=1; jj<= nlstate+ndeath; jj++){
       if (j>i) {       printf("%lf ",ps[ii][jj]);
         printf(".%d%d",i,j);fflush(stdout);     }
         hess[i][j]=hessij(p,delti,i,j);      printf("\n ");
         hess[j][i]=hess[i][j];      }
       }      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   printf("\n");    goto end;*/
       return ps;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  }
    
   a=matrix(1,npar,1,npar);  /**************** Product of 2 matrices ******************/
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   ludcmp(a,npar,indx,&pd);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   for (j=1;j<=npar;j++) {       a pointer to pointers identical to out */
     for (i=1;i<=npar;i++) x[i]=0;    long i, j, k;
     x[j]=1;    for(i=nrl; i<= nrh; i++)
     lubksb(a,npar,indx,x);      for(k=ncolol; k<=ncoloh; k++)
     for (i=1;i<=npar;i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       matcov[i][j]=x[i];          out[i][k] +=in[i][j]*b[j][k];
     }  
   }    return out;
   }
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /************* Higher Matrix Product ***************/
       printf("%.3e ",hess[i][j]);  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf("\n");  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   /* Recompute Inverse */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (i=1;i<=npar;i++)       nhstepm*hstepm matrices. 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   ludcmp(a,npar,indx,&pd);       (typically every 2 years instead of every month which is too big 
        for the memory).
   /*  printf("\n#Hessian matrix recomputed#\n");       Model is determined by parameters x and covariates have to be 
        included manually here. 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;       */
     x[j]=1;  
     lubksb(a,npar,indx,x);    int i, j, d, h, k;
     for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX];
       y[i][j]=x[i];    double **newm;
       printf("%.3e ",y[i][j]);  
     }    /* Hstepm could be zero and should return the unit matrix */
     printf("\n");    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   */        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(x,1,npar);    for(h=1; h <=nhstepm; h++){
   free_ivector(indx,1,npar);      for(d=1; d <=hstepm; d++){
   free_matrix(hess,1,npar,1,npar);        newm=savm;
         /* Covariates have to be included here again */
         cov[1]=1.;
 }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*************** hessian matrix ****************/        for (k=1; k<=cptcovage;k++)
 double hessii( double x[], double delta, int theta, double delti[])          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int l=1, lmax=20;  
   double k1,k2;  
   double p2[NPARMAX+1];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double res;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double fx;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k=0,kmax=10;        savm=oldm;
   double l1;        oldm=newm;
       }
   fx=func(x);      for(i=1; i<=nlstate+ndeath; i++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1;j<=nlstate+ndeath;j++) {
   for(l=0 ; l <=lmax; l++){          po[i][j][h]=newm[i][j];
     l1=pow(10,l);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     delts=delt;           */
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);    } /* end h */
       p2[theta]=x[theta] +delt;    return po;
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*************** log-likelihood *************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  double func( double *x)
        {
 #ifdef DEBUG    int i, ii, j, k, mi, d, kk;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 #endif    double **out;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double sw; /* Sum of weights */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double lli; /* Individual log likelihood */
         k=kmax;    int s1, s2;
       }    double bbh, survp;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    long ipmx;
         k=kmax; l=lmax*10.;    /*extern weight */
       }    /* We are differentiating ll according to initial status */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         delts=delt;    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     }    */
   }    cov[1]=1.;
   delti[theta]=delts;  
   return res;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
 }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int l=1, l1, lmax=20;            for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k;            }
           for(d=0; d<dh[mi][i]; d++){
   fx=func(x);            newm=savm;
   for (k=1; k<=2; k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++) p2[i]=x[i];            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k1=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k2=func(p2)-fx;          } /* end mult */
          
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     k3=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]-delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k4=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * probability in order to take into account the bias as a fraction of the way
 #ifdef DEBUG           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * -stepm/2 to stepm/2 .
 #endif           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
   return res;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************** Inverse of matrix **************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void ludcmp(double **a, int n, int *indx, double *d)          /* bias is positive if real duration
 {           * is higher than the multiple of stepm and negative otherwise.
   int i,imax,j,k;           */
   double big,dum,sum,temp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *vv;          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known then the contribution
   vv=vector(1,n);               to the likelihood is the probability to die between last step unit time and current 
   *d=1.0;               step unit time, which is also the differences between probability to die before dh 
   for (i=1;i<=n;i++) {               and probability to die before dh-stepm . 
     big=0.0;               In version up to 0.92 likelihood was computed
     for (j=1;j<=n;j++)          as if date of death was unknown. Death was treated as any other
       if ((temp=fabs(a[i][j])) > big) big=temp;          health state: the date of the interview describes the actual state
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          and not the date of a change in health state. The former idea was
     vv[i]=1.0/big;          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   for (j=1;j<=n;j++) {          introduced the exact date of death then we should have modified
     for (i=1;i<j;i++) {          the contribution of an exact death to the likelihood. This new
       sum=a[i][j];          contribution is smaller and very dependent of the step unit
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          stepm. It is no more the probability to die between last interview
       a[i][j]=sum;          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
     big=0.0;          probability to die within a month. Thanks to Chris
     for (i=j;i<=n;i++) {          Jackson for correcting this bug.  Former versions increased
       sum=a[i][j];          mortality artificially. The bad side is that we add another loop
       for (k=1;k<j;k++)          which slows down the processing. The difference can be up to 10%
         sum -= a[i][k]*a[k][j];          lower mortality.
       a[i][j]=sum;            */
       if ( (dum=vv[i]*fabs(sum)) >= big) {            lli=log(out[s1][s2] - savm[s1][s2]);
         big=dum;          }else{
         imax=i;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
     if (j != imax) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<=n;k++) {          /*if(lli ==000.0)*/
         dum=a[imax][k];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         a[imax][k]=a[j][k];          ipmx +=1;
         a[j][k]=dum;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       *d = -(*d);        } /* end of wave */
       vv[imax]=vv[j];      } /* end of individual */
     }    }  else if(mle==2){
     indx[j]=imax;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != n) {        for(mi=1; mi<= wav[i]-1; mi++){
       dum=1.0/(a[j][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void lubksb(double **a, int n, int *indx, double b[])            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,ii=0,ip,j;            }
   double sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=n;i++) {            savm=oldm;
     ip=indx[i];            oldm=newm;
     sum=b[ip];          } /* end mult */
     b[ip]=b[i];        
     if (ii)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     else if (sum) ii=i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     b[i]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=n;i>=1;i--) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     sum=b[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * probability in order to take into account the bias as a fraction of the way
     b[i]=sum/a[i][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          s1=s[mw[mi][i]][i];
 {  /* Some frequencies */          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /* bias is positive if real duration
   double ***freq; /* Frequencies */           * is higher than the multiple of stepm and negative otherwise.
   double *pp;           */
   double pos;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   FILE *ficresp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   char fileresp[FILENAMELENGTH];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   pp=vector(1,nlstate);          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   strcpy(fileresp,"p");          ipmx +=1;
   strcat(fileresp,fileres);          sw += weight[i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        } /* end of wave */
     exit(0);      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcovn;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k1=1; k1<=j;k1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(i1=1; i1<=ncodemax[k1];i1++){            }
        j1++;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
         for (i=-1; i<=nlstate+ndeath; i++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for (jk=-1; jk<=nlstate+ndeath; jk++)              for (kk=1; kk<=cptcovage;kk++) {
            for(m=agemin; m <= agemax+3; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              freq[i][jk][m]=0;            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        for (i=1; i<=imx; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          bool=1;            savm=oldm;
          if  (cptcovn>0) {            oldm=newm;
            for (z1=1; z1<=cptcovn; z1++)          } /* end mult */
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        
          }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           if (bool==1) {          /* But now since version 0.9 we anticipate for bias and large stepm.
            for(m=firstpass; m<=lastpass-1; m++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
              if(agev[m][i]==0) agev[m][i]=agemax+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
              if(agev[m][i]==1) agev[m][i]=agemax+2;           * the nearest (and in case of equal distance, to the lowest) interval but now
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            }           * probability in order to take into account the bias as a fraction of the way
          }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
        }           * -stepm/2 to stepm/2 .
         if  (cptcovn>0) {           * For stepm=1 the results are the same as for previous versions of Imach.
          fprintf(ficresp, "\n#Variable");           * For stepm > 1 the results are less biased than in previous versions. 
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);           */
        }          s1=s[mw[mi][i]][i];
        fprintf(ficresp, "\n#");          s2=s[mw[mi+1][i]][i];
        for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /* bias is positive if real duration
        fprintf(ficresp, "\n");           * is higher than the multiple of stepm and negative otherwise.
                   */
   for(i=(int)agemin; i <= (int)agemax+3; i++){          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     if(i==(int)agemax+3)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       printf("Total");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     else          /*if(lli ==000.0)*/
       printf("Age %d", i);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
         pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
       for(m=-1, pos=0; m <=0 ; m++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         pos += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(pp[jk]>=1.e-10)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            }
         pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
     for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(pos>=1.e-5)            }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          
       else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if( i <= (int) agemax){            savm=oldm;
         if(pos>=1.e-5)            oldm=newm;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
       else        
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
     for(jk=-1; jk <=nlstate+ndeath; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
       for(m=-1; m <=nlstate+ndeath; m++)          }else{
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     if(i <= (int) agemax)          }
       fprintf(ficresp,"\n");          ipmx +=1;
     printf("\n");          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  }        } /* end of wave */
        } /* end of individual */
   fclose(ficresp);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }  /* End of Freq */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************* Waves Concatenation ***************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            newm=savm;
      Death is a valid wave (if date is known).            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (kk=1; kk<=cptcovage;kk++) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      and mw[mi+1][i]. dh depends on stepm.            }
      */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, mi, m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            savm=oldm;
 float sum=0.;            oldm=newm;
           } /* end mult */
   for(i=1; i<=imx; i++){        
     mi=0;          s1=s[mw[mi][i]][i];
     m=firstpass;          s2=s[mw[mi+1][i]][i];
     while(s[m][i] <= nlstate){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(s[m][i]>=1)          ipmx +=1;
         mw[++mi][i]=m;          sw += weight[i];
       if(m >=lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         break;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       else        } /* end of wave */
         m++;      } /* end of individual */
     }/* end while */    } /* End of if */
     if (s[m][i] > nlstate){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       mi++;     /* Death is another wave */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       /* if(mi==0)  never been interviewed correctly before death */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          /* Only death is a correct wave */    return -l;
       mw[mi][i]=m;  }
     }  
   /*************** log-likelihood *************/
     wav[i]=mi;  double funcone( double *x)
     if(mi==0)  {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for(i=1; i<=imx; i++){    double lli; /* Individual log likelihood */
     for(mi=1; mi<wav[i];mi++){    int s1, s2;
       if (stepm <=0)    double bbh, survp;
         dh[mi][i]=1;    /*extern weight */
       else{    /* We are differentiating ll according to initial status */
         if (s[mw[mi+1][i]][i] > nlstate) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /*for(i=1;i<imx;i++) 
           if(j=0) j=1;  /* Survives at least one month after exam */      printf(" %d\n",s[4][i]);
         }    */
         else{    cov[1]=1.;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         jk= j/stepm;        for (ii=1;ii<=nlstate+ndeath;ii++)
         jl= j -jk*stepm;          for (j=1;j<=nlstate+ndeath;j++){
         ju= j -(jk+1)*stepm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk;          }
         else        for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=jk+1;          newm=savm;
         if(dh[mi][i]==0)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=1; /* At least one step */          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
   }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }          savm=oldm;
 /*********** Tricode ****************************/          oldm=newm;
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end mult */
 {        
   int Ndum[80],ij=1, k, j, i, Ntvar[20];        s1=s[mw[mi][i]][i];
   int cptcode=0;        s2=s[mw[mi+1][i]][i];
   for (k=0; k<79; k++) Ndum[k]=0;        bbh=(double)bh[mi][i]/(double)stepm; 
   for (k=1; k<=7; k++) ncodemax[k]=0;        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   for (j=1; j<=cptcovn; j++) {         */
     for (i=1; i<=imx; i++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       ij=(int)(covar[Tvar[j]][i]);          lli=log(out[s1][s2] - savm[s1][s2]);
       Ndum[ij]++;        } else if (mle==1){
       if (ij > cptcode) cptcode=ij;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=0; i<=cptcode; i++) {        } else if(mle==3){  /* exponential inter-extrapolation */
       if(Ndum[i]!=0) ncodemax[j]++;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
     ij=1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for (i=1; i<=ncodemax[j]; i++) {          lli=log(out[s1][s2]); /* Original formula */
       for (k=0; k<=79; k++) {        } /* End of if */
         if (Ndum[k] != 0) {        ipmx +=1;
           nbcode[Tvar[j]][ij]=k;        sw += weight[i];
           ij++;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if (ij > ncodemax[j]) break;        if(globpr){
       }            fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
     }                  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   }            for(k=1,l=0.; k<=nlstate; k++) 
              fprintf(ficresilk," %10.6f",ll[k]);
 }          fprintf(ficresilk,"\n");
         }
 /*********** Health Expectancies ****************/      } /* end of wave */
     } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Health expectancies */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j, nhstepm, hstepm, h;    return -l;
   double age, agelim,hf;  }
   double ***p3mat;  
    
   fprintf(ficreseij,"# Health expectancies\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    /* This routine should help understanding what is done with the selection of individuals/waves and
     for(j=1; j<=nlstate;j++)       to check the exact contribution to the likelihood.
       fprintf(ficreseij," %1d-%1d",i,j);       Plotting could be done.
   fprintf(ficreseij,"\n");     */
     int k;
   hstepm=1*YEARM; /*  Every j years of age (in month) */    if(globpr !=0){ /* Just counts and sums no printings */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
   agelim=AGESUP;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("Problem with resultfile: %s\n", fileresilk);
     /* nhstepm age range expressed in number of stepm */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      }
     /* Typically if 20 years = 20*12/6=40 stepm */      fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=1; k<=nlstate; k++) 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        fprintf(ficresilk," ll[%d]",k);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(ficresilk,"\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }
   
     *fretone=(*funcone)(p);
     for(i=1; i<=nlstate;i++)    if(globpr !=0)
       for(j=1; j<=nlstate;j++)      fclose(ficresilk);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    return;
           eij[i][j][(int)age] +=p3mat[i][j][h];  }
         }  
      /*********** Maximum Likelihood Estimation ***************/
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     fprintf(ficreseij,"%.0f",age );  {
     for(i=1; i<=nlstate;i++)    int i,j, iter;
       for(j=1; j<=nlstate;j++){    double **xi;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    double fret;
       }    double fretone; /* Only one call to likelihood */
     fprintf(ficreseij,"\n");    char filerespow[FILENAMELENGTH];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
 }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 /************ Variance ******************/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    strcpy(filerespow,"pow"); 
 {    strcat(filerespow,fileres);
   /* Variance of health expectancies */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("Problem with resultfile: %s\n", filerespow);
   double **newm;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm, h;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int k, cptcode;    for (i=1;i<=nlstate;i++)
    double *xp;      for(j=1;j<=nlstate+ndeath;j++)
   double **gp, **gm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double ***gradg, ***trgradg;    fprintf(ficrespow,"\n");
   double ***p3mat;  
   double age,agelim;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int theta;  
     fclose(ficrespow);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficresvij,"# Age");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for(i=1; i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  }
   fprintf(ficresvij,"\n");  
   /**** Computes Hessian and covariance matrix ***/
   xp=vector(1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    double  **a,**y,*x,pd;
      double **hess;
   hstepm=1*YEARM; /* Every year of age */    int i, j,jk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int *indx;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double hessii(double p[], double delta, int theta, double delti[]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double hessij(double p[], double delti[], int i, int j);
     if (stepm >= YEARM) hstepm=1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    hess=matrix(1,npar,1,npar);
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++){
       for(i=1; i<=npar; i++){ /* Computes gradient */      printf("%d",i);fflush(stdout);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d",i);fflush(ficlog);
       }      hess[i][i]=hessii(p,ftolhess,i,delti);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*printf(" %f ",p[i]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*printf(" %lf ",hess[i][i]);*/
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (i=1;i<=npar;i++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
              fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(i=1; i<=npar; i++) /* Computes gradient */          hess[i][j]=hessij(p,delti,i,j);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          hess[j][i]=hess[i][j];    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf(" %lf ",hess[i][j]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    printf("\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\n");
         }  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<= nlstate; j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    a=matrix(1,npar,1,npar);
         }    y=matrix(1,npar,1,npar);
     } /* End theta */    x=vector(1,npar);
     indx=ivector(1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for(h=0; h<=nhstepm; h++)    ludcmp(a,npar,indx,&pd);
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    for (j=1;j<=npar;j++) {
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
       for(j=1;j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
         vareij[i][j][(int)age] =0.;        matcov[i][j]=x[i];
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    printf("\n#Hessian matrix#\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++) { 
             vareij[i][j][(int)age] += doldm[i][j];      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
     h=1;      }
     if (stepm >= YEARM) h=stepm/YEARM;      printf("\n");
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
     fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_matrix(gp,0,nhstepm,1,nlstate);    ludcmp(a,npar,indx,&pd);
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /*  printf("\n#Hessian matrix recomputed#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=npar;j++) {
   } /* End age */      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   free_matrix(dnewm,1,nlstate,1,nlstate);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
 }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 /************ Variance of prevlim ******************/      printf("\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fprintf(ficlog,"\n");
 {    }
   /* Variance of prevalence limit */    */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    free_matrix(a,1,npar,1,npar);
   double **dnewm,**doldm;    free_matrix(y,1,npar,1,npar);
   int i, j, nhstepm, hstepm;    free_vector(x,1,npar);
   int k, cptcode;    free_ivector(indx,1,npar);
   double *xp;    free_matrix(hess,1,npar,1,npar);
   double *gp, *gm;  
   double **gradg, **trgradg;  
   double age,agelim;  }
   int theta;  
      /*************** hessian matrix ****************/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  double hessii( double x[], double delta, int theta, double delti[])
   fprintf(ficresvpl,"# Age");  {
   for(i=1; i<=nlstate;i++)    int i;
       fprintf(ficresvpl," %1d-%1d",i,i);    int l=1, lmax=20;
   fprintf(ficresvpl,"\n");    double k1,k2;
     double p2[NPARMAX+1];
   xp=vector(1,npar);    double res;
   dnewm=matrix(1,nlstate,1,npar);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   doldm=matrix(1,nlstate,1,nlstate);    double fx;
      int k=0,kmax=10;
   hstepm=1*YEARM; /* Every year of age */    double l1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    fx=func(x);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=npar;i++) p2[i]=x[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(l=0 ; l <=lmax; l++){
     if (stepm >= YEARM) hstepm=1;      l1=pow(10,l);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      delts=delt;
     gradg=matrix(1,npar,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     gp=vector(1,nlstate);        delt = delta*(l1*k);
     gm=vector(1,nlstate);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta]-delt;
       for(i=1; i<=npar; i++){ /* Computes gradient */        k2=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)  #ifdef DEBUG
         gp[i] = prlim[i][i];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++) /* Computes gradient */  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(i=1;i<=nlstate;i++)          k=kmax;
         gm[i] = prlim[i][i];        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(i=1;i<=nlstate;i++)          k=kmax; l=lmax*10.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
     trgradg =matrix(1,nlstate,1,npar);        }
       }
     for(j=1; j<=nlstate;j++)    }
       for(theta=1; theta <=npar; theta++)    delti[theta]=delts;
         trgradg[j][theta]=gradg[theta][j];    return res; 
     
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double hessij( double x[], double delti[], int thetai,int thetaj)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    int i;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     fprintf(ficresvpl,"%.0f ",age );    double p2[NPARMAX+1];
     for(i=1; i<=nlstate;i++)    int k;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    fx=func(x);
     free_vector(gp,1,nlstate);    for (k=1; k<=2; k++) {
     free_vector(gm,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gradg,1,npar,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   } /* End age */      k1=func(p2)-fx;
     
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k2=func(p2)-fx;
     
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     
 /***********************************************/      p2[thetai]=x[thetai]-delti[thetai]/k;
 /**************** Main Program *****************/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /***********************************************/      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 /*int main(int argc, char *argv[])*/  #ifdef DEBUG
 int main()      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    }
   double agedeb, agefin,hf;    return res;
   double agemin=1.e20, agemax=-1.e20;  }
   
   double fret;  /************** Inverse of matrix **************/
   double **xi,tmp,delta;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   double dum; /* Dummy variable */    int i,imax,j,k; 
   double ***p3mat;    double big,dum,sum,temp; 
   int *indx;    double *vv; 
   char line[MAXLINE], linepar[MAXLINE];   
   char title[MAXLINE];    vv=vector(1,n); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    *d=1.0; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    for (i=1;i<=n;i++) { 
   char filerest[FILENAMELENGTH];      big=0.0; 
   char fileregp[FILENAMELENGTH];      for (j=1;j<=n;j++) 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int firstobs=1, lastobs=10;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   int sdeb, sfin; /* Status at beginning and end */      vv[i]=1.0/big; 
   int c,  h , cpt,l;    } 
   int ju,jl, mi;    for (j=1;j<=n;j++) { 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;      for (i=1;i<j;i++) { 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int hstepm, nhstepm;        a[i][j]=sum; 
   double bage, fage, age, agelim, agebase;      } 
   double ftolpl=FTOL;      big=0.0; 
   double **prlim;      for (i=j;i<=n;i++) { 
   double *severity;        sum=a[i][j]; 
   double ***param; /* Matrix of parameters */        for (k=1;k<j;k++) 
   double  *p;          sum -= a[i][k]*a[k][j]; 
   double **matcov; /* Matrix of covariance */        a[i][j]=sum; 
   double ***delti3; /* Scale */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double *delti; /* Scale */          big=dum; 
   double ***eij, ***vareij;          imax=i; 
   double **varpl; /* Variances of prevalence limits by age */        } 
   double *epj, vepp;      } 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      if (j != imax) { 
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   char z[1]="c", occ;          a[imax][k]=a[j][k]; 
 #include <sys/time.h>          a[j][k]=dum; 
 #include <time.h>        } 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        *d = -(*d); 
   /* long total_usecs;        vv[imax]=vv[j]; 
   struct timeval start_time, end_time;      } 
        indx[j]=imax; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
   printf("\nIMACH, Version 0.64a");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   printf("\nEnter the parameter file name: ");      } 
     } 
 #ifdef windows    free_vector(vv,1,n);  /* Doesn't work */
   scanf("%s",pathtot);  ;
   getcwd(pathcd, size);  } 
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  void lubksb(double **a, int n, int *indx, double b[]) 
   /* cutv(path,optionfile,pathtot,'\\');*/  { 
     int i,ii=0,ip,j; 
 split(pathtot, path,optionfile);    double sum; 
   chdir(path);   
   replace(pathc,path);    for (i=1;i<=n;i++) { 
 #endif      ip=indx[i]; 
 #ifdef unix      sum=b[ip]; 
   scanf("%s",optionfile);      b[ip]=b[i]; 
 #endif      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 /*-------- arguments in the command line --------*/      else if (sum) ii=i; 
       b[i]=sum; 
   strcpy(fileres,"r");    } 
   strcat(fileres, optionfile);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   /*---------arguments file --------*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    } 
     printf("Problem with optionfile %s\n",optionfile);  } 
     goto end;  
   }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   strcpy(filereso,"o");  {  /* Some frequencies */
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    int first;
   }    double ***freq; /* Frequencies */
     double *pp, **prop;
   /* Reads comments: lines beginning with '#' */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    FILE *ficresp;
     ungetc(c,ficpar);    char fileresp[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pp=vector(1,nlstate);
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   ungetc(c,ficpar);    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      exit(0);
     }
   covar=matrix(0,NCOVMAX,1,n);        freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   if (strlen(model)<=1) cptcovn=0;    j1=0;
   else {    
     j=0;    j=cptcoveff;
     j=nbocc(model,'+');    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     cptcovn=j+1;  
   }    first=1;
   
   ncovmodel=2+cptcovn;    for(k1=1; k1<=j;k1++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   /* Read guess parameters */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /* Reads comments: lines beginning with '#' */          scanf("%d", i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=-1; i<=nlstate+ndeath; i++)  
     ungetc(c,ficpar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     fgets(line, MAXLINE, ficpar);            for(m=iagemin; m <= iagemax+3; m++)
     puts(line);              freq[i][jk][m]=0;
     fputs(line,ficparo);  
   }      for (i=1; i<=nlstate; i++)  
   ungetc(c,ficpar);        for(m=iagemin; m <= iagemax+3; m++)
            prop[i][m]=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        
     for(i=1; i <=nlstate; i++)        dateintsum=0;
     for(j=1; j <=nlstate+ndeath-1; j++){        k2cpt=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (i=1; i<=imx; i++) {
       fprintf(ficparo,"%1d%1d",i1,j1);          bool=1;
       printf("%1d%1d",i,j);          if  (cptcovn>0) {
       for(k=1; k<=ncovmodel;k++){            for (z1=1; z1<=cptcoveff; z1++) 
         fscanf(ficpar," %lf",&param[i][j][k]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         printf(" %lf",param[i][j][k]);                bool=0;
         fprintf(ficparo," %lf",param[i][j][k]);          }
       }          if (bool==1){
       fscanf(ficpar,"\n");            for(m=firstpass; m<=lastpass; m++){
       printf("\n");              k2=anint[m][i]+(mint[m][i]/12.);
       fprintf(ficparo,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   p=param[1][1];                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* Reads comments: lines beginning with '#' */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                
     fgets(line, MAXLINE, ficpar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     puts(line);                  dateintsum=dateintsum+k2;
     fputs(line,ficparo);                  k2cpt++;
   }                }
   ungetc(c,ficpar);                /*}*/
             }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){         
     for(j=1; j <=nlstate+ndeath-1; j++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);        if  (cptcovn>0) {
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresp, "\n#********** Variable "); 
       for(k=1; k<=ncovmodel;k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(ficresp, "**********\n#");
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fscanf(ficpar,"\n");        fprintf(ficresp, "\n");
       printf("\n");        
       fprintf(ficparo,"\n");        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
   delti=delti3[1][1];          }else{
              if(first==1){
   /* Reads comments: lines beginning with '#' */              first=0;
   while((c=getc(ficpar))=='#' && c!= EOF){              printf("See log file for details...\n");
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            fprintf(ficlog,"Age %d", i);
     puts(line);          }
     fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   ungetc(c,ficpar);              pp[jk] += freq[jk][m][i]; 
            }
   matcov=matrix(1,npar,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   for(i=1; i <=npar; i++){            for(m=-1, pos=0; m <=0 ; m++)
     fscanf(ficpar,"%s",&str);              pos += freq[jk][m][i];
     printf("%s",str);            if(pp[jk]>=1.e-10){
     fprintf(ficparo,"%s",str);              if(first==1){
     for(j=1; j <=i; j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fscanf(ficpar," %le",&matcov[i][j]);              }
       printf(" %.5le",matcov[i][j]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficparo," %.5le",matcov[i][j]);            }else{
     }              if(first==1)
     fscanf(ficpar,"\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("\n");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficparo,"\n");            }
   }          }
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)          for(jk=1; jk <=nlstate ; jk++){
       matcov[i][j]=matcov[j][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                  pp[jk] += freq[jk][m][i];
   printf("\n");          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     /*-------- data file ----------*/            posprop += prop[jk][i];
     if((ficres =fopen(fileres,"w"))==NULL) {          }
       printf("Problem with resultfile: %s\n", fileres);goto end;          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
     fprintf(ficres,"#%s\n",version);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     if((fic=fopen(datafile,"r"))==NULL)    {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       printf("Problem with datafile: %s\n", datafile);goto end;            }else{
     }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     n= lastobs;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);            if( i <= iagemax){
     num=ivector(1,n);              if(pos>=1.e-5){
     moisnais=vector(1,n);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     annais=vector(1,n);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     moisdc=vector(1,n);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     andc=vector(1,n);              }
     agedc=vector(1,n);              else
     cod=ivector(1,n);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     weight=vector(1,n);            }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);          
     anint=matrix(1,maxwav,1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     s=imatrix(1,maxwav+1,1,n);            for(m=-1; m <=nlstate+ndeath; m++)
     adl=imatrix(1,maxwav+1,1,n);                  if(freq[jk][m][i] !=0 ) {
     tab=ivector(1,NCOVMAX);              if(first==1)
     ncodemax=ivector(1,8);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     i=1;              }
     while (fgets(line, MAXLINE, fic) != NULL)    {          if(i <= iagemax)
       if ((i >= firstobs) && (i <=lastobs)) {            fprintf(ficresp,"\n");
                  if(first==1)
         for (j=maxwav;j>=1;j--){            printf("Others in log...\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficlog,"\n");
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    dateintmean=dateintsum/k2cpt; 
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresp);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    /* End of Freq */
   }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){  /************ Prevalence ********************/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
         num[i]=atol(stra);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/       We still use firstpass and lastpass as another selection.
     */
         i=i+1;   
       }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }    double ***freq; /* Frequencies */
     double *pp, **prop;
     /*scanf("%d",i);*/    double pos,posprop; 
   imx=i-1; /* Number of individuals */    double  y2; /* in fractional years */
     int iagemin, iagemax;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);        iagemin= (int) agemin;
   Tage=ivector(1,15);          iagemax= (int) agemax;
        /*pp=vector(1,nlstate);*/
   if (strlen(model) >1){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     j=0, j1=0;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j=nbocc(model,'+');    j1=0;
     j1=nbocc(model,'*');    
     cptcovn=j+1;    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     strcpy(modelsav,model);    
     if (j==0) {    for(k1=1; k1<=j;k1++){
       if (j1==0){      for(i1=1; i1<=ncodemax[k1];i1++){
        cutv(stra,strb,modelsav,'V');        j1++;
        Tvar[1]=atoi(strb);        
       }        for (i=1; i<=nlstate; i++)  
       else if (j1==1) {          for(m=iagemin; m <= iagemax+3; m++)
        cutv(stra,strb,modelsav,'*');            prop[i][m]=0.0;
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/       
        Tage[1]=1; cptcovage++;        for (i=1; i<=imx; i++) { /* Each individual */
        if (strcmp(stra,"age")==0) {          bool=1;
          cutv(strd,strc,strb,'V');          if  (cptcovn>0) {
          Tvar[1]=atoi(strc);            for (z1=1; z1<=cptcoveff; z1++) 
        }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        else if (strcmp(strb,"age")==0) {                bool=0;
          cutv(strd,strc,stra,'V');          } 
          Tvar[1]=atoi(strc);          if (bool==1) { 
        }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        else {printf("Error"); exit(0);}              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     else {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=j; i>=1;i--){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         cutv(stra,strb,modelsav,'+');                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         /*printf("%s %s %s\n", stra,strb,modelsav);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         if (strchr(strb,'*')) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           cutv(strd,strc,strb,'*');                  prop[s[m][i]][iagemax+3] += weight[i]; 
           if (strcmp(strc,"age")==0) {                } 
             cutv(strb,stre,strd,'V');              }
             Tvar[i+1]=atoi(stre);            } /* end selection of waves */
             cptcovage++;          }
             Tage[cptcovage]=i+1;        }
             printf("stre=%s ", stre);        for(i=iagemin; i <= iagemax+3; i++){  
           }          
           else if (strcmp(strd,"age")==0) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             cutv(strb,stre,strc,'V');            posprop += prop[jk][i]; 
             Tvar[i+1]=atoi(stre);          } 
             cptcovage++;  
             Tage[cptcovage]=i+1;          for(jk=1; jk <=nlstate ; jk++){     
           }            if( i <=  iagemax){ 
           else {              if(posprop>=1.e-5){ 
             cutv(strb,stre,strc,'V');                probs[i][jk][j1]= prop[jk][i]/posprop;
             Tvar[i+1]=ncov+1;              } 
             cutv(strb,strc,strd,'V');            } 
             for (k=1; k<=lastobs;k++)          }/* end jk */ 
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }/* end i */ 
           }      } /* end i1 */
         }    } /* end k1 */
         else {    
           cutv(strd,strc,strb,'V');    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           /* printf("%s %s %s", strd,strc,strb);*/    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         Tvar[i+1]=atoi(strc);  }  /* End of prevalence */
         }  
         strcpy(modelsav,stra);    /************* Waves Concatenation ***************/
       }  
       cutv(strd,strc,stra,'V');  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       Tvar[1]=atoi(strc);  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      scanf("%d ",i);*/       and mw[mi+1][i]. dh depends on stepm.
     fclose(fic);       */
   
    if(mle==1){    int i, mi, m;
     if (weightopt != 1) { /* Maximisation without weights*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(i=1;i<=n;i++) weight[i]=1.0;       double sum=0., jmean=0.;*/
     }    int first;
     /*-calculation of age at interview from date of interview and age at death -*/    int j, k=0,jk, ju, jl;
     agev=matrix(1,maxwav,1,imx);    double sum=0.;
        first=0;
     for (i=1; i<=imx; i++)  {    jmin=1e+5;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    jmax=-1;
       for(m=1; (m<= maxwav); m++){    jmean=0.;
         if(s[m][i] >0){    for(i=1; i<=imx; i++){
           if (s[m][i] == nlstate+1) {      mi=0;
             if(agedc[i]>0)      m=firstpass;
               if(moisdc[i]!=99 && andc[i]!=9999)      while(s[m][i] <= nlstate){
               agev[m][i]=agedc[i];        if(s[m][i]>=1)
             else{          mw[++mi][i]=m;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        if(m >=lastpass)
               agev[m][i]=-1;          break;
             }        else
           }          m++;
           else if(s[m][i] !=9){ /* Should no more exist */      }/* end while */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      if (s[m][i] > nlstate){
             if(mint[m][i]==99 || anint[m][i]==9999)        mi++;     /* Death is another wave */
               agev[m][i]=1;        /* if(mi==0)  never been interviewed correctly before death */
             else if(agev[m][i] <agemin){           /* Only death is a correct wave */
               agemin=agev[m][i];        mw[mi][i]=m;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      }
             }  
             else if(agev[m][i] >agemax){      wav[i]=mi;
               agemax=agev[m][i];      if(mi==0){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        if(first==0){
             }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             /*agev[m][i]=anint[m][i]-annais[i];*/          first=1;
             /*   agev[m][i] = age[i]+2*m;*/        }
           }        if(first==1){
           else { /* =9 */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             agev[m][i]=1;        }
             s[m][i]=-1;      } /* end mi==0 */
           }    } /* End individuals */
         }  
         else /*= 0 Unknown */    for(i=1; i<=imx; i++){
           agev[m][i]=1;      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
              dh[mi][i]=1;
     }        else{
     for (i=1; i<=imx; i++)  {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(m=1; (m<= maxwav); m++){            if (agedc[i] < 2*AGESUP) {
         if (s[m][i] > (nlstate+ndeath)) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           printf("Error: Wrong value in nlstate or ndeath\n");                if(j==0) j=1;  /* Survives at least one month after exam */
           goto end;              else if(j<0){
         }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Careful Patch */
     }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
     free_vector(severity,1,maxwav);              k=k+1;
     free_imatrix(outcome,1,maxwav+1,1,n);              if (j >= jmax) jmax=j;
     free_vector(moisnais,1,n);              if (j <= jmin) jmin=j;
     free_vector(annais,1,n);              sum=sum+j;
     free_matrix(mint,1,maxwav,1,n);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     free_matrix(anint,1,maxwav,1,n);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_vector(moisdc,1,n);            }
     free_vector(andc,1,n);          }
           else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     wav=ivector(1,imx);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            k=k+1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            if (j >= jmax) jmax=j;
                else if (j <= jmin)jmin=j;
     /* Concatenates waves */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       Tcode=ivector(1,100);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    nbcode=imatrix(1,nvar,1,8);              }
    ncodemax[1]=1;            sum=sum+j;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
            jk= j/stepm;
    codtab=imatrix(1,100,1,10);          jl= j -jk*stepm;
    h=0;          ju= j -(jk+1)*stepm;
    m=pow(2,cptcovn);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
    for(k=1;k<=cptcovn; k++){              dh[mi][i]=jk;
      for(i=1; i <=(m/pow(2,k));i++){              bh[mi][i]=0;
        for(j=1; j <= ncodemax[k]; j++){            }else{ /* We want a negative bias in order to only have interpolation ie
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){                    * at the price of an extra matrix product in likelihood */
            h++;              dh[mi][i]=jk+1;
            if (h>m) h=1;codtab[h][k]=j;              bh[mi][i]=ju;
          }            }
        }          }else{
      }            if(jl <= -ju){
    }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
    /* for(i=1; i <=m ;i++){                                   * is higher than the multiple of stepm and negative otherwise.
      for(k=1; k <=cptcovn; k++){                                   */
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);            }
      }            else{
      printf("\n");              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
    scanf("%d",i);*/            }
                if(dh[mi][i]==0){
    /* Calculates basic frequencies. Computes observed prevalence at single age              dh[mi][i]=1; /* At least one step */
        and prints on file fileres'p'. */              bh[mi][i]=ju; /* At least one step */
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          } /* end if mle */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end wave */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
      /*********** Tricode ****************************/
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  void tricode(int *Tvar, int **nbcode, int imx)
   {
        
     /*--------- results files --------------*/    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    int cptcode=0;
        cptcoveff=0; 
    jk=1;   
    fprintf(ficres,"# Parameters\n");    for (k=0; k<maxncov; k++) Ndum[k]=0;
    printf("# Parameters\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        if (k != i)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
          {                                 modality*/ 
            printf("%d%d ",i,k);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
            fprintf(ficres,"%1d%1d ",i,k);        Ndum[ij]++; /*store the modality */
            for(j=1; j <=ncovmodel; j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              printf("%f ",p[jk]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
              fprintf(ficres,"%f ",p[jk]);                                         Tvar[j]. If V=sex and male is 0 and 
              jk++;                                         female is 1, then  cptcode=1.*/
            }      }
            printf("\n");  
            fprintf(ficres,"\n");      for (i=0; i<=cptcode; i++) {
          }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
      }      }
    }  
       ij=1; 
     /* Computing hessian and covariance matrix */      for (i=1; i<=ncodemax[j]; i++) {
     ftolhess=ftol; /* Usually correct */        for (k=0; k<= maxncov; k++) {
     hesscov(matcov, p, npar, delti, ftolhess, func);          if (Ndum[k] != 0) {
     fprintf(ficres,"# Scales\n");            nbcode[Tvar[j]][ij]=k; 
     printf("# Scales\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for(i=1,jk=1; i <=nlstate; i++){            
       for(j=1; j <=nlstate+ndeath; j++){            ij++;
         if (j!=i) {          }
           fprintf(ficres,"%1d%1d",i,j);          if (ij > ncodemax[j]) break; 
           printf("%1d%1d",i,j);        }  
           for(k=1; k<=ncovmodel;k++){      } 
             printf(" %.5e",delti[jk]);    }  
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;   for (k=0; k< maxncov; k++) Ndum[k]=0;
           }  
           printf("\n");   for (i=1; i<=ncovmodel-2; i++) { 
           fprintf(ficres,"\n");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         }     ij=Tvar[i];
       }     Ndum[ij]++;
       }   }
      
     k=1;   ij=1;
     fprintf(ficres,"# Covariance\n");   for (i=1; i<= maxncov; i++) {
     printf("# Covariance\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(i=1;i<=npar;i++){       Tvaraff[ij]=i; /*For printing */
       /*  if (k>nlstate) k=1;       ij++;
       i1=(i-1)/(ncovmodel*nlstate)+1;     }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   }
       printf("%s%d%d",alph[k],i1,tab[i]);*/   
       fprintf(ficres,"%3d",i);   cptcoveff=ij-1; /*Number of simple covariates*/
       printf("%3d",i);  }
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);  /*********** Health Expectancies ****************/
         printf(" %.5e",matcov[i][j]);  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       fprintf(ficres,"\n");  
       printf("\n");  {
       k++;    /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat,***varhe;
       ungetc(c,ficpar);    double **dnewm,**doldm;
       fgets(line, MAXLINE, ficpar);    double *xp;
       puts(line);    double **gp, **gm;
       fputs(line,ficparo);    double ***gradg, ***trgradg;
     }    int theta;
     ungetc(c,ficpar);  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     if (fage <= 2) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       bage = agemin;    
       fage = agemax;    fprintf(ficreseij,"# Health expectancies\n");
     }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(j=1; j<=nlstate;j++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 /*------------ gnuplot -------------*/    fprintf(ficreseij,"\n");
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {    if(estepm < stepm){
     printf("Problem with file graph.gp");goto end;      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
 #ifdef windows    else  hstepm=estepm;   
   fprintf(ficgp,"cd \"%s\" \n",pathc);    /* We compute the life expectancy from trapezoids spaced every estepm months
 #endif     * This is mainly to measure the difference between two models: for example
 m=pow(2,cptcovn);     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
  /* 1eme*/     * progression in between and thus overestimating or underestimating according
   for (cpt=1; cpt<= nlstate ; cpt ++) {     * to the curvature of the survival function. If, for the same date, we 
    for (k1=1; k1<= m ; k1 ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
 #ifdef windows     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);     * curvature will be obtained if estepm is as small as stepm. */
 #endif  
 #ifdef unix    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 #endif       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
 for (i=1; i<= nlstate ; i ++) {       Look at hpijx to understand the reason of that which relies in memory size
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       and note for a fixed period like estepm months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       means that if the survival funtion is printed only each two years of age and if
     for (i=1; i<= nlstate ; i ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       results. So we changed our mind and took the option of the best precision.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    agelim=AGESUP;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* nhstepm age range expressed in number of stepm */
 }        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #ifdef unix      /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficgp,"\nset ter gif small size 400,300");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #endif      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   /*2 eme*/  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for (k1=1; k1<= m ; k1 ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      /* Computing Variances of health expectancies */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        cptj=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++){
 }            for(i=1; i<=nlstate; i++){
       fprintf(ficgp,"\" t\"\" w l 0,");            cptj=cptj+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       for (j=1; j<= nlstate+1 ; j ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       
       else fprintf(ficgp,"\" t\"\" w l 0,");       
     }        for(i=1; i<=npar; i++) 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
   /*3eme*/        cptj=0;
         for(j=1; j<= nlstate; j++){
   for (k1=1; k1<= m ; k1 ++) {          for(i=1;i<=nlstate;i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {            cptj=cptj+1;
       k=2+nlstate*(cpt-1);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            }
       }          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* CV preval stat */          }
   for (k1=1; k1<= m ; k1 ++) {       } 
     for (cpt=1; cpt<nlstate ; cpt ++) {     
       k=3;  /* End theta */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       for(h=0; h<=nhstepm-1; h++)
              for(j=1; j<=nlstate*nlstate;j++)
       l=3+(nlstate+ndeath)*cpt;          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            trgradg[h][j][theta]=gradg[h][theta][j];
       for (i=1; i< nlstate ; i ++) {       
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);       for(i=1;i<=nlstate*nlstate;i++)
       }        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            varhe[i][j][(int)age] =0.;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   /* proba elementaires */        for(k=0;k<=nhstepm-1;k++){
    for(i=1,jk=1; i <=nlstate; i++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for(k=1; k <=(nlstate+ndeath); k++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       if (k != i) {          for(i=1;i<=nlstate*nlstate;i++)
         for(j=1; j <=ncovmodel; j++){            for(j=1;j<=nlstate*nlstate;j++)
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           /*fprintf(ficgp,"%s",alph[1]);*/        }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;      /* Computing expectancies */
           fprintf(ficgp,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     }            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          }
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {      fprintf(ficreseij,"%3.0f",age );
      k3=i;      cptj=0;
      for(k=1; k<=(nlstate+ndeath); k++) {      for(i=1; i<=nlstate;i++)
        if (k != k2){        for(j=1; j<=nlstate;j++){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         for(j=3; j <=ncovmodel; j++)        }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficreseij,"\n");
         fprintf(ficgp,")/(1");     
              free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for(k1=1; k1 <=nlstate; k1++){        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           for(j=3; j <=ncovmodel; j++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,")");    }
         }    printf("\n");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficlog,"\n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    free_vector(xp,1,npar);
        }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  }
   }  
      /************ Variance ******************/
   fclose(ficgp);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
      {
 chdir(path);    /* Variance of health expectancies */
     free_matrix(agev,1,maxwav,1,imx);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_ivector(wav,1,imx);    /* double **newm;*/
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **dnewm,**doldm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
     free_imatrix(s,1,maxwav+1,1,n);    int k, cptcode;
        double *xp;
        double **gp, **gm;  /* for var eij */
     free_ivector(num,1,n);    double ***gradg, ***trgradg; /*for var eij */
     free_vector(agedc,1,n);    double **gradgp, **trgradgp; /* for var p point j */
     free_vector(weight,1,n);    double *gpp, *gmp; /* for var p point j */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fclose(ficparo);    double ***p3mat;
     fclose(ficres);    double age,agelim, hf;
    }    double ***mobaverage;
        int theta;
    /*________fin mle=1_________*/    char digit[4];
        char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
     /* No more information from the sample is required now */  
   /* Reads comments: lines beginning with '#' */    if(popbased==1){
   while((c=getc(ficpar))=='#' && c!= EOF){      if(mobilav!=0)
     ungetc(c,ficpar);        strcpy(digitp,"-populbased-mobilav-");
     fgets(line, MAXLINE, ficpar);      else strcpy(digitp,"-populbased-nomobil-");
     puts(line);    }
     fputs(line,ficparo);    else 
   }      strcpy(digitp,"-stablbased-");
   ungetc(c,ficpar);  
      if (mobilav!=0) {
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*--------- index.htm --------*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   if((fichtm=fopen("index.htm","w"))==NULL)    {    }
     printf("Problem with index.htm \n");goto end;  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    strcat(fileresprobmorprev,fileres);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  fprintf(fichtm," <li>Graphs</li>\n<p>");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  m=cptcovn;      fprintf(ficresprobmorprev," p.%-d SE",j);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  j1=0;    }  
  for(k1=1; k1<=m;k1++){    fprintf(ficresprobmorprev,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
        j1++;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
        if (cptcovn > 0) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
          fprintf(fichtm,"<hr>************ Results for covariates");      exit(0);
          for (cpt=1; cpt<=cptcovn;cpt++)    }
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    else{
          fprintf(fichtm," ************\n<hr>");      fprintf(ficgp,"\n# Routine varevsij");
        }    }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          printf("Problem with html file: %s\n", optionfilehtm);
        for(cpt=1; cpt<nlstate;cpt++){      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      exit(0);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    }
        }    else{
     for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 interval) in state (%d): v%s%d%d.gif <br>    }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    fprintf(ficresvij,"# Age");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 health expectancies in states (1) and (2): e%s%d.gif<br>    fprintf(ficresvij,"\n");
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");    xp=vector(1,npar);
    }    dnewm=matrix(1,nlstate,1,npar);
  }    doldm=matrix(1,nlstate,1,nlstate);
 fclose(fichtm);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*--------------- Prevalence limit --------------*/  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcpy(filerespl,"pl");    gpp=vector(nlstate+1,nlstate+ndeath);
   strcat(filerespl,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    if(estepm < stepm){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficrespl,"#Prevalence limit\n");    }
   fprintf(ficrespl,"#Age ");    else  hstepm=estepm;   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficrespl,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   prlim=matrix(1,nlstate,1,nlstate);       nstepm is the number of stepm from age to agelin. 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       Look at hpijx to understand the reason of that which relies in memory size
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       and note for a fixed period like k years */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       survival function given by stepm (the optimization length). Unfortunately it
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       means that if the survival funtion is printed every two years of age and if
   k=0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   agebase=agemin;       results. So we changed our mind and took the option of the best precision.
   agelim=agemax;    */
   ftolpl=1.e-10;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   i1=cptcovn;    agelim = AGESUP;
   if (cptcovn < 1){i1=1;}    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(cptcov=1;cptcov<=i1;cptcov++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         k=k+1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficrespl,"\n#******");      gm=matrix(0,nhstepm,1,nlstate);
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         for (age=agebase; age<=agelim; age++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<=nlstate;i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficrespl);          }else{ /* mobilav */ 
   /*------------- h Pij x at various ages ------------*/            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }        for(j=1; j<= nlstate; j++){
   printf("Computing pij: result on file '%s' \n", filerespij);          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (stepm<=24) stepsize=2;          }
         }
   agelim=AGESUP;        /* This for computing probability of death (h=1 means
   hstepm=stepsize*YEARM; /* Every year of age */           computed over hstepm matrices product = hstepm*stepm months) 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */           as a weighted average of prlim.
          */
   k=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       k=k+1;        }    
         fprintf(ficrespij,"\n#****** ");        /* end probability of death */
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficrespij,"******\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if (popbased==1) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(mobilav ==0){
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=probs[(int)age][i][ij];
           fprintf(ficrespij,"# Age");          }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficrespij," %1d-%1d",i,j);          }
           fprintf(ficrespij,"\n");        }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(j=1; j<= nlstate; j++){
             for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
               for(j=1; j<=nlstate+ndeath;j++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
             fprintf(ficrespij,"\n");          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
     }        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fclose(ficrespij);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /*---------- Health expectancies and variances ------------*/        /* end probability of death */
   
   strcpy(filerest,"t");        for(j=1; j<= nlstate; j++) /* vareij */
   strcat(filerest,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          }
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   strcpy(filerese,"e");  
   strcat(filerese,fileres);      } /* End theta */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
  strcpy(fileresv,"v");          for(theta=1; theta <=npar; theta++)
   strcat(fileresv,fileres);            trgradg[h][j][theta]=gradg[h][theta][j];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          trgradgp[j][theta]=gradgp[theta][j];
     
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1;i<=nlstate;i++)
       k=k+1;        for(j=1;j<=nlstate;j++)
       fprintf(ficrest,"\n#****** ");          vareij[i][j][(int)age] =0.;
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      for(h=0;h<=nhstepm;h++){
       fprintf(ficrest,"******\n");        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficreseij,"\n#****** ");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1;j<=cptcovn;j++)          for(i=1;i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(j=1;j<=nlstate;j++)
       fprintf(ficreseij,"******\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       fprintf(ficresvij,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)    
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      /* pptj */
       fprintf(ficresvij,"******\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       oldm=oldms;savm=savms;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            varppt[j][i]=doldmp[j][i];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /* end ppptj */
       oldm=oldms;savm=savms;      /*  x centered again */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      if (popbased==1) {
       fprintf(ficrest,"\n");        if(mobilav ==0){
                  for(i=1; i<=nlstate;i++)
       hf=1;            prlim[i][i]=probs[(int)age][i][ij];
       if (stepm >= YEARM) hf=stepm/YEARM;        }else{ /* mobilav */ 
       epj=vector(1,nlstate+1);          for(i=1; i<=nlstate;i++)
       for(age=bage; age <=fage ;age++){            prlim[i][i]=mobaverage[(int)age][i][ij];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
         fprintf(ficrest," %.0f",age);      }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){               
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /* This for computing probability of death (h=1 means
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           }         as a weighted average of prlim.
           epj[nlstate+1] +=epj[j];      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1, vepp=0.;i <=nlstate;i++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           for(j=1;j <=nlstate;j++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             vepp += vareij[i][j][(int)age];      }    
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      /* end probability of death */
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficrest,"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
     }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   }        }
              } 
  fclose(ficreseij);      fprintf(ficresprobmorprev,"\n");
  fclose(ficresvij);  
   fclose(ficrest);      fprintf(ficresvij,"%.0f ",age );
   fclose(ficpar);      for(i=1; i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);        for(j=1; j<=nlstate;j++){
   /*  scanf("%d ",i); */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   /*------- Variance limit prevalence------*/        fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
 strcpy(fileresvpl,"vpl");      free_matrix(gm,0,nhstepm,1,nlstate);
   strcat(fileresvpl,fileres);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     exit(0);    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
  k=0;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      k=k+1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficresvpl,"\n#****** ");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      for(j=1;j<=cptcovn;j++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficresvpl,"******\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
          fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
      oldm=oldms;savm=savms;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
    }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  }  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   fclose(ficresvpl);  
     free_vector(xp,1,npar);
   /*---------- End : free ----------------*/    free_matrix(doldm,1,nlstate,1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fclose(ficgp);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fclose(fichtm);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  }  /* end varevsij */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    /************ Variance of prevlim ******************/
   free_matrix(matcov,1,npar,1,npar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   free_vector(delti,1,npar);  {
      /* Variance of prevalence limit */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   printf("End of Imach\n");    double **dnewm,**doldm;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    int i, j, nhstepm, hstepm;
      int k, cptcode;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double *xp;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double *gp, *gm;
   /*------ End -----------*/    double **gradg, **trgradg;
     double age,agelim;
  end:    int theta;
 #ifdef windows     
  chdir(pathcd);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 #endif    fprintf(ficresvpl,"# Age");
  system("wgnuplot graph.plt");    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
 #ifdef windows    fprintf(ficresvpl,"\n");
   while (z[0] != 'q') {  
     chdir(pathcd);    xp=vector(1,npar);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    dnewm=matrix(1,nlstate,1,npar);
     scanf("%s",z);    doldm=matrix(1,nlstate,1,nlstate);
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') {    hstepm=1*YEARM; /* Every year of age */
       chdir(path);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       system("index.htm");    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     else if (z[0] == 'q') exit(0);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      if (stepm >= YEARM) hstepm=1;
 #endif      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
     }
     else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Localtime (at start)=%s",strt); 
     fprintf(ficlog,"Localtime (at start)=%s",strt); 
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.6  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>