Diff for /imach/src/imach.c between versions 1.21 and 1.86

version 1.21, 2002/02/21 18:42:24 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.86  2003/06/17 20:04:08  brouard
   individuals from different ages are interviewed on their health status    (Module): Change position of html and gnuplot routines and added
   or degree of  disability. At least a second wave of interviews    routine fileappend.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.85  2003/06/17 13:12:43  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Repository): Check when date of death was earlier that
   of life states). More degrees you consider, more time is necessary to    current date of interview. It may happen when the death was just
   reach the Maximum Likelihood of the parameters involved in the model.    prior to the death. In this case, dh was negative and likelihood
   The simplest model is the multinomial logistic model where pij is    was wrong (infinity). We still send an "Error" but patch by
   the probabibility to be observed in state j at the second wave conditional    assuming that the date of death was just one stepm after the
   to be observed in state i at the first wave. Therefore the model is:    interview.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): Because some people have very long ID (first column)
   is a covariate. If you want to have a more complex model than "constant and    we changed int to long in num[] and we added a new lvector for
   age", you should modify the program where the markup    memory allocation. But we also truncated to 8 characters (left
     *Covariates have to be included here again* invites you to do it.    truncation)
   More covariates you add, less is the speed of the convergence.    (Repository): No more line truncation errors.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.84  2003/06/13 21:44:43  brouard
   delay between waves is not identical for each individual, or if some    * imach.c (Repository): Replace "freqsummary" at a correct
   individual missed an interview, the information is not rounded or lost, but    place. It differs from routine "prevalence" which may be called
   taken into account using an interpolation or extrapolation.    many times. Probs is memory consuming and must be used with
   hPijx is the probability to be    parcimony.
   observed in state i at age x+h conditional to the observed state i at age    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.83  2003/06/10 13:39:11  lievre
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.  */
    /*
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).     Interpolated Markov Chain
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Short summary of the programme:
   from the European Union.    
   It is copyrighted identically to a GNU software product, ie programme and    This program computes Healthy Life Expectancies from
   software can be distributed freely for non commercial use. Latest version    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   can be accessed at http://euroreves.ined.fr/imach .    first survey ("cross") where individuals from different ages are
   **********************************************************************/    interviewed on their health status or degree of disability (in the
      case of a health survey which is our main interest) -2- at least a
 #include <math.h>    second wave of interviews ("longitudinal") which measure each change
 #include <stdio.h>    (if any) in individual health status.  Health expectancies are
 #include <stdlib.h>    computed from the time spent in each health state according to a
 #include <unistd.h>    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define MAXLINE 256    simplest model is the multinomial logistic model where pij is the
 #define FILENAMELENGTH 80    probability to be observed in state j at the second wave
 /*#define DEBUG*/    conditional to be observed in state i at the first wave. Therefore
 #define windows    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    you to do it.  More covariates you add, slower the
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    convergence.
   
 #define NINTERVMAX 8    The advantage of this computer programme, compared to a simple
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    multinomial logistic model, is clear when the delay between waves is not
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    identical for each individual. Also, if a individual missed an
 #define NCOVMAX 8 /* Maximum number of covariates */    intermediate interview, the information is lost, but taken into
 #define MAXN 20000    account using an interpolation or extrapolation.  
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    hPijx is the probability to be observed in state i at age x+h
 #define AGEBASE 40    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int erreur; /* Error number */    semester or year) is modelled as a multinomial logistic.  The hPx
 int nvar;    matrix is simply the matrix product of nh*stepm elementary matrices
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    and the contribution of each individual to the likelihood is simply
 int npar=NPARMAX;    hPijx.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Also this programme outputs the covariance matrix of the parameters but also
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    of the life expectancies. It also computes the stable prevalence. 
 int popbased=0;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int *wav; /* Number of waves for this individuual 0 is possible */             Institut national d'études démographiques, Paris.
 int maxwav; /* Maxim number of waves */    This software have been partly granted by Euro-REVES, a concerted action
 int jmin, jmax; /* min, max spacing between 2 waves */    from the European Union.
 int mle, weightopt;    It is copyrighted identically to a GNU software product, ie programme and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    software can be distributed freely for non commercial use. Latest version
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    **********************************************************************/
 FILE *ficreseij;  /*
   char filerese[FILENAMELENGTH];    main
  FILE  *ficresvij;    read parameterfile
   char fileresv[FILENAMELENGTH];    read datafile
  FILE  *ficresvpl;    concatwav
   char fileresvpl[FILENAMELENGTH];    freqsummary
     if (mle >= 1)
 #define NR_END 1      mlikeli
 #define FREE_ARG char*    print results files
 #define FTOL 1.0e-10    if mle==1 
        computes hessian
 #define NRANSI    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ITMAX 200        begin-prev-date,...
     open gnuplot file
 #define TOL 2.0e-4    open html file
     stable prevalence
 #define CGOLD 0.3819660     for age prevalim()
 #define ZEPS 1.0e-10    h Pij x
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define GOLD 1.618034    health expectancies
 #define GLIMIT 100.0    Variance-covariance of DFLE
 #define TINY 1.0e-20    prevalence()
      movingaverage()
 static double maxarg1,maxarg2;    varevsij() 
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if popbased==1 varevsij(,popbased)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    total life expectancies
      Variance of stable prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))   end
 #define rint(a) floor(a+0.5)  */
   
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
   #include <math.h>
 int imx;  #include <stdio.h>
 int stepm;  #include <stdlib.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <unistd.h>
   
 int m,nb;  #include <sys/time.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <time.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include "timeval.h"
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 double *weight;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **s; /* Status */  #define FILENAMELENGTH 132
 double *agedc, **covar, idx;  /*#define DEBUG*/
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double ftolhess; /* Tolerance for computing hessian */  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /**************** split *************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 static  int split( char *path, char *dirc, char *name )  
 {  #define NINTERVMAX 8
    char *s;                             /* pointer */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    int  l1, l2;                         /* length counters */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
    l1 = strlen( path );                 /* length of path */  #define MAXN 20000
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define YEARM 12. /* Number of months per year */
    s = strrchr( path, '\\' );           /* find last / */  #define AGESUP 130
    if ( s == NULL ) {                   /* no directory, so use current */  #define AGEBASE 40
 #if     defined(__bsd__)                /* get current working directory */  #ifdef unix
       extern char       *getwd( );  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
       if ( getwd( dirc ) == NULL ) {  #else
 #else  #define DIRSEPARATOR '\\'
       extern char       *getcwd( );  #define ODIRSEPARATOR '/'
   #endif
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  /* $Id$ */
          return( GLOCK_ERROR_GETCWD );  /* $State$ */
       }  
       strcpy( name, path );             /* we've got it */  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
    } else {                             /* strip direcotry from path */  char fullversion[]="$Revision$ $Date$"; 
       s++;                              /* after this, the filename */  int erreur; /* Error number */
       l2 = strlen( s );                 /* length of filename */  int nvar;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       strcpy( name, s );                /* save file name */  int npar=NPARMAX;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int nlstate=2; /* Number of live states */
       dirc[l1-l2] = 0;                  /* add zero */  int ndeath=1; /* Number of dead states */
    }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    l1 = strlen( dirc );                 /* length of directory */  int popbased=0;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
 /******************************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void replace(char *s, char*t)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i;  double jmean; /* Mean space between 2 waves */
   int lg=20;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   i=0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   lg=strlen(t);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for(i=0; i<= lg; i++) {  FILE *ficlog, *ficrespow;
     (s[i] = t[i]);  int globpr; /* Global variable for printing or not */
     if (t[i]== '\\') s[i]='/';  double fretone; /* Only one call to likelihood */
   }  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 int nbocc(char *s, char occ)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i,j=0;  FILE *ficresprobmorprev;
   int lg=20;  FILE *fichtm; /* Html File */
   i=0;  FILE *ficreseij;
   lg=strlen(s);  char filerese[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  FILE  *ficresvij;
   if  (s[i] == occ ) j++;  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
   return j;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  
   int i,lg,j,p=0;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   for(j=0; j<=strlen(t)-1; j++) {  char filerest[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
   
   lg=strlen(t);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NR_END 1
   }  #define FREE_ARG char*
      u[p]='\0';  #define FTOL 1.0e-10
   
    for(j=0; j<= lg; j++) {  #define NRANSI 
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define ITMAX 200 
   }  
 }  #define TOL 2.0e-4 
   
 /********************** nrerror ********************/  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 void nrerror(char error_text[])  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   fprintf(stderr,"ERREUR ...\n");  #define GOLD 1.618034 
   fprintf(stderr,"%s\n",error_text);  #define GLIMIT 100.0 
   exit(1);  #define TINY 1.0e-20 
 }  
 /*********************** vector *******************/  static double maxarg1,maxarg2;
 double *vector(int nl, int nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double *v;    
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!v) nrerror("allocation failure in vector");  #define rint(a) floor(a+0.5)
   return v-nl+NR_END;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /************************ free vector ******************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void free_vector(double*v, int nl, int nh)  
 {  int imx; 
   free((FREE_ARG)(v+nl-NR_END));  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /************************ivector *******************************/  int estepm;
 int *ivector(long nl,long nh)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int *v;  int m,nb;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  long *num;
   if (!v) nrerror("allocation failure in ivector");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   return v-nl+NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(v+nl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* imatrix *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double ftolhess; /* Tolerance for computing hessian */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /**************** split *************************/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int **m;  {
      char  *ss;                            /* pointer */
   /* allocate pointers to rows */    int   l1, l2;                         /* length counters */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    l1 = strlen(path );                   /* length of path */
   m += NR_END;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m -= nrl;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   /* allocate rows and set pointers to them */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      /* get current working directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl] += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] -= ncl;        return( GLOCK_ERROR_GETCWD );
        }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
   /* return pointer to array of pointers to rows */      ss++;                               /* after this, the filename */
   return m;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /****************** free_imatrix *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_imatrix(m,nrl,nrh,ncl,nch)      dirc[l1-l2] = 0;                    /* add zero */
       int **m;    }
       long nch,ncl,nrh,nrl;    l1 = strlen( dirc );                  /* length of directory */
      /* free an int matrix allocated by imatrix() */    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG) (m+nrl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     */
 /******************* matrix *******************************/    ss = strrchr( name, '.' );            /* find last / */
 double **matrix(long nrl, long nrh, long ncl, long nch)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l1= strlen( name);
   double **m;    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    finame[l1-l2]= 0;
   if (!m) nrerror("allocation failure 1 in matrix()");    return( 0 );                          /* we're done */
   m += NR_END;  }
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /******************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  void replace(char *s, char*t)
   m[nrl] -= ncl;  {
     int i;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int lg=20;
   return m;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /*************************free matrix ************************/      (s[i] = t[i]);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      if (t[i]== '\\') s[i]='/';
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /******************* ma3x *******************************/    int i,j=0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    int lg=20;
 {    i=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    lg=strlen(s);
   double ***m;    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");    return j;
   m += NR_END;  }
   m -= nrl;  
   void cutv(char *u,char *v, char*t, char occ)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl] += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl] -= ncl;       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    lg=strlen(t);
   for (j=ncl+1; j<=nch; j++)    for(j=0; j<p; j++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      (u[j] = t[j]);
      }
   for (i=nrl+1; i<=nrh; i++) {       u[p]='\0';
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)     for(j=0; j<= lg; j++) {
       m[i][j]=m[i][j-1]+nlay;      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
   return m;  }
 }  
   /********************** nrerror ********************/
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void nrerror(char error_text[])
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m+nrl-NR_END));    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /***************** f1dim *************************/  double *vector(int nl, int nh)
 extern int ncom;  {
 extern double *pcom,*xicom;    double *v;
 extern double (*nrfunc)(double []);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
 double f1dim(double x)    return v-nl+NR_END;
 {  }
   int j;  
   double f;  /************************ free vector ******************/
   double *xt;  void free_vector(double*v, int nl, int nh)
    {
   xt=vector(1,ncom);    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /************************ivector *******************************/
   return f;  int *ivector(long nl,long nh)
 }  {
     int *v;
 /*****************brent *************************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************free ivector **************************/
   double ftemp;  void free_ivector(int *v, long nl, long nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    free((FREE_ARG)(v+nl-NR_END));
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /************************lvector *******************************/
   x=w=v=bx;  long *lvector(long nl,long nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    long *v;
     xm=0.5*(a+b);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!v) nrerror("allocation failure in ivector");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return v-nl+NR_END;
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************free lvector **************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_lvector(long *v, long nl, long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(v+nl-NR_END));
       *xmin=x;  }
       return fx;  
     }  /******************* imatrix *******************************/
     ftemp=fu;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     if (fabs(e) > tol1) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       r=(x-w)*(fx-fv);  { 
       q=(x-v)*(fx-fw);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       p=(x-v)*q-(x-w)*r;    int **m; 
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    /* allocate pointers to rows */ 
       q=fabs(q);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       etemp=e;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       e=d;    m += NR_END; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m -= nrl; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {    
         d=p/q;    /* allocate rows and set pointers to them */ 
         u=x+d;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         if (u-a < tol2 || b-u < tol2)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           d=SIGN(tol1,xm-x);    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* return pointer to array of pointers to rows */ 
     fu=(*f)(u);    return m; 
     if (fu <= fx) {  } 
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /****************** free_imatrix *************************/
         SHFT(fv,fw,fx,fu)  void free_imatrix(m,nrl,nrh,ncl,nch)
         } else {        int **m;
           if (u < x) a=u; else b=u;        long nch,ncl,nrh,nrl; 
           if (fu <= fw || w == x) {       /* free an int matrix allocated by imatrix() */ 
             v=w;  { 
             w=u;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             fv=fw;    free((FREE_ARG) (m+nrl-NR_END)); 
             fw=fu;  } 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* matrix *******************************/
             fv=fu;  double **matrix(long nrl, long nrh, long ncl, long nch)
           }  {
         }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   nrerror("Too many iterations in brent");  
   *xmin=x;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return fx;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /****************** mnbrak ***********************/  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             double (*func)(double))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double ulim,u,r,q, dum;  
   double fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   *fa=(*func)(*ax);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *fb=(*func)(*bx);     */
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   while (*fb > *fc) {    free((FREE_ARG)(m+nrl-NR_END));
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************* ma3x *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }  
     SHFT(*ax,*bx,*cx,u)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /*************** linmin ************************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 int ncom;    for (i=nrl+1; i<=nrh; i++) {
 double *pcom,*xicom;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 double (*nrfunc)(double []);      for (j=ncl+1; j<=nch; j++) 
          m[i][j]=m[i][j-1]+nlay;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    return m; 
   double brent(double ax, double bx, double cx,    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                double (*f)(double), double tol, double *xmin);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double f1dim(double x);    */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /*************************free ma3x ************************/
   double xx,xmin,bx,ax;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double fx,fb,fa;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   ncom=n;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   pcom=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /***************** f1dim *************************/
     pcom[j]=p[j];  extern int ncom; 
     xicom[j]=xi[j];  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
   ax=0.0;   
   xx=1.0;  double f1dim(double x) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int j; 
 #ifdef DEBUG    double f;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double *xt; 
 #endif   
   for (j=1;j<=n;j++) {    xt=vector(1,ncom); 
     xi[j] *= xmin;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     p[j] += xi[j];    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   free_vector(xicom,1,n);    return f; 
   free_vector(pcom,1,n);  } 
 }  
   /*****************brent *************************/
 /*************** powell ************************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  { 
             double (*func)(double []))    int iter; 
 {    double a,b,d,etemp;
   void linmin(double p[], double xi[], int n, double *fret,    double fu,fv,fw,fx;
               double (*func)(double []));    double ftemp;
   int i,ibig,j;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double del,t,*pt,*ptt,*xit;    double e=0.0; 
   double fp,fptt;   
   double *xits;    a=(ax < cx ? ax : cx); 
   pt=vector(1,n);    b=(ax > cx ? ax : cx); 
   ptt=vector(1,n);    x=w=v=bx; 
   xit=vector(1,n);    fw=fv=fx=(*f)(x); 
   xits=vector(1,n);    for (iter=1;iter<=ITMAX;iter++) { 
   *fret=(*func)(p);      xm=0.5*(a+b); 
   for (j=1;j<=n;j++) pt[j]=p[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (*iter=1;;++(*iter)) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     fp=(*fret);      printf(".");fflush(stdout);
     ibig=0;      fprintf(ficlog,".");fflush(ficlog);
     del=0.0;  #ifdef DEBUG
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=n;i++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf(" %d %.12f",i, p[i]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     printf("\n");  #endif
     for (i=1;i<=n;i++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        *xmin=x; 
       fptt=(*fret);        return fx; 
 #ifdef DEBUG      } 
       printf("fret=%lf \n",*fret);      ftemp=fu;
 #endif      if (fabs(e) > tol1) { 
       printf("%d",i);fflush(stdout);        r=(x-w)*(fx-fv); 
       linmin(p,xit,n,fret,func);        q=(x-v)*(fx-fw); 
       if (fabs(fptt-(*fret)) > del) {        p=(x-v)*q-(x-w)*r; 
         del=fabs(fptt-(*fret));        q=2.0*(q-r); 
         ibig=i;        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
 #ifdef DEBUG        etemp=e; 
       printf("%d %.12e",i,(*fret));        e=d; 
       for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf(" x(%d)=%.12e",j,xit[j]);        else { 
       }          d=p/q; 
       for(j=1;j<=n;j++)          u=x+d; 
         printf(" p=%.12e",p[j]);          if (u-a < tol2 || b-u < tol2) 
       printf("\n");            d=SIGN(tol1,xm-x); 
 #endif        } 
     }      } else { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG      } 
       int k[2],l;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       k[0]=1;      fu=(*f)(u); 
       k[1]=-1;      if (fu <= fx) { 
       printf("Max: %.12e",(*func)(p));        if (u >= x) a=x; else b=x; 
       for (j=1;j<=n;j++)        SHFT(v,w,x,u) 
         printf(" %.12e",p[j]);          SHFT(fv,fw,fx,fu) 
       printf("\n");          } else { 
       for(l=0;l<=1;l++) {            if (u < x) a=u; else b=u; 
         for (j=1;j<=n;j++) {            if (fu <= fw || w == x) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];              v=w; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              w=u; 
         }              fv=fw; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));              fw=fu; 
       }            } else if (fu <= fv || v == x || v == w) { 
 #endif              v=u; 
               fv=fu; 
             } 
       free_vector(xit,1,n);          } 
       free_vector(xits,1,n);    } 
       free_vector(ptt,1,n);    nrerror("Too many iterations in brent"); 
       free_vector(pt,1,n);    *xmin=x; 
       return;    return fx; 
     }  } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /****************** mnbrak ***********************/
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       pt[j]=p[j];              double (*func)(double)) 
     }  { 
     fptt=(*func)(ptt);    double ulim,u,r,q, dum;
     if (fptt < fp) {    double fu; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   
       if (t < 0.0) {    *fa=(*func)(*ax); 
         linmin(p,xit,n,fret,func);    *fb=(*func)(*bx); 
         for (j=1;j<=n;j++) {    if (*fb > *fa) { 
           xi[j][ibig]=xi[j][n];      SHFT(dum,*ax,*bx,dum) 
           xi[j][n]=xit[j];        SHFT(dum,*fb,*fa,dum) 
         }        } 
 #ifdef DEBUG    *cx=(*bx)+GOLD*(*bx-*ax); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    *fc=(*func)(*cx); 
         for(j=1;j<=n;j++)    while (*fb > *fc) { 
           printf(" %.12e",xit[j]);      r=(*bx-*ax)*(*fb-*fc); 
         printf("\n");      q=(*bx-*cx)*(*fb-*fa); 
 #endif      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /**** Prevalence limit ****************/        fu=(*func)(u); 
         if (fu < *fc) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit            } 
      matrix by transitions matrix until convergence is reached */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   int i, ii,j,k;        fu=(*func)(u); 
   double min, max, maxmin, maxmax,sumnew=0.;      } else { 
   double **matprod2();        u=(*cx)+GOLD*(*cx-*bx); 
   double **out, cov[NCOVMAX], **pmij();        fu=(*func)(u); 
   double **newm;      } 
   double agefin, delaymax=50 ; /* Max number of years to converge */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   for (ii=1;ii<=nlstate+ndeath;ii++)        } 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** linmin ************************/
   
    cov[1]=1.;  int ncom; 
    double *pcom,*xicom;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double (*nrfunc)(double []); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     /* Covariates have to be included here again */  { 
      cov[2]=agefin;    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
       for (k=1; k<=cptcovn;k++) {    double f1dim(double x); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/                double *fc, double (*func)(double)); 
       }    int j; 
       for (k=1; k<=cptcovage;k++)    double xx,xmin,bx,ax; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fx,fb,fa;
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    ncom=n; 
     pcom=vector(1,n); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    xicom=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    nrfunc=func; 
     for (j=1;j<=n;j++) { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     savm=oldm;    } 
     oldm=newm;    ax=0.0; 
     maxmax=0.;    xx=1.0; 
     for(j=1;j<=nlstate;j++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       min=1.;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         sumnew=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=1;j<=n;j++) { 
         max=FMAX(max,prlim[i][j]);      xi[j] *= xmin; 
         min=FMIN(min,prlim[i][j]);      p[j] += xi[j]; 
       }    } 
       maxmin=max-min;    free_vector(xicom,1,n); 
       maxmax=FMAX(maxmax,maxmin);    free_vector(pcom,1,n); 
     }  } 
     if(maxmax < ftolpl){  
       return prlim;  /*************** powell ************************/
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
 }  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 /*************** transition probabilities ***************/                double (*func)(double [])); 
     int i,ibig,j; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double del,t,*pt,*ptt,*xit;
 {    double fp,fptt;
   double s1, s2;    double *xits;
   /*double t34;*/    pt=vector(1,n); 
   int i,j,j1, nc, ii, jj;    ptt=vector(1,n); 
     xit=vector(1,n); 
     for(i=1; i<= nlstate; i++){    xits=vector(1,n); 
     for(j=1; j<i;j++){    *fret=(*func)(p); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
         /*s2 += param[i][j][nc]*cov[nc];*/    for (*iter=1;;++(*iter)) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fp=(*fret); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      ibig=0; 
       }      del=0.0; 
       ps[i][j]=s2;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for(j=i+1; j<=nlstate+ndeath;j++){      for (i=1;i<=n;i++) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf(" %d %.12f",i, p[i]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog," %d %.12lf",i, p[i]);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficrespow," %.12lf", p[i]);
       }      }
       ps[i][j]=(s2);      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");
     /*ps[3][2]=1;*/      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(i=1; i<= nlstate; i++){        fptt=(*fret); 
      s1=0;  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("fret=%lf \n",*fret);
       s1+=exp(ps[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       s1+=exp(ps[i][j]);        printf("%d",i);fflush(stdout);
     ps[i][i]=1./(s1+1.);        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(j=1; j<i; j++)        linmin(p,xit,n,fret,func); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fabs(fptt-(*fret)) > del) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          del=fabs(fptt-(*fret)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          ibig=i; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        } 
   } /* end i */  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(jj=1; jj<= nlstate+ndeath; jj++){        for (j=1;j<=n;j++) {
       ps[ii][jj]=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       ps[ii][ii]=1;          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
         for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          fprintf(ficlog," p=%.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
      printf("%lf ",ps[ii][jj]);        printf("\n");
    }        fprintf(ficlog,"\n");
     printf("\n ");  #endif
     }      } 
     printf("\n ");printf("%lf ",cov[2]);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*  #ifdef DEBUG
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        int k[2],l;
   goto end;*/        k[0]=1;
     return ps;        k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /**************** Product of 2 matrices ******************/        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          fprintf(ficlog," %.12e",p[j]);
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        printf("\n");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        fprintf(ficlog,"\n");
   /* in, b, out are matrice of pointers which should have been initialized        for(l=0;l<=1;l++) {
      before: only the contents of out is modified. The function returns          for (j=1;j<=n;j++) {
      a pointer to pointers identical to out */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   long i, j, k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(i=nrl; i<= nrh; i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(k=ncolol; k<=ncoloh; k++)          }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         out[i][k] +=in[i][j]*b[j][k];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   return out;  #endif
 }  
   
         free_vector(xit,1,n); 
 /************* Higher Matrix Product ***************/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        free_vector(pt,1,n); 
 {        return; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } 
      duration (i.e. until      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for (j=1;j<=n;j++) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        ptt[j]=2.0*p[j]-pt[j]; 
      (typically every 2 years instead of every month which is too big).        xit[j]=p[j]-pt[j]; 
      Model is determined by parameters x and covariates have to be        pt[j]=p[j]; 
      included manually here.      } 
       fptt=(*func)(ptt); 
      */      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int i, j, d, h, k;        if (t < 0.0) { 
   double **out, cov[NCOVMAX];          linmin(p,xit,n,fret,func); 
   double **newm;          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   /* Hstepm could be zero and should return the unit matrix */            xi[j][n]=xit[j]; 
   for (i=1;i<=nlstate+ndeath;i++)          }
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       po[i][j][0]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            printf(" %.12e",xit[j]);
   for(h=1; h <=nhstepm; h++){            fprintf(ficlog," %.12e",xit[j]);
     for(d=1; d <=hstepm; d++){          }
       newm=savm;          printf("\n");
       /* Covariates have to be included here again */          fprintf(ficlog,"\n");
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } 
       for (k=1; k<=cptcovage;k++)    } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /**** Prevalence limit (stable prevalence)  ****************/
   
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       matrix by transitions matrix until convergence is reached */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;    int i, ii,j,k;
       oldm=newm;    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     for(i=1; i<=nlstate+ndeath; i++)    double **out, cov[NCOVMAX], **pmij();
       for(j=1;j<=nlstate+ndeath;j++) {    double **newm;
         po[i][j][h]=newm[i][j];    double agefin, delaymax=50 ; /* Max number of years to converge */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
   } /* end h */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return po;      }
 }  
      cov[1]=1.;
    
 /*************** log-likelihood *************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 double func( double *x)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 {      newm=savm;
   int i, ii, j, k, mi, d, kk;      /* Covariates have to be included here again */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       cov[2]=agefin;
   double **out;    
   double sw; /* Sum of weights */        for (k=1; k<=cptcovn;k++) {
   double lli; /* Individual log likelihood */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   long ipmx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   /*extern weight */        }
   /* We are differentiating ll according to initial status */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for (k=1; k<=cptcovprod;k++)
   /*for(i=1;i<imx;i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf(" %d\n",s[4][i]);  
   */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   cov[1]=1.;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      savm=oldm;
     for(mi=1; mi<= wav[i]-1; mi++){      oldm=newm;
       for (ii=1;ii<=nlstate+ndeath;ii++)      maxmax=0.;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
       for(d=0; d<dh[mi][i]; d++){        min=1.;
         newm=savm;        max=0.;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(i=1; i<=nlstate; i++) {
         for (kk=1; kk<=cptcovage;kk++) {          sumnew=0;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         }          prlim[i][j]= newm[i][j]/(1-sumnew);
                  max=FMAX(max,prlim[i][j]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          min=FMIN(min,prlim[i][j]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;        maxmin=max-min;
         oldm=newm;        maxmax=FMAX(maxmax,maxmin);
              }
              if(maxmax < ftolpl){
       } /* end mult */        return prlim;
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  /*************** transition probabilities ***************/ 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   } /* end of individual */  {
     double s1, s2;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /*double t34;*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int i,j,j1, nc, ii, jj;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;      for(i=1; i<= nlstate; i++){
 }      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
 /*********** Maximum Likelihood Estimation ***************/          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {        ps[i][j]=s2;
   int i,j, iter;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **xi,*delti;      }
   double fret;      for(j=i+1; j<=nlstate+ndeath;j++){
   xi=matrix(1,npar,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=npar;j++)          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");        ps[i][j]=s2;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
     }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      /*ps[3][2]=1;*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     for(i=1; i<= nlstate; i++){
 }       s1=0;
       for(j=1; j<i; j++)
 /**** Computes Hessian and covariance matrix ***/        s1+=exp(ps[i][j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(j=i+1; j<=nlstate+ndeath; j++)
 {        s1+=exp(ps[i][j]);
   double  **a,**y,*x,pd;      ps[i][i]=1./(s1+1.);
   double **hess;      for(j=1; j<i; j++)
   int i, j,jk;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   int *indx;      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   double hessii(double p[], double delta, int theta, double delti[]);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double hessij(double p[], double delti[], int i, int j);    } /* end i */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   hess=matrix(1,npar,1,npar);        ps[ii][jj]=0;
         ps[ii][ii]=1;
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     /*printf(" %lf ",hess[i][i]);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
   }       printf("%lf ",ps[ii][jj]);
       }
   for (i=1;i<=npar;i++) {      printf("\n ");
     for (j=1;j<=npar;j++)  {      }
       if (j>i) {      printf("\n ");printf("%lf ",cov[2]);*/
         printf(".%d%d",i,j);fflush(stdout);  /*
         hess[i][j]=hessij(p,delti,i,j);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         hess[j][i]=hess[i][j];        goto end;*/
         /*printf(" %lf ",hess[i][j]);*/      return ps;
       }  }
     }  
   }  /**************** Product of 2 matrices ******************/
   printf("\n");  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   a=matrix(1,npar,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   y=matrix(1,npar,1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
   x=vector(1,npar);       before: only the contents of out is modified. The function returns
   indx=ivector(1,npar);       a pointer to pointers identical to out */
   for (i=1;i<=npar;i++)    long i, j, k;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for(i=nrl; i<= nrh; i++)
   ludcmp(a,npar,indx,&pd);      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (j=1;j<=npar;j++) {          out[i][k] +=in[i][j]*b[j][k];
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    return out;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  
     }  /************* Higher Matrix Product ***************/
   }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   printf("\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {    /* Computes the transition matrix starting at age 'age' over 
     for (j=1;j<=npar;j++) {       'nhstepm*hstepm*stepm' months (i.e. until
       printf("%.3e ",hess[i][j]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     printf("\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
        for the memory).
   /* Recompute Inverse */       Model is determined by parameters x and covariates have to be 
   for (i=1;i<=npar;i++)       included manually here. 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);       */
   
   /*  printf("\n#Hessian matrix recomputed#\n");    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   for (j=1;j<=npar;j++) {    double **newm;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    /* Hstepm could be zero and should return the unit matrix */
     lubksb(a,npar,indx,x);    for (i=1;i<=nlstate+ndeath;i++)
     for (i=1;i<=npar;i++){      for (j=1;j<=nlstate+ndeath;j++){
       y[i][j]=x[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       printf("%.3e ",y[i][j]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
     printf("\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   */      for(d=1; d <=hstepm; d++){
         newm=savm;
   free_matrix(a,1,npar,1,npar);        /* Covariates have to be included here again */
   free_matrix(y,1,npar,1,npar);        cov[1]=1.;
   free_vector(x,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(hess,1,npar,1,npar);        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int l=1, lmax=20;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double k1,k2;        savm=oldm;
   double p2[NPARMAX+1];        oldm=newm;
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for(i=1; i<=nlstate+ndeath; i++)
   double fx;        for(j=1;j<=nlstate+ndeath;j++) {
   int k=0,kmax=10;          po[i][j][h]=newm[i][j];
   double l1;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];    } /* end h */
   for(l=0 ; l <=lmax; l++){    return po;
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /*************** log-likelihood *************/
       p2[theta]=x[theta] +delt;  double func( double *x)
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    int i, ii, j, k, mi, d, kk;
       k2=func(p2)-fx;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **out;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double sw; /* Sum of weights */
          double lli; /* Individual log likelihood */
 #ifdef DEBUG    int s1, s2;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double bbh, survp;
 #endif    long ipmx;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /*extern weight */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* We are differentiating ll according to initial status */
         k=kmax;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      printf(" %d\n",s[4][i]);
         k=kmax; l=lmax*10.;    */
       }    cov[1]=1.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     }    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   delti[theta]=delts;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   return res;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double hessij( double x[], double delti[], int thetai,int thetaj)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i;          for(d=0; d<dh[mi][i]; d++){
   int l=1, l1, lmax=20;            newm=savm;
   double k1,k2,k3,k4,res,fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double p2[NPARMAX+1];            for (kk=1; kk<=cptcovage;kk++) {
   int k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   fx=func(x);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k=1; k<=2; k++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) p2[i]=x[i];            savm=oldm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          } /* end mult */
     k1=func(p2)-fx;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     k2=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetai]=x[thetai]-delti[thetai]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     k3=func(p2)-fx;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetai]=x[thetai]-delti[thetai]/k;           * -stepm/2 to stepm/2 .
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * For stepm=1 the results are the same as for previous versions of Imach.
     k4=func(p2)-fx;           * For stepm > 1 the results are less biased than in previous versions. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           */
 #ifdef DEBUG          s1=s[mw[mi][i]][i];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          s2=s[mw[mi+1][i]][i];
 #endif          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   return res;           * is higher than the multiple of stepm and negative otherwise.
 }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 /************** Inverse of matrix **************/          if( s2 > nlstate){ 
 void ludcmp(double **a, int n, int *indx, double *d)            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 {               to the likelihood is the probability to die between last step unit time and current 
   int i,imax,j,k;               step unit time, which is also the differences between probability to die before dh 
   double big,dum,sum,temp;               and probability to die before dh-stepm . 
   double *vv;               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   vv=vector(1,n);          health state: the date of the interview describes the actual state
   *d=1.0;          and not the date of a change in health state. The former idea was
   for (i=1;i<=n;i++) {          to consider that at each interview the state was recorded
     big=0.0;          (healthy, disable or death) and IMaCh was corrected; but when we
     for (j=1;j<=n;j++)          introduced the exact date of death then we should have modified
       if ((temp=fabs(a[i][j])) > big) big=temp;          the contribution of an exact death to the likelihood. This new
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          contribution is smaller and very dependent of the step unit
     vv[i]=1.0/big;          stepm. It is no more the probability to die between last interview
   }          and month of death but the probability to survive from last
   for (j=1;j<=n;j++) {          interview up to one month before death multiplied by the
     for (i=1;i<j;i++) {          probability to die within a month. Thanks to Chris
       sum=a[i][j];          Jackson for correcting this bug.  Former versions increased
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          mortality artificially. The bad side is that we add another loop
       a[i][j]=sum;          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
     big=0.0;            */
     for (i=j;i<=n;i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
       sum=a[i][j];          }else{
       for (k=1;k<j;k++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         sum -= a[i][k]*a[k][j];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       a[i][j]=sum;          } 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         big=dum;          /*if(lli ==000.0)*/
         imax=i;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
     }          sw += weight[i];
     if (j != imax) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1;k<=n;k++) {        } /* end of wave */
         dum=a[imax][k];      } /* end of individual */
         a[imax][k]=a[j][k];    }  else if(mle==2){
         a[j][k]=dum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       *d = -(*d);        for(mi=1; mi<= wav[i]-1; mi++){
       vv[imax]=vv[j];          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     indx[j]=imax;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (a[j][j] == 0.0) a[j][j]=TINY;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != n) {            }
       dum=1.0/(a[j][j]);          for(d=0; d<=dh[mi][i]; d++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(vv,1,n);  /* Doesn't work */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 ;            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void lubksb(double **a, int n, int *indx, double b[])            savm=oldm;
 {            oldm=newm;
   int i,ii=0,ip,j;          } /* end mult */
   double sum;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (i=1;i<=n;i++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
     ip=indx[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     sum=b[ip];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     b[ip]=b[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (ii)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     else if (sum) ii=i;           * probability in order to take into account the bias as a fraction of the way
     b[i]=sum;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   for (i=n;i>=1;i--) {           * For stepm=1 the results are the same as for previous versions of Imach.
     sum=b[i];           * For stepm > 1 the results are less biased than in previous versions. 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           */
     b[i]=sum/a[i][i];          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
 /************ Frequencies ********************/           * is higher than the multiple of stepm and negative otherwise.
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)           */
 {  /* Some frequencies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   double ***freq; /* Frequencies */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double *pp;          /*if(lli ==000.0)*/
   double pos, k2, dateintsum=0,k2cpt=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   FILE *ficresp;          ipmx +=1;
   char fileresp[FILENAMELENGTH];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   pp=vector(1,nlstate);        } /* end of wave */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end of individual */
   strcpy(fileresp,"p");    }  else if(mle==3){  /* exponential inter-extrapolation */
   strcat(fileresp,fileres);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(mi=1; mi<= wav[i]-1; mi++){
     exit(0);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   j=cptcoveff;          for(d=0; d<dh[mi][i]; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(k1=1; k1<=j;k1++){            for (kk=1; kk<=cptcovage;kk++) {
    for(i1=1; i1<=ncodemax[k1];i1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        j1++;            }
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          scanf("%d", i);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (i=-1; i<=nlstate+ndeath; i++)              savm=oldm;
          for (jk=-1; jk<=nlstate+ndeath; jk++)              oldm=newm;
            for(m=agemin; m <= agemax+3; m++)          } /* end mult */
              freq[i][jk][m]=0;        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         dateintsum=0;          /* But now since version 0.9 we anticipate for bias and large stepm.
         k2cpt=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
        for (i=1; i<=imx; i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
          bool=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
          if  (cptcovn>0) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            for (z1=1; z1<=cptcoveff; z1++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * probability in order to take into account the bias as a fraction of the way
                bool=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
          }           * -stepm/2 to stepm/2 .
          if (bool==1) {           * For stepm=1 the results are the same as for previous versions of Imach.
            for(m=firstpass; m<=lastpass; m++){           * For stepm > 1 the results are less biased than in previous versions. 
              k2=anint[m][i]+(mint[m][i]/12.);           */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {          s1=s[mw[mi][i]][i];
                if(agev[m][i]==0) agev[m][i]=agemax+1;          s2=s[mw[mi+1][i]][i];
                if(agev[m][i]==1) agev[m][i]=agemax+2;          bbh=(double)bh[mi][i]/(double)stepm; 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /* bias is positive if real duration
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * is higher than the multiple of stepm and negative otherwise.
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           */
                  dateintsum=dateintsum+k2;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
                  k2cpt++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
              }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            }          ipmx +=1;
          }          sw += weight[i];
        }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
          fprintf(ficresp, "\n#********** Variable ");      } /* end of individual */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        fprintf(ficresp, "**********\n#");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
        fprintf(ficresp, "\n");            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(i==(int)agemax+3)            }
       printf("Total");          for(d=0; d<dh[mi][i]; d++){
     else            newm=savm;
       printf("Age %d", i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         pp[jk] += freq[jk][m][i];            }
     }          
     for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=-1, pos=0; m <=0 ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         pos += freq[jk][m][i];            savm=oldm;
       if(pp[jk]>=1.e-10)            oldm=newm;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          } /* end mult */
       else        
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
      for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }else{
         pp[jk] += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      }          }
           ipmx +=1;
     for(jk=1,pos=0; jk <=nlstate ; jk++)          sw += weight[i];
       pos += pp[jk];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1; jk <=nlstate ; jk++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if(pos>=1.e-5)        } /* end of wave */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
       else    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(pos>=1.e-5){        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
     if(i <= (int) agemax)          
       fprintf(ficresp,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     }            oldm=newm;
  }          } /* end mult */
   dateintmean=dateintsum/k2cpt;        
            s1=s[mw[mi][i]][i];
   fclose(ficresp);          s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_vector(pp,1,nlstate);          ipmx +=1;
           sw += weight[i];
   /* End of Freq */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 /************ Prevalence ********************/      } /* end of individual */
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    } /* End of if */
 {  /* Some frequencies */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double ***freq; /* Frequencies */    return -l;
   double *pp;  }
   double pos, k2;  
   /*************** log-likelihood *************/
   pp=vector(1,nlstate);  double funcone( double *x)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
      int i, ii, j, k, mi, d, kk;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   j1=0;    double **out;
      double lli; /* Individual log likelihood */
   j=cptcoveff;    int s1, s2;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double bbh, survp;
      /*extern weight */
  for(k1=1; k1<=j;k1++){    /* We are differentiating ll according to initial status */
     for(i1=1; i1<=ncodemax[k1];i1++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       j1++;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
       for (i=-1; i<=nlstate+ndeath; i++)      */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      cov[1]=1.;
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
       for (i=1; i<=imx; i++) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {      for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)        for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (j=1;j<=nlstate+ndeath;j++){
               bool=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){        for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);          newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          }
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }          savm=oldm;
         }          oldm=newm;
       }        } /* end mult */
              
         for(i=(int)agemin; i <= (int)agemax+3; i++){        s1=s[mw[mi][i]][i];
           for(jk=1; jk <=nlstate ; jk++){        s2=s[mw[mi+1][i]][i];
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        bbh=(double)bh[mi][i]/(double)stepm; 
               pp[jk] += freq[jk][m][i];        /* bias is positive if real duration
           }         * is higher than the multiple of stepm and negative otherwise.
           for(jk=1; jk <=nlstate ; jk++){         */
             for(m=-1, pos=0; m <=0 ; m++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             pos += freq[jk][m][i];          lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if (mle==1){
                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          for(jk=1; jk <=nlstate ; jk++){        } else if(mle==2){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              pp[jk] += freq[jk][m][i];        } else if(mle==3){  /* exponential inter-extrapolation */
          }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                  } else if (mle==4){  /* mle=4 no inter-extrapolation */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
          for(jk=1; jk <=nlstate ; jk++){                    lli=log(out[s1][s2]); /* Original formula */
            if( i <= (int) agemax){        } /* End of if */
              if(pos>=1.e-5){        ipmx +=1;
                probs[i][jk][j1]= pp[jk]/pos;        sw += weight[i];
              }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          }        if(globpr){
                    fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         }   %10.6f %10.6f %10.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,l=0.; k<=nlstate; k++) 
              fprintf(ficresilk," %10.6f",ll[k]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          fprintf(ficresilk,"\n");
   free_vector(pp,1,nlstate);        }
        } /* end of wave */
 }  /* End of Freq */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /************* Waves Concatenation ***************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    return -l;
 {  }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    /* This routine should help understanding what is done with the selection of individuals/waves and
      */       to check the exact contribution to the likelihood.
        Plotting could be done.
   int i, mi, m;     */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int k;
      double sum=0., jmean=0.;*/    if(globpr !=0){ /* Just counts and sums no printings */
       strcpy(fileresilk,"ilk"); 
   int j, k=0,jk, ju, jl;      strcat(fileresilk,fileres);
   double sum=0.;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   jmin=1e+5;        printf("Problem with resultfile: %s\n", fileresilk);
   jmax=-1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   jmean=0.;      }
   for(i=1; i<=imx; i++){      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
     mi=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
     m=firstpass;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     while(s[m][i] <= nlstate){      for(k=1; k<=nlstate; k++) 
       if(s[m][i]>=1)        fprintf(ficresilk," ll[%d]",k);
         mw[++mi][i]=m;      fprintf(ficresilk,"\n");
       if(m >=lastpass)    }
         break;  
       else    *fretone=(*funcone)(p);
         m++;    if(globpr !=0){
     }/* end while */      fclose(ficresilk);
     if (s[m][i] > nlstate){      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       mi++;     /* Death is another wave */        printf("Problem with html file: %s\n", optionfilehtm);
       /* if(mi==0)  never been interviewed correctly before death */        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
          /* Only death is a correct wave */        exit(0);
       mw[mi][i]=m;      }
     }      else{
         fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
     wav[i]=mi;        fclose(fichtm);
     if(mi==0)      }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }
   }    return;
   }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  /*********** Maximum Likelihood Estimation ***************/
       if (stepm <=0)  
         dh[mi][i]=1;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       else{  {
         if (s[mw[mi+1][i]][i] > nlstate) {    int i,j, iter;
           if (agedc[i] < 2*AGESUP) {    double **xi;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double fret;
           if(j==0) j=1;  /* Survives at least one month after exam */    double fretone; /* Only one call to likelihood */
           k=k+1;    char filerespow[FILENAMELENGTH];
           if (j >= jmax) jmax=j;    xi=matrix(1,npar,1,npar);
           if (j <= jmin) jmin=j;    for (i=1;i<=npar;i++)
           sum=sum+j;      for (j=1;j<=npar;j++)
           /* if (j<10) printf("j=%d num=%d ",j,i); */        xi[i][j]=(i==j ? 1.0 : 0.0);
           }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
         else{    strcat(filerespow,fileres);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           k=k+1;      printf("Problem with resultfile: %s\n", filerespow);
           if (j >= jmax) jmax=j;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           else if (j <= jmin)jmin=j;    }
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           sum=sum+j;    for (i=1;i<=nlstate;i++)
         }      for(j=1;j<=nlstate+ndeath;j++)
         jk= j/stepm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         jl= j -jk*stepm;    fprintf(ficrespow,"\n");
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)    powell(p,xi,npar,ftol,&iter,&fret,func);
           dh[mi][i]=jk;  
         else    fclose(ficrespow);
           dh[mi][i]=jk+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         if(dh[mi][i]==0)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           dh[mi][i]=1; /* At least one step */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
     }  }
   }  
   jmean=sum/k;  /**** Computes Hessian and covariance matrix ***/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  }  {
 /*********** Tricode ****************************/    double  **a,**y,*x,pd;
 void tricode(int *Tvar, int **nbcode, int imx)    double **hess;
 {    int i, j,jk;
   int Ndum[20],ij=1, k, j, i;    int *indx;
   int cptcode=0;  
   cptcoveff=0;    double hessii(double p[], double delta, int theta, double delti[]);
      double hessij(double p[], double delti[], int i, int j);
   for (k=0; k<19; k++) Ndum[k]=0;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for (k=1; k<=7; k++) ncodemax[k]=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    hess=matrix(1,npar,1,npar);
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    printf("\nCalculation of the hessian matrix. Wait...\n");
       Ndum[ij]++;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=npar;i++){
       if (ij > cptcode) cptcode=ij;      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
     for (i=0; i<=cptcode; i++) {      /*printf(" %f ",p[i]);*/
       if(Ndum[i]!=0) ncodemax[j]++;      /*printf(" %lf ",hess[i][i]);*/
     }    }
     ij=1;    
     for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     for (i=1; i<=ncodemax[j]; i++) {        if (j>i) { 
       for (k=0; k<=19; k++) {          printf(".%d%d",i,j);fflush(stdout);
         if (Ndum[k] != 0) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           nbcode[Tvar[j]][ij]=k;          hess[i][j]=hessij(p,delti,i,j);
           ij++;          hess[j][i]=hess[i][j];    
         }          /*printf(" %lf ",hess[i][j]);*/
         if (ij > ncodemax[j]) break;        }
       }        }
     }    }
   }      printf("\n");
     fprintf(ficlog,"\n");
  for (k=0; k<19; k++) Ndum[k]=0;  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  for (i=1; i<=ncovmodel-2; i++) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       ij=Tvar[i];    
       Ndum[ij]++;    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
  ij=1;    indx=ivector(1,npar);
  for (i=1; i<=10; i++) {    for (i=1;i<=npar;i++)
    if((Ndum[i]!=0) && (i<=ncov)){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      Tvaraff[ij]=i;    ludcmp(a,npar,indx,&pd);
      ij++;  
    }    for (j=1;j<=npar;j++) {
  }      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
     cptcoveff=ij-1;      lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /*********** Health Expectancies ****************/      }
     }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {    printf("\n#Hessian matrix#\n");
   /* Health expectancies */    fprintf(ficlog,"\n#Hessian matrix#\n");
   int i, j, nhstepm, hstepm, h;    for (i=1;i<=npar;i++) { 
   double age, agelim,hf;      for (j=1;j<=npar;j++) { 
   double ***p3mat;        printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Health expectancies\n");      }
   fprintf(ficreseij,"# Age");      printf("\n");
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   hstepm=1*YEARM; /*  Every j years of age (in month) */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    ludcmp(a,npar,indx,&pd);
   
   agelim=AGESUP;    /*  printf("\n#Hessian matrix recomputed#\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */    for (j=1;j<=npar;j++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      for (i=1;i<=npar;i++) x[i]=0;
     /* Typically if 20 years = 20*12/6=40 stepm */      x[j]=1;
     if (stepm >= YEARM) hstepm=1;      lubksb(a,npar,indx,x);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      for (i=1;i<=npar;i++){ 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        y[i][j]=x[i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("%.3e ",y[i][j]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
       printf("\n");
       fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)    */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  
           eij[i][j][(int)age] +=p3mat[i][j][h];    free_matrix(a,1,npar,1,npar);
         }    free_matrix(y,1,npar,1,npar);
        free_vector(x,1,npar);
     hf=1;    free_ivector(indx,1,npar);
     if (stepm >= YEARM) hf=stepm/YEARM;    free_matrix(hess,1,npar,1,npar);
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }  /*************** hessian matrix ****************/
     fprintf(ficreseij,"\n");  double hessii( double x[], double delta, int theta, double delti[])
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
   }    int i;
 }    int l=1, lmax=20;
     double k1,k2;
 /************ Variance ******************/    double p2[NPARMAX+1];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double res;
 {    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* Variance of health expectancies */    double fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int k=0,kmax=10;
   double **newm;    double l1;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h;    fx=func(x);
   int k, cptcode;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double *xp;    for(l=0 ; l <=lmax; l++){
   double **gp, **gm;      l1=pow(10,l);
   double ***gradg, ***trgradg;      delts=delt;
   double ***p3mat;      for(k=1 ; k <kmax; k=k+1){
   double age,agelim;        delt = delta*(l1*k);
   int theta;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        p2[theta]=x[theta]-delt;
   fprintf(ficresvij,"# Age");        k2=func(p2)-fx;
   for(i=1; i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
     for(j=1; j<=nlstate;j++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        
   fprintf(ficresvij,"\n");  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   xp=vector(1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,nlstate,1,npar);  #endif
   doldm=matrix(1,nlstate,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   hstepm=1*YEARM; /* Every year of age */          k=kmax;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }
   agelim = AGESUP;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          k=kmax; l=lmax*10.;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          delts=delt;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      }
     gp=matrix(0,nhstepm,1,nlstate);    }
     gm=matrix(0,nhstepm,1,nlstate);    delti[theta]=delts;
     return res; 
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  double hessij( double x[], double delti[], int thetai,int thetaj)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i;
     int l=1, l1, lmax=20;
       if (popbased==1) {    double k1,k2,k3,k4,res,fx;
         for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
           prlim[i][i]=probs[(int)age][i][ij];    int k;
       }  
          fx=func(x);
       for(j=1; j<= nlstate; j++){    for (k=1; k<=2; k++) {
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++) p2[i]=x[i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
       }    
          p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1; i<=npar; i++) /* Computes gradient */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if (popbased==1) {      k3=func(p2)-fx;
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
       for(j=1; j<= nlstate; j++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(h=0; h<=nhstepm; h++){  #ifdef DEBUG
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
       }    }
     return res;
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
     } /* End theta */  { 
     int i,imax,j,k; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double big,dum,sum,temp; 
     double *vv; 
     for(h=0; h<=nhstepm; h++)   
       for(j=1; j<=nlstate;j++)    vv=vector(1,n); 
         for(theta=1; theta <=npar; theta++)    *d=1.0; 
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=n;i++) { 
       big=0.0; 
     for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
       for(j=1;j<=nlstate;j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
         vareij[i][j][(int)age] =0.;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(h=0;h<=nhstepm;h++){      vv[i]=1.0/big; 
       for(k=0;k<=nhstepm;k++){    } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (j=1;j<=n;j++) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1;i<j;i++) { 
         for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
           for(j=1;j<=nlstate;j++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             vareij[i][j][(int)age] += doldm[i][j];        a[i][j]=sum; 
       }      } 
     }      big=0.0; 
     h=1;      for (i=j;i<=n;i++) { 
     if (stepm >= YEARM) h=stepm/YEARM;        sum=a[i][j]; 
     fprintf(ficresvij,"%.0f ",age );        for (k=1;k<j;k++) 
     for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
       for(j=1; j<=nlstate;j++){        a[i][j]=sum; 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
     fprintf(ficresvij,"\n");          imax=i; 
     free_matrix(gp,0,nhstepm,1,nlstate);        } 
     free_matrix(gm,0,nhstepm,1,nlstate);      } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      if (j != imax) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for (k=1;k<=n;k++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dum=a[imax][k]; 
   } /* End age */          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   free_vector(xp,1,npar);        } 
   free_matrix(doldm,1,nlstate,1,npar);        *d = -(*d); 
   free_matrix(dnewm,1,nlstate,1,nlstate);        vv[imax]=vv[j]; 
       } 
 }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 /************ Variance of prevlim ******************/      if (j != n) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        dum=1.0/(a[j][j]); 
 {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   /* Variance of prevalence limit */      } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    } 
   double **newm;    free_vector(vv,1,n);  /* Doesn't work */
   double **dnewm,**doldm;  ;
   int i, j, nhstepm, hstepm;  } 
   int k, cptcode;  
   double *xp;  void lubksb(double **a, int n, int *indx, double b[]) 
   double *gp, *gm;  { 
   double **gradg, **trgradg;    int i,ii=0,ip,j; 
   double age,agelim;    double sum; 
   int theta;   
        for (i=1;i<=n;i++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      ip=indx[i]; 
   fprintf(ficresvpl,"# Age");      sum=b[ip]; 
   for(i=1; i<=nlstate;i++)      b[ip]=b[i]; 
       fprintf(ficresvpl," %1d-%1d",i,i);      if (ii) 
   fprintf(ficresvpl,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   xp=vector(1,npar);      b[i]=sum; 
   dnewm=matrix(1,nlstate,1,npar);    } 
   doldm=matrix(1,nlstate,1,nlstate);    for (i=n;i>=1;i--) { 
        sum=b[i]; 
   hstepm=1*YEARM; /* Every year of age */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      b[i]=sum/a[i][i]; 
   agelim = AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /************ Frequencies ********************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     gradg=matrix(1,npar,1,nlstate);  {  /* Some frequencies */
     gp=vector(1,nlstate);    
     gm=vector(1,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     for(theta=1; theta <=npar; theta++){    double ***freq; /* Frequencies */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double *pp, **prop;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    FILE *ficresp;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    char fileresp[FILENAMELENGTH];
       for(i=1;i<=nlstate;i++)    
         gp[i] = prlim[i][i];    pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(fileresp,"p");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(fileresp,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(i=1;i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
         gm[i] = prlim[i][i];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       for(i=1;i<=nlstate;i++)    }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     } /* End theta */    j1=0;
     
     trgradg =matrix(1,nlstate,1,npar);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    first=1;
         trgradg[j][theta]=gradg[theta][j];  
     for(k1=1; k1<=j;k1++){
     for(i=1;i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       varpl[i][(int)age] =0.;        j1++;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          scanf("%d", i);*/
     for(i=1;i<=nlstate;i++)        for (i=-1; i<=nlstate+ndeath; i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresvpl,"%.0f ",age );              freq[i][jk][m]=0;
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=1; i<=nlstate; i++)  
     fprintf(ficresvpl,"\n");        for(m=iagemin; m <= iagemax+3; m++)
     free_vector(gp,1,nlstate);          prop[i][m]=0;
     free_vector(gm,1,nlstate);        
     free_matrix(gradg,1,npar,1,nlstate);        dateintsum=0;
     free_matrix(trgradg,1,nlstate,1,npar);        k2cpt=0;
   } /* End age */        for (i=1; i<=imx; i++) {
           bool=1;
   free_vector(xp,1,npar);          if  (cptcovn>0) {
   free_matrix(doldm,1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
 }          }
           if (bool==1){
 /************ Variance of one-step probabilities  ******************/            for(m=firstpass; m<=lastpass; m++){
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)              k2=anint[m][i]+(mint[m][i]/12.);
 {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int i, j;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int k=0, cptcode;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double **dnewm,**doldm;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double *xp;                if (m<lastpass) {
   double *gp, *gm;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double **gradg, **trgradg;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double age,agelim, cov[NCOVMAX];                }
   int theta;                
   char fileresprob[FILENAMELENGTH];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   strcpy(fileresprob,"prob");                  k2cpt++;
   strcat(fileresprob,fileres);                }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                /*}*/
     printf("Problem with resultfile: %s\n", fileresprob);            }
   }          }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        }
           
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if  (cptcovn>0) {
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   cov[1]=1;          fprintf(ficresp, "**********\n#");
   for (age=bage; age<=fage; age ++){        }
     cov[2]=age;        for(i=1; i<=nlstate;i++) 
     gradg=matrix(1,npar,1,9);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     trgradg=matrix(1,9,1,npar);        fprintf(ficresp, "\n");
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=iagemin; i <= iagemax+3; i++){
              if(i==iagemax+3){
     for(theta=1; theta <=npar; theta++){            fprintf(ficlog,"Total");
       for(i=1; i<=npar; i++)          }else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            if(first==1){
                    first=0;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              printf("See log file for details...\n");
                }
       k=0;            fprintf(ficlog,"Age %d", i);
       for(i=1; i<= (nlstate+ndeath); i++){          }
         for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
            k=k+1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           gp[k]=pmmij[i][j];              pp[jk] += freq[jk][m][i]; 
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
       for(i=1; i<=npar; i++)              pos += freq[jk][m][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if(pp[jk]>=1.e-10){
                  if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              }
       k=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=(nlstate+ndeath); i++){            }else{
         for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
           k=k+1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
       }          }
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          for(jk=1; jk <=nlstate ; jk++){
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
           }       
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(theta=1; theta <=npar; theta++)            pos += pp[jk];
       trgradg[j][theta]=gradg[theta][j];            posprop += prop[jk][i];
            }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            if(pos>=1.e-5){
               if(first==1)
      pmij(pmmij,cov,ncovmodel,x,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      k=0;            }else{
      for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
        for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
          k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
          gm[k]=pmmij[i][j];            }
         }            if( i <= iagemax){
      }              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      /*printf("\n%d ",(int)age);                /*probs[i][jk][j1]= pp[jk]/pos;*/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
               else
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      }*/            }
           }
   fprintf(ficresprob,"\n%d ",(int)age);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            for(m=-1; m <=nlstate+ndeath; m++)
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              if(freq[jk][m][i] !=0 ) {
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if(i <= iagemax)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            fprintf(ficresp,"\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if(first==1)
 }            printf("Others in log...\n");
  free_vector(xp,1,npar);          fprintf(ficlog,"\n");
 fclose(ficresprob);        }
  exit(0);      }
 }    }
     dateintmean=dateintsum/k2cpt; 
 /***********************************************/   
 /**************** Main Program *****************/    fclose(ficresp);
 /***********************************************/    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
 /*int main(int argc, char *argv[])*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 int main()    /* End of Freq */
 {  }
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  /************ Prevalence ********************/
   double agedeb, agefin,hf;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double agemin=1.e20, agemax=-1.e20;  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double fret;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double **xi,tmp,delta;       We still use firstpass and lastpass as another selection.
     */
   double dum; /* Dummy variable */   
   double ***p3mat;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   int *indx;    double ***freq; /* Frequencies */
   char line[MAXLINE], linepar[MAXLINE];    double *pp, **prop;
   char title[MAXLINE];    double pos,posprop; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    double  y2; /* in fractional years */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    int iagemin, iagemax;
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    iagemin= (int) agemin;
   char popfile[FILENAMELENGTH];    iagemax= (int) agemax;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    /*pp=vector(1,nlstate);*/
   int firstobs=1, lastobs=10;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int sdeb, sfin; /* Status at beginning and end */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   int c,  h , cpt,l;    j1=0;
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    j=cptcoveff;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;    for(k1=1; k1<=j;k1++){
   int *popage;/*boolprev=0 if date and zero if wave*/      for(i1=1; i1<=ncodemax[k1];i1++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        j1++;
         
   double bage, fage, age, agelim, agebase;        for (i=1; i<=nlstate; i++)  
   double ftolpl=FTOL;          for(m=iagemin; m <= iagemax+3; m++)
   double **prlim;            prop[i][m]=0.0;
   double *severity;       
   double ***param; /* Matrix of parameters */        for (i=1; i<=imx; i++) { /* Each individual */
   double  *p;          bool=1;
   double **matcov; /* Matrix of covariance */          if  (cptcovn>0) {
   double ***delti3; /* Scale */            for (z1=1; z1<=cptcoveff; z1++) 
   double *delti; /* Scale */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double ***eij, ***vareij;                bool=0;
   double **varpl; /* Variances of prevalence limits by age */          } 
   double *epj, vepp;          if (bool==1) { 
   double kk1, kk2;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   double *popeffectif,*popcount;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   double yp,yp1,yp2;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   char *alph[]={"a","a","b","c","d","e"}, str[4];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   char z[1]="c", occ;                  prop[s[m][i]][iagemax+3] += weight[i]; 
 #include <sys/time.h>                } 
 #include <time.h>              }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            } /* end selection of waves */
            }
   /* long total_usecs;        }
   struct timeval start_time, end_time;        for(i=iagemin; i <= iagemax+3; i++){  
            
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
           } 
   printf("\nIMACH, Version 0.7");  
   printf("\nEnter the parameter file name: ");          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
 #ifdef windows              if(posprop>=1.e-5){ 
   scanf("%s",pathtot);                probs[i][jk][j1]= prop[jk][i]/posprop;
   getcwd(pathcd, size);              } 
   /*cygwin_split_path(pathtot,path,optionfile);            } 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }/* end jk */ 
   /* cutv(path,optionfile,pathtot,'\\');*/        }/* end i */ 
       } /* end i1 */
 split(pathtot, path,optionfile);    } /* end k1 */
   chdir(path);    
   replace(pathc,path);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 #endif    /*free_vector(pp,1,nlstate);*/
 #ifdef unix    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   scanf("%s",optionfile);  }  /* End of prevalence */
 #endif  
   /************* Waves Concatenation ***************/
 /*-------- arguments in the command line --------*/  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   strcpy(fileres,"r");  {
   strcat(fileres, optionfile);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   /*---------arguments file --------*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       and mw[mi+1][i]. dh depends on stepm.
     printf("Problem with optionfile %s\n",optionfile);       */
     goto end;  
   }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   strcpy(filereso,"o");       double sum=0., jmean=0.;*/
   strcat(filereso,fileres);    int first;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int j, k=0,jk, ju, jl;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double sum=0.;
   }    first=0;
     jmin=1e+5;
   /* Reads comments: lines beginning with '#' */    jmax=-1;
   while((c=getc(ficpar))=='#' && c!= EOF){    jmean=0.;
     ungetc(c,ficpar);    for(i=1; i<=imx; i++){
     fgets(line, MAXLINE, ficpar);      mi=0;
     puts(line);      m=firstpass;
     fputs(line,ficparo);      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1)
   ungetc(c,ficpar);          mw[++mi][i]=m;
         if(m >=lastpass)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          break;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        else
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          m++;
 while((c=getc(ficpar))=='#' && c!= EOF){      }/* end while */
     ungetc(c,ficpar);      if (s[m][i] > nlstate){
     fgets(line, MAXLINE, ficpar);        mi++;     /* Death is another wave */
     puts(line);        /* if(mi==0)  never been interviewed correctly before death */
     fputs(line,ficparo);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
   ungetc(c,ficpar);      }
    
          wav[i]=mi;
   covar=matrix(0,NCOVMAX,1,n);      if(mi==0){
   cptcovn=0;        if(first==0){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        if(first==1){
            fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   /* Read guess parameters */        }
   /* Reads comments: lines beginning with '#' */      } /* end mi==0 */
   while((c=getc(ficpar))=='#' && c!= EOF){    } /* End individuals */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=imx; i++){
     puts(line);      for(mi=1; mi<wav[i];mi++){
     fputs(line,ficparo);        if (stepm <=0)
   }          dh[mi][i]=1;
   ungetc(c,ficpar);        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            if (agedc[i] < 2*AGESUP) {
     for(i=1; i <=nlstate; i++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     for(j=1; j <=nlstate+ndeath-1; j++){              if(j==0) j=1;  /* Survives at least one month after exam */
       fscanf(ficpar,"%1d%1d",&i1,&j1);              else if(j<0){
       fprintf(ficparo,"%1d%1d",i1,j1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       printf("%1d%1d",i,j);                j=1; /* Careful Patch */
       for(k=1; k<=ncovmodel;k++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         fscanf(ficpar," %lf",&param[i][j][k]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         printf(" %lf",param[i][j][k]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficparo," %lf",param[i][j][k]);              }
       }              k=k+1;
       fscanf(ficpar,"\n");              if (j >= jmax) jmax=j;
       printf("\n");              if (j <= jmin) jmin=j;
       fprintf(ficparo,"\n");              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }
           }
   p=param[1][1];          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /* Reads comments: lines beginning with '#' */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){            k=k+1;
     ungetc(c,ficpar);            if (j >= jmax) jmax=j;
     fgets(line, MAXLINE, ficpar);            else if (j <= jmin)jmin=j;
     puts(line);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fputs(line,ficparo);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
   ungetc(c,ficpar);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            sum=sum+j;
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){          jk= j/stepm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          jl= j -jk*stepm;
       printf("%1d%1d",i,j);          ju= j -(jk+1)*stepm;
       fprintf(ficparo,"%1d%1d",i1,j1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(k=1; k<=ncovmodel;k++){            if(jl==0){
         fscanf(ficpar,"%le",&delti3[i][j][k]);              dh[mi][i]=jk;
         printf(" %le",delti3[i][j][k]);              bh[mi][i]=0;
         fprintf(ficparo," %le",delti3[i][j][k]);            }else{ /* We want a negative bias in order to only have interpolation ie
       }                    * at the price of an extra matrix product in likelihood */
       fscanf(ficpar,"\n");              dh[mi][i]=jk+1;
       printf("\n");              bh[mi][i]=ju;
       fprintf(ficparo,"\n");            }
     }          }else{
   }            if(jl <= -ju){
   delti=delti3[1][1];              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /* Reads comments: lines beginning with '#' */                                   * is higher than the multiple of stepm and negative otherwise.
   while((c=getc(ficpar))=='#' && c!= EOF){                                   */
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            else{
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   matcov=matrix(1,npar,1,npar);              bh[mi][i]=ju; /* At least one step */
   for(i=1; i <=npar; i++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fscanf(ficpar,"%s",&str);            }
     printf("%s",str);          } /* end if mle */
     fprintf(ficparo,"%s",str);        }
     for(j=1; j <=i; j++){      } /* end wave */
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    jmean=sum/k;
       fprintf(ficparo," %.5le",matcov[i][j]);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fscanf(ficpar,"\n");   }
     printf("\n");  
     fprintf(ficparo,"\n");  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   for(i=1; i <=npar; i++)  {
     for(j=i+1;j<=npar;j++)    
       matcov[i][j]=matcov[j][i];    int Ndum[20],ij=1, k, j, i, maxncov=19;
        int cptcode=0;
   printf("\n");    cptcoveff=0; 
    
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     /*-------- data file ----------*/    for (k=1; k<=7; k++) ncodemax[k]=0;
     if((ficres =fopen(fileres,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileres);goto end;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     fprintf(ficres,"#%s\n",version);                                 modality*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     if((fic=fopen(datafile,"r"))==NULL)    {        Ndum[ij]++; /*store the modality */
       printf("Problem with datafile: %s\n", datafile);goto end;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
     n= lastobs;                                         female is 1, then  cptcode=1.*/
     severity = vector(1,maxwav);      }
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);      for (i=0; i<=cptcode; i++) {
     moisnais=vector(1,n);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     annais=vector(1,n);      }
     moisdc=vector(1,n);  
     andc=vector(1,n);      ij=1; 
     agedc=vector(1,n);      for (i=1; i<=ncodemax[j]; i++) {
     cod=ivector(1,n);        for (k=0; k<= maxncov; k++) {
     weight=vector(1,n);          if (Ndum[k] != 0) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            nbcode[Tvar[j]][ij]=k; 
     mint=matrix(1,maxwav,1,n);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     anint=matrix(1,maxwav,1,n);            
     s=imatrix(1,maxwav+1,1,n);            ij++;
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);          if (ij > ncodemax[j]) break; 
     ncodemax=ivector(1,8);        }  
       } 
     i=1;    }  
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
          
         for (j=maxwav;j>=1;j--){   for (i=1; i<=ncovmodel-2; i++) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           strcpy(line,stra);     ij=Tvar[i];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     Ndum[ij]++;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   }
         }  
           ij=1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   for (i=1; i<= maxncov; i++) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       ij++;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);     }
    }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   
         for (j=ncov;j>=1;j--){   cptcoveff=ij-1; /*Number of simple covariates*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }
         }  
         num[i]=atol(stra);  /*********** Health Expectancies ****************/
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
   {
         i=i+1;    /* Health expectancies */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     }    double age, agelim, hf;
     /* printf("ii=%d", ij);    double ***p3mat,***varhe;
        scanf("%d",i);*/    double **dnewm,**doldm;
   imx=i-1; /* Number of individuals */    double *xp;
     double **gp, **gm;
   /* for (i=1; i<=imx; i++){    double ***gradg, ***trgradg;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    int theta;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     for (i=1; i<=imx; i++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    
     fprintf(ficreseij,"# Health expectancies\n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficreseij,"# Age");
   Tvar=ivector(1,15);    for(i=1; i<=nlstate;i++)
   Tprod=ivector(1,15);      for(j=1; j<=nlstate;j++)
   Tvaraff=ivector(1,15);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   Tvard=imatrix(1,15,1,2);    fprintf(ficreseij,"\n");
   Tage=ivector(1,15);        
        if(estepm < stepm){
   if (strlen(model) >1){      printf ("Problem %d lower than %d\n",estepm, stepm);
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');    else  hstepm=estepm;   
     j1=nbocc(model,'*');    /* We compute the life expectancy from trapezoids spaced every estepm months
     cptcovn=j+1;     * This is mainly to measure the difference between two models: for example
     cptcovprod=j1;     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
         * progression in between and thus overestimating or underestimating according
     strcpy(modelsav,model);     * to the curvature of the survival function. If, for the same date, we 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       printf("Error. Non available option model=%s ",model);     * to compare the new estimate of Life expectancy with the same linear 
       goto end;     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
      
     for(i=(j+1); i>=1;i--){    /* For example we decided to compute the life expectancy with the smallest unit */
       cutv(stra,strb,modelsav,'+');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       nhstepm is the number of hstepm from age to agelim 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       nstepm is the number of stepm from age to agelin. 
       /*scanf("%d",i);*/       Look at hpijx to understand the reason of that which relies in memory size
       if (strchr(strb,'*')) {       and note for a fixed period like estepm months */
         cutv(strd,strc,strb,'*');    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if (strcmp(strc,"age")==0) {       survival function given by stepm (the optimization length). Unfortunately it
           cptcovprod--;       means that if the survival funtion is printed only each two years of age and if
           cutv(strb,stre,strd,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tvar[i]=atoi(stre);       results. So we changed our mind and took the option of the best precision.
           cptcovage++;    */
             Tage[cptcovage]=i;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             /*printf("stre=%s ", stre);*/  
         }    agelim=AGESUP;
         else if (strcmp(strd,"age")==0) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cptcovprod--;      /* nhstepm age range expressed in number of stepm */
           cutv(strb,stre,strc,'V');      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           Tvar[i]=atoi(stre);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           cptcovage++;      /* if (stepm >= YEARM) hstepm=1;*/
           Tage[cptcovage]=i;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           cutv(strb,stre,strc,'V');      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=ncov+k1;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           Tvard[k1][1]=atoi(strc);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           Tvard[k1][2]=atoi(stre);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           Tvar[cptcovn+k2]=Tvard[k1][1];   
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;      /* Computing Variances of health expectancies */
           k2=k2+2;  
         }       for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
       else {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);        cptj=0;
       }        for(j=1; j<= nlstate; j++){
       strcpy(modelsav,stra);            for(i=1; i<=nlstate; i++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            cptj=cptj+1;
         scanf("%d",i);*/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 }            }
            }
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);       
   scanf("%d ",i);*/       
     fclose(fic);        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /*  if(mle==1){*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if (weightopt != 1) { /* Maximisation without weights*/        
       for(i=1;i<=n;i++) weight[i]=1.0;        cptj=0;
     }        for(j=1; j<= nlstate; j++){
     /*-calculation of age at interview from date of interview and age at death -*/          for(i=1;i<=nlstate;i++){
     agev=matrix(1,maxwav,1,imx);            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    for (i=1; i<=imx; i++)  
      for(m=2; (m<= maxwav); m++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;          }
          s[m][i]=-1;        }
        }        for(j=1; j<= nlstate*nlstate; j++)
              for(h=0; h<=nhstepm-1; h++){
     for (i=1; i<=imx; i++)  {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){       } 
         if(s[m][i] >0){     
           if (s[m][i] == nlstate+1) {  /* End theta */
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               agev[m][i]=agedc[i];  
             else {       for(h=0; h<=nhstepm-1; h++)
               if (andc[i]!=9999){        for(j=1; j<=nlstate*nlstate;j++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(theta=1; theta <=npar; theta++)
               agev[m][i]=-1;            trgradg[h][j][theta]=gradg[h][theta][j];
               }       
             }  
           }       for(i=1;i<=nlstate*nlstate;i++)
           else if(s[m][i] !=9){ /* Should no more exist */        for(j=1;j<=nlstate*nlstate;j++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          varhe[i][j][(int)age] =0.;
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;       printf("%d|",(int)age);fflush(stdout);
             else if(agev[m][i] <agemin){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               agemin=agev[m][i];       for(h=0;h<=nhstepm-1;h++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(k=0;k<=nhstepm-1;k++){
             }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             else if(agev[m][i] >agemax){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               agemax=agev[m][i];          for(i=1;i<=nlstate*nlstate;i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for(j=1;j<=nlstate*nlstate;j++)
             }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             /*agev[m][i]=anint[m][i]-annais[i];*/        }
             /*   agev[m][i] = age[i]+2*m;*/      }
           }      /* Computing expectancies */
           else { /* =9 */      for(i=1; i<=nlstate;i++)
             agev[m][i]=1;        for(j=1; j<=nlstate;j++)
             s[m][i]=-1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         }            
         else /*= 0 Unknown */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           agev[m][i]=1;  
       }          }
      
     }      fprintf(ficreseij,"%3.0f",age );
     for (i=1; i<=imx; i++)  {      cptj=0;
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {        for(j=1; j<=nlstate;j++){
           printf("Error: Wrong value in nlstate or ndeath\n");            cptj++;
           goto end;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }        }
       }      fprintf(ficreseij,"\n");
     }     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_vector(severity,1,maxwav);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);    printf("\n");
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficlog,"\n");
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    free_vector(xp,1,npar);
     free_vector(andc,1,n);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     wav=ivector(1,imx);  }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /************ Variance ******************/
      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     /* Concatenates waves */  {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
       Tcode=ivector(1,100);    double **dnewm,**doldm;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double **dnewmp,**doldmp;
       ncodemax[1]=1;    int i, j, nhstepm, hstepm, h, nstepm ;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int k, cptcode;
          double *xp;
    codtab=imatrix(1,100,1,10);    double **gp, **gm;  /* for var eij */
    h=0;    double ***gradg, ***trgradg; /*for var eij */
    m=pow(2,cptcoveff);    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
    for(k=1;k<=cptcoveff; k++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      for(i=1; i <=(m/pow(2,k));i++){    double ***p3mat;
        for(j=1; j <= ncodemax[k]; j++){    double age,agelim, hf;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double ***mobaverage;
            h++;    int theta;
            if (h>m) h=1;codtab[h][k]=j;    char digit[4];
          }    char digitp[25];
        }  
      }    char fileresprobmorprev[FILENAMELENGTH];
    }  
        if(popbased==1){
    /* Calculates basic frequencies. Computes observed prevalence at single age      if(mobilav!=0)
        and prints on file fileres'p'. */        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
        }
        else 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcpy(digitp,"-stablbased-");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
              fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /* For Powell, parameters are in a vector p[] starting at p[1]        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    }
   
     if(mle==1){    strcpy(fileresprobmorprev,"prmorprev"); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        strcat(fileresprobmorprev,digit); /* Tvar to be done */
     /*--------- results files --------------*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    strcat(fileresprobmorprev,fileres);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
    jk=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
    fprintf(ficres,"# Parameters\n");    }
    printf("# Parameters\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        if (k != i)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
          {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            printf("%d%d ",i,k);      fprintf(ficresprobmorprev," p.%-d SE",j);
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1; i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
              printf("%f ",p[jk]);    }  
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresprobmorprev,"\n");
              jk++;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
            }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
            printf("\n");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
            fprintf(ficres,"\n");      exit(0);
          }    }
      }    else{
    }      fprintf(ficgp,"\n# Routine varevsij");
  if(mle==1){    }
     /* Computing hessian and covariance matrix */    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     ftolhess=ftol; /* Usually correct */      printf("Problem with html file: %s\n", optionfilehtm);
     hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
  }      exit(0);
     fprintf(ficres,"# Scales\n");    }
     printf("# Scales\n");    else{
      for(i=1,jk=1; i <=nlstate; i++){      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for(j=1; j <=nlstate+ndeath; j++){      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         if (j!=i) {    }
           fprintf(ficres,"%1d%1d",i,j);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
             printf(" %.5e",delti[jk]);    fprintf(ficresvij,"# Age");
             fprintf(ficres," %.5e",delti[jk]);    for(i=1; i<=nlstate;i++)
             jk++;      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           printf("\n");    fprintf(ficresvij,"\n");
           fprintf(ficres,"\n");  
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
      }    doldm=matrix(1,nlstate,1,nlstate);
        dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     k=1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(i=1;i<=npar;i++){    gpp=vector(nlstate+1,nlstate+ndeath);
       /*  if (k>nlstate) k=1;    gmp=vector(nlstate+1,nlstate+ndeath);
       i1=(i-1)/(ncovmodel*nlstate)+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    
       printf("%s%d%d",alph[k],i1,tab[i]);*/    if(estepm < stepm){
       fprintf(ficres,"%3d",i);      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    else  hstepm=estepm;   
         fprintf(ficres," %.5e",matcov[i][j]);    /* For example we decided to compute the life expectancy with the smallest unit */
         printf(" %.5e",matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficres,"\n");       nstepm is the number of stepm from age to agelin. 
       printf("\n");       Look at hpijx to understand the reason of that which relies in memory size
       k++;       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
     while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed every two years of age and if
       ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
       puts(line);    */
       fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (fage <= 2) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       bage = agemin;      gp=matrix(0,nhstepm,1,nlstate);
       fage = agemax;      gm=matrix(0,nhstepm,1,nlstate);
     }  
   
     fprintf(ficres,"# agemin agemax for life expectancy.\n");      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        if (popbased==1) {
     puts(line);          if(mobilav ==0){
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   ungetc(c,ficpar);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        }
          
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++){
     ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
     fgets(line, MAXLINE, ficpar);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     puts(line);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    fprintf(ficparo,"pop_based=%d\n",popbased);          }    
    fprintf(ficres,"pop_based=%d\n",popbased);          /* end probability of death */
   
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);   
   }        if (popbased==1) {
   ungetc(c,ficpar);          if(mobilav ==0){
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);            for(i=1; i<=nlstate;i++)
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);              prlim[i][i]=probs[(int)age][i][ij];
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
  /*------------ gnuplot -------------*/        }
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with file graph.gp");goto end;          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 #ifdef windows              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif        }
 m=pow(2,cptcoveff);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
  /* 1eme*/           as a weighted average of prlim.
   for (cpt=1; cpt<= nlstate ; cpt ++) {        */
    for (k1=1; k1<= m ; k1 ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
 #ifdef windows           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        }    
 #endif        /* end probability of death */
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        for(j=1; j<= nlstate; j++) /* vareij */
 #endif          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* End theta */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      for(h=0; h<=nhstepm; h++) /* veij */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(theta=1; theta <=npar; theta++)
 }              trgradg[h][j][theta]=gradg[h][theta][j];
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 fprintf(ficgp,"\nset ter gif small size 400,300");        for(theta=1; theta <=npar; theta++)
 #endif          trgradgp[j][theta]=gradgp[theta][j];
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*2 eme*/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   for (k1=1; k1<= m ; k1 ++) {          vareij[i][j][(int)age] =0.;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
          for(h=0;h<=nhstepm;h++){
     for (i=1; i<= nlstate+1 ; i ++) {        for(k=0;k<=nhstepm;k++){
       k=2*i;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1;i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(j=1;j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* pptj */
       for (j=1; j<= nlstate+1 ; j ++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 }          for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficgp,"\" t\"\" w l 0,");          varppt[j][i]=doldmp[j][i];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* end ppptj */
       for (j=1; j<= nlstate+1 ; j ++) {      /*  x centered again */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 }     
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      if (popbased==1) {
       else fprintf(ficgp,"\" t\"\" w l 0,");        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   /*3eme*/            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<= nlstate ; cpt ++) {               
       k=2+nlstate*(cpt-1);      /* This for computing probability of death (h=1 means
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       for (i=1; i< nlstate ; i ++) {         as a weighted average of prlim.
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      */
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
        /* end probability of death */
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     for (cpt=1; cpt<nlstate ; cpt ++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       k=3;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        for(i=1; i<=nlstate;i++){
       for (i=1; i< nlstate ; i ++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      } 
            fprintf(ficresprobmorprev,"\n");
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficresvij,"%.0f ",age );
       for (i=1; i< nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<=nlstate;j++){
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        fprintf(ficresvij,"\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      free_matrix(gp,0,nhstepm,1,nlstate);
     }      free_matrix(gm,0,nhstepm,1,nlstate);
   }        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /* proba elementaires */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){    } /* End age */
     for(k=1; k <=(nlstate+ndeath); k++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
       if (k != i) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
         for(j=1; j <=ncovmodel; j++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           jk++;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           fprintf(ficgp,"\n");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
   for(jk=1; jk <=m; jk++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
    i=1;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    for(k2=1; k2<=nlstate; k2++) {  */
      k3=i;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){    free_vector(xp,1,npar);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(doldm,1,nlstate,1,nlstate);
 ij=1;    free_matrix(dnewm,1,nlstate,1,npar);
         for(j=3; j <=ncovmodel; j++) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             ij++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }    fclose(ficresprobmorprev);
           else    fclose(ficgp);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fclose(fichtm);
         }  }  /* end varevsij */
           fprintf(ficgp,")/(1");  
          /************ Variance of prevlim ******************/
         for(k1=1; k1 <=nlstate; k1++){    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  {
 ij=1;    /* Variance of prevalence limit */
           for(j=3; j <=ncovmodel; j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **newm;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **dnewm,**doldm;
             ij++;    int i, j, nhstepm, hstepm;
           }    int k, cptcode;
           else    double *xp;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double *gp, *gm;
           }    double **gradg, **trgradg;
           fprintf(ficgp,")");    double age,agelim;
         }    int theta;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);     
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         i=i+ncovmodel;    fprintf(ficresvpl,"# Age");
        }    for(i=1; i<=nlstate;i++)
      }        fprintf(ficresvpl," %1d-%1d",i,i);
    }    fprintf(ficresvpl,"\n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
   }    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
   fclose(ficgp);    doldm=matrix(1,nlstate,1,nlstate);
   /* end gnuplot */    
        hstepm=1*YEARM; /* Every year of age */
 chdir(path);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        agelim = AGESUP;
     free_ivector(wav,1,imx);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        if (stepm >= YEARM) hstepm=1;
     free_ivector(num,1,n);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     free_vector(agedc,1,n);      gradg=matrix(1,npar,1,nlstate);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      gp=vector(1,nlstate);
     fclose(ficparo);      gm=vector(1,nlstate);
     fclose(ficres);  
     /*  }*/      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
    /*________fin mle=1_________*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
     /* No more information from the sample is required now */          gp[i] = prlim[i][i];
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gm[i] = prlim[i][i];
   }  
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      } /* End theta */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      trgradg =matrix(1,nlstate,1,npar);
 /*--------- index.htm --------*/  
       for(j=1; j<=nlstate;j++)
   strcpy(optionfilehtm,optionfile);        for(theta=1; theta <=npar; theta++)
   strcat(optionfilehtm,".htm");          trgradg[j][theta]=gradg[theta][j];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm);goto end;      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      for(i=1;i<=nlstate;i++)
 Total number of observations=%d <br>        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">      fprintf(ficresvpl,"%.0f ",age );
 <li>Outputs files<br><br>\n      for(i=1; i<=nlstate;i++)
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      fprintf(ficresvpl,"\n");
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      free_vector(gp,1,nlstate);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      free_vector(gm,1,nlstate);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      free_matrix(gradg,1,npar,1,nlstate);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      free_matrix(trgradg,1,nlstate,1,npar);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    } /* End age */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_vector(xp,1,npar);
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    free_matrix(doldm,1,nlstate,1,npar);
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
  fprintf(fichtm," <li>Graphs</li><p>");  }
   
  m=cptcoveff;  /************ Variance of one-step probabilities  ******************/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
  j1=0;    int i, j=0,  i1, k1, l1, t, tj;
  for(k1=1; k1<=m;k1++){    int k2, l2, j1,  z1;
    for(i1=1; i1<=ncodemax[k1];i1++){    int k=0,l, cptcode;
        j1++;    int first=1, first1;
        if (cptcovn > 0) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double **dnewm,**doldm;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double *xp;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    double *gp, *gm;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **gradg, **trgradg;
        }    double **mu;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double age,agelim, cov[NCOVMAX];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        for(cpt=1; cpt<nlstate;cpt++){    int theta;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    char fileresprob[FILENAMELENGTH];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    char fileresprobcov[FILENAMELENGTH];
        }    char fileresprobcor[FILENAMELENGTH];
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double ***varpij;
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      strcpy(fileresprob,"prob"); 
      }    strcat(fileresprob,fileres);
      for(cpt=1; cpt<=nlstate;cpt++) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      printf("Problem with resultfile: %s\n", fileresprob);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }    }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    strcpy(fileresprobcov,"probcov"); 
 health expectancies in states (1) and (2): e%s%d.gif<br>    strcat(fileresprobcov,fileres);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 fprintf(fichtm,"\n</body>");      printf("Problem with resultfile: %s\n", fileresprobcov);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  }    }
 fclose(fichtm);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   /*--------------- Prevalence limit --------------*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   strcpy(filerespl,"pl");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   strcat(filerespl,fileres);    }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficrespl,"#Prevalence limit\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficrespl,"#Age ");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    
   fprintf(ficrespl,"\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"# Age");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"# Age");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    for(i=1; i<=nlstate;i++)
   agebase=agemin;      for(j=1; j<=(nlstate+ndeath);j++){
   agelim=agemax;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   ftolpl=1.e-10;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   i1=cptcoveff;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if (cptcovn < 1){i1=1;}      }  
    /* fprintf(ficresprob,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobcov,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresprobcor,"\n");
         k=k+1;   */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   xp=vector(1,npar);
         fprintf(ficrespl,"\n#******");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         fprintf(ficrespl,"******\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            first=1;
         for (age=agebase; age<=agelim; age++){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           fprintf(ficrespl,"%.0f",age );      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
           for(i=1; i<=nlstate;i++)      exit(0);
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    else{
         }      fprintf(ficgp,"\n# Routine varprob");
       }    }
     }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   fclose(ficrespl);      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   /*------------- h Pij x at various ages ------------*/      exit(0);
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    else{
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(fichtm,"\n");
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   /*if (stepm<=24) stepsize=2;*/  
     }
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    cov[1]=1;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    tj=cptcoveff;
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   k=0;    j1=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    for(t=1; t<=tj;t++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i1=1; i1<=ncodemax[t];i1++){ 
       k=k+1;        j1++;
         fprintf(ficrespij,"\n#****** ");        if  (cptcovn>0) {
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprob, "\n#********** Variable "); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespij,"******\n");          fprintf(ficresprob, "**********\n#\n");
                  fprintf(ficresprobcov, "\n#********** Variable "); 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresprobcov, "**********\n#\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp, "\n#********** Variable "); 
           oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp, "**********\n#\n");
           fprintf(ficrespij,"# Age");          
           for(i=1; i<=nlstate;i++)          
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               fprintf(ficrespij," %1d-%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespij,"\n");          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           for (h=0; h<=nhstepm; h++){          
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficresprobcor, "\n#********** Variable ");    
             for(i=1; i<=nlstate;i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficresprobcor, "**********\n#");    
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        }
             fprintf(ficrespij,"\n");        
           }        for (age=bage; age<=fage; age ++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          cov[2]=age;
           fprintf(ficrespij,"\n");          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
   fclose(ficrespij);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if(stepm == 1) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
   /*---------- Forecasting ------------------*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      
           for(theta=1; theta <=npar; theta++){
   /*printf("calage= %f", calagedate);*/            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   strcpy(fileresf,"f");            k=0;
   strcat(fileresf,fileres);            for(i=1; i<= (nlstate); i++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;                k=k+1;
   }                gp[k]=pmmij[i][j];
   printf("Computing forecasting: result on file '%s' \n", fileresf);              }
             }
   free_matrix(mint,1,maxwav,1,n);            
   free_matrix(anint,1,maxwav,1,n);            for(i=1; i<=npar; i++)
   free_matrix(agev,1,maxwav,1,imx);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /* Mobile average */      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            k=0;
             for(i=1; i<=(nlstate); i++){
   if (mobilav==1) {              for(j=1; j<=(nlstate+ndeath);j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                k=k+1;
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)                gm[k]=pmmij[i][j];
       for (i=1; i<=nlstate;i++)              }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     for (agedeb=bage+4; agedeb<=fage; agedeb++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for (i=1; i<=nlstate;i++){          }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            for(theta=1; theta <=npar; theta++)
           }              trgradg[j][theta]=gradg[theta][j];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          
         }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     }            free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if (stepm<=12) stepsize=1;  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   agelim=AGESUP;          
   /*hstepm=stepsize*YEARM; *//* Every year of age */          k=0;
   hstepm=1;          for(i=1; i<=(nlstate); i++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */            for(j=1; j<=(nlstate+ndeath);j++){
   yp1=modf(dateintmean,&yp);              k=k+1;
   anprojmean=yp;              mu[k][(int) age]=pmmij[i][j];
   yp2=modf((yp1*12),&yp);            }
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   jprojmean=yp;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if(jprojmean==0) jprojmean=1;              varpij[i][j][(int)age] = doldm[i][j];
   if(mprojmean==0) jprojmean=1;  
           /*printf("\n%d ",(int)age);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if (popforecast==1) {            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     if((ficpop=fopen(popfile,"r"))==NULL)    {            }*/
       printf("Problem with population file : %s\n",popfile);goto end;  
     }          fprintf(ficresprob,"\n%d ",(int)age);
     popage=ivector(0,AGESUP);          fprintf(ficresprobcov,"\n%d ",(int)age);
     popeffectif=vector(0,AGESUP);          fprintf(ficresprobcor,"\n%d ",(int)age);
     popcount=vector(0,AGESUP);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     i=1;              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         i=i+1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
     imx=i;          i=0;
              for (k=1; k<=(nlstate);k++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for (l=1; l<=(nlstate+ndeath);l++){ 
   }              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   for(cptcov=1;cptcov<=i1;cptcov++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              for (j=1; j<=i;j++){
       k=k+1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       fprintf(ficresf,"\n#******");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       for(j=1;j<=cptcoveff;j++) {              }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       }          }/* end of loop for state */
       fprintf(ficresf,"******\n");        } /* end of loop for age */
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        /* Confidence intervalle of pij  */
       if (popforecast==1)  fprintf(ficresf," [Population]");        /*
              fprintf(ficgp,"\nset noparametric;unset label");
       for (cpt=0; cpt<4;cpt++) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficresf,"\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         nhstepm = nhstepm/hstepm;        */
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        first1=1;
         oldm=oldms;savm=savms;        for (k2=1; k2<=(nlstate);k2++){
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                    if(l2==k2) continue;
         for (h=0; h<=nhstepm; h++){            j=(k2-1)*(nlstate+ndeath)+l2;
           if (h==(int) (calagedate+YEARM*cpt)) {            for (k1=1; k1<=(nlstate);k1++){
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           }                if(l1==k1) continue;
           for(j=1; j<=nlstate+ndeath;j++) {                i=(k1-1)*(nlstate+ndeath)+l1;
             kk1=0.;kk2=0;                if(i<=j) continue;
             for(i=1; i<=nlstate;i++) {                        for (age=bage; age<=fage; age ++){ 
               if (mobilav==1)                  if ((int)age %5==0){
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
               else {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
               }                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];                    /* Computing eigen value of matrix of covariance */
             }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                              lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             if (h==(int)(calagedate+12*cpt)){                    /* Eigen vectors */
               fprintf(ficresf," %.3f", kk1);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                                  /*v21=sqrt(1.-v11*v11); *//* error */
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);                    v21=(lc1-v1)/cv12*v11;
             }                    v12=-v21;
           }                    v22=v11;
         }                    tnalp=v21/v11;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first1==1){
       }                      first1=0;
       }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /*printf(fignu*/
   if (popforecast==1) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     free_ivector(popage,0,AGESUP);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     free_vector(popeffectif,0,AGESUP);                    if(first==1){
     free_vector(popcount,0,AGESUP);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   free_imatrix(s,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   free_vector(weight,1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresf);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   }/* End forecasting */                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   else{                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     erreur=108;                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*---------- Health expectancies and variances ------------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(filerest,"t");                    }else{
   strcat(filerest,fileres);                      first=0;
   if((ficrest=fopen(filerest,"w"))==NULL) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(filerese,"e");                    }/* if first */
   strcat(filerese,fileres);                  } /* age mod 5 */
   if((ficreseij=fopen(filerese,"w"))==NULL) {                } /* end loop age */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   }                first=1;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              } /*l12 */
             } /* k12 */
  strcpy(fileresv,"v");          } /*l1 */
   strcat(fileresv,fileres);        }/* k1 */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      } /* loop covariates */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   k=0;    fclose(ficresprob);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcor);
       k=k+1;    fclose(ficgp);
       fprintf(ficrest,"\n#****** ");    fclose(fichtm);
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");  
   /******************* Printing html file ***********/
       fprintf(ficreseij,"\n#****** ");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       for(j=1;j<=cptcoveff;j++)                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       fprintf(ficreseij,"******\n");                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
       fprintf(ficresvij,"\n#****** ");                    double jprev2, double mprev2,double anprev2){
       for(j=1;j<=cptcoveff;j++)    int jj1, k1, i1, cpt;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    /*char optionfilehtm[FILENAMELENGTH];*/
       fprintf(ficresvij,"******\n");    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       oldm=oldms;savm=savms;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
         - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - Life expectancies by age and initial health status (estepm=%2d months): \
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
       fprintf(ficrest,"\n");    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
          
       hf=1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);   m=cptcoveff;
       for(age=bage; age <=fage ;age++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {   jj1=0;
           for(i=1; i<=nlstate;i++)   for(k1=1; k1<=m;k1++){
             prlim[i][i]=probs[(int)age][i][k];     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
               if (cptcovn > 0) {
         fprintf(ficrest," %.0f",age);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }       }
           epj[nlstate+1] +=epj[j];       /* Pij */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
         for(i=1, vepp=0.;i <=nlstate;i++)  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           for(j=1;j <=nlstate;j++)       /* Quasi-incidences */
             vepp += vareij[i][j][(int)age];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
         for(j=1;j <=nlstate;j++){  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));         /* Stable prevalence in each health state */
         }         for(cpt=1; cpt<nlstate;cpt++){
         fprintf(ficrest,"\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       }  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     }         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
                  fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
          <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  fclose(ficreseij);  health expectancies in states (1) and (2): e%s%d.png<br>\
  fclose(ficresvij);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   fclose(ficrest);     } /* end i1 */
   fclose(ficpar);   }/* End k1 */
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"</ul>");
   /*  scanf("%d ",i); */  
   
   /*------- Variance limit prevalence------*/     fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
 strcpy(fileresvpl,"vpl");   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   strcat(fileresvpl,fileres);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
     exit(0);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
   }   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
  k=0;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  for(cptcov=1;cptcov<=i1;cptcov++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*      <br>",fileres,fileres,fileres,fileres); */
      k=k+1;  /*  else  */
      fprintf(ficresvpl,"\n#****** ");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      for(j=1;j<=cptcoveff;j++)  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");   m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;   jj1=0;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   for(k1=1; k1<=m;k1++){
    }     for(i1=1; i1<=ncodemax[k1];i1++){
  }       jj1++;
        if (cptcovn > 0) {
   fclose(ficresvpl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*---------- End : free ----------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for(cpt=1; cpt<=nlstate;cpt++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    interval) in state (%d): v%s%d%d.png <br>\
    <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     } /* end i1 */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   }/* End k1 */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"</ul>");
    fclose(fichtm);
   free_matrix(matcov,1,npar,1,npar);  }
   free_vector(delti,1,npar);  
    /******************* Gnuplot file **************/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   if(erreur >0)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     printf("End of Imach with error %d\n",erreur);    int ng;
   else   printf("End of Imach\n");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      printf("Problem with file %s",optionfilegnuplot);
        fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
  end:  m=pow(2,cptcoveff);
 #ifdef windows    
  chdir(pathcd);   /* 1eme*/
 #endif    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
  system("..\\gp37mgw\\wgnuplot graph.plt");       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
 #ifdef windows  
   while (z[0] != 'q') {       for (i=1; i<= nlstate ; i ++) {
     chdir(pathcd);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("\nType e to edit output files, c to start again, and q for exiting: ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     scanf("%s",z);       }
     if (z[0] == 'c') system("./imach");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
     else if (z[0] == 'e') {       for (i=1; i<= nlstate ; i ++) {
       chdir(path);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       system(optionfilehtm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       } 
     else if (z[0] == 'q') exit(0);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   }       for (i=1; i<= nlstate ; i ++) {
 #endif         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfile)
   {
     if((fichier=fopen(optionfile,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfile);
       fprintf(ficlog,"Problem with file: %s\n", optionfile);
       return (1);
     }
   
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.21  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>