Diff for /imach/src/imach.c between versions 1.89 and 1.125

version 1.89, 2003/06/24 12:30:52 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Some bugs corrected for windows. Also, when    Errors in calculation of health expectancies. Age was not initialized.
   mle=-1 a template is output in file "or"mypar.txt with the design    Forecasting file added.
   of the covariance matrix to be input.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Revision 1.88  2003/06/23 17:54:56  brouard    Parameters are printed with %lf instead of %f (more numbers after the comma).
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    The log-likelihood is printed in the log file
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   Version 0.96    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   Revision 1.86  2003/06/17 20:04:08  brouard  
   (Module): Change position of html and gnuplot routines and added    * imach.c (Module): Weights can have a decimal point as for
   routine fileappend.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.85  2003/06/17 13:12:43  brouard    Modification of warning when the covariates values are not 0 or
   * imach.c (Repository): Check when date of death was earlier that    1.
   current date of interview. It may happen when the death was just    Version 0.98g
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.122  2006/03/20 09:45:41  brouard
   assuming that the date of death was just one stepm after the    (Module): Weights can have a decimal point as for
   interview.    English (a comma might work with a correct LC_NUMERIC environment,
   (Repository): Because some people have very long ID (first column)    otherwise the weight is truncated).
   we changed int to long in num[] and we added a new lvector for    Modification of warning when the covariates values are not 0 or
   memory allocation. But we also truncated to 8 characters (left    1.
   truncation)    Version 0.98g
   (Repository): No more line truncation errors.  
     Revision 1.121  2006/03/16 17:45:01  lievre
   Revision 1.84  2003/06/13 21:44:43  brouard    * imach.c (Module): Comments concerning covariates added
   * imach.c (Repository): Replace "freqsummary" at a correct  
   place. It differs from routine "prevalence" which may be called    * imach.c (Module): refinements in the computation of lli if
   many times. Probs is memory consuming and must be used with    status=-2 in order to have more reliable computation if stepm is
   parcimony.    not 1 month. Version 0.98f
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     Revision 1.120  2006/03/16 15:10:38  lievre
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): refinements in the computation of lli if
   *** empty log message ***    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 */    computed as likelihood omitting the logarithm. Version O.98e
 /*  
    Interpolated Markov Chain    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Short summary of the programme:    table of variances if popbased=1 .
       (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   This program computes Healthy Life Expectancies from    (Module): Function pstamp added
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Version 0.98d
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.117  2006/03/14 17:16:22  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): varevsij Comments added explaining the second
   second wave of interviews ("longitudinal") which measure each change    table of variances if popbased=1 .
   (if any) in individual health status.  Health expectancies are    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   computed from the time spent in each health state according to a    (Module): Function pstamp added
   model. More health states you consider, more time is necessary to reach the    (Module): Version 0.98d
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.116  2006/03/06 10:29:27  brouard
   probability to be observed in state j at the second wave    (Module): Variance-covariance wrong links and
   conditional to be observed in state i at the first wave. Therefore    varian-covariance of ej. is needed (Saito).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.115  2006/02/27 12:17:45  brouard
   complex model than "constant and age", you should modify the program    (Module): One freematrix added in mlikeli! 0.98c
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.114  2006/02/26 12:57:58  brouard
   convergence.    (Module): Some improvements in processing parameter
     filename with strsep.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.113  2006/02/24 14:20:24  brouard
   identical for each individual. Also, if a individual missed an    (Module): Memory leaks checks with valgrind and:
   intermediate interview, the information is lost, but taken into    datafile was not closed, some imatrix were not freed and on matrix
   account using an interpolation or extrapolation.      allocation too.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.112  2006/01/30 09:55:26  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.111  2006/01/25 20:38:18  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): Lots of cleaning and bugs added (Gompertz)
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Comments can be added in data file. Missing date values
   and the contribution of each individual to the likelihood is simply    can be a simple dot '.'.
   hPijx.  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Lots of cleaning and bugs added (Gompertz)
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.109  2006/01/24 19:37:15  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Comments (lines starting with a #) are allowed in data.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.108  2006/01/19 18:05:42  lievre
   from the European Union.    Gnuplot problem appeared...
   It is copyrighted identically to a GNU software product, ie programme and    To be fixed
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.106  2006/01/19 13:24:36  brouard
       Some cleaning and links added in html output
   **********************************************************************/  
 /*    Revision 1.105  2006/01/05 20:23:19  lievre
   main    *** empty log message ***
   read parameterfile  
   read datafile    Revision 1.104  2005/09/30 16:11:43  lievre
   concatwav    (Module): sump fixed, loop imx fixed, and simplifications.
   freqsummary    (Module): If the status is missing at the last wave but we know
   if (mle >= 1)    that the person is alive, then we can code his/her status as -2
     mlikeli    (instead of missing=-1 in earlier versions) and his/her
   print results files    contributions to the likelihood is 1 - Prob of dying from last
   if mle==1     health status (= 1-p13= p11+p12 in the easiest case of somebody in
      computes hessian    the healthy state at last known wave). Version is 0.98
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.103  2005/09/30 15:54:49  lievre
   open gnuplot file    (Module): sump fixed, loop imx fixed, and simplifications.
   open html file  
   stable prevalence    Revision 1.102  2004/09/15 17:31:30  brouard
    for age prevalim()    Add the possibility to read data file including tab characters.
   h Pij x  
   variance of p varprob    Revision 1.101  2004/09/15 10:38:38  brouard
   forecasting if prevfcast==1 prevforecast call prevalence()    Fix on curr_time
   health expectancies  
   Variance-covariance of DFLE    Revision 1.100  2004/07/12 18:29:06  brouard
   prevalence()    Add version for Mac OS X. Just define UNIX in Makefile
    movingaverage()  
   varevsij()     Revision 1.99  2004/06/05 08:57:40  brouard
   if popbased==1 varevsij(,popbased)    *** empty log message ***
   total life expectancies  
   Variance of stable prevalence    Revision 1.98  2004/05/16 15:05:56  brouard
  end    New version 0.97 . First attempt to estimate force of mortality
 */    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
 #include <math.h>    from other sources like vital statistic data.
 #include <stdio.h>  
 #include <stdlib.h>    The same imach parameter file can be used but the option for mle should be -3.
 #include <unistd.h>  
     Agnès, who wrote this part of the code, tried to keep most of the
 #include <sys/time.h>    former routines in order to include the new code within the former code.
 #include <time.h>  
 #include "timeval.h"    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Current limitations:
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    A) Even if you enter covariates, i.e. with the
 #define FILENAMELENGTH 132    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /*#define DEBUG*/    B) There is no computation of Life Expectancy nor Life Table.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NINTERVMAX 8    rewritten within the same printf. Workaround: many printfs.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Repository):
 #define MAXN 20000    (Repository): Using imachwizard code to output a more meaningful covariance
 #define YEARM 12. /* Number of months per year */    matrix (cov(a12,c31) instead of numbers.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.94  2003/06/27 13:00:02  brouard
 #ifdef unix    Just cleaning
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.93  2003/06/25 16:33:55  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
 #define DIRSEPARATOR '\\'    exist so I changed back to asctime which exists.
 #define ODIRSEPARATOR '/'    (Module): Version 0.96b
 #endif  
     Revision 1.92  2003/06/25 16:30:45  brouard
 /* $Id$ */    (Module): On windows (cygwin) function asctime_r doesn't
 /* $State$ */    exist so I changed back to asctime which exists.
   
 char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";    Revision 1.91  2003/06/25 15:30:29  brouard
 char fullversion[]="$Revision$ $Date$";     * imach.c (Repository): Duplicated warning errors corrected.
 int erreur; /* Error number */    (Repository): Elapsed time after each iteration is now output. It
 int nvar;    helps to forecast when convergence will be reached. Elapsed time
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    is stamped in powell.  We created a new html file for the graphs
 int npar=NPARMAX;    concerning matrix of covariance. It has extension -cov.htm.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.90  2003/06/24 12:34:15  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some bugs corrected for windows. Also, when
 int popbased=0;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.89  2003/06/24 12:30:52  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 int gipmx, gsw; /* Global variables on the number of contributions     mle=-1 a template is output in file "or"mypar.txt with the design
                    to the likelihood and the sum of weights (done by funcone)*/    of the covariance matrix to be input.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.88  2003/06/23 17:54:56  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Revision 1.87  2003/06/18 12:26:01  brouard
 double jmean; /* Mean space between 2 waves */    Version 0.96
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Change position of html and gnuplot routines and added
 FILE *ficlog, *ficrespow;    routine fileappend.
 int globpr; /* Global variable for printing or not */  
 double fretone; /* Only one call to likelihood */    Revision 1.85  2003/06/17 13:12:43  brouard
 long ipmx; /* Number of contributions */    * imach.c (Repository): Check when date of death was earlier that
 double sw; /* Sum of weights */    current date of interview. It may happen when the death was just
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    prior to the death. In this case, dh was negative and likelihood
 FILE *ficresilk;    was wrong (infinity). We still send an "Error" but patch by
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    assuming that the date of death was just one stepm after the
 FILE *ficresprobmorprev;    interview.
 FILE *fichtm; /* Html File */    (Repository): Because some people have very long ID (first column)
 FILE *ficreseij;    we changed int to long in num[] and we added a new lvector for
 char filerese[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
 FILE  *ficresvij;    truncation)
 char fileresv[FILENAMELENGTH];    (Repository): No more line truncation errors.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
 char title[MAXLINE];    * imach.c (Repository): Replace "freqsummary" at a correct
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    place. It differs from routine "prevalence" which may be called
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
 char tmpout[FILENAMELENGTH];     parcimony.
 char command[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int  outcmd=0;  
     Revision 1.83  2003/06/10 13:39:11  lievre
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    *** empty log message ***
 char lfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.82  2003/06/05 15:57:20  brouard
 char filerest[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];  */
   /*
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];     Interpolated Markov Chain
   
 #define NR_END 1    Short summary of the programme:
 #define FREE_ARG char*   
 #define FTOL 1.0e-10    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NRANSI     first survey ("cross") where individuals from different ages are
 #define ITMAX 200     interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define TOL 2.0e-4     second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define CGOLD 0.3819660     computed from the time spent in each health state according to a
 #define ZEPS 1.0e-10     model. More health states you consider, more time is necessary to reach the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define GOLD 1.618034     probability to be observed in state j at the second wave
 #define GLIMIT 100.0     conditional to be observed in state i at the first wave. Therefore
 #define TINY 1.0e-20     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 static double maxarg1,maxarg2;    complex model than "constant and age", you should modify the program
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    where the markup *Covariates have to be included here again* invites
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    you to do it.  More covariates you add, slower the
       convergence.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 static double sqrarg;    identical for each individual. Also, if a individual missed an
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    intermediate interview, the information is lost, but taken into
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     account using an interpolation or extrapolation.  
   
 int imx;     hPijx is the probability to be observed in state i at age x+h
 int stepm;    conditional to the observed state i at age x. The delay 'h' can be
 /* Stepm, step in month: minimum step interpolation*/    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int estepm;    semester or year) is modelled as a multinomial logistic.  The hPx
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int m,nb;    hPijx.
 long *num;  
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Also this programme outputs the covariance matrix of the parameters but also
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    of the life expectancies. It also computes the period (stable) prevalence.
 double **pmmij, ***probs;   
 double dateintmean=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 double *weight;    This software have been partly granted by Euro-REVES, a concerted action
 int **s; /* Status */    from the European Union.
 double *agedc, **covar, idx;    It is copyrighted identically to a GNU software product, ie programme and
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /**************** split *************************/   
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    **********************************************************************/
 {  /*
   char  *ss;                            /* pointer */    main
   int   l1, l2;                         /* length counters */    read parameterfile
     read datafile
   l1 = strlen(path );                   /* length of path */    concatwav
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    freqsummary
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    if (mle >= 1)
   if ( ss == NULL ) {                   /* no directory, so use current */      mlikeli
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    print results files
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    if mle==1
     /* get current working directory */       computes hessian
     /*    extern  char* getcwd ( char *buf , int len);*/    read end of parameter file: agemin, agemax, bage, fage, estepm
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {        begin-prev-date,...
       return( GLOCK_ERROR_GETCWD );    open gnuplot file
     }    open html file
     strcpy( name, path );               /* we've got it */    period (stable) prevalence
   } else {                              /* strip direcotry from path */     for age prevalim()
     ss++;                               /* after this, the filename */    h Pij x
     l2 = strlen( ss );                  /* length of filename */    variance of p varprob
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    forecasting if prevfcast==1 prevforecast call prevalence()
     strcpy( name, ss );         /* save file name */    health expectancies
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    Variance-covariance of DFLE
     dirc[l1-l2] = 0;                    /* add zero */    prevalence()
   }     movingaverage()
   l1 = strlen( dirc );                  /* length of directory */    varevsij()
   /*#ifdef windows    if popbased==1 varevsij(,popbased)
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    total life expectancies
 #else    Variance of period (stable) prevalence
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }   end
 #endif  */
   */  
   ss = strrchr( name, '.' );            /* find last / */  
   ss++;  
   strcpy(ext,ss);                       /* save extension */   
   l1= strlen( name);  #include <math.h>
   l2= strlen(ss)+1;  #include <stdio.h>
   strncpy( finame, name, l1-l2);  #include <stdlib.h>
   finame[l1-l2]= 0;  #include <string.h>
   return( 0 );                          /* we're done */  #include <unistd.h>
 }  
   #include <limits.h>
   #include <sys/types.h>
 /******************************************/  #include <sys/stat.h>
   #include <errno.h>
 void replace_back_to_slash(char *s, char*t)  extern int errno;
 {  
   int i;  /* #include <sys/time.h> */
   int lg=0;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  /* #include <libintl.h> */
     (s[i] = t[i]);  /* #define _(String) gettext (String) */
     if (t[i]== '\\') s[i]='/';  
   }  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 int nbocc(char *s, char occ)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   int i,j=0;  
   int lg=20;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   i=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if  (s[i] == occ ) j++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   return j;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void cutv(char *u,char *v, char*t, char occ)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   /* cuts string t into u and v where u is ended by char occ excluding it  #define YEARM 12. /* Number of months per year */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define AGESUP 130
      gives u="abcedf" and v="ghi2j" */  #define AGEBASE 40
   int i,lg,j,p=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   i=0;  #ifdef UNIX
   for(j=0; j<=strlen(t)-1; j++) {  #define DIRSEPARATOR '/'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define CHARSEPARATOR "/"
   }  #define ODIRSEPARATOR '\\'
   #else
   lg=strlen(t);  #define DIRSEPARATOR '\\'
   for(j=0; j<p; j++) {  #define CHARSEPARATOR "\\"
     (u[j] = t[j]);  #define ODIRSEPARATOR '/'
   }  #endif
      u[p]='\0';  
   /* $Id$ */
    for(j=0; j<= lg; j++) {  /* $State$ */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 }  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 /********************** nrerror ********************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void nrerror(char error_text[])  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   fprintf(stderr,"ERREUR ...\n");  int npar=NPARMAX;
   fprintf(stderr,"%s\n",error_text);  int nlstate=2; /* Number of live states */
   exit(EXIT_FAILURE);  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /*********************** vector *******************/  int popbased=0;
 double *vector(int nl, int nh)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   double *v;  int maxwav; /* Maxim number of waves */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!v) nrerror("allocation failure in vector");  int ijmin, ijmax; /* Individuals having jmin and jmax */
   return v-nl+NR_END;  int gipmx, gsw; /* Global variables on the number of contributions
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /************************ free vector ******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_vector(double*v, int nl, int nh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(v+nl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /************************ivector *******************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int *ivector(long nl,long nh)  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   int *v;  int globpr; /* Global variable for printing or not */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in ivector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /******************free ivector **************************/  FILE *ficresilk;
 void free_ivector(int *v, long nl, long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /************************lvector *******************************/  FILE *ficresstdeij;
 long *lvector(long nl,long nh)  char fileresstde[FILENAMELENGTH];
 {  FILE *ficrescveij;
   long *v;  char filerescve[FILENAMELENGTH];
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  FILE  *ficresvij;
   if (!v) nrerror("allocation failure in ivector");  char fileresv[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************free lvector **************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_lvector(long *v, long nl, long nh)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /******************* imatrix *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char filelog[FILENAMELENGTH]; /* Log file */
 {   char filerest[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   char fileregp[FILENAMELENGTH];
   int **m;   char popfile[FILENAMELENGTH];
     
   /* allocate pointers to rows */   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   
   if (!m) nrerror("allocation failure 1 in matrix()");   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m += NR_END;   struct timezone tzp;
   m -= nrl;   extern int gettimeofday();
     struct tm tmg, tm, tmf, *gmtime(), *localtime();
     long time_value;
   /* allocate rows and set pointers to them */   extern long time();
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   char strcurr[80], strfor[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;   char *endptr;
   m[nrl] -= ncl;   long lval;
     double dval;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
     #define NR_END 1
   /* return pointer to array of pointers to rows */   #define FREE_ARG char*
   return m;   #define FTOL 1.0e-10
 }   
   #define NRANSI
 /****************** free_imatrix *************************/  #define ITMAX 200
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define TOL 2.0e-4
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   #define CGOLD 0.3819660
 {   #define ZEPS 1.0e-10
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   free((FREE_ARG) (m+nrl-NR_END));   
 }   #define GOLD 1.618034
   #define GLIMIT 100.0
 /******************* matrix *******************************/  #define TINY 1.0e-20
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  static double maxarg1,maxarg2;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double **m;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m) nrerror("allocation failure 1 in matrix()");  #define rint(a) floor(a+0.5)
   m += NR_END;  
   m -= nrl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int agegomp= AGEGOMP;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int imx;
   int stepm=1;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Stepm, step in month: minimum step interpolation*/
   return m;  
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   int estepm;
    */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /*************************free matrix ************************/  long *num;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **pmmij, ***probs;
   free((FREE_ARG)(m+nrl-NR_END));  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /******************* ma3x *******************************/  double *weight;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ***m;  double *lsurv, *lpop, *tpop;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m += NR_END;  
   m -= nrl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   m[nrl] += NR_END;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl] -= ncl;    */
     char  *ss;                            /* pointer */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int   l1, l2;                         /* length counters */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    l1 = strlen(path );                   /* length of path */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl][ncl] += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl][ncl] -= nll;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for (j=ncl+1; j<=nch; j++)       strcpy( name, path );               /* we got the fullname name because no directory */
     m[nrl][j]=m[nrl][j-1]+nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (i=nrl+1; i<=nrh; i++) {      /* get current working directory */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      /*    extern  char* getcwd ( char *buf , int len);*/
     for (j=ncl+1; j<=nch; j++)       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       m[i][j]=m[i][j-1]+nlay;        return( GLOCK_ERROR_GETCWD );
   }      }
   return m;       /* got dirc from getcwd*/
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      printf(" DIRC = %s \n",dirc);
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    } else {                              /* strip direcotry from path */
   */      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************************free ma3x ************************/      strcpy( name, ss );         /* save file name */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      printf(" DIRC2 = %s \n",dirc);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /***************** f1dim *************************/      dirc[l1] =  DIRSEPARATOR;
 extern int ncom;       dirc[l1+1] = 0;
 extern double *pcom,*xicom;      printf(" DIRC3 = %s \n",dirc);
 extern double (*nrfunc)(double []);     }
      ss = strrchr( name, '.' );            /* find last / */
 double f1dim(double x)     if (ss >0){
 {       ss++;
   int j;       strcpy(ext,ss);                     /* save extension */
   double f;      l1= strlen( name);
   double *xt;       l2= strlen(ss)+1;
        strncpy( finame, name, l1-l2);
   xt=vector(1,ncom);       finame[l1-l2]= 0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     }
   f=(*nrfunc)(xt);   
   free_vector(xt,1,ncom);     return( 0 );                          /* we're done */
   return f;   }
 }   
   
 /*****************brent *************************/  /******************************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {   void replace_back_to_slash(char *s, char*t)
   int iter;   {
   double a,b,d,etemp;    int i;
   double fu,fv,fw,fx;    int lg=0;
   double ftemp;    i=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;     lg=strlen(t);
   double e=0.0;     for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   a=(ax < cx ? ax : cx);       if (t[i]== '\\') s[i]='/';
   b=(ax > cx ? ax : cx);     }
   x=w=v=bx;   }
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {   int nbocc(char *s, char occ)
     xm=0.5*(a+b);   {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     int i,j=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    int lg=20;
     printf(".");fflush(stdout);    i=0;
     fprintf(ficlog,".");fflush(ficlog);    lg=strlen(s);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if  (s[i] == occ ) j++;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return j;
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   
       *xmin=x;   void cutv(char *u,char *v, char*t, char occ)
       return fx;   {
     }     /* cuts string t into u and v where u ends before first occurence of char 'occ'
     ftemp=fu;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if (fabs(e) > tol1) {        gives u="abcedf" and v="ghi2j" */
       r=(x-w)*(fx-fv);     int i,lg,j,p=0;
       q=(x-v)*(fx-fw);     i=0;
       p=(x-v)*q-(x-w)*r;     for(j=0; j<=strlen(t)-1; j++) {
       q=2.0*(q-r);       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (q > 0.0) p = -p;     }
       q=fabs(q);   
       etemp=e;     lg=strlen(t);
       e=d;     for(j=0; j<p; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       (u[j] = t[j]);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     }
       else {        u[p]='\0';
         d=p/q;   
         u=x+d;      for(j=0; j<= lg; j++) {
         if (u-a < tol2 || b-u < tol2)       if (j>=(p+1))(v[j-p-1] = t[j]);
           d=SIGN(tol1,xm-x);     }
       }   }
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   /********************** nrerror ********************/
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   void nrerror(char error_text[])
     fu=(*f)(u);   {
     if (fu <= fx) {     fprintf(stderr,"ERREUR ...\n");
       if (u >= x) a=x; else b=x;     fprintf(stderr,"%s\n",error_text);
       SHFT(v,w,x,u)     exit(EXIT_FAILURE);
         SHFT(fv,fw,fx,fu)   }
         } else {   /*********************** vector *******************/
           if (u < x) a=u; else b=u;   double *vector(int nl, int nh)
           if (fu <= fw || w == x) {   {
             v=w;     double *v;
             w=u;     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
             fv=fw;     if (!v) nrerror("allocation failure in vector");
             fw=fu;     return v-nl+NR_END;
           } else if (fu <= fv || v == x || v == w) {   }
             v=u;   
             fv=fu;   /************************ free vector ******************/
           }   void free_vector(double*v, int nl, int nh)
         }   {
   }     free((FREE_ARG)(v+nl-NR_END));
   nrerror("Too many iterations in brent");   }
   *xmin=x;   
   return fx;   /************************ivector *******************************/
 }   int *ivector(long nl,long nh)
   {
 /****************** mnbrak ***********************/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     if (!v) nrerror("allocation failure in ivector");
             double (*func)(double))     return v-nl+NR_END;
 {   }
   double ulim,u,r,q, dum;  
   double fu;   /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   *fa=(*func)(*ax);   {
   *fb=(*func)(*bx);     free((FREE_ARG)(v+nl-NR_END));
   if (*fb > *fa) {   }
     SHFT(dum,*ax,*bx,dum)   
       SHFT(dum,*fb,*fa,dum)   /************************lvector *******************************/
       }   long *lvector(long nl,long nh)
   *cx=(*bx)+GOLD*(*bx-*ax);   {
   *fc=(*func)(*cx);     long *v;
   while (*fb > *fc) {     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     r=(*bx-*ax)*(*fb-*fc);     if (!v) nrerror("allocation failure in ivector");
     q=(*bx-*cx)*(*fb-*fa);     return v-nl+NR_END;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   
     ulim=(*bx)+GLIMIT*(*cx-*bx);   /******************free lvector **************************/
     if ((*bx-u)*(u-*cx) > 0.0) {   void free_lvector(long *v, long nl, long nh)
       fu=(*func)(u);   {
     } else if ((*cx-u)*(u-ulim) > 0.0) {     free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);   }
       if (fu < *fc) {   
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   /******************* imatrix *******************************/
           SHFT(*fb,*fc,fu,(*func)(u))   int **imatrix(long nrl, long nrh, long ncl, long nch)
           }        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   {
       u=ulim;     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       fu=(*func)(u);     int **m;
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);     /* allocate pointers to rows */
       fu=(*func)(u);     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     }     if (!m) nrerror("allocation failure 1 in matrix()");
     SHFT(*ax,*bx,*cx,u)     m += NR_END;
       SHFT(*fa,*fb,*fc,fu)     m -= nrl;
       }    
 }    
     /* allocate rows and set pointers to them */
 /*************** linmin ************************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 int ncom;     m[nrl] += NR_END;
 double *pcom,*xicom;    m[nrl] -= ncl;
 double (*nrfunc)(double []);    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {     /* return pointer to array of pointers to rows */
   double brent(double ax, double bx, double cx,     return m;
                double (*f)(double), double tol, double *xmin);   }
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   /****************** free_imatrix *************************/
               double *fc, double (*func)(double));   void free_imatrix(m,nrl,nrh,ncl,nch)
   int j;         int **m;
   double xx,xmin,bx,ax;         long nch,ncl,nrh,nrl;
   double fx,fb,fa;       /* free an int matrix allocated by imatrix() */
    {
   ncom=n;     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   pcom=vector(1,n);     free((FREE_ARG) (m+nrl-NR_END));
   xicom=vector(1,n);   }
   nrfunc=func;   
   for (j=1;j<=n;j++) {   /******************* matrix *******************************/
     pcom[j]=p[j];   double **matrix(long nrl, long nrh, long ncl, long nch)
     xicom[j]=xi[j];   {
   }     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   ax=0.0;     double **m;
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m -= nrl;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     xi[j] *= xmin;     m[nrl] += NR_END;
     p[j] += xi[j];     m[nrl] -= ncl;
   }   
   free_vector(xicom,1,n);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free_vector(pcom,1,n);     return m;
 }     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
      */
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))   /*************************free matrix ************************/
 {   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   void linmin(double p[], double xi[], int n, double *fret,   {
               double (*func)(double []));     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i,ibig,j;     free((FREE_ARG)(m+nrl-NR_END));
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /******************* ma3x *******************************/
   pt=vector(1,n);   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   ptt=vector(1,n);   {
   xit=vector(1,n);     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   xits=vector(1,n);     double ***m;
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (*iter=1;;++(*iter)) {     if (!m) nrerror("allocation failure 1 in matrix()");
     fp=(*fret);     m += NR_END;
     ibig=0;     m -= nrl;
     del=0.0;   
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    m[nrl] += NR_END;
     for (i=1;i<=n;i++) {    m[nrl] -= ncl;
       printf(" %d %.12f",i, p[i]);  
       fprintf(ficlog," %d %.12lf",i, p[i]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fprintf(ficrespow," %.12lf", p[i]);  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf("\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fprintf(ficlog,"\n");    m[nrl][ncl] += NR_END;
     fprintf(ficrespow,"\n");    m[nrl][ncl] -= nll;
     for (i=1;i<=n;i++) {     for (j=ncl+1; j<=nch; j++)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       m[nrl][j]=m[nrl][j-1]+nlay;
       fptt=(*fret);    
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) {
       printf("fret=%lf \n",*fret);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fprintf(ficlog,"fret=%lf \n",*fret);      for (j=ncl+1; j<=nch; j++)
 #endif        m[i][j]=m[i][j-1]+nlay;
       printf("%d",i);fflush(stdout);    }
       fprintf(ficlog,"%d",i);fflush(ficlog);    return m;
       linmin(p,xit,n,fret,func);     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (fabs(fptt-(*fret)) > del) {              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         del=fabs(fptt-(*fret));     */
         ibig=i;   }
       }   
 #ifdef DEBUG  /*************************free ma3x ************************/
       printf("%d %.12e",i,(*fret));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       fprintf(ficlog,"%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /*************** function subdirf ***********/
         printf(" p=%.12e",p[j]);  char *subdirf(char fileres[])
         fprintf(ficlog," p=%.12e",p[j]);  {
       }    /* Caution optionfilefiname is hidden */
       printf("\n");    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"\n");    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
     }     return tmpout;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /*************** function subdirf2 ***********/
       k[0]=1;  char *subdirf2(char fileres[], char *preop)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));   
       fprintf(ficlog,"Max: %.12e",(*func)(p));    /* Caution optionfilefiname is hidden */
       for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
         printf(" %.12e",p[j]);    strcat(tmpout,"/");
         fprintf(ficlog," %.12e",p[j]);    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
       printf("\n");    return tmpout;
       fprintf(ficlog,"\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char *subdirf3(char fileres[], char *preop, char *preop2)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);   
         }    /* Caution optionfilefiname is hidden */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
 #endif    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     return tmpout;
       free_vector(xit,1,n);   }
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);   /***************** f1dim *************************/
       free_vector(pt,1,n);   extern int ncom;
       return;   extern double *pcom,*xicom;
     }   extern double (*nrfunc)(double []);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {   double f1dim(double x)
       ptt[j]=2.0*p[j]-pt[j];   {
       xit[j]=p[j]-pt[j];     int j;
       pt[j]=p[j];     double f;
     }     double *xt;
     fptt=(*func)(ptt);    
     if (fptt < fp) {     xt=vector(1,ncom);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       if (t < 0.0) {     f=(*nrfunc)(xt);
         linmin(p,xit,n,fret,func);     free_vector(xt,1,ncom);
         for (j=1;j<=n;j++) {     return f;
           xi[j][ibig]=xi[j][n];   }
           xi[j][n]=xit[j];   
         }  /*****************brent *************************/
 #ifdef DEBUG  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int iter;
         for(j=1;j<=n;j++){    double a,b,d,etemp;
           printf(" %.12e",xit[j]);    double fu,fv,fw,fx;
           fprintf(ficlog," %.12e",xit[j]);    double ftemp;
         }    double p,q,r,tol1,tol2,u,v,w,x,xm;
         printf("\n");    double e=0.0;
         fprintf(ficlog,"\n");   
 #endif    a=(ax < cx ? ax : cx);
       }    b=(ax > cx ? ax : cx);
     }     x=w=v=bx;
   }     fw=fv=fx=(*f)(x);
 }     for (iter=1;iter<=ITMAX;iter++) {
       xm=0.5*(a+b);
 /**** Prevalence limit (stable prevalence)  ****************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      printf(".");fflush(stdout);
 {      fprintf(ficlog,".");fflush(ficlog);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #ifdef DEBUG
      matrix by transitions matrix until convergence is reached */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, ii,j,k;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double min, max, maxmin, maxmax,sumnew=0.;  #endif
   double **matprod2();      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   double **out, cov[NCOVMAX], **pmij();        *xmin=x;
   double **newm;        return fx;
   double agefin, delaymax=50 ; /* Max number of years to converge */      }
       ftemp=fu;
   for (ii=1;ii<=nlstate+ndeath;ii++)      if (fabs(e) > tol1) {
     for (j=1;j<=nlstate+ndeath;j++){        r=(x-w)*(fx-fv);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        q=(x-v)*(fx-fw);
     }        p=(x-v)*q-(x-w)*r;
         q=2.0*(q-r);
    cov[1]=1.;        if (q > 0.0) p = -p;
          q=fabs(q);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        etemp=e;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        e=d;
     newm=savm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     /* Covariates have to be included here again */          d=CGOLD*(e=(x >= xm ? a-x : b-x));
      cov[2]=agefin;        else {
             d=p/q;
       for (k=1; k<=cptcovn;k++) {          u=x+d;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          if (u-a < tol2 || b-u < tol2)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/            d=SIGN(tol1,xm-x);
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else {
       for (k=1; k<=cptcovprod;k++)        d=CGOLD*(e=(x >= xm ? a-x : b-x));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      }
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fu=(*f)(u);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      if (fu <= fx) {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        if (u >= x) a=x; else b=x;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        SHFT(v,w,x,u)
           SHFT(fv,fw,fx,fu)
     savm=oldm;          } else {
     oldm=newm;            if (u < x) a=u; else b=u;
     maxmax=0.;            if (fu <= fw || w == x) {
     for(j=1;j<=nlstate;j++){              v=w;
       min=1.;              w=u;
       max=0.;              fv=fw;
       for(i=1; i<=nlstate; i++) {              fw=fu;
         sumnew=0;            } else if (fu <= fv || v == x || v == w) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              v=u;
         prlim[i][j]= newm[i][j]/(1-sumnew);              fv=fu;
         max=FMAX(max,prlim[i][j]);            }
         min=FMIN(min,prlim[i][j]);          }
       }    }
       maxmin=max-min;    nrerror("Too many iterations in brent");
       maxmax=FMAX(maxmax,maxmin);    *xmin=x;
     }    return fx;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /****************** mnbrak ***********************/
   }  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
               double (*func)(double))
 /*************** transition probabilities ***************/   {
     double ulim,u,r,q, dum;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double fu;
 {   
   double s1, s2;    *fa=(*func)(*ax);
   /*double t34;*/    *fb=(*func)(*bx);
   int i,j,j1, nc, ii, jj;    if (*fb > *fa) {
       SHFT(dum,*ax,*bx,dum)
     for(i=1; i<= nlstate; i++){        SHFT(dum,*fb,*fa,dum)
     for(j=1; j<i;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *cx=(*bx)+GOLD*(*bx-*ax);
         /*s2 += param[i][j][nc]*cov[nc];*/    *fc=(*func)(*cx);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while (*fb > *fc) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      r=(*bx-*ax)*(*fb-*fc);
       }      q=(*bx-*cx)*(*fb-*fa);
       ps[i][j]=s2;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
     }      ulim=(*bx)+GLIMIT*(*cx-*bx);
     for(j=i+1; j<=nlstate+ndeath;j++){      if ((*bx-u)*(u-*cx) > 0.0) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fu=(*func)(u);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else if ((*cx-u)*(u-ulim) > 0.0) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fu=(*func)(u);
       }        if (fu < *fc) {
       ps[i][j]=s2;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
     }            SHFT(*fb,*fc,fu,(*func)(u))
   }            }
     /*ps[3][2]=1;*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         u=ulim;
   for(i=1; i<= nlstate; i++){        fu=(*func)(u);
      s1=0;      } else {
     for(j=1; j<i; j++)        u=(*cx)+GOLD*(*cx-*bx);
       s1+=exp(ps[i][j]);        fu=(*func)(u);
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       s1+=exp(ps[i][j]);      SHFT(*ax,*bx,*cx,u)
     ps[i][i]=1./(s1+1.);        SHFT(*fa,*fb,*fc,fu)
     for(j=1; j<i; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************** linmin ************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  int ncom;
   double *pcom,*xicom;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double (*nrfunc)(double []);
     for(jj=1; jj<= nlstate+ndeath; jj++){   
       ps[ii][jj]=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       ps[ii][ii]=1;  {
     }    double brent(double ax, double bx, double cx,
   }                 double (*f)(double), double tol, double *xmin);
     double f1dim(double x);
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){                double *fc, double (*func)(double));
     for(jj=1; jj<= nlstate+ndeath; jj++){    int j;
      printf("%lf ",ps[ii][jj]);    double xx,xmin,bx,ax;
    }    double fx,fb,fa;
     printf("\n ");   
     }    ncom=n;
     printf("\n ");printf("%lf ",cov[2]);*/    pcom=vector(1,n);
 /*    xicom=vector(1,n);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    nrfunc=func;
   goto end;*/    for (j=1;j<=n;j++) {
     return ps;      pcom[j]=p[j];
 }      xicom[j]=xi[j];
     }
 /**************** Product of 2 matrices ******************/    ax=0.0;
     xx=1.0;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #ifdef DEBUG
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* in, b, out are matrice of pointers which should have been initialized     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */    for (j=1;j<=n;j++) {
   long i, j, k;      xi[j] *= xmin;
   for(i=nrl; i<= nrh; i++)      p[j] += xi[j];
     for(k=ncolol; k<=ncoloh; k++)    }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    free_vector(xicom,1,n);
         out[i][k] +=in[i][j]*b[j][k];    free_vector(pcom,1,n);
   }
   return out;  
 }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
 /************* Higher Matrix Product ***************/    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   /* Computes the transition matrix starting at age 'age' over     minutes = (sec_left) /60;
      'nhstepm*hstepm*stepm' months (i.e. until    sec_left = (sec_left) % (60);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      nhstepm*hstepm matrices.     return ascdiff;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   }
      (typically every 2 years instead of every month which is too big   
      for the memory).  /*************** powell ************************/
      Model is determined by parameters x and covariates have to be   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
      included manually here.               double (*func)(double []))
   {
      */    void linmin(double p[], double xi[], int n, double *fret,
                 double (*func)(double []));
   int i, j, d, h, k;    int i,ibig,j;
   double **out, cov[NCOVMAX];    double del,t,*pt,*ptt,*xit;
   double **newm;    double fp,fptt;
     double *xits;
   /* Hstepm could be zero and should return the unit matrix */    int niterf, itmp;
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    pt=vector(1,n);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    ptt=vector(1,n);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    xit=vector(1,n);
     }    xits=vector(1,n);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fret=(*func)(p);
   for(h=1; h <=nhstepm; h++){    for (j=1;j<=n;j++) pt[j]=p[j];
     for(d=1; d <=hstepm; d++){    for (*iter=1;;++(*iter)) {
       newm=savm;      fp=(*fret);
       /* Covariates have to be included here again */      ibig=0;
       cov[1]=1.;      del=0.0;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      last_time=curr_time;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      (void) gettimeofday(&curr_time,&tzp);
       for (k=1; k<=cptcovage;k++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       for (k=1; k<=cptcovprod;k++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fprintf(ficrespow," %.12lf", p[i]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       printf("\n");
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      fprintf(ficlog,"\n");
       savm=oldm;      fprintf(ficrespow,"\n");fflush(ficrespow);
       oldm=newm;      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     for(i=1; i<=nlstate+ndeath; i++)        strcpy(strcurr,asctime(&tm));
       for(j=1;j<=nlstate+ndeath;j++) {  /*       asctime_r(&tm,strcurr); */
         po[i][j][h]=newm[i][j];        forecast_time=curr_time;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        itmp = strlen(strcurr);
          */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
   } /* end h */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   return po;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 /*************** log-likelihood *************/  /*      asctime_r(&tmf,strfor); */
 double func( double *x)          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   int i, ii, j, k, mi, d, kk;          if(strfor[itmp-1]=='\n')
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          strfor[itmp-1]='\0';
   double **out;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double sw; /* Sum of weights */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double lli; /* Individual log likelihood */        }
   int s1, s2;      }
   double bbh, survp;      for (i=1;i<=n;i++) {
   long ipmx;        for (j=1;j<=n;j++) xit[j]=xi[j][i];
   /*extern weight */        fptt=(*fret);
   /* We are differentiating ll according to initial status */  #ifdef DEBUG
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        printf("fret=%lf \n",*fret);
   /*for(i=1;i<imx;i++)         fprintf(ficlog,"fret=%lf \n",*fret);
     printf(" %d\n",s[4][i]);  #endif
   */        printf("%d",i);fflush(stdout);
   cov[1]=1.;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        if (fabs(fptt-(*fret)) > del) {
           del=fabs(fptt-(*fret));
   if(mle==1){          ibig=i;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #ifdef DEBUG
       for(mi=1; mi<= wav[i]-1; mi++){        printf("%d %.12e",i,(*fret));
         for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"%d %.12e",i,(*fret));
           for (j=1;j<=nlstate+ndeath;j++){        for (j=1;j<=n;j++) {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
           }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(d=0; d<dh[mi][i]; d++){        }
           newm=savm;        for(j=1;j<=n;j++) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf(" p=%.12e",p[j]);
           for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog," p=%.12e",p[j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
           }        printf("\n");
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"\n");
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
           savm=oldm;      }
           oldm=newm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         } /* end mult */  #ifdef DEBUG
               int k[2],l;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        k[0]=1;
         /* But now since version 0.9 we anticipate for bias and large stepm.        k[1]=-1;
          * If stepm is larger than one month (smallest stepm) and if the exact delay         printf("Max: %.12e",(*func)(p));
          * (in months) between two waves is not a multiple of stepm, we rounded to         fprintf(ficlog,"Max: %.12e",(*func)(p));
          * the nearest (and in case of equal distance, to the lowest) interval but now        for (j=1;j<=n;j++) {
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          printf(" %.12e",p[j]);
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          fprintf(ficlog," %.12e",p[j]);
          * probability in order to take into account the bias as a fraction of the way        }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        printf("\n");
          * -stepm/2 to stepm/2 .        fprintf(ficlog,"\n");
          * For stepm=1 the results are the same as for previous versions of Imach.        for(l=0;l<=1;l++) {
          * For stepm > 1 the results are less biased than in previous versions.           for (j=1;j<=n;j++) {
          */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         s1=s[mw[mi][i]][i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         s2=s[mw[mi+1][i]][i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         bbh=(double)bh[mi][i]/(double)stepm;           }
         /* bias is positive if real duration          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          * is higher than the multiple of stepm and negative otherwise.          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          */        }
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  #endif
         if( s2 > nlstate){   
           /* i.e. if s2 is a death state and if the date of death is known then the contribution  
              to the likelihood is the probability to die between last step unit time and current         free_vector(xit,1,n);
              step unit time, which is also the differences between probability to die before dh         free_vector(xits,1,n);
              and probability to die before dh-stepm .         free_vector(ptt,1,n);
              In version up to 0.92 likelihood was computed        free_vector(pt,1,n);
         as if date of death was unknown. Death was treated as any other        return;
         health state: the date of the interview describes the actual state      }
         and not the date of a change in health state. The former idea was      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         to consider that at each interview the state was recorded      for (j=1;j<=n;j++) {
         (healthy, disable or death) and IMaCh was corrected; but when we        ptt[j]=2.0*p[j]-pt[j];
         introduced the exact date of death then we should have modified        xit[j]=p[j]-pt[j];
         the contribution of an exact death to the likelihood. This new        pt[j]=p[j];
         contribution is smaller and very dependent of the step unit      }
         stepm. It is no more the probability to die between last interview      fptt=(*func)(ptt);
         and month of death but the probability to survive from last      if (fptt < fp) {
         interview up to one month before death multiplied by the        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         probability to die within a month. Thanks to Chris        if (t < 0.0) {
         Jackson for correcting this bug.  Former versions increased          linmin(p,xit,n,fret,func);
         mortality artificially. The bad side is that we add another loop          for (j=1;j<=n;j++) {
         which slows down the processing. The difference can be up to 10%            xi[j][ibig]=xi[j][n];
         lower mortality.            xi[j][n]=xit[j];
           */          }
           lli=log(out[s1][s2] - savm[s1][s2]);  #ifdef DEBUG
         }else{          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          for(j=1;j<=n;j++){
         }             printf(" %.12e",xit[j]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/            fprintf(ficlog," %.12e",xit[j]);
         /*if(lli ==000.0)*/          }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          printf("\n");
         ipmx +=1;          fprintf(ficlog,"\n");
         sw += weight[i];  #endif
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
       } /* end of wave */      }
     } /* end of individual */    }
   }  else if(mle==2){  }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           for (j=1;j<=nlstate+ndeath;j++){  {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       matrix by transitions matrix until convergence is reached */
           }  
         for(d=0; d<=dh[mi][i]; d++){    int i, ii,j,k;
           newm=savm;    double min, max, maxmin, maxmax,sumnew=0.;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double **matprod2();
           for (kk=1; kk<=cptcovage;kk++) {    double **out, cov[NCOVMAX], **pmij();
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double **newm;
           }    double agefin, delaymax=50 ; /* Max number of years to converge */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    for (ii=1;ii<=nlstate+ndeath;ii++)
           savm=oldm;      for (j=1;j<=nlstate+ndeath;j++){
           oldm=newm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         } /* end mult */      }
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */     cov[1]=1.;
         /* But now since version 0.9 we anticipate for bias and large stepm.   
          * If stepm is larger than one month (smallest stepm) and if the exact delay    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * (in months) between two waves is not a multiple of stepm, we rounded to     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          * the nearest (and in case of equal distance, to the lowest) interval but now      newm=savm;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      /* Covariates have to be included here again */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the       cov[2]=agefin;
          * probability in order to take into account the bias as a fraction of the way   
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        for (k=1; k<=cptcovn;k++) {
          * -stepm/2 to stepm/2 .          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          * For stepm=1 the results are the same as for previous versions of Imach.          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          * For stepm > 1 the results are less biased than in previous versions.         }
          */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s1=s[mw[mi][i]][i];        for (k=1; k<=cptcovprod;k++)
         s2=s[mw[mi+1][i]][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          * is higher than the multiple of stepm and negative otherwise.        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */      savm=oldm;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      oldm=newm;
         /*if(lli ==000.0)*/      maxmax=0.;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      for(j=1;j<=nlstate;j++){
         ipmx +=1;        min=1.;
         sw += weight[i];        max=0.;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(i=1; i<=nlstate; i++) {
       } /* end of wave */          sumnew=0;
     } /* end of individual */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }  else if(mle==3){  /* exponential inter-extrapolation */          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          max=FMAX(max,prlim[i][j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          min=FMIN(min,prlim[i][j]);
       for(mi=1; mi<= wav[i]-1; mi++){        }
         for (ii=1;ii<=nlstate+ndeath;ii++)        maxmin=max-min;
           for (j=1;j<=nlstate+ndeath;j++){        maxmax=FMAX(maxmax,maxmin);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      if(maxmax < ftolpl){
           }        return prlim;
         for(d=0; d<dh[mi][i]; d++){      }
           newm=savm;    }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** transition probabilities ***************/
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
           savm=oldm;    double s1, s2;
           oldm=newm;    /*double t34;*/
         } /* end mult */    int i,j,j1, nc, ii, jj;
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      for(i=1; i<= nlstate; i++){
         /* But now since version 0.9 we anticipate for bias and large stepm.        for(j=1; j<i;j++){
          * If stepm is larger than one month (smallest stepm) and if the exact delay           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * (in months) between two waves is not a multiple of stepm, we rounded to             /*s2 += param[i][j][nc]*cov[nc];*/
          * the nearest (and in case of equal distance, to the lowest) interval but now            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          }
          * probability in order to take into account the bias as a fraction of the way          ps[i][j]=s2;
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          * -stepm/2 to stepm/2 .        }
          * For stepm=1 the results are the same as for previous versions of Imach.        for(j=i+1; j<=nlstate+ndeath;j++){
          * For stepm > 1 the results are less biased than in previous versions.           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         s1=s[mw[mi][i]][i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         s2=s[mw[mi+1][i]][i];          }
         bbh=(double)bh[mi][i]/(double)stepm;           ps[i][j]=s2;
         /* bias is positive if real duration        }
          * is higher than the multiple of stepm and negative otherwise.      }
          */      /*ps[3][2]=1;*/
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */     
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      for(i=1; i<= nlstate; i++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        s1=0;
         /*if(lli ==000.0)*/        for(j=1; j<i; j++)
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          s1+=exp(ps[i][j]);
         ipmx +=1;        for(j=i+1; j<=nlstate+ndeath; j++)
         sw += weight[i];          s1+=exp(ps[i][j]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ps[i][i]=1./(s1+1.);
       } /* end of wave */        for(j=1; j<i; j++)
     } /* end of individual */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end i */
         for (ii=1;ii<=nlstate+ndeath;ii++)     
           for (j=1;j<=nlstate+ndeath;j++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(jj=1; jj<= nlstate+ndeath; jj++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          ps[ii][jj]=0;
           }          ps[ii][ii]=1;
         for(d=0; d<dh[mi][i]; d++){        }
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           /*         printf("ddd %lf ",ps[ii][jj]); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*       } */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*       printf("\n "); */
           savm=oldm;  /*        } */
           oldm=newm;  /*        printf("\n ");printf("%lf ",cov[2]); */
         } /* end mult */         /*
               for(i=1; i<= npar; i++) printf("%f ",x[i]);
         s1=s[mw[mi][i]][i];        goto end;*/
         s2=s[mw[mi+1][i]][i];      return ps;
         if( s2 > nlstate){   }
           lli=log(out[s1][s2] - savm[s1][s2]);  
         }else{  /**************** Product of 2 matrices ******************/
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  
         }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         ipmx +=1;  {
         sw += weight[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    /* in, b, out are matrice of pointers which should have been initialized
       } /* end of wave */       before: only the contents of out is modified. The function returns
     } /* end of individual */       a pointer to pointers identical to out */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    long i, j, k;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for(i=nrl; i<= nrh; i++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(k=ncolol; k<=ncoloh; k++)
       for(mi=1; mi<= wav[i]-1; mi++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for (ii=1;ii<=nlstate+ndeath;ii++)          out[i][k] +=in[i][j]*b[j][k];
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return out;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
           }  
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  /************* Higher Matrix Product ***************/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
           }    /* Computes the transition matrix starting at age 'age' over
                'nhstepm*hstepm*stepm' months (i.e. until
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       nhstepm*hstepm matrices.
           savm=oldm;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           oldm=newm;       (typically every 2 years instead of every month which is too big
         } /* end mult */       for the memory).
              Model is determined by parameters x and covariates have to be
         s1=s[mw[mi][i]][i];       included manually here.
         s2=s[mw[mi+1][i]][i];  
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */       */
         ipmx +=1;  
         sw += weight[i];    int i, j, d, h, k;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out, cov[NCOVMAX];
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/    double **newm;
       } /* end of wave */  
     } /* end of individual */    /* Hstepm could be zero and should return the unit matrix */
   } /* End of if */    for (i=1;i<=nlstate+ndeath;i++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for (j=1;j<=nlstate+ndeath;j++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   return -l;      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 /*************** log-likelihood *************/      for(d=1; d <=hstepm; d++){
 double funcone( double *x)        newm=savm;
 {        /* Covariates have to be included here again */
   /* Same as likeli but slower because of a lot of printf and if */        cov[1]=1.;
   int i, ii, j, k, mi, d, kk;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **out;        for (k=1; k<=cptcovage;k++)
   double lli; /* Individual log likelihood */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double llt;        for (k=1; k<=cptcovprod;k++)
   int s1, s2;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double bbh, survp;  
   /*extern weight */  
   /* We are differentiating ll according to initial status */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   /*for(i=1;i<imx;i++)         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     printf(" %d\n",s[4][i]);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   */        savm=oldm;
   cov[1]=1.;        oldm=newm;
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          po[i][j][h]=newm[i][j];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for(mi=1; mi<= wav[i]-1; mi++){           */
       for (ii=1;ii<=nlstate+ndeath;ii++)        }
         for (j=1;j<=nlstate+ndeath;j++){    } /* end h */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return po;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
         }  
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /*************** log-likelihood *************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double func( double *x)
         for (kk=1; kk<=cptcovage;kk++) {  {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **out;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double sw; /* Sum of weights */
         savm=oldm;    double lli; /* Individual log likelihood */
         oldm=newm;    int s1, s2;
       } /* end mult */    double bbh, survp;
           long ipmx;
       s1=s[mw[mi][i]][i];    /*extern weight */
       s2=s[mw[mi+1][i]][i];    /* We are differentiating ll according to initial status */
       bbh=(double)bh[mi][i]/(double)stepm;     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       /* bias is positive if real duration    /*for(i=1;i<imx;i++)
        * is higher than the multiple of stepm and negative otherwise.      printf(" %d\n",s[4][i]);
        */    */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    cov[1]=1.;
         lli=log(out[s1][s2] - savm[s1][s2]);  
       } else if (mle==1){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
       } else if(mle==2){    if(mle==1){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } else if(mle==3){  /* exponential inter-extrapolation */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        for(mi=1; mi<= wav[i]-1; mi++){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli=log(out[s1][s2]); /* Original formula */            for (j=1;j<=nlstate+ndeath;j++){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli=log(out[s1][s2]); /* Original formula */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* End of if */            }
       ipmx +=1;          for(d=0; d<dh[mi][i]; d++){
       sw += weight[i];            newm=savm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            for (kk=1; kk<=cptcovage;kk++) {
       if(globpr){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            }
  %10.6f %10.6f %10.6f ", \            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            savm=oldm;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            oldm=newm;
           llt +=ll[k]*gipmx/gsw;          } /* end mult */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);       
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         fprintf(ficresilk," %10.6f\n", -llt);          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay
     } /* end of wave */           * (in months) between two waves is not a multiple of stepm, we rounded to
   } /* end of individual */           * the nearest (and in case of equal distance, to the lowest) interval but now
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */           * probability in order to take into account the bias as a fraction of the way
   if(globpr==0){ /* First time we count the contributions and weights */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     gipmx=ipmx;           * -stepm/2 to stepm/2 .
     gsw=sw;           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions.
   return -l;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 char *subdirf(char fileres[])          bbh=(double)bh[mi][i]/(double)stepm;
 {          /* bias bh is positive if real duration
              * is higher than the multiple of stepm and negative otherwise.
   strcpy(tmpout,optionfilefiname);           */
   strcat(tmpout,"/"); /* Add to the right */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   strcat(tmpout,fileres);          if( s2 > nlstate){
   return tmpout;            /* i.e. if s2 is a death state and if the date of death is known
 }               then the contribution to the likelihood is the probability to
                die between last step unit time and current  step unit time,
 char *subdirf2(char fileres[], char *preop)               which is also equal to probability to die before dh
 {               minus probability to die before dh-stepm .
                  In version up to 0.92 likelihood was computed
   strcpy(tmpout,optionfilefiname);          as if date of death was unknown. Death was treated as any other
   strcat(tmpout,"/");          health state: the date of the interview describes the actual state
   strcat(tmpout,preop);          and not the date of a change in health state. The former idea was
   strcat(tmpout,fileres);          to consider that at each interview the state was recorded
   return tmpout;          (healthy, disable or death) and IMaCh was corrected; but when we
 }          introduced the exact date of death then we should have modified
 char *subdirf3(char fileres[], char *preop, char *preop2)          the contribution of an exact death to the likelihood. This new
 {          contribution is smaller and very dependent of the step unit
             stepm. It is no more the probability to die between last interview
   strcpy(tmpout,optionfilefiname);          and month of death but the probability to survive from last
   strcat(tmpout,"/");          interview up to one month before death multiplied by the
   strcat(tmpout,preop);          probability to die within a month. Thanks to Chris
   strcat(tmpout,preop2);          Jackson for correcting this bug.  Former versions increased
   strcat(tmpout,fileres);          mortality artificially. The bad side is that we add another loop
   return tmpout;          which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            lli=log(out[s1][s2] - savm[s1][s2]);
 {  
   /* This routine should help understanding what is done with   
      the selection of individuals/waves and          } else if  (s2==-2) {
      to check the exact contribution to the likelihood.            for (j=1,survp=0. ; j<=nlstate; j++)
      Plotting could be done.              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    */            /*survp += out[s1][j]; */
   int k;            lli= log(survp);
           }
   if(*globpri !=0){ /* Just counts and sums, no printings */         
     strcpy(fileresilk,"ilk");           else if  (s2==-4) {
     strcat(fileresilk,fileres);            for (j=3,survp=0. ; j<=nlstate; j++)  
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       printf("Problem with resultfile: %s\n", fileresilk);            lli= log(survp);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          }
     }  
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          else if  (s2==-5) {
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            for (j=1,survp=0. ; j<=2; j++)  
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(k=1; k<=nlstate; k++)             lli= log(survp);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          }
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");         
   }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   *fretone=(*funcone)(p);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   if(*globpri !=0){          }
     fclose(ficresilk);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          /*if(lli ==000.0)*/
     fflush(fichtm);           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }           ipmx +=1;
   return;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
 /*********** Maximum Likelihood Estimation ***************/    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i,j, iter;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **xi;            for (j=1;j<=nlstate+ndeath;j++){
   double fret;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fretone; /* Only one call to likelihood */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char filerespow[FILENAMELENGTH];            }
   xi=matrix(1,npar,1,npar);          for(d=0; d<=dh[mi][i]; d++){
   for (i=1;i<=npar;i++)            newm=savm;
     for (j=1;j<=npar;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       xi[i][j]=(i==j ? 1.0 : 0.0);            for (kk=1; kk<=cptcovage;kk++) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(filerespow,"pow");             }
   strcat(filerespow,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficrespow=fopen(filerespow,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with resultfile: %s\n", filerespow);            savm=oldm;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            oldm=newm;
   }          } /* end mult */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");       
   for (i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
     for(j=1;j<=nlstate+ndeath;j++)          s2=s[mw[mi+1][i]][i];
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          bbh=(double)bh[mi][i]/(double)stepm;
   fprintf(ficrespow,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
   powell(p,xi,npar,ftol,&iter,&fret,func);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fclose(ficrespow);        } /* end of wave */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      } /* end of individual */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    }  else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /**** Computes Hessian and covariance matrix ***/            for (j=1;j<=nlstate+ndeath;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double  **a,**y,*x,pd;            }
   double **hess;          for(d=0; d<dh[mi][i]; d++){
   int i, j,jk;            newm=savm;
   int *indx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   double hessii(double p[], double delta, int theta, double delti[]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double hessij(double p[], double delti[], int i, int j);            }
   void lubksb(double **a, int npar, int *indx, double b[]) ;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   void ludcmp(double **a, int npar, int *indx, double *d) ;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   hess=matrix(1,npar,1,npar);            oldm=newm;
           } /* end mult */
   printf("\nCalculation of the hessian matrix. Wait...\n");       
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++){          s2=s[mw[mi+1][i]][i];
     printf("%d",i);fflush(stdout);          bbh=(double)bh[mi][i]/(double)stepm;
     fprintf(ficlog,"%d",i);fflush(ficlog);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     hess[i][i]=hessii(p,ftolhess,i,delti);          ipmx +=1;
     /*printf(" %f ",p[i]);*/          sw += weight[i];
     /*printf(" %lf ",hess[i][i]);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
         } /* end of individual */
   for (i=1;i<=npar;i++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (j=1;j<=npar;j++)  {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (j>i) {         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf(".%d%d",i,j);fflush(stdout);        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for (ii=1;ii<=nlstate+ndeath;ii++)
         hess[i][j]=hessij(p,delti,i,j);            for (j=1;j<=nlstate+ndeath;j++){
         hess[j][i]=hess[i][j];                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /*printf(" %lf ",hess[i][j]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   printf("\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficlog,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");         
               out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   a=matrix(1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   y=matrix(1,npar,1,npar);            savm=oldm;
   x=vector(1,npar);            oldm=newm;
   indx=ivector(1,npar);          } /* end mult */
   for (i=1;i<=npar;i++)       
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          s1=s[mw[mi][i]][i];
   ludcmp(a,npar,indx,&pd);          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
   for (j=1;j<=npar;j++) {            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1;i<=npar;i++) x[i]=0;          }else{
     x[j]=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     lubksb(a,npar,indx,x);          }
     for (i=1;i<=npar;i++){           ipmx +=1;
       matcov[i][j]=x[i];          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   printf("\n#Hessian matrix#\n");      } /* end of individual */
   fprintf(ficlog,"\n#Hessian matrix#\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for (i=1;i<=npar;i++) {       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=npar;j++) {         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("%.3e ",hess[i][j]);        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficlog,"%.3e ",hess[i][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   /* Recompute Inverse */            newm=savm;
   for (i=1;i<=npar;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            for (kk=1; kk<=cptcovage;kk++) {
   ludcmp(a,npar,indx,&pd);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /*  printf("\n#Hessian matrix recomputed#\n");         
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (j=1;j<=npar;j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) x[i]=0;            savm=oldm;
     x[j]=1;            oldm=newm;
     lubksb(a,npar,indx,x);          } /* end mult */
     for (i=1;i<=npar;i++){        
       y[i][j]=x[i];          s1=s[mw[mi][i]][i];
       printf("%.3e ",y[i][j]);          s2=s[mw[mi+1][i]][i];
       fprintf(ficlog,"%.3e ",y[i][j]);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          ipmx +=1;
     printf("\n");          sw += weight[i];
     fprintf(ficlog,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   */        } /* end of wave */
       } /* end of individual */
   free_matrix(a,1,npar,1,npar);    } /* End of if */
   free_matrix(y,1,npar,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   free_vector(x,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   free_ivector(indx,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_matrix(hess,1,npar,1,npar);    return -l;
   }
   
 }  /*************** log-likelihood *************/
   double funcone( double *x)
 /*************** hessian matrix ****************/  {
 double hessii( double x[], double delta, int theta, double delti[])    /* Same as likeli but slower because of a lot of printf and if */
 {    int i, ii, j, k, mi, d, kk;
   int i;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int l=1, lmax=20;    double **out;
   double k1,k2;    double lli; /* Individual log likelihood */
   double p2[NPARMAX+1];    double llt;
   double res;    int s1, s2;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double bbh, survp;
   double fx;    /*extern weight */
   int k=0,kmax=10;    /* We are differentiating ll according to initial status */
   double l1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   fx=func(x);      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++) p2[i]=x[i];    */
   for(l=0 ; l <=lmax; l++){    cov[1]=1.;
     l1=pow(10,l);  
     delts=delt;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       p2[theta]=x[theta] +delt;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       k1=func(p2)-fx;      for(mi=1; mi<= wav[i]-1; mi++){
       p2[theta]=x[theta]-delt;        for (ii=1;ii<=nlstate+ndeath;ii++)
       k2=func(p2)-fx;          for (j=1;j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 }
 #ifdef DEBUG        for(d=0; d<dh[mi][i]; d++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          newm=savm;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #endif          for (kk=1; kk<=cptcovage;kk++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          }
         k=kmax;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          savm=oldm;
         k=kmax; l=lmax*10.;          oldm=newm;
       }        } /* end mult */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        
         delts=delt;        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
     }        bbh=(double)bh[mi][i]/(double)stepm;
   }        /* bias is positive if real duration
   delti[theta]=delts;         * is higher than the multiple of stepm and negative otherwise.
   return res;          */
           if( s2 > nlstate && (mle <5) ){  /* Jackson */
 }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
 double hessij( double x[], double delti[], int thetai,int thetaj)          for (j=1,survp=0. ; j<=nlstate; j++)
 {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i;          lli= log(survp);
   int l=1, l1, lmax=20;        }else if (mle==1){
   double k1,k2,k3,k4,res,fx;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double p2[NPARMAX+1];        } else if(mle==2){
   int k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   fx=func(x);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (k=1; k<=2; k++) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for (i=1;i<=npar;i++) p2[i]=x[i];          lli=log(out[s1][s2]); /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          lli=log(out[s1][s2]); /* Original formula */
     k1=func(p2)-fx;        } /* End of if */
           ipmx +=1;
     p2[thetai]=x[thetai]+delti[thetai]/k;        sw += weight[i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     k2=func(p2)-fx;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if(globpr){
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   %11.6f %11.6f %11.6f ", \
     k3=func(p2)-fx;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                     2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            llt +=ll[k]*gipmx/gsw;
     k4=func(p2)-fx;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }
 #ifdef DEBUG          fprintf(ficresilk," %10.6f\n", -llt);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } /* end of wave */
 #endif    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   return res;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
 /************** Inverse of matrix **************/      gipmx=ipmx;
 void ludcmp(double **a, int n, int *indx, double *d)       gsw=sw;
 {     }
   int i,imax,j,k;     return -l;
   double big,dum,sum,temp;   }
   double *vv;   
    
   vv=vector(1,n);   /*************** function likelione ***********/
   *d=1.0;   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for (i=1;i<=n;i++) {   {
     big=0.0;     /* This routine should help understanding what is done with
     for (j=1;j<=n;j++)        the selection of individuals/waves and
       if ((temp=fabs(a[i][j])) > big) big=temp;        to check the exact contribution to the likelihood.
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        Plotting could be done.
     vv[i]=1.0/big;      */
   }     int k;
   for (j=1;j<=n;j++) {   
     for (i=1;i<j;i++) {     if(*globpri !=0){ /* Just counts and sums, no printings */
       sum=a[i][j];       strcpy(fileresilk,"ilk");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       strcat(fileresilk,fileres);
       a[i][j]=sum;       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }         printf("Problem with resultfile: %s\n", fileresilk);
     big=0.0;         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for (i=j;i<=n;i++) {       }
       sum=a[i][j];       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for (k=1;k<j;k++)       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         sum -= a[i][k]*a[k][j];       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       a[i][j]=sum;       for(k=1; k<=nlstate; k++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         big=dum;       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         imax=i;     }
       }   
     }     *fretone=(*funcone)(p);
     if (j != imax) {     if(*globpri !=0){
       for (k=1;k<=n;k++) {       fclose(ficresilk);
         dum=a[imax][k];       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         a[imax][k]=a[j][k];       fflush(fichtm);
         a[j][k]=dum;     }
       }     return;
       *d = -(*d);   }
       vv[imax]=vv[j];   
     }   
     indx[j]=imax;   /*********** Maximum Likelihood Estimation ***************/
     if (a[j][j] == 0.0) a[j][j]=TINY;   
     if (j != n) {   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       dum=1.0/(a[j][j]);   {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     int i,j, iter;
     }     double **xi;
   }     double fret;
   free_vector(vv,1,n);  /* Doesn't work */    double fretone; /* Only one call to likelihood */
 ;    /*  char filerespow[FILENAMELENGTH];*/
 }     xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
 void lubksb(double **a, int n, int *indx, double b[])       for (j=1;j<=npar;j++)
 {         xi[i][j]=(i==j ? 1.0 : 0.0);
   int i,ii=0,ip,j;     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double sum;     strcpy(filerespow,"pow");
      strcat(filerespow,fileres);
   for (i=1;i<=n;i++) {     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ip=indx[i];       printf("Problem with resultfile: %s\n", filerespow);
     sum=b[ip];       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     b[ip]=b[i];     }
     if (ii)     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     for (i=1;i<=nlstate;i++)
     else if (sum) ii=i;       for(j=1;j<=nlstate+ndeath;j++)
     b[i]=sum;         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }     fprintf(ficrespow,"\n");
   for (i=n;i>=1;i--) {   
     sum=b[i];     powell(p,xi,npar,ftol,&iter,&fret,func);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   
     b[i]=sum/a[i][i];     free_matrix(xi,1,npar,1,npar);
   }     fclose(ficrespow);
 }     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************ Frequencies ********************/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)  
 {  /* Some frequencies */  }
     
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /**** Computes Hessian and covariance matrix ***/
   int first;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double ***freq; /* Frequencies */  {
   double *pp, **prop;    double  **a,**y,*x,pd;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    double **hess;
   FILE *ficresp;    int i, j,jk;
   char fileresp[FILENAMELENGTH];    int *indx;
     
   pp=vector(1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   strcpy(fileresp,"p");    void lubksb(double **a, int npar, int *indx, double b[]) ;
   strcat(fileresp,fileres);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double gompertz(double p[]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    hess=matrix(1,npar,1,npar);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    for (i=1;i<=npar;i++){
   j1=0;      printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   j=cptcoveff;     
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      
   first=1;      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   for(k1=1; k1<=j;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){   
       j1++;    for (i=1;i<=npar;i++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for (j=1;j<=npar;j++)  {
         scanf("%d", i);*/        if (j>i) {
       for (i=-1; i<=nlstate+ndeath; i++)            printf(".%d%d",i,j);fflush(stdout);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for(m=iagemin; m <= iagemax+3; m++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
             freq[i][jk][m]=0;         
           hess[j][i]=hess[i][j];    
     for (i=1; i<=nlstate; i++)            /*printf(" %lf ",hess[i][j]);*/
       for(m=iagemin; m <= iagemax+3; m++)        }
         prop[i][m]=0;      }
           }
       dateintsum=0;    printf("\n");
       k2cpt=0;    fprintf(ficlog,"\n");
       for (i=1; i<=imx; i++) {  
         bool=1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         if  (cptcovn>0) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for (z1=1; z1<=cptcoveff; z1++)    
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     a=matrix(1,npar,1,npar);
               bool=0;    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
         if (bool==1){    indx=ivector(1,npar);
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=npar;i++)
             k2=anint[m][i]+(mint[m][i]/12.);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    ludcmp(a,npar,indx,&pd);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    for (j=1;j<=npar;j++) {
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      for (i=1;i<=npar;i++) x[i]=0;
               if (m<lastpass) {      x[j]=1;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      lubksb(a,npar,indx,x);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      for (i=1;i<=npar;i++){
               }        matcov[i][j]=x[i];
                     }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    }
                 dateintsum=dateintsum+k2;  
                 k2cpt++;    printf("\n#Hessian matrix#\n");
               }    fprintf(ficlog,"\n#Hessian matrix#\n");
               /*}*/    for (i=1;i<=npar;i++) {
           }      for (j=1;j<=npar;j++) {
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
              }
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      printf("\n");
       fprintf(ficlog,"\n");
       if  (cptcovn>0) {    }
         fprintf(ficresp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Recompute Inverse */
         fprintf(ficresp, "**********\n#");    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=nlstate;i++)     ludcmp(a,npar,indx,&pd);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    /*  printf("\n#Hessian matrix recomputed#\n");
         
       for(i=iagemin; i <= iagemax+3; i++){    for (j=1;j<=npar;j++) {
         if(i==iagemax+3){      for (i=1;i<=npar;i++) x[i]=0;
           fprintf(ficlog,"Total");      x[j]=1;
         }else{      lubksb(a,npar,indx,x);
           if(first==1){      for (i=1;i<=npar;i++){
             first=0;        y[i][j]=x[i];
             printf("See log file for details...\n");        printf("%.3e ",y[i][j]);
           }        fprintf(ficlog,"%.3e ",y[i][j]);
           fprintf(ficlog,"Age %d", i);      }
         }      printf("\n");
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
             pp[jk] += freq[jk][m][i];     */
         }  
         for(jk=1; jk <=nlstate ; jk++){    free_matrix(a,1,npar,1,npar);
           for(m=-1, pos=0; m <=0 ; m++)    free_matrix(y,1,npar,1,npar);
             pos += freq[jk][m][i];    free_vector(x,1,npar);
           if(pp[jk]>=1.e-10){    free_ivector(indx,1,npar);
             if(first==1){    free_matrix(hess,1,npar,1,npar);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
           }else{  
             if(first==1)  /*************** hessian matrix ****************/
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
           }    int i;
         }    int l=1, lmax=20;
     double k1,k2;
         for(jk=1; jk <=nlstate ; jk++){    double p2[NPARMAX+1];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double res;
             pp[jk] += freq[jk][m][i];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }           double fx;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    int k=0,kmax=10;
           pos += pp[jk];    double l1;
           posprop += prop[jk][i];  
         }    fx=func(x);
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++) p2[i]=x[i];
           if(pos>=1.e-5){    for(l=0 ; l <=lmax; l++){
             if(first==1)      l1=pow(10,l);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      delts=delt;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(k=1 ; k <kmax; k=k+1){
           }else{        delt = delta*(l1*k);
             if(first==1)        p2[theta]=x[theta] +delt;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        k1=func(p2)-fx;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        p2[theta]=x[theta]-delt;
           }        k2=func(p2)-fx;
           if( i <= iagemax){        /*res= (k1-2.0*fx+k2)/delt/delt; */
             if(pos>=1.e-5){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);       
               /*probs[i][jk][j1]= pp[jk]/pos;*/  #ifdef DEBUG
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             else  #endif
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
                 }
         for(jk=-1; jk <=nlstate+ndeath; jk++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for(m=-1; m <=nlstate+ndeath; m++)          k=kmax; l=lmax*10.;
             if(freq[jk][m][i] !=0 ) {        }
             if(first==1)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          delts=delt;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        }
             }      }
         if(i <= iagemax)    }
           fprintf(ficresp,"\n");    delti[theta]=delts;
         if(first==1)    return res;
           printf("Others in log...\n");   
         fprintf(ficlog,"\n");  }
       }  
     }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }  {
   dateintmean=dateintsum/k2cpt;     int i;
      int l=1, l1, lmax=20;
   fclose(ficresp);    double k1,k2,k3,k4,res,fx;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);    double p2[NPARMAX+1];
   free_vector(pp,1,nlstate);    int k;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);  
   /* End of Freq */    fx=func(x);
 }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 /************ Prevalence ********************/      p2[thetai]=x[thetai]+delti[thetai]/k;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 {        k1=func(p2)-fx;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people   
      in each health status at the date of interview (if between dateprev1 and dateprev2).      p2[thetai]=x[thetai]+delti[thetai]/k;
      We still use firstpass and lastpass as another selection.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   */      k2=func(p2)-fx;
     
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***freq; /* Frequencies */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *pp, **prop;      k3=func(p2)-fx;
   double pos,posprop;    
   double  y2; /* in fractional years */      p2[thetai]=x[thetai]-delti[thetai]/k;
   int iagemin, iagemax;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   iagemin= (int) agemin;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   iagemax= (int) agemax;  #ifdef DEBUG
   /*pp=vector(1,nlstate);*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   prop=matrix(1,nlstate,iagemin,iagemax+3);       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/  #endif
   j1=0;    }
       return res;
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     /************** Inverse of matrix **************/
   for(k1=1; k1<=j;k1++){  void ludcmp(double **a, int n, int *indx, double *d)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    int i,imax,j,k;
           double big,dum,sum,temp;
       for (i=1; i<=nlstate; i++)      double *vv;
         for(m=iagemin; m <= iagemax+3; m++)   
           prop[i][m]=0.0;    vv=vector(1,n);
          *d=1.0;
       for (i=1; i<=imx; i++) { /* Each individual */    for (i=1;i<=n;i++) {
         bool=1;      big=0.0;
         if  (cptcovn>0) {      for (j=1;j<=n;j++)
           for (z1=1; z1<=cptcoveff; z1++)         if ((temp=fabs(a[i][j])) > big) big=temp;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
               bool=0;      vv[i]=1.0/big;
         }     }
         if (bool==1) {     for (j=1;j<=n;j++) {
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      for (i=1;i<j;i++) {
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        sum=a[i][j];
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        a[i][j]=sum;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       big=0.0;
               if (s[m][i]>0 && s[m][i]<=nlstate) {       for (i=j;i<=n;i++) {
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/        sum=a[i][j];
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];        for (k=1;k<j;k++)
                 prop[s[m][i]][iagemax+3] += weight[i];           sum -= a[i][k]*a[k][j];
               }         a[i][j]=sum;
             }        if ( (dum=vv[i]*fabs(sum)) >= big) {
           } /* end selection of waves */          big=dum;
         }          imax=i;
       }        }
       for(i=iagemin; i <= iagemax+3; i++){        }
               if (j != imax) {
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {         for (k=1;k<=n;k++) {
           posprop += prop[jk][i];           dum=a[imax][k];
         }           a[imax][k]=a[j][k];
           a[j][k]=dum;
         for(jk=1; jk <=nlstate ; jk++){             }
           if( i <=  iagemax){         *d = -(*d);
             if(posprop>=1.e-5){         vv[imax]=vv[j];
               probs[i][jk][j1]= prop[jk][i]/posprop;      }
             }       indx[j]=imax;
           }       if (a[j][j] == 0.0) a[j][j]=TINY;
         }/* end jk */       if (j != n) {
       }/* end i */         dum=1.0/(a[j][j]);
     } /* end i1 */        for (i=j+1;i<=n;i++) a[i][j] *= dum;
   } /* end k1 */      }
       }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    free_vector(vv,1,n);  /* Doesn't work */
   /*free_vector(pp,1,nlstate);*/  ;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  }
 }  /* End of prevalence */  
   void lubksb(double **a, int n, int *indx, double b[])
 /************* Waves Concatenation ***************/  {
     int i,ii=0,ip,j;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double sum;
 {   
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (i=1;i<=n;i++) {
      Death is a valid wave (if date is known).      ip=indx[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      sum=b[ip];
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]      b[ip]=b[i];
      and mw[mi+1][i]. dh depends on stepm.      if (ii)
      */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
       else if (sum) ii=i;
   int i, mi, m;      b[i]=sum;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    }
      double sum=0., jmean=0.;*/    for (i=n;i>=1;i--) {
   int first;      sum=b[i];
   int j, k=0,jk, ju, jl;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   double sum=0.;      b[i]=sum/a[i][i];
   first=0;    }
   jmin=1e+5;  }
   jmax=-1;  
   jmean=0.;  void pstamp(FILE *fichier)
   for(i=1; i<=imx; i++){  {
     mi=0;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     m=firstpass;  }
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  /************ Frequencies ********************/
         mw[++mi][i]=m;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       if(m >=lastpass)  {  /* Some frequencies */
         break;   
       else    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         m++;    int first;
     }/* end while */    double ***freq; /* Frequencies */
     if (s[m][i] > nlstate){    double *pp, **prop;
       mi++;     /* Death is another wave */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       /* if(mi==0)  never been interviewed correctly before death */    char fileresp[FILENAMELENGTH];
          /* Only death is a correct wave */   
       mw[mi][i]=m;    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     wav[i]=mi;    strcat(fileresp,fileres);
     if(mi==0){    if((ficresp=fopen(fileresp,"w"))==NULL) {
       if(first==0){      printf("Problem with prevalence resultfile: %s\n", fileresp);
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         first=1;      exit(0);
       }    }
       if(first==1){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);    j1=0;
       }   
     } /* end mi==0 */    j=cptcoveff;
   } /* End individuals */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   for(i=1; i<=imx; i++){    first=1;
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)    for(k1=1; k1<=j;k1++){
         dh[mi][i]=1;      for(i1=1; i1<=ncodemax[k1];i1++){
       else{        j1++;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           if (agedc[i] < 2*AGESUP) {          scanf("%d", i);*/
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);         for (i=-5; i<=nlstate+ndeath; i++)  
             if(j==0) j=1;  /* Survives at least one month after exam */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             else if(j<0){            for(m=iagemin; m <= iagemax+3; m++)
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              freq[i][jk][m]=0;
               j=1; /* Careful Patch */  
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);      for (i=1; i<=nlstate; i++)  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for(m=iagemin; m <= iagemax+3; m++)
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          prop[i][m]=0;
             }       
             k=k+1;        dateintsum=0;
             if (j >= jmax) jmax=j;        k2cpt=0;
             if (j <= jmin) jmin=j;        for (i=1; i<=imx; i++) {
             sum=sum+j;          bool=1;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          if  (cptcovn>0) {
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            for (z1=1; z1<=cptcoveff; z1++)
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         }                bool=0;
         else{          }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if (bool==1){
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            for(m=firstpass; m<=lastpass; m++){
           k=k+1;              k2=anint[m][i]+(mint[m][i]/12.);
           if (j >= jmax) jmax=j;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           else if (j <= jmin)jmin=j;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           if(j<0){                if (m<lastpass) {
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
           sum=sum+j;               
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         jk= j/stepm;                  dateintsum=dateintsum+k2;
         jl= j -jk*stepm;                  k2cpt++;
         ju= j -(jk+1)*stepm;                }
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */                /*}*/
           if(jl==0){            }
             dh[mi][i]=jk;          }
             bh[mi][i]=0;        }
           }else{ /* We want a negative bias in order to only have interpolation ie         
                   * at the price of an extra matrix product in likelihood */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             dh[mi][i]=jk+1;        pstamp(ficresp);
             bh[mi][i]=ju;        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable ");
         }else{          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           if(jl <= -ju){          fprintf(ficresp, "**********\n#");
             dh[mi][i]=jk;        }
             bh[mi][i]=jl;       /* bias is positive if real duration        for(i=1; i<=nlstate;i++)
                                  * is higher than the multiple of stepm and negative otherwise.          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                                  */        fprintf(ficresp, "\n");
           }       
           else{        for(i=iagemin; i <= iagemax+3; i++){
             dh[mi][i]=jk+1;          if(i==iagemax+3){
             bh[mi][i]=ju;            fprintf(ficlog,"Total");
           }          }else{
           if(dh[mi][i]==0){            if(first==1){
             dh[mi][i]=1; /* At least one step */              first=0;
             bh[mi][i]=ju; /* At least one step */              printf("See log file for details...\n");
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            }
           }            fprintf(ficlog,"Age %d", i);
         } /* end if mle */          }
       }          for(jk=1; jk <=nlstate ; jk++){
     } /* end wave */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i];
   jmean=sum/k;          }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for(m=-1, pos=0; m <=0 ; m++)
  }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 /*********** Tricode ****************************/              if(first==1){
 void tricode(int *Tvar, int **nbcode, int imx)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 {              }
                 fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int Ndum[20],ij=1, k, j, i, maxncov=19;            }else{
   int cptcode=0;              if(first==1)
   cptcoveff=0;                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k=0; k<maxncov; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                                modality*/               pp[jk] += freq[jk][m][i];
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          }      
       Ndum[ij]++; /*store the modality */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            pos += pp[jk];
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable             posprop += prop[jk][i];
                                        Tvar[j]. If V=sex and male is 0 and           }
                                        female is 1, then  cptcode=1.*/          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
               if(first==1)
     for (i=0; i<=cptcode; i++) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
               if(first==1)
     ij=1;                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<=ncodemax[j]; i++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (k=0; k<= maxncov; k++) {            }
         if (Ndum[k] != 0) {            if( i <= iagemax){
           nbcode[Tvar[j]][ij]=k;               if(pos>=1.e-5){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                           /*probs[i][jk][j1]= pp[jk]/pos;*/
           ij++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         }              }
         if (ij > ncodemax[j]) break;               else
       }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     }             }
   }            }
          
  for (k=0; k< maxncov; k++) Ndum[k]=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
  for (i=1; i<=ncovmodel-2; i++) {               if(freq[jk][m][i] !=0 ) {
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              if(first==1)
    ij=Tvar[i];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    Ndum[ij]++;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  }              }
           if(i <= iagemax)
  ij=1;            fprintf(ficresp,"\n");
  for (i=1; i<= maxncov; i++) {          if(first==1)
    if((Ndum[i]!=0) && (i<=ncovcol)){            printf("Others in log...\n");
      Tvaraff[ij]=i; /*For printing */          fprintf(ficlog,"\n");
      ij++;        }
    }      }
  }    }
      dateintmean=dateintsum/k2cpt;
  cptcoveff=ij-1; /*Number of simple covariates*/   
 }    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 /*********** Health Expectancies ****************/    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    /* End of Freq */
   }
 {  
   /* Health expectancies */  /************ Prevalence ********************/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double age, agelim, hf;  {  
   double ***p3mat,***varhe;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double **dnewm,**doldm;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double *xp;       We still use firstpass and lastpass as another selection.
   double **gp, **gm;    */
   double ***gradg, ***trgradg;   
   int theta;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    double *pp, **prop;
   xp=vector(1,npar);    double pos,posprop;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    double  y2; /* in fractional years */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    int iagemin, iagemax;
     
   fprintf(ficreseij,"# Health expectancies\n");    iagemin= (int) agemin;
   fprintf(ficreseij,"# Age");    iagemax= (int) agemax;
   for(i=1; i<=nlstate;i++)    /*pp=vector(1,nlstate);*/
     for(j=1; j<=nlstate;j++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficreseij,"\n");    j1=0;
    
   if(estepm < stepm){    j=cptcoveff;
     printf ("Problem %d lower than %d\n",estepm, stepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }   
   else  hstepm=estepm;       for(k1=1; k1<=j;k1++){
   /* We compute the life expectancy from trapezoids spaced every estepm months      for(i1=1; i1<=ncodemax[k1];i1++){
    * This is mainly to measure the difference between two models: for example        j1++;
    * if stepm=24 months pijx are given only every 2 years and by summing them       
    * we are calculating an estimate of the Life Expectancy assuming a linear         for (i=1; i<=nlstate; i++)  
    * progression in between and thus overestimating or underestimating according          for(m=iagemin; m <= iagemax+3; m++)
    * to the curvature of the survival function. If, for the same date, we             prop[i][m]=0.0;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months       
    * to compare the new estimate of Life expectancy with the same linear         for (i=1; i<=imx; i++) { /* Each individual */
    * hypothesis. A more precise result, taking into account a more precise          bool=1;
    * curvature will be obtained if estepm is as small as stepm. */          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++)
   /* For example we decided to compute the life expectancy with the smallest unit */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                 bool=0;
      nhstepm is the number of hstepm from age to agelim           }
      nstepm is the number of stepm from age to agelin.           if (bool==1) {
      Look at hpijx to understand the reason of that which relies in memory size            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      and note for a fixed period like estepm months */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      survival function given by stepm (the optimization length). Unfortunately it                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      means that if the survival funtion is printed only each two years of age and if                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
      results. So we changed our mind and took the option of the best precision.                if (s[m][i]>0 && s[m][i]<=nlstate) {
   */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i];
   agelim=AGESUP;                }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              }
     /* nhstepm age range expressed in number of stepm */            } /* end selection of waves */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */         }
     /* if (stepm >= YEARM) hstepm=1;*/        for(i=iagemin; i <= iagemax+3; i++){  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */         
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);            posprop += prop[jk][i];
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);  
           for(jk=1; jk <=nlstate ; jk++){    
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            if( i <=  iagemax){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              if(posprop>=1.e-5){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  probs[i][jk][j1]= prop[jk][i]/posprop;
                }
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }/* end jk */
         }/* end i */
     /* Computing Variances of health expectancies */      } /* end i1 */
     } /* end k1 */
      for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }  /* End of prevalence */
     
       cptj=0;  /************* Waves Concatenation ***************/
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           cptj=cptj+1;  {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
             */
        
       for(i=1; i<=npar; i++)     int i, mi, m;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         double sum=0., jmean=0.;*/
           int first;
       cptj=0;    int j, k=0,jk, ju, jl;
       for(j=1; j<= nlstate; j++){    double sum=0.;
         for(i=1;i<=nlstate;i++){    first=0;
           cptj=cptj+1;    jmin=1e+5;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    jmax=-1;
     jmean=0.;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(i=1; i<=imx; i++){
           }      mi=0;
         }      m=firstpass;
       }      while(s[m][i] <= nlstate){
       for(j=1; j<= nlstate*nlstate; j++)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         for(h=0; h<=nhstepm-1; h++){          mw[++mi][i]=m;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if(m >=lastpass)
         }          break;
      }         else
              m++;
 /* End theta */      }/* end while */
       if (s[m][i] > nlstate){
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
      for(h=0; h<=nhstepm-1; h++)           /* Only death is a correct wave */
       for(j=1; j<=nlstate*nlstate;j++)        mw[mi][i]=m;
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];  
            wav[i]=mi;
       if(mi==0){
      for(i=1;i<=nlstate*nlstate;i++)        nbwarn++;
       for(j=1;j<=nlstate*nlstate;j++)        if(first==0){
         varhe[i][j][(int)age] =0.;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
      printf("%d|",(int)age);fflush(stdout);        }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        if(first==1){
      for(h=0;h<=nhstepm-1;h++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       for(k=0;k<=nhstepm-1;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);      } /* end mi==0 */
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    } /* End individuals */
         for(i=1;i<=nlstate*nlstate;i++)  
           for(j=1;j<=nlstate*nlstate;j++)    for(i=1; i<=imx; i++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
     }          dh[mi][i]=1;
     /* Computing expectancies */        else{
     for(i=1; i<=nlstate;i++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j<=nlstate;j++)            if (agedc[i] < 2*AGESUP) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              if(j==0) j=1;  /* Survives at least one month after exam */
                         else if(j<0){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficreseij,"%3.0f",age );                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     cptj=0;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){              k=k+1;
         cptj++;              if (j >= jmax){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                jmax=j;
       }                ijmax=i;
     fprintf(ficreseij,"\n");              }
                  if (j <= jmin){
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);                jmin=j;
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);                ijmin=i;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);              }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              sum=sum+j;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   printf("\n");            }
   fprintf(ficlog,"\n");          }
           else{
   free_vector(xp,1,npar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);  
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            k=k+1;
 }            if (j >= jmax) {
               jmax=j;
 /************ Variance ******************/              ijmax=i;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)            }
 {            else if (j <= jmin){
   /* Variance of health expectancies */              jmin=j;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              ijmin=i;
   /* double **newm;*/            }
   double **dnewm,**doldm;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double **dnewmp,**doldmp;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   int i, j, nhstepm, hstepm, h, nstepm ;            if(j<0){
   int k, cptcode;              nberr++;
   double *xp;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **gp, **gm;  /* for var eij */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***gradg, ***trgradg; /*for var eij */            }
   double **gradgp, **trgradgp; /* for var p point j */            sum=sum+j;
   double *gpp, *gmp; /* for var p point j */          }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          jk= j/stepm;
   double ***p3mat;          jl= j -jk*stepm;
   double age,agelim, hf;          ju= j -(jk+1)*stepm;
   double ***mobaverage;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int theta;            if(jl==0){
   char digit[4];              dh[mi][i]=jk;
   char digitp[25];              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   char fileresprobmorprev[FILENAMELENGTH];                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   if(popbased==1){              bh[mi][i]=ju;
     if(mobilav!=0)            }
       strcpy(digitp,"-populbased-mobilav-");          }else{
     else strcpy(digitp,"-populbased-nomobil-");            if(jl <= -ju){
   }              dh[mi][i]=jk;
   else               bh[mi][i]=jl;       /* bias is positive if real duration
     strcpy(digitp,"-stablbased-");                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   if (mobilav!=0) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            else{
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){              dh[mi][i]=jk+1;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              bh[mi][i]=ju;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            }
     }            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   strcpy(fileresprobmorprev,"prmorprev");               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   sprintf(digit,"%-d",ij);            }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          } /* end if mle */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        }
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      } /* end wave */
   strcat(fileresprobmorprev,fileres);    }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    jmean=sum/k;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /*********** Tricode ****************************/
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){   
     fprintf(ficresprobmorprev," p.%-d SE",j);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     for(i=1; i<=nlstate;i++)    int cptcode=0;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    cptcoveff=0;
   }     
   fprintf(ficresprobmorprev,"\n");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   fprintf(ficgp,"\n# Routine varevsij");    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 /*   } */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                                 modality*/
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        Ndum[ij]++; /*store the modality */
   fprintf(ficresvij,"# Age");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   for(i=1; i<=nlstate;i++)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     for(j=1; j<=nlstate;j++)                                         Tvar[j]. If V=sex and male is 0 and
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                                         female is 1, then  cptcode=1.*/
   fprintf(ficresvij,"\n");      }
   
   xp=vector(1,npar);      for (i=0; i<=cptcode; i++) {
   dnewm=matrix(1,nlstate,1,npar);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   doldm=matrix(1,nlstate,1,nlstate);      }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      ij=1;
       for (i=1; i<=ncodemax[j]; i++) {
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        for (k=0; k<= maxncov; k++) {
   gpp=vector(nlstate+1,nlstate+ndeath);          if (Ndum[k] != 0) {
   gmp=vector(nlstate+1,nlstate+ndeath);            nbcode[Tvar[j]][ij]=k;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              
   if(estepm < stepm){            ij++;
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }          if (ij > ncodemax[j]) break;
   else  hstepm=estepm;           }  
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     }  
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.    for (k=0; k< maxncov; k++) Ndum[k]=0;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */   for (i=1; i<=ncovmodel-2; i++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      survival function given by stepm (the optimization length). Unfortunately it     ij=Tvar[i];
      means that if the survival funtion is printed every two years of age and if     Ndum[ij]++;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.  
   */   ij=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1; i<= maxncov; i++) {
   agelim = AGESUP;     if((Ndum[i]!=0) && (i<=ncovcol)){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       Tvaraff[ij]=i; /*For printing */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        ij++;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);   
     gp=matrix(0,nhstepm,1,nlstate);   cptcoveff=ij-1; /*Number of simple covariates*/
     gm=matrix(0,nhstepm,1,nlstate);  }
   
   /*********** Health Expectancies ****************/
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Health expectancies, no variances */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
       if (popbased==1) {    double ***p3mat;
         if(mobilav ==0){    double eip;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];    pstamp(ficreseij);
         }else{ /* mobilav */     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"# Age");
             prlim[i][i]=mobaverage[(int)age][i][ij];    for(i=1; i<=nlstate;i++){
         }      for(j=1; j<=nlstate;j++){
       }        fprintf(ficreseij," e%1d%1d ",i,j);
         }
       for(j=1; j<= nlstate; j++){      fprintf(ficreseij," e%1d. ",i);
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fprintf(ficreseij,"\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }   
       }    if(estepm < stepm){
       /* This for computing probability of death (h=1 means      printf ("Problem %d lower than %d\n",estepm, stepm);
          computed over hstepm matrices product = hstepm*stepm months)     }
          as a weighted average of prlim.    else  hstepm=estepm;  
       */    /* We compute the life expectancy from trapezoids spaced every estepm months
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * This is mainly to measure the difference between two models: for example
         for(i=1,gpp[j]=0.; i<= nlstate; i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
           gpp[j] += prlim[i][i]*p3mat[i][j][1];     * we are calculating an estimate of the Life Expectancy assuming a linear
       }         * progression in between and thus overestimating or underestimating according
       /* end probability of death */     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */     * to compare the new estimate of Life expectancy with the same linear
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     * hypothesis. A more precise result, taking into account a more precise
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       * curvature will be obtained if estepm is as small as stepm. */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
      /* For example we decided to compute the life expectancy with the smallest unit */
       if (popbased==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         if(mobilav ==0){       nhstepm is the number of hstepm from age to agelim
           for(i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin.
             prlim[i][i]=probs[(int)age][i][ij];       Look at hpijx to understand the reason of that which relies in memory size
         }else{ /* mobilav */        and note for a fixed period like estepm months */
           for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             prlim[i][i]=mobaverage[(int)age][i][ij];       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
       for(j=1; j<= nlstate; j++){    */
         for(h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    agelim=AGESUP;
         }    /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       /* This for computing probability of death (h=1 means         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          computed over hstepm matrices product = hstepm*stepm months)      
          as a weighted average of prlim.  /* nhstepm age range expressed in number of stepm */
       */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    /* if (stepm >= YEARM) hstepm=1;*/
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /* end probability of death */  
     for (age=bage; age<=fage; age ++){
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */     
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      printf("%d|",(int)age);fflush(stdout);
       }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      
     } /* End theta */  
       /* Computing expectancies */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     for(h=0; h<=nhstepm; h++) /* veij */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=1; j<=nlstate;j++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(theta=1; theta <=npar; theta++)           
           trgradg[h][j][theta]=gradg[h][theta][j];            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          }
       for(theta=1; theta <=npar; theta++)     
         trgradgp[j][theta]=gradgp[theta][j];      fprintf(ficreseij,"%3.0f",age );
         for(i=1; i<=nlstate;i++){
         eip=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for(j=1; j<=nlstate;j++){
     for(i=1;i<=nlstate;i++)          eip +=eij[i][j][(int)age];
       for(j=1;j<=nlstate;j++)          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         vareij[i][j][(int)age] =0.;        }
         fprintf(ficreseij,"%9.4f", eip );
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){      fprintf(ficreseij,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);     
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1;j<=nlstate;j++)    printf("\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficlog,"\n");
       }   
     }  }
     
     /* pptj */  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  {
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    /* Covariances of health expectancies eij and of total life expectancies according
       for(i=nlstate+1;i<=nlstate+ndeath;i++)     to initial status i, ei. .
         varppt[j][i]=doldmp[j][i];    */
     /* end ppptj */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     /*  x centered again */    double age, agelim, hf;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double ***p3matp, ***p3matm, ***varhe;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double **dnewm,**doldm;
      double *xp, *xm;
     if (popbased==1) {    double **gp, **gm;
       if(mobilav ==0){    double ***gradg, ***trgradg;
         for(i=1; i<=nlstate;i++)    int theta;
           prlim[i][i]=probs[(int)age][i][ij];  
       }else{ /* mobilav */     double eip, vip;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
     }    xm=vector(1,npar);
                  dnewm=matrix(1,nlstate*nlstate,1,npar);
     /* This for computing probability of death (h=1 means    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        computed over hstepm (estepm) matrices product = hstepm*stepm months)    
        as a weighted average of prlim.    pstamp(ficresstdeij);
     */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    fprintf(ficresstdeij,"# Age");
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     for(i=1; i<=nlstate;i++){
         gmp[j] += prlim[i][i]*p3mat[i][j][1];       for(j=1; j<=nlstate;j++)
     }            fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     /* end probability of death */      fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    fprintf(ficresstdeij,"\n");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    pstamp(ficrescveij);
       for(i=1; i<=nlstate;i++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    fprintf(ficrescveij,"# Age");
       }    for(i=1; i<=nlstate;i++)
     }       for(j=1; j<=nlstate;j++){
     fprintf(ficresprobmorprev,"\n");        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
     fprintf(ficresvij,"%.0f ",age );          for(j2=1; j2<=nlstate;j2++){
     for(i=1; i<=nlstate;i++)            cptj2= (j2-1)*nlstate+i2;
       for(j=1; j<=nlstate;j++){            if(cptj2 <= cptj)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       }          }
     fprintf(ficresvij,"\n");      }
     free_matrix(gp,0,nhstepm,1,nlstate);    fprintf(ficrescveij,"\n");
     free_matrix(gm,0,nhstepm,1,nlstate);   
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    if(estepm < stepm){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */    else  hstepm=estepm;  
   free_vector(gpp,nlstate+1,nlstate+ndeath);    /* We compute the life expectancy from trapezoids spaced every estepm months
   free_vector(gmp,nlstate+1,nlstate+ndeath);     * This is mainly to measure the difference between two models: for example
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);     * if stepm=24 months pijx are given only every 2 years and by summing them
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * we are calculating an estimate of the Life Expectancy assuming a linear
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");     * progression in between and thus overestimating or underestimating according
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */     * to the curvature of the survival function. If, for the same date, we
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */     * to compare the new estimate of Life expectancy with the same linear
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */     * hypothesis. A more precise result, taking into account a more precise
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */     * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));       nhstepm is the number of hstepm from age to agelim
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);       nstepm is the number of stepm from age to agelin.
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);       Look at hpijx to understand the reason of that which relies in memory size
 */       and note for a fixed period like estepm months */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   free_vector(xp,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   free_matrix(doldm,1,nlstate,1,nlstate);       results. So we changed our mind and took the option of the best precision.
   free_matrix(dnewm,1,nlstate,1,npar);    */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* If stepm=6 months */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* nhstepm age range expressed in number of stepm */
   fclose(ficresprobmorprev);    agelim=AGESUP;
   fflush(ficgp);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   fflush(fichtm);     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
 }  /* end varevsij */    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /************ Variance of prevlim ******************/   
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Variance of prevalence limit */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double **newm;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double **dnewm,**doldm;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    for (age=bage; age<=fage; age ++){
   double *xp;  
   double *gp, *gm;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double **gradg, **trgradg;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double age,agelim;   
   int theta;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      /* Computing  Variances of health expectancies */
   fprintf(ficresvpl,"# Age");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   for(i=1; i<=nlstate;i++)         decrease memory allocation */
       fprintf(ficresvpl," %1d-%1d",i,i);      for(theta=1; theta <=npar; theta++){
   fprintf(ficresvpl,"\n");        for(i=1; i<=npar; i++){
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   xp=vector(1,npar);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   hstepm=1*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         for(j=1; j<= nlstate; j++){
   agelim = AGESUP;          for(i=1; i<=nlstate; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for(h=0; h<=nhstepm-1; h++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     if (stepm >= YEARM) hstepm=1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);          }
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
     for(theta=1; theta <=npar; theta++){          for(h=0; h<=nhstepm-1; h++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }      }/* End theta */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
       for(i=1;i<=nlstate;i++)     
         gp[i] = prlim[i][i];      for(h=0; h<=nhstepm-1; h++)
             for(j=1; j<=nlstate*nlstate;j++)
       for(i=1; i<=npar; i++) /* Computes gradient */          for(theta=1; theta <=npar; theta++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            trgradg[h][j][theta]=gradg[h][theta][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
       for(i=1;i<=nlstate;i++)          varhe[ij][ji][(int)age] =0.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     trgradg =matrix(1,nlstate,1,npar);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
     for(j=1; j<=nlstate;j++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(theta=1; theta <=npar; theta++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         trgradg[j][theta]=gradg[theta][j];          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
     for(i=1;i<=nlstate;i++)              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       varpl[i][(int)age] =0.;        }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)      /* Computing expectancies */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
     fprintf(ficresvpl,"%.0f ",age );        for(j=1; j<=nlstate;j++)
     for(i=1; i<=nlstate;i++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fprintf(ficresvpl,"\n");           
     free_vector(gp,1,nlstate);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   free_vector(xp,1,npar);        eip=0.;
   free_matrix(doldm,1,nlstate,1,npar);        vip=0.;
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
 }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 /************ Variance of one-step probabilities  ******************/          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        }
 {        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   int i, j=0,  i1, k1, l1, t, tj;      }
   int k2, l2, j1,  z1;      fprintf(ficresstdeij,"\n");
   int k=0,l, cptcode;  
   int first=1, first1;      fprintf(ficrescveij,"%3.0f",age );
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      for(i=1; i<=nlstate;i++)
   double **dnewm,**doldm;        for(j=1; j<=nlstate;j++){
   double *xp;          cptj= (j-1)*nlstate+i;
   double *gp, *gm;          for(i2=1; i2<=nlstate;i2++)
   double **gradg, **trgradg;            for(j2=1; j2<=nlstate;j2++){
   double **mu;              cptj2= (j2-1)*nlstate+i2;
   double age,agelim, cov[NCOVMAX];              if(cptj2 <= cptj)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   int theta;            }
   char fileresprob[FILENAMELENGTH];        }
   char fileresprobcov[FILENAMELENGTH];      fprintf(ficrescveij,"\n");
   char fileresprobcor[FILENAMELENGTH];     
     }
   double ***varpij;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcpy(fileresprob,"prob");     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileresprob,fileres);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with resultfile: %s\n", fileresprob);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    printf("\n");
   }    fprintf(ficlog,"\n");
   strcpy(fileresprobcov,"probcov");   
   strcat(fileresprobcov,fileres);    free_vector(xm,1,npar);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcov);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcpy(fileresprobcor,"probcor");   }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with resultfile: %s\n", fileresprobcor);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  {
   }    /* Variance of health expectancies */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* double **newm;*/
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **dnewm,**doldm;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **dnewmp,**doldmp;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int k, cptcode;
       double *xp;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double **gp, **gm;  /* for var eij */
   fprintf(ficresprob,"# Age");    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double **gradgp, **trgradgp; /* for var p point j */
   fprintf(ficresprobcov,"# Age");    double *gpp, *gmp; /* for var p point j */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficresprobcov,"# Age");    double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
   for(i=1; i<=nlstate;i++)    int theta;
     for(j=1; j<=(nlstate+ndeath);j++){    char digit[4];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    char digitp[25];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    char fileresprobmorprev[FILENAMELENGTH];
     }    
  /* fprintf(ficresprob,"\n");    if(popbased==1){
   fprintf(ficresprobcov,"\n");      if(mobilav!=0)
   fprintf(ficresprobcor,"\n");        strcpy(digitp,"-populbased-mobilav-");
  */      else strcpy(digitp,"-populbased-nomobil-");
  xp=vector(1,npar);    }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    else
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      strcpy(digitp,"-stablbased-");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    if (mobilav!=0) {
   first=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficgp,"\n# Routine varprob");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(fichtm,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    }
   fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
   fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    strcpy(fileresprobmorprev,"prmorprev");
     sprintf(digit,"%-d",ij);
   cov[1]=1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   tj=cptcoveff;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   j1=0;    strcat(fileresprobmorprev,fileres);
   for(t=1; t<=tj;t++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(i1=1; i1<=ncodemax[t];i1++){       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       j1++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       if  (cptcovn>0) {    }
         fprintf(ficresprob, "\n#********** Variable ");     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresprob, "**********\n#\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficresprobcov, "\n#********** Variable ");     pstamp(ficresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp, "\n#********** Variable ");       fprintf(ficresprobmorprev," p.%-d SE",j);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "**********\n#\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             }  
             fprintf(ficresprobmorprev,"\n");
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     fprintf(ficgp,"\n# Routine varevsij");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficresprobcor, "\n#********** Variable ");      /*   } */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresprobcor, "**********\n#");        pstamp(ficresvij);
       }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           if(popbased==1)
       for (age=bage; age<=fage; age ++){       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         cov[2]=age;    else
         for (k=1; k<=cptcovn;k++) {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(j=1; j<=nlstate;j++)
         for (k=1; k<=cptcovprod;k++)        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficresvij,"\n");
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    xp=vector(1,npar);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    dnewm=matrix(1,nlstate,1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    doldm=matrix(1,nlstate,1,nlstate);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    gpp=vector(nlstate+1,nlstate+ndeath);
               gmp=vector(nlstate+1,nlstate+ndeath);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
              
           k=0;    if(estepm < stepm){
           for(i=1; i<= (nlstate); i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    else  hstepm=estepm;  
               gp[k]=pmmij[i][j];    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           }       nhstepm is the number of hstepm from age to agelim
                  nstepm is the number of stepm from age to agelin.
           for(i=1; i<=npar; i++)       Look at hpijx to understand the reason of that which relies in memory size
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);       and note for a fixed period like k years */
         /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
           k=0;       means that if the survival funtion is printed every two years of age and if
           for(i=1; i<=(nlstate); i++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             for(j=1; j<=(nlstate+ndeath);j++){       results. So we changed our mind and took the option of the best precision.
               k=k+1;    */
               gm[k]=pmmij[i][j];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
             }    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      gm=matrix(0,nhstepm,1,nlstate);
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];  
               for(theta=1; theta <=npar; theta++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         if (popbased==1) {
         pmij(pmmij,cov,ncovmodel,x,nlstate);          if(mobilav ==0){
                     for(i=1; i<=nlstate;i++)
         k=0;              prlim[i][i]=probs[(int)age][i][ij];
         for(i=1; i<=(nlstate); i++){          }else{ /* mobilav */
           for(j=1; j<=(nlstate+ndeath);j++){            for(i=1; i<=nlstate;i++)
             k=k+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
             mu[k][(int) age]=pmmij[i][j];          }
           }        }
         }   
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        for(j=1; j<= nlstate; j++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          for(h=0; h<=nhstepm; h++){
             varpij[i][j][(int)age] = doldm[i][j];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         /*printf("\n%d ",(int)age);          }
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /* This for computing probability of death (h=1 means
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));           computed over hstepm matrices product = hstepm*stepm months)
           }*/           as a weighted average of prlim.
         */
         fprintf(ficresprob,"\n%d ",(int)age);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficresprobcov,"\n%d ",(int)age);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficresprobcor,"\n%d ",(int)age);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        /* end probability of death */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         i=0;   
         for (k=1; k<=(nlstate);k++){        if (popbased==1) {
           for (l=1; l<=(nlstate+ndeath);l++){           if(mobilav ==0){
             i=i++;            for(i=1; i<=nlstate;i++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }else{ /* mobilav */
             for (j=1; j<=i;j++){            for(i=1; i<=nlstate;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }        }
           }  
         }/* end of loop for state */        for(j=1; j<= nlstate; j++){
       } /* end of loop for age */          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       /* Confidence intervalle of pij  */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       /*          }
         fprintf(ficgp,"\nset noparametric;unset label");        }
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        /* This for computing probability of death (h=1 means
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");           computed over hstepm matrices product = hstepm*stepm months)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);           as a weighted average of prlim.
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        /* end probability of death */
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){        for(j=1; j<= nlstate; j++) /* vareij */
         for (l2=1; l2<=(nlstate+ndeath);l2++){           for(h=0; h<=nhstepm; h++){
           if(l2==k2) continue;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           j=(k2-1)*(nlstate+ndeath)+l2;          }
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               if(l1==k1) continue;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               i=(k1-1)*(nlstate+ndeath)+l1;        }
               if(i<=j) continue;  
               for (age=bage; age<=fage; age ++){       } /* End theta */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(h=0; h<=nhstepm; h++) /* veij */
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(j=1; j<=nlstate;j++)
                   mu2=mu[j][(int) age]/stepm*YEARM;          for(theta=1; theta <=npar; theta++)
                   c12=cv12/sqrt(v1*v2);            trgradg[h][j][theta]=gradg[h][theta][j];
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(theta=1; theta <=npar; theta++)
                   /* Eigen vectors */          trgradgp[j][theta]=gradgp[theta][j];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));   
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   v12=-v21;      for(i=1;i<=nlstate;i++)
                   v22=v11;        for(j=1;j<=nlstate;j++)
                   tnalp=v21/v11;          vareij[i][j][(int)age] =0.;
                   if(first1==1){  
                     first1=0;      for(h=0;h<=nhstepm;h++){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        for(k=0;k<=nhstepm;k++){
                   }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   /*printf(fignu*/          for(i=1;i<=nlstate;i++)
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(j=1;j<=nlstate;j++)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   if(first==1){        }
                     first=0;      }
                     fprintf(ficgp,"\nset parametric;unset label");   
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      /* pptj */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\          varppt[j][i]=doldmp[j][i];
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      /* end ppptj */
                     fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      /*  x centered again */
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      if (popbased==1) {
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        if(mobilav ==0){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            prlim[i][i]=probs[(int)age][i][ij];
                   }else{        }else{ /* mobilav */
                     first=0;          for(i=1; i<=nlstate;i++)
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);            prlim[i][i]=mobaverage[(int)age][i][ij];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\               
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      /* This for computing probability of death (h=1 means
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));         computed over hstepm (estepm) matrices product = hstepm*stepm months)
                   }/* if first */         as a weighted average of prlim.
                 } /* age mod 5 */      */
               } /* end loop age */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
               first=1;          gmp[j] += prlim[i][i]*p3mat[i][j][1];
             } /*l12 */      }    
           } /* k12 */      /* end probability of death */
         } /*l1 */  
       }/* k1 */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     } /* loop covariates */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        for(i=1; i<=nlstate;i++){
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_vector(xp,1,npar);        }
   fclose(ficresprob);      }
   fclose(ficresprobcov);      fprintf(ficresprobmorprev,"\n");
   fclose(ficresprobcor);  
   /*  fclose(ficgp);*/      fprintf(ficresvij,"%.0f ",age );
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 /******************* Printing html file ***********/        }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      fprintf(ficresvij,"\n");
                   int lastpass, int stepm, int weightopt, char model[],\      free_matrix(gp,0,nhstepm,1,nlstate);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      free_matrix(gm,0,nhstepm,1,nlstate);
                   int popforecast, int estepm ,\      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   double jprev1, double mprev1,double anprev1, \      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   double jprev2, double mprev2,double anprev2){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int jj1, k1, i1, cpt;    } /* End age */
   /*char optionfilehtm[FILENAMELENGTH];*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */    free_vector(gmp,nlstate+1,nlstate+ndeath);
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /*   } */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  - Life expectancies by age and initial health status (estepm=%2d months): \    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
    <a href=\"%s\">%s</a> <br>\n</li>", \    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
  jj1=0;    free_matrix(dnewm,1,nlstate,1,npar);
  for(k1=1; k1<=m;k1++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      jj1++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (cptcovn > 0) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fclose(ficresprobmorprev);
        for (cpt=1; cpt<=cptcoveff;cpt++)     fflush(ficgp);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fflush(fichtm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  }  /* end varevsij */
      }  
      /* Pij */  /************ Variance of prevlim ******************/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       {
      /* Quasi-incidences */    /* Variance of prevalence limit */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    double **newm;
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     double **dnewm,**doldm;
        /* Stable prevalence in each health state */    int i, j, nhstepm, hstepm;
        for(cpt=1; cpt<nlstate;cpt++){    int k, cptcode;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    double *xp;
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    double *gp, *gm;
        }    double **gradg, **trgradg;
      for(cpt=1; cpt<=nlstate;cpt++) {    double age,agelim;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    int theta;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);   
      }    pstamp(ficresvpl);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 health expectancies in states (1) and (2): %s%d.png<br>\    fprintf(ficresvpl,"# Age");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    for(i=1; i<=nlstate;i++)
    } /* end i1 */        fprintf(ficresvpl," %1d-%1d",i,i);
  }/* End k1 */    fprintf(ficresvpl,"\n");
  fprintf(fichtm,"</ul>");  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    doldm=matrix(1,nlstate,1,nlstate);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\   
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    hstepm=1*YEARM; /* Every year of age */
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    agelim = AGESUP;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\      if (stepm >= YEARM) hstepm=1;
          rfileres,rfileres,\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\      gradg=matrix(1,npar,1,nlstate);
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\      gp=vector(1,nlstate);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\      gm=vector(1,nlstate);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\  
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\      for(theta=1; theta <=npar; theta++){
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /*  if(popforecast==1) fprintf(fichtm,"\n */        }
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */        for(i=1;i<=nlstate;i++)
 /*      <br>",fileres,fileres,fileres,fileres); */          gp[i] = prlim[i][i];
 /*  else  */     
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */        for(i=1; i<=npar; i++) /* Computes gradient */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  m=cptcoveff;        for(i=1;i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          gm[i] = prlim[i][i];
   
  jj1=0;        for(i=1;i<=nlstate;i++)
  for(k1=1; k1<=m;k1++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    for(i1=1; i1<=ncodemax[k1];i1++){      } /* End theta */
      jj1++;  
      if (cptcovn > 0) {      trgradg =matrix(1,nlstate,1,npar);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)       for(j=1; j<=nlstate;j++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(theta=1; theta <=npar; theta++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          trgradg[j][theta]=gradg[theta][j];
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1;i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\        varpl[i][(int)age] =0.;
 interval) in state (%d): %s%d%d.png <br>\      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      }      for(i=1;i<=nlstate;i++)
    } /* end i1 */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
  }/* End k1 */  
  fprintf(fichtm,"</ul>");      fprintf(ficresvpl,"%.0f ",age );
  fflush(fichtm);      for(i=1; i<=nlstate;i++)
 }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
 /******************* Gnuplot file **************/      free_vector(gp,1,nlstate);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   char dirfileres[132],optfileres[132];      free_matrix(trgradg,1,nlstate,1,npar);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    } /* End age */
   int ng;  
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    free_vector(xp,1,npar);
 /*     printf("Problem with file %s",optionfilegnuplot); */    free_matrix(doldm,1,nlstate,1,npar);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    free_matrix(dnewm,1,nlstate,1,nlstate);
 /*   } */  
   }
   /*#ifdef windows */  
   fprintf(ficgp,"cd \"%s\" \n",pathc);  /************ Variance of one-step probabilities  ******************/
     /*#endif */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   m=pow(2,cptcoveff);  {
     int i, j=0,  i1, k1, l1, t, tj;
   strcpy(dirfileres,optionfilefiname);    int k2, l2, j1,  z1;
   strcpy(optfileres,"vpl");    int k=0,l, cptcode;
  /* 1eme*/    int first=1, first1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    double *xp;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    double *gp, *gm;
      fprintf(ficgp,"set xlabel \"Age\" \n\    double **gradg, **trgradg;
 set ylabel \"Probability\" \n\    double **mu;
 set ter png small\n\    double age,agelim, cov[NCOVMAX];
 set size 0.65,0.65\n\    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    int theta;
     char fileresprob[FILENAMELENGTH];
      for (i=1; i<= nlstate ; i ++) {    char fileresprobcov[FILENAMELENGTH];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char fileresprobcor[FILENAMELENGTH];
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }    double ***varpij;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    strcpy(fileresprob,"prob");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprob,fileres);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      }       printf("Problem with resultfile: %s\n", fileresprob);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      for (i=1; i<= nlstate ; i ++) {    }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresprobcov,"probcov");
        else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobcov,fileres);
      }      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));      printf("Problem with resultfile: %s\n", fileresprobcov);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   /*2 eme*/    strcpy(fileresprobcor,"probcor");
       strcat(fileresprobcor,fileres);
   for (k1=1; k1<= m ; k1 ++) {     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         }
     for (i=1; i<= nlstate+1 ; i ++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       k=2*i;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }       pstamp(ficresprob);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficresprob,"# Age");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    pstamp(ficresprobcov);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobcov,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    pstamp(ficresprobcor);
       }       fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresprobcor,"# Age");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=(nlstate+ndeath);j++){
       }           fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
   }   /* fprintf(ficresprob,"\n");
       fprintf(ficresprobcov,"\n");
   /*3eme*/    fprintf(ficresprobcor,"\n");
      */
   for (k1=1; k1<= m ; k1 ++) {    xp=vector(1,npar);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       k=2+nlstate*(2*cpt-2);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficgp,"set ter png small\n\    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 set size 0.65,0.65\n\    first=1;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    fprintf(ficgp,"\n# Routine varprob");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(fichtm,"\n");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    file %s<br>\n",optionfilehtmcov);
             fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       */  and drawn. It helps understanding how is the covariance between two incidences.\
       for (i=1; i< nlstate ; i ++) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       }   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   /* CV preval stable (period) */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<=nlstate ; cpt ++) {    cov[1]=1;
       k=3;    tj=cptcoveff;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\    j1=0;
 set ter png small\nset size 0.65,0.65\n\    for(t=1; t<=tj;t++){
 unset log y\n\      for(i1=1; i1<=ncodemax[t];i1++){
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        j1++;
               if  (cptcovn>0) {
       for (i=1; i< nlstate ; i ++)          fprintf(ficresprob, "\n#********** Variable ");
         fprintf(ficgp,"+$%d",k+i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficresprob, "**********\n#\n");
                 fprintf(ficresprobcov, "\n#********** Variable ");
       l=3+(nlstate+ndeath)*cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);          fprintf(ficresprobcov, "**********\n#\n");
       for (i=1; i< nlstate ; i ++) {         
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficgp, "\n#********** Variable ");
         fprintf(ficgp,"+$%d",l+i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            
     }          
   }            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
             for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* proba elementaires */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(i=1,jk=1; i <=nlstate; i++){         
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprobcor, "\n#********** Variable ");    
       if (k != i) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1; j <=ncovmodel; j++){          fprintf(ficresprobcor, "**********\n#");    
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;        
           fprintf(ficgp,"\n");        for (age=bage; age<=fage; age ++){
         }          cov[2]=age;
       }          for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
    }          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for (k=1; k<=cptcovprod;k++)
      for(jk=1; jk <=m; jk++) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);          
        if (ng==2)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        else          gp=vector(1,(nlstate)*(nlstate+ndeath));
          fprintf(ficgp,"\nset title \"Probability\"\n");          gm=vector(1,(nlstate)*(nlstate+ndeath));
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     
        i=1;          for(theta=1; theta <=npar; theta++){
        for(k2=1; k2<=nlstate; k2++) {            for(i=1; i<=npar; i++)
          k3=i;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
          for(k=1; k<=(nlstate+ndeath); k++) {           
            if (k != k2){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              if(ng==2)           
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            k=0;
              else            for(i=1; i<= (nlstate); i++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              for(j=1; j<=(nlstate+ndeath);j++){
              ij=1;                k=k+1;
              for(j=3; j <=ncovmodel; j++) {                gp[k]=pmmij[i][j];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
                  ij++;           
                }            for(i=1; i<=npar; i++)
                else              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     
              }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              fprintf(ficgp,")/(1");            k=0;
                          for(i=1; i<=(nlstate); i++){
              for(k1=1; k1 <=nlstate; k1++){                 for(j=1; j<=(nlstate+ndeath);j++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                k=k+1;
                ij=1;                gm[k]=pmmij[i][j];
                for(j=3; j <=ncovmodel; j++){              }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       
                    ij++;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
                  }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  else          }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                fprintf(ficgp,")");            for(theta=1; theta <=npar; theta++)
              }              trgradg[j][theta]=gradg[theta][j];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
              i=i+ncovmodel;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
            }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
          } /* end k */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        } /* end k2 */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      } /* end jk */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    } /* end ng */  
    fflush(ficgp);           pmij(pmmij,cov,ncovmodel,x,nlstate);
 }  /* end gnuplot */         
           k=0;
           for(i=1; i<=(nlstate); i++){
 /*************** Moving average **************/            for(j=1; j<=(nlstate+ndeath);j++){
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   int i, cpt, cptcod;            }
   int modcovmax =1;          }
   int mobilavrange, mob;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   double age;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   
                            a covariate has 2 modalities */          /*printf("\n%d ",(int)age);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     if(mobilav==1) mobilavrange=5; /* default */            }*/
     else mobilavrange=mobilav;  
     for (age=bage; age<=fage; age++)          fprintf(ficresprob,"\n%d ",(int)age);
       for (i=1; i<=nlstate;i++)          fprintf(ficresprobcov,"\n%d ",(int)age);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)          fprintf(ficresprobcor,"\n%d ",(int)age);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
        we use a 5 terms etc. until the borders are no more concerned.           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     */             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     for (mob=3;mob <=mobilavrange;mob=mob+2){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){          }
         for (i=1; i<=nlstate;i++){          i=0;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){          for (k=1; k<=(nlstate);k++){
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];            for (l=1; l<=(nlstate+ndeath);l++){
               for (cpt=1;cpt<=(mob-1)/2;cpt++){              i=i++;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               }              for (j=1; j<=i;j++){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         }              }
       }/* end age */            }
     }/* end mob */          }/* end of loop for state */
   }else return -1;        } /* end of loop for age */
   return 0;  
 }/* End movingaverage */        /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
 /************** Forecasting ******************/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* proj1, year, month, day of starting projection           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      agemin, agemax range of age          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      dateprev1 dateprev2 range of dates during which prevalence is computed          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
      anproj2 year of en of projection (same day and month as proj1).          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   */        */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double agec; /* generic age */        first1=1;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for (k2=1; k2<=(nlstate);k2++){
   double *popeffectif,*popcount;          for (l2=1; l2<=(nlstate+ndeath);l2++){
   double ***p3mat;            if(l2==k2) continue;
   double ***mobaverage;            j=(k2-1)*(nlstate+ndeath)+l2;
   char fileresf[FILENAMELENGTH];            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){
   agelim=AGESUP;                if(l1==k1) continue;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
   strcpy(fileresf,"f");                 for (age=bage; age<=fage; age ++){
   strcat(fileresf,fileres);                  if ((int)age %5==0){
   if((ficresf=fopen(fileresf,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with forecast resultfile: %s\n", fileresf);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   printf("Computing forecasting: result on file '%s' \n", fileresf);                    mu2=mu[j][(int) age]/stepm*YEARM;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if (mobilav!=0) {                    /* Eigen vectors */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                    /*v21=sqrt(1.-v11*v11); *//* error */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                    v21=(lc1-v1)/cv12*v11;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                    v12=-v21;
     }                    v22=v11;
   }                    tnalp=v21/v11;
                     if(first1==1){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      first1=0;
   if (stepm<=12) stepsize=1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if(estepm < stepm){                    }
     printf ("Problem %d lower than %d\n",estepm, stepm);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
   else  hstepm=estepm;                       /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   hstepm=hstepm/stepm;                     if(first==1){
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and                      first=0;
                                fractional in yp1 */                      fprintf(ficgp,"\nset parametric;unset label");
   anprojmean=yp;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   yp2=modf((yp1*12),&yp);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   mprojmean=yp;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   yp1=modf((yp2*30.5),&yp);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   jprojmean=yp;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   if(jprojmean==0) jprojmean=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   if(mprojmean==0) jprojmean=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   i1=cptcoveff;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if (cptcovn < 1){i1=1;}                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                         fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                         fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficresf,"#****** Routine prevforecast **\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /*            if (h==(int)(YEARM*yearp)){ */                    }else{
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                      first=0;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       k=k+1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficresf,"\n#******");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1;j<=cptcoveff;j++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficresf,"******\n");                    }/* if first */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                  } /* age mod 5 */
       for(j=1; j<=nlstate+ndeath;j++){                 } /* end loop age */
         for(i=1; i<=nlstate;i++)                              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficresf," p%d%d",i,j);                first=1;
         fprintf(ficresf," p.%d",j);              } /*l12 */
       }            } /* k12 */
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {           } /*l1 */
         fprintf(ficresf,"\n");        }/* k1 */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);         } /* loop covariates */
     }
         for (agec=fage; agec>=(ageminpar-1); agec--){     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           nhstepm = nhstepm/hstepm;     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           oldm=oldms;savm=savms;    free_vector(xp,1,npar);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprob);
             fclose(ficresprobcov);
           for (h=0; h<=nhstepm; h++){    fclose(ficresprobcor);
             if (h*hstepm/YEARM*stepm ==yearp) {    fflush(ficgp);
               fprintf(ficresf,"\n");    fflush(fichtmcov);
               for(j=1;j<=cptcoveff;j++)   }
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);  
             }   /******************* Printing html file ***********/
             for(j=1; j<=nlstate+ndeath;j++) {  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               ppij=0.;                    int lastpass, int stepm, int weightopt, char model[],\
               for(i=1; i<=nlstate;i++) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                 if (mobilav==1)                     int popforecast, int estepm ,\
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];                    double jprev1, double mprev1,double anprev1, \
                 else {                    double jprev2, double mprev2,double anprev2){
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    int jj1, k1, i1, cpt;
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                 }  </ul>");
               } /* end i */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
               if (h*hstepm/YEARM*stepm==yearp) {   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 fprintf(ficresf," %.3f", ppij);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               }     fprintf(fichtm,"\
             }/* end j */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           } /* end h */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     fprintf(fichtm,"\
         } /* end agec */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       } /* end yearp */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     } /* end cptcod */     fprintf(fichtm,"\
   } /* end  cptcov */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
             <a href=\"%s\">%s</a> <br>\n",
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
   fclose(ficresf);   - Population projections by age and states: \
 }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
 /************** Forecasting *****not tested NB*************/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      m=cptcoveff;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   int *popage;  
   double calagedatem, agelim, kk1, kk2;   jj1=0;
   double *popeffectif,*popcount;   for(k1=1; k1<=m;k1++){
   double ***p3mat,***tabpop,***tabpopprev;     for(i1=1; i1<=ncodemax[k1];i1++){
   double ***mobaverage;       jj1++;
   char filerespop[FILENAMELENGTH];       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         for (cpt=1; cpt<=cptcoveff;cpt++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   agelim=AGESUP;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       }
          /* Pij */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
          /* Quasi-incidences */
   strcpy(filerespop,"pop");        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   strcat(filerespop,fileres);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     printf("Problem with forecast resultfile: %s\n", filerespop);         /* Period (stable) prevalence in each health state */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   printf("Computing forecasting: result on file '%s' \n", filerespop);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if (mobilav!=0) {       }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     } /* end i1 */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   }/* End k1 */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   fprintf(fichtm,"</ul>");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  
   }   fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   if (stepm<=12) stepsize=1;  
      fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      fprintf(fichtm,"\
   hstepm=1;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   hstepm=hstepm/stepm;            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     
   if (popforecast==1) {   fprintf(fichtm,"\
     if((ficpop=fopen(popfile,"r"))==NULL) {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("Problem with population file : %s\n",popfile);exit(0);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);   fprintf(fichtm,"\
     }    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     popage=ivector(0,AGESUP);     <a href=\"%s\">%s</a> <br>\n</li>",
     popeffectif=vector(0,AGESUP);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     popcount=vector(0,AGESUP);   fprintf(fichtm,"\
        - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     i=1;        <a href=\"%s\">%s</a> <br>\n</li>",
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(fichtm,"\
     imx=i;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   fprintf(fichtm,"\
       k=k+1;   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficrespop,"\n#******");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficrespop,"******\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       fprintf(ficrespop,"# Age");  /*      <br>",fileres,fileres,fileres,fileres); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  /*  else  */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
          fflush(fichtm);
       for (cpt=0; cpt<=0;cpt++) {    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
            m=cptcoveff;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;    jj1=0;
              for(k1=1; k1<=m;k1++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     for(i1=1; i1<=ncodemax[k1];i1++){
           oldm=oldms;savm=savms;       jj1++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         if (cptcovn > 0) {
                  fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (h=0; h<=nhstepm; h++){         for (cpt=1; cpt<=cptcoveff;cpt++)
             if (h==(int) (calagedatem+YEARM*cpt)) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {       for(cpt=1; cpt<=nlstate;cpt++) {
               kk1=0.;kk2=0;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               for(i=1; i<=nlstate;i++) {                prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
                 if (mobilav==1)   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       }
                 else {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  health expectancies in states (1) and (2): %s%d.png<br>\
                 }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
               }     } /* end i1 */
               if (h==(int)(calagedatem+12*cpt)){   }/* End k1 */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   fprintf(fichtm,"</ul>");
                   /*fprintf(ficrespop," %.3f", kk1);   fflush(fichtm);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  }
               }  
             }  /******************* Gnuplot file **************/
             for(i=1; i<=nlstate;i++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    char dirfileres[132],optfileres[132];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                 }    int ng;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
             }  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)   /*   } */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    /*#ifdef windows */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"cd \"%s\" \n",pathc);
         }      /*#endif */
       }    m=pow(2,cptcoveff);
    
   /******/    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /* 1eme*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       for (cpt=1; cpt<= nlstate ; cpt ++) {
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      for (k1=1; k1<= m ; k1 ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           nhstepm = nhstepm/hstepm;        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                  fprintf(ficgp,"set xlabel \"Age\" \n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  set ylabel \"Probability\" \n\
           oldm=oldms;savm=savms;  set ter png small\n\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    set size 0.65,0.65\n\
           for (h=0; h<=nhstepm; h++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       for (i=1; i<= nlstate ; i ++) {
             }          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             for(j=1; j<=nlstate+ndeath;j++) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
               kk1=0.;kk2=0;       }
               for(i=1; i<=nlstate;i++) {                     fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           for (i=1; i<= nlstate ; i ++) {
               }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                 else fprintf(ficgp," \%%*lf (\%%*lf)");
             }       }
           }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
    }        }  
   }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     /*2 eme*/
   if (popforecast==1) {   
     free_ivector(popage,0,AGESUP);    for (k1=1; k1<= m ; k1 ++) {
     free_vector(popeffectif,0,AGESUP);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     free_vector(popcount,0,AGESUP);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }     
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<= nlstate+1 ; i ++) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        k=2*i;
   fclose(ficrespop);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 } /* End of popforecast */        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 int fileappend(FILE *fichier, char *optionfich)          else fprintf(ficgp," \%%*lf (\%%*lf)");
 {        }  
   if((fichier=fopen(optionfich,"a"))==NULL) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     printf("Problem with file: %s\n", optionfich);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     return (0);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fflush(fichier);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   return (1);        }  
 }        fprintf(ficgp,"\" t\"\" w l 0,");
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 {        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   char ca[32], cb[32], cc[32];          else fprintf(ficgp," \%%*lf (\%%*lf)");
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;        }  
   int numlinepar;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
   for(i=1; i <=nlstate; i++){   
     jj=0;    /*3eme*/
     for(j=1; j <=nlstate+ndeath; j++){   
       if(j==i) continue;    for (k1=1; k1<= m ; k1 ++) {
       jj++;      for (cpt=1; cpt<= nlstate ; cpt ++) {
       /*ca[0]= k+'a'-1;ca[1]='\0';*/        /*       k=2+nlstate*(2*cpt-2); */
       printf("%1d%1d",i,j);        k=2+(nlstate+1)*(cpt-1);
       fprintf(ficparo,"%1d%1d",i,j);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for(k=1; k<=ncovmodel;k++){        fprintf(ficgp,"set ter png small\n\
         /*        printf(" %lf",param[i][j][k]); */  set size 0.65,0.65\n\
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         printf(" 0.");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficparo," 0.");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficparo,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }         
   printf("# Scales (for hessian or gradient estimation)\n");        */
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        for (i=1; i< nlstate ; i ++) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   for(i=1; i <=nlstate; i++){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     jj=0;         
     for(j=1; j <=nlstate+ndeath; j++){        }
       if(j==i) continue;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       jj++;      }
       fprintf(ficparo,"%1d%1d",i,j);    }
       printf("%1d%1d",i,j);   
       fflush(stdout);    /* CV preval stable (period) */
       for(k=1; k<=ncovmodel;k++){    for (k1=1; k1<= m ; k1 ++) {
         /*      printf(" %le",delti3[i][j][k]); */      for (cpt=1; cpt<=nlstate ; cpt ++) {
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */        k=3;
         printf(" 0.");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficparo," 0.");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       }  set ter png small\nset size 0.65,0.65\n\
       numlinepar++;  unset log y\n\
       printf("\n");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       fprintf(ficparo,"\n");       
     }        for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
   printf("# Covariance matrix\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 /* # 121 Var(a12)\n\ */       
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        l=3+(nlstate+ndeath)*cpt;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        for (i=1; i< nlstate ; i ++) {
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          l=3+(nlstate+ndeath)*cpt;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          fprintf(ficgp,"+$%d",l+i+1);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        }
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   fflush(stdout);      }
   fprintf(ficparo,"# Covariance matrix\n");    }  
   /* # 121 Var(a12)\n\ */   
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    /* proba elementaires */
   /* #   ...\n\ */    for(i=1,jk=1; i <=nlstate; i++){
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */      for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
   for(itimes=1;itimes<=2;itimes++){          for(j=1; j <=ncovmodel; j++){
     jj=0;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     for(i=1; i <=nlstate; i++){            jk++;
       for(j=1; j <=nlstate+ndeath; j++){            fprintf(ficgp,"\n");
         if(j==i) continue;          }
         for(k=1; k<=ncovmodel;k++){        }
           jj++;      }
           ca[0]= k+'a'-1;ca[1]='\0';     }
           if(itimes==1){  
             printf("#%1d%1d%d",i,j,k);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             fprintf(ficparo,"#%1d%1d%d",i,j,k);       for(jk=1; jk <=m; jk++) {
           }else{         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
             printf("%1d%1d%d",i,j,k);         if (ng==2)
             fprintf(ficparo,"%1d%1d%d",i,j,k);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             /*  printf(" %.5le",matcov[i][j]); */         else
           }           fprintf(ficgp,"\nset title \"Probability\"\n");
           ll=0;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           for(li=1;li <=nlstate; li++){         i=1;
             for(lj=1;lj <=nlstate+ndeath; lj++){         for(k2=1; k2<=nlstate; k2++) {
               if(lj==li) continue;           k3=i;
               for(lk=1;lk<=ncovmodel;lk++){           for(k=1; k<=(nlstate+ndeath); k++) {
                 ll++;             if (k != k2){
                 if(ll<=jj){               if(ng==2)
                   cb[0]= lk +'a'-1;cb[1]='\0';                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   if(ll<jj){               else
                     if(itimes==1){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);               ij=1;
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);               for(j=3; j <=ncovmodel; j++) {
                     }else{                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       printf(" 0.");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                       fprintf(ficparo," 0.");                   ij++;
                     }                 }
                   }else{                 else
                     if(itimes==1){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                       printf(" Var(%s%1d%1d)",ca,i,j);               }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);               fprintf(ficgp,")/(1");
                     }else{               
                       printf(" 0.");               for(k1=1; k1 <=nlstate; k1++){  
                       fprintf(ficparo," 0.");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                     }                 ij=1;
                   }                 for(j=3; j <=ncovmodel; j++){
                 }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               } /* end lk */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             } /* end lj */                     ij++;
           } /* end li */                   }
           printf("\n");                   else
           fprintf(ficparo,"\n");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           numlinepar++;                 }
         } /* end k*/                 fprintf(ficgp,")");
       } /*end j */               }
     } /* end i */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
 } /* end of prwizard */             }
            } /* end k */
 /***********************************************/         } /* end k2 */
 /**************** Main Program *****************/       } /* end jk */
 /***********************************************/     } /* end ng */
      fflush(ficgp);
 int main(int argc, char *argv[])  }  /* end gnuplot */
 {  
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  /*************** Moving average **************/
   int jj, imk;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   int numlinepar=0; /* Current linenumber of parameter file */  
   /*  FILE *fichtm; *//* Html File */    int i, cpt, cptcod;
   /* FILE *ficgp;*/ /*Gnuplot File */    int modcovmax =1;
   double agedeb, agefin,hf;    int mobilavrange, mob;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double age;
   
   double fret;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   double **xi,tmp,delta;                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   double dum; /* Dummy variable */  
   double ***p3mat;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   double ***mobaverage;      if(mobilav==1) mobilavrange=5; /* default */
   int *indx;      else mobilavrange=mobilav;
   char line[MAXLINE], linepar[MAXLINE];      for (age=bage; age<=fage; age++)
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];        for (i=1; i<=nlstate;i++)
   char pathr[MAXLINE];           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   int firstobs=1, lastobs=10;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   int sdeb, sfin; /* Status at beginning and end */      /* We keep the original values on the extreme ages bage, fage and for
   int c,  h , cpt,l;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   int ju,jl, mi;         we use a 5 terms etc. until the borders are no more concerned.
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;       for (mob=3;mob <=mobilavrange;mob=mob+2){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   int mobilav=0,popforecast=0;          for (i=1; i<=nlstate;i++){
   int hstepm, nhstepm;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   double bage, fage, age, agelim, agebase;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   double ftolpl=FTOL;                }
   double **prlim;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   double *severity;            }
   double ***param; /* Matrix of parameters */          }
   double  *p;        }/* end age */
   double **matcov; /* Matrix of covariance */      }/* end mob */
   double ***delti3; /* Scale */    }else return -1;
   double *delti; /* Scale */    return 0;
   double ***eij, ***vareij;  }/* End movingaverage */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  
   double kk1, kk2;  /************** Forecasting ******************/
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection
   char *alph[]={"a","a","b","c","d","e"}, str[4];       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   char z[1]="c", occ;    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int *popage;
   char strstart[80], *strt, strtend[80];    double agec; /* generic age */
   char *stratrunc;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   int lstra;    double *popeffectif,*popcount;
     double ***p3mat;
   long total_usecs;    double ***mobaverage;
   struct timeval start_time, end_time, curr_time;    char fileresf[FILENAMELENGTH];
   struct timezone tzp;  
   extern int gettimeofday();    agelim=AGESUP;
   struct tm tmg, tm, *gmtime(), *localtime();    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   long time_value;   
   extern long time();    strcpy(fileresf,"f");
      strcat(fileresf,fileres);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    if((ficresf=fopen(fileresf,"w"))==NULL) {
   (void) gettimeofday(&start_time,&tzp);      printf("Problem with forecast resultfile: %s\n", fileresf);
   tm = *localtime(&start_time.tv_sec);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   tmg = *gmtime(&start_time.tv_sec);    }
   strcpy(strstart,asctime(&tm));    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 /*  printf("Localtime (at start)=%s",strstart); */  
 /*  tp.tv_sec = tp.tv_sec +86400; */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*  tm = *localtime(&start_time.tv_sec); */  
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    if (mobilav!=0) {
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /*   tp.tv_sec = mktime(&tmg); */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*   strt=asctime(&tmg); */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 /*   printf("Time(after) =%s",strstart);  */      }
 /*  (void) time (&time_value);    }
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);  
 *  tm = *localtime(&time_value);    stepsize=(int) (stepm+YEARM-1)/YEARM;
 *  strstart=asctime(&tm);    if (stepm<=12) stepsize=1;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     if(estepm < stepm){
 */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   getcwd(pathcd, size);    else  hstepm=estepm;  
   
   printf("\n%s\n%s",version,fullversion);    hstepm=hstepm/stepm;
   if(argc <=1){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     printf("\nEnter the parameter file name: ");                                 fractional in yp1 */
     scanf("%s",pathtot);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   else{    mprojmean=yp;
     strcpy(pathtot,argv[1]);    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    if(jprojmean==0) jprojmean=1;
   /*cygwin_split_path(pathtot,path,optionfile);    if(mprojmean==0) jprojmean=1;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   chdir(path);   
   strcpy(command,"mkdir ");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   strcat(command,optionfilefiname);  
   if((outcmd=system(command)) != 0){  /*            if (h==(int)(YEARM*yearp)){ */
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     /* fclose(ficlog); */        k=k+1;
 /*     exit(1); */        fprintf(ficresf,"\n#******");
   }        for(j=1;j<=cptcoveff;j++) {
 /*   if((imk=mkdir(optionfilefiname))<0){ */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /*     perror("mkdir"); */        }
 /*   } */        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   /*-------- arguments in the command line --------*/        for(j=1; j<=nlstate+ndeath;j++){
           for(i=1; i<=nlstate;i++)              
   /* Log file */            fprintf(ficresf," p%d%d",i,j);
   strcat(filelog, optionfilefiname);          fprintf(ficresf," p.%d",j);
   strcat(filelog,".log");    /* */        }
   if((ficlog=fopen(filelog,"w"))==NULL)    {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
     printf("Problem with logfile %s\n",filelog);          fprintf(ficresf,"\n");
     goto end;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);          for (agec=fage; agec>=(ageminpar-1); agec--){
   fprintf(ficlog,"\n%s\n%s",version,fullversion);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   fprintf(ficlog,"\nEnter the parameter file name: ");            nhstepm = nhstepm/hstepm;
   fprintf(ficlog,"pathtot=%s\n\            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  path=%s \n\            oldm=oldms;savm=savms;
  optionfile=%s\n\            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
  optionfilext=%s\n\         
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   printf("Localtime (at start):%s",strstart);                fprintf(ficresf,"\n");
   fprintf(ficlog,"Localtime (at start): %s",strstart);                for(j=1;j<=cptcoveff;j++)
   fflush(ficlog);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /* */              }
   strcpy(fileres,"r");              for(j=1; j<=nlstate+ndeath;j++) {
   strcat(fileres, optionfilefiname);                ppij=0.;
   strcat(fileres,".txt");    /* Other files have txt extension */                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1)
   /*---------arguments file --------*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     printf("Problem with optionfile %s\n",optionfile);                  }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                  if (h*hstepm/YEARM*stepm== yearp) {
     fflush(ficlog);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     goto end;                  }
   }                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
   strcpy(filereso,"o");              }/* end j */
   strcat(filereso,fileres);            } /* end h */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Output resultfile: %s\n", filereso);          } /* end agec */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        } /* end yearp */
     fflush(ficlog);      } /* end cptcod */
     goto end;    } /* end  cptcov */
   }         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */  
   numlinepar=0;    fclose(ficresf);
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************** Forecasting *****not tested NB*************/
     numlinepar++;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     puts(line);   
     fputs(line,ficparo);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     fputs(line,ficlog);    int *popage;
   }    double calagedatem, agelim, kk1, kk2;
   ungetc(c,ficpar);    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double ***mobaverage;
   numlinepar++;    char filerespop[FILENAMELENGTH];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fflush(ficlog);    agelim=AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     numlinepar++;   
     puts(line);   
     fputs(line,ficparo);    strcpy(filerespop,"pop");
     fputs(line,ficlog);    strcat(filerespop,fileres);
   }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
        }
   covar=matrix(0,NCOVMAX,1,n);     printf("Computing forecasting: result on file '%s' \n", filerespop);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      }
     fclose (ficparo);    }
     fclose (ficlog);  
     exit(0);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   }    if (stepm<=12) stepsize=1;
   /* Read guess parameters */   
   /* Reads comments: lines beginning with '#' */    agelim=AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    hstepm=1;
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm;
     numlinepar++;   
     puts(line);    if (popforecast==1) {
     fputs(line,ficparo);      if((ficpop=fopen(popfile,"r"))==NULL) {
     fputs(line,ficlog);        printf("Problem with population file : %s\n",popfile);exit(0);
   }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   ungetc(c,ficpar);      }
       popage=ivector(0,AGESUP);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      popeffectif=vector(0,AGESUP);
   for(i=1; i <=nlstate; i++){      popcount=vector(0,AGESUP);
     j=0;     
     for(jj=1; jj <=nlstate+ndeath; jj++){      i=1;  
       if(jj==i) continue;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       j++;     
       fscanf(ficpar,"%1d%1d",&i1,&j1);      imx=i;
       if ((i1 != i) && (j1 != j)){      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    }
         exit(1);  
       }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       fprintf(ficparo,"%1d%1d",i1,j1);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       if(mle==1)        k=k+1;
         printf("%1d%1d",i,j);        fprintf(ficrespop,"\n#******");
       fprintf(ficlog,"%1d%1d",i,j);        for(j=1;j<=cptcoveff;j++) {
       for(k=1; k<=ncovmodel;k++){          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         if(mle==1){        fprintf(ficrespop,"******\n");
           printf(" %lf",param[i][j][k]);        fprintf(ficrespop,"# Age");
           fprintf(ficlog," %lf",param[i][j][k]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         }        if (popforecast==1)  fprintf(ficrespop," [Population]");
         else       
           fprintf(ficlog," %lf",param[i][j][k]);        for (cpt=0; cpt<=0;cpt++) {
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       }         
       fscanf(ficpar,"\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
       numlinepar++;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
       if(mle==1)            nhstepm = nhstepm/hstepm;
         printf("\n");           
       fprintf(ficlog,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"\n");            oldm=oldms;savm=savms;
     }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }           
   fflush(ficlog);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   p=param[1][1];              for(j=1; j<=nlstate+ndeath;j++) {
                   kk1=0.;kk2=0;
   /* Reads comments: lines beginning with '#' */                for(i=1; i<=nlstate;i++) {              
   while((c=getc(ficpar))=='#' && c!= EOF){                  if (mobilav==1)
     ungetc(c,ficpar);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     fgets(line, MAXLINE, ficpar);                  else {
     numlinepar++;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     puts(line);                  }
     fputs(line,ficparo);                }
     fputs(line,ficlog);                if (h==(int)(calagedatem+12*cpt)){
   }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   ungetc(c,ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                }
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */              }
   for(i=1; i <=nlstate; i++){              for(i=1; i<=nlstate;i++){
     for(j=1; j <=nlstate+ndeath-1; j++){                kk1=0.;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                  for(j=1; j<=nlstate;j++){
       if ((i1-i)*(j1-j)!=0){                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                  }
         exit(1);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       }              }
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
       fprintf(ficlog,"%1d%1d",i1,j1);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar,"%le",&delti3[i][j][k]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf(" %le",delti3[i][j][k]);          }
         fprintf(ficparo," %le",delti3[i][j][k]);        }
         fprintf(ficlog," %le",delti3[i][j][k]);   
       }    /******/
       fscanf(ficpar,"\n");  
       numlinepar++;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
       printf("\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       fprintf(ficparo,"\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
       fprintf(ficlog,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     }            nhstepm = nhstepm/hstepm;
   }           
   fflush(ficlog);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   delti=delti3[1][1];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                 }
   /* Reads comments: lines beginning with '#' */              for(j=1; j<=nlstate+ndeath;j++) {
   while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;kk2=0;
     ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
     fgets(line, MAXLINE, ficpar);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     numlinepar++;                }
     puts(line);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     fputs(line,ficparo);              }
     fputs(line,ficlog);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);          }
           }
   matcov=matrix(1,npar,1,npar);     }
   for(i=1; i <=npar; i++){    }
     fscanf(ficpar,"%s",&str);   
     if(mle==1)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%s",str);  
     fprintf(ficlog,"%s",str);    if (popforecast==1) {
     fprintf(ficparo,"%s",str);      free_ivector(popage,0,AGESUP);
     for(j=1; j <=i; j++){      free_vector(popeffectif,0,AGESUP);
       fscanf(ficpar," %le",&matcov[i][j]);      free_vector(popcount,0,AGESUP);
       if(mle==1){    }
         printf(" %.5le",matcov[i][j]);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficlog," %.5le",matcov[i][j]);    fclose(ficrespop);
       fprintf(ficparo," %.5le",matcov[i][j]);  } /* End of popforecast */
     }  
     fscanf(ficpar,"\n");  int fileappend(FILE *fichier, char *optionfich)
     numlinepar++;  {
     if(mle==1)    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("\n");      printf("Problem with file: %s\n", optionfich);
     fprintf(ficlog,"\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     fprintf(ficparo,"\n");      return (0);
   }    }
   for(i=1; i <=npar; i++)    fflush(fichier);
     for(j=i+1;j<=npar;j++)    return (1);
       matcov[i][j]=matcov[j][i];  }
      
   if(mle==1)  
     printf("\n");  /**************** function prwizard **********************/
   fprintf(ficlog,"\n");  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   fflush(ficlog);  
     /* Wizard to print covariance matrix template */
   /*-------- Rewriting paramater file ----------*/  
   strcpy(rfileres,"r");    /* "Rparameterfile */    char ca[32], cb[32], cc[32];
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcat(rfileres,".");    /* */    int numlinepar;
   strcat(rfileres,optionfilext);    /* Other files have txt extension */  
   if((ficres =fopen(rfileres,"w"))==NULL) {    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    for(i=1; i <=nlstate; i++){
   }      jj=0;
   fprintf(ficres,"#%s\n",version);      for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
   /*-------- data file ----------*/        jj++;
   if((fic=fopen(datafile,"r"))==NULL)    {        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     printf("Problem with datafile: %s\n", datafile);goto end;        printf("%1d%1d",i,j);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        fprintf(ficparo,"%1d%1d",i,j);
   }        for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
   n= lastobs;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   severity = vector(1,maxwav);          printf(" 0.");
   outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficparo," 0.");
   num=lvector(1,n);        }
   moisnais=vector(1,n);        printf("\n");
   annais=vector(1,n);        fprintf(ficparo,"\n");
   moisdc=vector(1,n);      }
   andc=vector(1,n);    }
   agedc=vector(1,n);    printf("# Scales (for hessian or gradient estimation)\n");
   cod=ivector(1,n);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   weight=vector(1,n);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for(i=1; i <=nlstate; i++){
   mint=matrix(1,maxwav,1,n);      jj=0;
   anint=matrix(1,maxwav,1,n);      for(j=1; j <=nlstate+ndeath; j++){
   s=imatrix(1,maxwav+1,1,n);        if(j==i) continue;
   tab=ivector(1,NCOVMAX);        jj++;
   ncodemax=ivector(1,8);        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
   i=1;        fflush(stdout);
   while (fgets(line, MAXLINE, fic) != NULL)    {        for(k=1; k<=ncovmodel;k++){
     if ((i >= firstobs) && (i <=lastobs)) {          /*      printf(" %le",delti3[i][j][k]); */
                   /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       for (j=maxwav;j>=1;j--){          printf(" 0.");
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);           fprintf(ficparo," 0.");
         strcpy(line,stra);        }
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        numlinepar++;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf("\n");
       }        fprintf(ficparo,"\n");
               }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       for (j=ncovcol;j>=1;j--){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       }   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       lstra=strlen(stra);    fflush(stdout);
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    fprintf(ficparo,"# Covariance matrix\n");
         stratrunc = &(stra[lstra-9]);    /* # 121 Var(a12)\n\ */
         num[i]=atol(stratrunc);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       }    /* #   ...\n\ */
       else    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
         num[i]=atol(stra);   
             for(itimes=1;itimes<=2;itimes++){
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      jj=0;
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
       i=i+1;          if(j==i) continue;
     }          for(k=1; k<=ncovmodel;k++){
   }            jj++;
   /* printf("ii=%d", ij);            ca[0]= k+'a'-1;ca[1]='\0';
      scanf("%d",i);*/            if(itimes==1){
   imx=i-1; /* Number of individuals */              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   /* for (i=1; i<=imx; i++){            }else{
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              printf("%1d%1d%d",i,j,k);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              fprintf(ficparo,"%1d%1d%d",i,j,k);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              /*  printf(" %.5le",matcov[i][j]); */
     }*/            }
    /*  for (i=1; i<=imx; i++){            ll=0;
      if (s[4][i]==9)  s[4][i]=-1;             for(li=1;li <=nlstate; li++){
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
  for (i=1; i<=imx; i++)                for(lk=1;lk<=ncovmodel;lk++){
                    ll++;
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;                  if(ll<=jj){
      else weight[i]=1;*/                    cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
   /* Calculation of the number of parameter from char model*/                      if(itimes==1){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   Tprod=ivector(1,15);                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   Tvaraff=ivector(1,15);                       }else{
   Tvard=imatrix(1,15,1,2);                        printf(" 0.");
   Tage=ivector(1,15);                              fprintf(ficparo," 0.");
                          }
   if (strlen(model) >1){ /* If there is at least 1 covariate */                    }else{
     j=0, j1=0, k1=1, k2=1;                      if(itimes==1){
     j=nbocc(model,'+'); /* j=Number of '+' */                        printf(" Var(%s%1d%1d)",ca,i,j);
     j1=nbocc(model,'*'); /* j1=Number of '*' */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     cptcovn=j+1;                       }else{
     cptcovprod=j1; /*Number of products */                        printf(" 0.");
                             fprintf(ficparo," 0.");
     strcpy(modelsav,model);                       }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    }
       printf("Error. Non available option model=%s ",model);                  }
       fprintf(ficlog,"Error. Non available option model=%s ",model);                } /* end lk */
       goto end;              } /* end lj */
     }            } /* end li */
                 printf("\n");
     /* This loop fills the array Tvar from the string 'model'.*/            fprintf(ficparo,"\n");
             numlinepar++;
     for(i=(j+1); i>=1;i--){          } /* end k*/
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         } /*end j */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      } /* end i */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    } /* end itimes */
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */  } /* end of prwizard */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  /******************* Gompertz Likelihood ******************************/
         if (strcmp(strc,"age")==0) { /* Vn*age */  double gompertz(double x[])
           cptcovprod--;  {
           cutv(strb,stre,strd,'V');    double A,B,L=0.0,sump=0.,num=0.;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    int i,n=0; /* n is the size of the sample */
           cptcovage++;  
             Tage[cptcovage]=i;    for (i=0;i<=imx-1 ; i++) {
             /*printf("stre=%s ", stre);*/      sump=sump+weight[i];
         }      /*    sump=sump+1;*/
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      num=num+1;
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');   
           Tvar[i]=atoi(stre);   
           cptcovage++;    /* for (i=0; i<=imx; i++)
           Tage[cptcovage]=i;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         }  
         else {  /* Age is not in the model */    for (i=1;i<=imx ; i++)
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      {
           Tvar[i]=ncovcol+k1;        if (cens[i] == 1 && wav[i]>1)
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
           Tprod[k1]=i;       
           Tvard[k1][1]=atoi(strc); /* m*/        if (cens[i] == 0 && wav[i]>1)
           Tvard[k1][2]=atoi(stre); /* n */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           Tvar[cptcovn+k2]=Tvard[k1][1];               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        
           for (k=1; k<=lastobs;k++)         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if (wav[i] > 1 ) { /* ??? */
           k1++;          L=L+A*weight[i];
           k2=k2+2;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }        }
       }      }
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
        /*  scanf("%d",i);*/   
       cutv(strd,strc,strb,'V');    return -2*L*num/sump;
       Tvar[i]=atoi(strc);  }
       }  
       strcpy(modelsav,stra);    /******************* Printing html file ***********/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
         scanf("%d",i);*/                    int lastpass, int stepm, int weightopt, char model[],\
     } /* end of loop + */                    int imx,  double p[],double **matcov,double agemortsup){
   } /* end model */    int i,k;
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   printf("cptcovprod=%d ", cptcovprod);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fprintf(fichtm,"</ul>");
   
   scanf("%d ",i);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   fclose(fic);*/  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     /*  if(mle==1){*/  
   if (weightopt != 1) { /* Maximisation without weights*/   for (k=agegomp;k<(agemortsup-2);k++)
     for(i=1;i<=n;i++) weight[i]=1.0;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   }  
     /*-calculation of age at interview from date of interview and age at death -*/   
   agev=matrix(1,maxwav,1,imx);    fflush(fichtm);
   }
   for (i=1; i<=imx; i++) {  
     for(m=2; (m<= maxwav); m++) {  /******************* Gnuplot file **************/
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         anint[m][i]=9999;  
         s[m][i]=-1;    char dirfileres[132],optfileres[132];
       }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    int ng;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         s[m][i]=-1;    /*#ifdef windows */
       }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      /*#endif */
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);   
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    strcpy(dirfileres,optionfilefiname);
       }    strcpy(optfileres,"vpl");
     }    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   }    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fprintf(ficgp, "set ter png small\n set log y\n");
   for (i=1; i<=imx; i++)  {    fprintf(ficgp, "set size 0.65,0.65\n");
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){  }
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)  
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
             else {  /***********************************************/
               if ((int)andc[i]!=9999){  /**************** Main Program *****************/
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  /***********************************************/
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  
                 agev[m][i]=-1;  int main(int argc, char *argv[])
               }  {
             }    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
         else if(s[m][i] !=9){ /* Standard case, age in fractional    int linei, month, year,iout;
                                  years but with the precision of a    int jj, ll, li, lj, lk, imk;
                                  month */    int numlinepar=0; /* Current linenumber of parameter file */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int itimes;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    int NDIM=2;
             agev[m][i]=1;  
           else if(agev[m][i] <agemin){     char ca[32], cb[32], cc[32];
             agemin=agev[m][i];    char dummy[]="                         ";
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /*  FILE *fichtm; *//* Html File */
           }    /* FILE *ficgp;*/ /*Gnuplot File */
           else if(agev[m][i] >agemax){    struct stat info;
             agemax=agev[m][i];    double agedeb, agefin,hf;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           }  
           /*agev[m][i]=anint[m][i]-annais[i];*/    double fret;
           /*     agev[m][i] = age[i]+2*m;*/    double **xi,tmp,delta;
         }  
         else { /* =9 */    double dum; /* Dummy variable */
           agev[m][i]=1;    double ***p3mat;
           s[m][i]=-1;    double ***mobaverage;
         }    int *indx;
       }    char line[MAXLINE], linepar[MAXLINE];
       else /*= 0 Unknown */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         agev[m][i]=1;    char pathr[MAXLINE], pathimach[MAXLINE];
     }    char **bp, *tok, *val; /* pathtot */
         int firstobs=1, lastobs=10;
   }    int sdeb, sfin; /* Status at beginning and end */
   for (i=1; i<=imx; i++)  {    int c,  h , cpt,l;
     for(m=firstpass; (m<=lastpass); m++){    int ju,jl, mi;
       if (s[m][i] > (nlstate+ndeath)) {    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         goto end;    int mobilav=0,popforecast=0;
       }    int hstepm, nhstepm;
     }    int agemortsup;
   }    float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   /*for (i=1; i<=imx; i++){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   for (m=firstpass; (m<lastpass); m++){  
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    double bage, fage, age, agelim, agebase;
 }    double ftolpl=FTOL;
     double **prlim;
 }*/    double *severity;
     double ***param; /* Matrix of parameters */
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double  *p;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   free_vector(severity,1,maxwav);    double *delti; /* Scale */
   free_imatrix(outcome,1,maxwav+1,1,n);    double ***eij, ***vareij;
   free_vector(moisnais,1,n);    double **varpl; /* Variances of prevalence limits by age */
   free_vector(annais,1,n);    double *epj, vepp;
   /* free_matrix(mint,1,maxwav,1,n);    double kk1, kk2;
      free_matrix(anint,1,maxwav,1,n);*/    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   free_vector(moisdc,1,n);    double **ximort;
   free_vector(andc,1,n);    char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
      
   wav=ivector(1,imx);    char z[1]="c", occ;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    char  *strt, strtend[80];
        char *stratrunc;
   /* Concatenates waves */    int lstra;
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     long total_usecs;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */   
   /*   setlocale (LC_ALL, ""); */
   Tcode=ivector(1,100);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   /*   textdomain (PACKAGE); */
   ncodemax[1]=1;  /*   setlocale (LC_CTYPE, ""); */
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*   setlocale (LC_MESSAGES, ""); */
         
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
                                  the estimations*/    (void) gettimeofday(&start_time,&tzp);
   h=0;    curr_time=start_time;
   m=pow(2,cptcoveff);    tm = *localtime(&start_time.tv_sec);
      tmg = *gmtime(&start_time.tv_sec);
   for(k=1;k<=cptcoveff; k++){    strcpy(strstart,asctime(&tm));
     for(i=1; i <=(m/pow(2,k));i++){  
       for(j=1; j <= ncodemax[k]; j++){  /*  printf("Localtime (at start)=%s",strstart); */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*  tp.tv_sec = tp.tv_sec +86400; */
           h++;  /*  tm = *localtime(&start_time.tv_sec); */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
         }   /*   tmg.tm_hour=tmg.tm_hour + 1; */
       }  /*   tp.tv_sec = mktime(&tmg); */
     }  /*   strt=asctime(&tmg); */
   }   /*   printf("Time(after) =%s",strstart);  */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   /*  (void) time (&time_value);
      codtab[1][2]=1;codtab[2][2]=2; */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   /* for(i=1; i <=m ;i++){   *  tm = *localtime(&time_value);
      for(k=1; k <=cptcovn; k++){  *  strstart=asctime(&tm);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
      }  */
      printf("\n");  
      }    nberr=0; /* Number of errors and warnings */
      scanf("%d",i);*/    nbwarn=0;
         getcwd(pathcd, size);
   /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);    printf("\n%s\n%s",version,fullversion);
   strcat(optionfilegnuplot,".gp");    if(argc <=1){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      printf("\nEnter the parameter file name: ");
     printf("Problem with file %s",optionfilegnuplot);      fgets(pathr,FILENAMELENGTH,stdin);
   }      i=strlen(pathr);
   else{      if(pathr[i-1]=='\n')
     fprintf(ficgp,"\n# %s\n", version);         pathr[i-1]='\0';
     fprintf(ficgp,"# %s\n", optionfilegnuplot);      for (tok = pathr; tok != NULL; ){
     fprintf(ficgp,"set missing 'NaNq'\n");        printf("Pathr |%s|\n",pathr);
   }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   /*  fclose(ficgp);*/        printf("val= |%s| pathr=%s\n",val,pathr);
   /*--------- index.htm --------*/        strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
   strcpy(optionfilehtm,optionfilefiname);      }
   strcat(optionfilehtm,".htm");    }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    else{
     printf("Problem with %s \n",optionfilehtm), exit(0);      strcpy(pathtot,argv[1]);
   }    }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    /*cygwin_split_path(pathtot,path,optionfile);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    /* cutv(path,optionfile,pathtot,'\\');*/
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\    /* Split argv[0], imach program to get pathimach */
  <ul><li><h4>Parameter files</h4>\n\    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\   /*   strcpy(pathimach,argv[0]); */
  - Date and time at start: %s</ul>\n",\    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
           model,fileres,fileres,\    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    chdir(path); /* Can be a relative path */
   /*fclose(fichtm);*/    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   fflush(fichtm);      printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
   strcpy(pathr,path);    strcat(command,optionfilefiname);
   strcat(pathr,optionfilefiname);    if((outcmd=system(command)) != 0){
   chdir(optionfilefiname); /* Move to directory named optionfile */      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   strcpy(lfileres,fileres);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   strcat(lfileres,"/");      /* fclose(ficlog); */
   strcat(lfileres,optionfilefiname);  /*     exit(1); */
       }
   /* Calculates basic frequencies. Computes observed prevalence at single age  /*   if((imk=mkdir(optionfilefiname))<0){ */
      and prints on file fileres'p'. */  /*     perror("mkdir"); */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);  /*   } */
   
   fprintf(fichtm,"\n");    /*-------- arguments in the command line --------*/
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    /* Log file */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    strcat(filelog, optionfilefiname);
           imx,agemin,agemax,jmin,jmax,jmean);    strcat(filelog,".log");    /* */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficlog=fopen(filelog,"w"))==NULL)    {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with logfile %s\n",filelog);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      goto end;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Log filename:%s\n",filelog);
         fprintf(ficlog,"\n%s\n%s",version,fullversion);
        fprintf(ficlog,"\nEnter the parameter file name: \n");
   /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   path=%s \n\
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */   optionfile=%s\n\
    optionfilext=%s\n\
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    printf("Local time (at start):%s",strstart);
   for (k=1; k<=npar;k++)    fprintf(ficlog,"Local time (at start): %s",strstart);
     printf(" %d %8.5f",k,p[k]);    fflush(ficlog);
   printf("\n");  /*   (void) gettimeofday(&curr_time,&tzp); */
   globpr=1; /* to print the contributions */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    /* */
   for (k=1; k<=npar;k++)    strcpy(fileres,"r");
     printf(" %d %8.5f",k,p[k]);    strcat(fileres, optionfilefiname);
   printf("\n");    strcat(fileres,".txt");    /* Other files have txt extension */
   if(mle>=1){ /* Could be 1 or 2 */  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    /*---------arguments file --------*/
   }  
         if((ficpar=fopen(optionfile,"r"))==NULL)    {
   /*--------- results files --------------*/      printf("Problem with optionfile %s\n",optionfile);
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
         fflush(ficlog);
       goto end;
   jk=1;    }
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1,jk=1; i <=nlstate; i++){    strcpy(filereso,"o");
     for(k=1; k <=(nlstate+ndeath); k++){    strcat(filereso,fileres);
       if (k != i)     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
         {      printf("Problem with Output resultfile: %s\n", filereso);
           printf("%d%d ",i,k);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
           fprintf(ficlog,"%d%d ",i,k);      fflush(ficlog);
           fprintf(ficres,"%1d%1d ",i,k);      goto end;
           for(j=1; j <=ncovmodel; j++){    }
             printf("%f ",p[jk]);  
             fprintf(ficlog,"%f ",p[jk]);    /* Reads comments: lines beginning with '#' */
             fprintf(ficres,"%f ",p[jk]);    numlinepar=0;
             jk++;     while((c=getc(ficpar))=='#' && c!= EOF){
           }      ungetc(c,ficpar);
           printf("\n");      fgets(line, MAXLINE, ficpar);
           fprintf(ficlog,"\n");      numlinepar++;
           fprintf(ficres,"\n");      puts(line);
         }      fputs(line,ficparo);
     }      fputs(line,ficlog);
   }    }
   if(mle!=0){    ungetc(c,ficpar);
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     hesscov(matcov, p, npar, delti, ftolhess, func);    numlinepar++;
   }    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    fflush(ficlog);
   for(i=1,jk=1; i <=nlstate; i++){    while((c=getc(ficpar))=='#' && c!= EOF){
     for(j=1; j <=nlstate+ndeath; j++){      ungetc(c,ficpar);
       if (j!=i) {      fgets(line, MAXLINE, ficpar);
         fprintf(ficres,"%1d%1d",i,j);      numlinepar++;
         printf("%1d%1d",i,j);      puts(line);
         fprintf(ficlog,"%1d%1d",i,j);      fputs(line,ficparo);
         for(k=1; k<=ncovmodel;k++){      fputs(line,ficlog);
           printf(" %.5e",delti[jk]);    }
           fprintf(ficlog," %.5e",delti[jk]);    ungetc(c,ficpar);
           fprintf(ficres," %.5e",delti[jk]);  
           jk++;     
         }    covar=matrix(0,NCOVMAX,1,n);
         printf("\n");    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         fprintf(ficlog,"\n");    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         fprintf(ficres,"\n");  
       }    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
      
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   if(mle==1)    delti=delti3[1][1];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   for(i=1,k=1;i<=npar;i++){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     /*  if (k>nlstate) k=1;      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         i1=(i-1)/(ncovmodel*nlstate)+1;       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         printf("%s%d%d",alph[k],i1,tab[i]);      fclose (ficparo);
     */      fclose (ficlog);
     fprintf(ficres,"%3d",i);      goto end;
     if(mle==1)      exit(0);
       printf("%3d",i);    }
     fprintf(ficlog,"%3d",i);    else if(mle==-3) {
     for(j=1; j<=i;j++){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       fprintf(ficres," %.5e",matcov[i][j]);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       if(mle==1)      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         printf(" %.5e",matcov[i][j]);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fprintf(ficlog," %.5e",matcov[i][j]);      matcov=matrix(1,npar,1,npar);
     }    }
     fprintf(ficres,"\n");    else{
     if(mle==1)      /* Read guess parameters */
       printf("\n");      /* Reads comments: lines beginning with '#' */
     fprintf(ficlog,"\n");      while((c=getc(ficpar))=='#' && c!= EOF){
     k++;        ungetc(c,ficpar);
   }        fgets(line, MAXLINE, ficpar);
            numlinepar++;
   while((c=getc(ficpar))=='#' && c!= EOF){        puts(line);
     ungetc(c,ficpar);        fputs(line,ficparo);
     fgets(line, MAXLINE, ficpar);        fputs(line,ficlog);
     puts(line);      }
     fputs(line,ficparo);      ungetc(c,ficpar);
   }     
   ungetc(c,ficpar);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
   estepm=0;        j=0;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        for(jj=1; jj <=nlstate+ndeath; jj++){
   if (estepm==0 || estepm < stepm) estepm=stepm;          if(jj==i) continue;
   if (fage <= 2) {          j++;
     bage = ageminpar;          fscanf(ficpar,"%1d%1d",&i1,&j1);
     fage = agemaxpar;          if ((i1 != i) && (j1 != j)){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
      It might be a problem of design; if ncovcol and the model are correct\n \
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            exit(1);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
              fprintf(ficparo,"%1d%1d",i1,j1);
   while((c=getc(ficpar))=='#' && c!= EOF){          if(mle==1)
     ungetc(c,ficpar);            printf("%1d%1d",i,j);
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"%1d%1d",i,j);
     puts(line);          for(k=1; k<=ncovmodel;k++){
     fputs(line,ficparo);            fscanf(ficpar," %lf",&param[i][j][k]);
   }            if(mle==1){
   ungetc(c,ficpar);              printf(" %lf",param[i][j][k]);
                 fprintf(ficlog," %lf",param[i][j][k]);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            else
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              fprintf(ficlog," %lf",param[i][j][k]);
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            fprintf(ficparo," %lf",param[i][j][k]);
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          }
              fscanf(ficpar,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){          numlinepar++;
     ungetc(c,ficpar);          if(mle==1)
     fgets(line, MAXLINE, ficpar);            printf("\n");
     puts(line);          fprintf(ficlog,"\n");
     fputs(line,ficparo);          fprintf(ficparo,"\n");
   }        }
   ungetc(c,ficpar);      }  
        fflush(ficlog);
   
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      p=param[1][1];
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;     
       /* Reads comments: lines beginning with '#' */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficparo,"pop_based=%d\n",popbased);           ungetc(c,ficpar);
   fprintf(ficres,"pop_based=%d\n",popbased);           fgets(line, MAXLINE, ficpar);
           numlinepar++;
   while((c=getc(ficpar))=='#' && c!= EOF){        puts(line);
     ungetc(c,ficpar);        fputs(line,ficparo);
     fgets(line, MAXLINE, ficpar);        fputs(line,ficlog);
     puts(line);      }
     fputs(line,ficparo);      ungetc(c,ficpar);
   }  
   ungetc(c,ficpar);      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          if ((i1-i)*(j1-j)!=0){
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            exit(1);
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          }
   /* day and month of proj2 are not used but only year anproj2.*/          printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog,"%1d%1d",i1,j1);
     ungetc(c,ficpar);          for(k=1; k<=ncovmodel;k++){
     fgets(line, MAXLINE, ficpar);            fscanf(ficpar,"%le",&delti3[i][j][k]);
     puts(line);            printf(" %le",delti3[i][j][k]);
     fputs(line,ficparo);            fprintf(ficparo," %le",delti3[i][j][k]);
   }            fprintf(ficlog," %le",delti3[i][j][k]);
   ungetc(c,ficpar);          }
           fscanf(ficpar,"\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          numlinepar++;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          printf("\n");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        }
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      }
       fflush(ficlog);
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */  
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      delti=delti3[1][1];
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\  
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   
        /* Reads comments: lines beginning with '#' */
   /*------------ free_vector  -------------*/      while((c=getc(ficpar))=='#' && c!= EOF){
   /*  chdir(path); */        ungetc(c,ficpar);
          fgets(line, MAXLINE, ficpar);
   free_ivector(wav,1,imx);        numlinepar++;
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        puts(line);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        fputs(line,ficparo);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           fputs(line,ficlog);
   free_lvector(num,1,n);      }
   free_vector(agedc,1,n);      ungetc(c,ficpar);
   /*free_matrix(covar,0,NCOVMAX,1,n);*/   
   /*free_matrix(covar,1,NCOVMAX,1,n);*/      matcov=matrix(1,npar,1,npar);
   fclose(ficparo);      for(i=1; i <=npar; i++){
   fclose(ficres);        fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
   /*--------------- Prevalence limit  (stable prevalence) --------------*/        fprintf(ficlog,"%s",str);
           fprintf(ficparo,"%s",str);
   strcpy(filerespl,"pl");        for(j=1; j <=i; j++){
   strcat(filerespl,fileres);          fscanf(ficpar," %le",&matcov[i][j]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          if(mle==1){
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;            printf(" %.5le",matcov[i][j]);
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;          }
   }          fprintf(ficlog," %.5le",matcov[i][j]);
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);          fprintf(ficparo," %.5le",matcov[i][j]);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Stable prevalence \n");        fscanf(ficpar,"\n");
   fprintf(ficrespl,"#Age ");        numlinepar++;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if(mle==1)
   fprintf(ficrespl,"\n");          printf("\n");
           fprintf(ficlog,"\n");
   prlim=matrix(1,nlstate,1,nlstate);        fprintf(ficparo,"\n");
       }
   agebase=ageminpar;      for(i=1; i <=npar; i++)
   agelim=agemaxpar;        for(j=i+1;j<=npar;j++)
   ftolpl=1.e-10;          matcov[i][j]=matcov[j][i];
   i1=cptcoveff;     
   if (cptcovn < 1){i1=1;}      if(mle==1)
         printf("\n");
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficlog,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;      fflush(ficlog);
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     
       fprintf(ficrespl,"\n#******");      /*-------- Rewriting parameter file ----------*/
       printf("\n#******");      strcpy(rfileres,"r");    /* "Rparameterfile */
       fprintf(ficlog,"\n#******");      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       for(j=1;j<=cptcoveff;j++) {      strcat(rfileres,".");    /* */
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficres =fopen(rfileres,"w"))==NULL) {
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       }        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficrespl,"******\n");      }
       printf("******\n");      fprintf(ficres,"#%s\n",version);
       fprintf(ficlog,"******\n");    }    /* End of mle != -3 */
           
       for (age=agebase; age<=agelim; age++){    /*-------- data file ----------*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if((fic=fopen(datafile,"r"))==NULL)    {
         fprintf(ficrespl,"%.0f ",age );      printf("Problem while opening datafile: %s\n", datafile);goto end;
         for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    n= lastobs;
         fprintf(ficrespl,"\n");    severity = vector(1,maxwav);
       }    outcome=imatrix(1,maxwav+1,1,n);
     }    num=lvector(1,n);
   }    moisnais=vector(1,n);
   fclose(ficrespl);    annais=vector(1,n);
     moisdc=vector(1,n);
   /*------------- h Pij x at various ages ------------*/    andc=vector(1,n);
       agedc=vector(1,n);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    cod=ivector(1,n);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    weight=vector(1,n);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    mint=matrix(1,maxwav,1,n);
   }    anint=matrix(1,maxwav,1,n);
   printf("Computing pij: result on file '%s' \n", filerespij);    s=imatrix(1,maxwav+1,1,n);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    tab=ivector(1,NCOVMAX);
       ncodemax=ivector(1,8);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    i=1;
     linei=0;
   agelim=AGESUP;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   hstepm=stepsize*YEARM; /* Every year of age */      linei=linei+1;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
   /* hstepm=1;   aff par mois*/          line[j] = ' ';
       }
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        ;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      };
       k=k+1;      line[j+1]=0;  /* Trims blanks at end of line */
       fprintf(ficrespij,"\n#****** ");      if(line[0]=='#'){
       for(j=1;j<=cptcoveff;j++)         fprintf(ficlog,"Comment line\n%s\n",line);
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Comment line\n%s\n",line);
       fprintf(ficrespij,"******\n");        continue;
               }
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       for (j=maxwav;j>=1;j--){
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        cutv(stra, strb,line,' ');
         errno=0;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( strb[0]=='\0' || (*endptr != '\0')){
         oldm=oldms;savm=savms;          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            exit(1);
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        }
         for(i=1; i<=nlstate;i++)        s[j][i]=lval;
           for(j=1; j<=nlstate+ndeath;j++)       
             fprintf(ficrespij," %1d-%1d",i,j);        strcpy(line,stra);
         fprintf(ficrespij,"\n");        cutv(stra, strb,line,' ');
         for (h=0; h<=nhstepm; h++){        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }
           for(i=1; i<=nlstate;i++)        else  if(iout=sscanf(strb,"%s.") != 0){
             for(j=1; j<=nlstate+ndeath;j++)          month=99;
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);          year=9999;
           fprintf(ficrespij,"\n");        }else{
         }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          exit(1);
         fprintf(ficrespij,"\n");        }
       }        anint[j][i]= (double) year;
     }        mint[j][i]= (double)month;
   }        strcpy(line,stra);
       } /* ENd Waves */
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);     
       cutv(stra, strb,line,' ');
   fclose(ficrespij);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
   /*---------- Forecasting ------------------*/        year=9999;
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/      }else{
   if(prevfcast==1){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     /*    if(stepm ==1){*/        exit(1);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      }
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      andc[i]=(double) year;
 /*      }  */      moisdc[i]=(double) month;
 /*      else{ */      strcpy(line,stra);
 /*        erreur=108; */     
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      cutv(stra, strb,line,' ');
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 /*      } */      }
   }      else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
         year=9999;
   /*---------- Health expectancies and variances ------------*/      }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   strcpy(filerest,"t");        exit(1);
   strcat(filerest,fileres);      }
   if((ficrest=fopen(filerest,"w"))==NULL) {      annais[i]=(double)(year);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      moisnais[i]=(double)(month);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      strcpy(line,stra);
   }     
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       cutv(stra, strb,line,' ');
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
   strcpy(filerese,"e");        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   strcat(filerese,fileres);        exit(1);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      weight[i]=dval;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      strcpy(line,stra);
   }     
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for (j=ncovcol;j>=1;j--){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        cutv(stra, strb,line,' ');
         errno=0;
   strcpy(fileresv,"v");        lval=strtol(strb,&endptr,10);
   strcat(fileresv,fileres);        if( strb[0]=='\0' || (*endptr != '\0')){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          exit(1);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        }
   }        if(lval <-1 || lval >1){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */   For example, for multinomial values like 1, 2 and 3,\n \
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   build V1=0 V2=0 for the reference value (1),\n \
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\          V1=1 V2=0 for (2) \n \
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   */   output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
   if (mobilav!=0) {          exit(1);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        covar[j][i]=(double)(lval);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        strcpy(line,stra);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      }
     }      lstra=strlen(stra);
   }     
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        stratrunc = &(stra[lstra-9]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        num[i]=atol(stratrunc);
       k=k+1;       }
       fprintf(ficrest,"\n#****** ");      else
       for(j=1;j<=cptcoveff;j++)         num[i]=atol(stra);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
       fprintf(ficrest,"******\n");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       fprintf(ficreseij,"\n#****** ");      i=i+1;
       for(j=1;j<=cptcoveff;j++)     } /* End loop reading  data */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(fic);
       fprintf(ficreseij,"******\n");    /* printf("ii=%d", ij);
        scanf("%d",i);*/
       fprintf(ficresvij,"\n#****** ");    imx=i-1; /* Number of individuals */
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for (i=1; i<=imx; i++){
       fprintf(ficresvij,"******\n");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       oldm=oldms;savm=savms;      }*/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       /*  for (i=1; i<=imx; i++){
         if (s[4][i]==9)  s[4][i]=-1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       oldm=oldms;savm=savms;   
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    /* for (i=1; i<=imx; i++) */
       if(popbased==1){   
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       }       else weight[i]=1;*/
   
      /* Calculation of the number of parameters from char model */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    Tprod=ivector(1,15);
       fprintf(ficrest,"\n");    Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
       epj=vector(1,nlstate+1);    Tage=ivector(1,15);      
       for(age=bage; age <=fage ;age++){     
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (strlen(model) >1){ /* If there is at least 1 covariate */
         if (popbased==1) {      j=0, j1=0, k1=1, k2=1;
           if(mobilav ==0){      j=nbocc(model,'+'); /* j=Number of '+' */
             for(i=1; i<=nlstate;i++)      j1=nbocc(model,'*'); /* j1=Number of '*' */
               prlim[i][i]=probs[(int)age][i][k];      cptcovn=j+1;
           }else{ /* mobilav */       cptcovprod=j1; /*Number of products */
             for(i=1; i<=nlstate;i++)     
               prlim[i][i]=mobaverage[(int)age][i][k];      strcpy(modelsav,model);
           }      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         }        printf("Error. Non available option model=%s ",model);
                 fprintf(ficlog,"Error. Non available option model=%s ",model);
         fprintf(ficrest," %4.0f",age);        goto end;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      /* This loop fills the array Tvar from the string 'model'.*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }      for(i=(j+1); i>=1;i--){
           epj[nlstate+1] +=epj[j];        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         }        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         for(i=1, vepp=0.;i <=nlstate;i++)        /*scanf("%d",i);*/
           for(j=1;j <=nlstate;j++)        if (strchr(strb,'*')) {  /* Model includes a product */
             vepp += vareij[i][j][(int)age];          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          if (strcmp(strc,"age")==0) { /* Vn*age */
         for(j=1;j <=nlstate;j++){            cptcovprod--;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            cutv(strb,stre,strd,'V');
         }            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
         fprintf(ficrest,"\n");            cptcovage++;
       }              Tage[cptcovage]=i;
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              /*printf("stre=%s ", stre);*/
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
       free_vector(epj,1,nlstate+1);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     }            cptcovprod--;
   }            cutv(strb,stre,strc,'V');
   free_vector(weight,1,n);            Tvar[i]=atoi(stre);
   free_imatrix(Tvard,1,15,1,2);            cptcovage++;
   free_imatrix(s,1,maxwav+1,1,n);            Tage[cptcovage]=i;
   free_matrix(anint,1,maxwav,1,n);           }
   free_matrix(mint,1,maxwav,1,n);          else {  /* Age is not in the model */
   free_ivector(cod,1,n);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   free_ivector(tab,1,NCOVMAX);            Tvar[i]=ncovcol+k1;
   fclose(ficreseij);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
   fclose(ficresvij);            Tprod[k1]=i;
   fclose(ficrest);            Tvard[k1][1]=atoi(strc); /* m*/
   fclose(ficpar);            Tvard[k1][2]=atoi(stre); /* n */
               Tvar[cptcovn+k2]=Tvard[k1][1];
   /*------- Variance of stable prevalence------*/               Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
   strcpy(fileresvpl,"vpl");              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   strcat(fileresvpl,fileres);            k1++;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            k2=k2+2;
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);          }
     exit(0);        }
   }        else { /* no more sum */
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        cutv(strd,strc,strb,'V');
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        Tvar[i]=atoi(strc);
       k=k+1;        }
       fprintf(ficresvpl,"\n#****** ");        strcpy(modelsav,stra);  
       for(j=1;j<=cptcoveff;j++)         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          scanf("%d",i);*/
       fprintf(ficresvpl,"******\n");      } /* end of loop + */
           } /* end model */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   
       oldm=oldms;savm=savms;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
     }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   }    printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   fclose(ficresvpl);  
     scanf("%d ",i);*/
   /*---------- End : free ----------------*/  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      /*  if(mle==1){*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (weightopt != 1) { /* Maximisation without weights*/
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1;i<=n;i++) weight[i]=1.0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
         /*-calculation of age at interview from date of interview and age at death -*/
   free_matrix(covar,0,NCOVMAX,1,n);    agev=matrix(1,maxwav,1,imx);
   free_matrix(matcov,1,npar,1,npar);  
   /*free_vector(delti,1,npar);*/    for (i=1; i<=imx; i++) {
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       for(m=2; (m<= maxwav); m++) {
   free_matrix(agev,1,maxwav,1,imx);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          anint[m][i]=9999;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          s[m][i]=-1;
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
   free_ivector(ncodemax,1,8);          nberr++;
   free_ivector(Tvar,1,15);          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   free_ivector(Tprod,1,15);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   free_ivector(Tvaraff,1,15);          s[m][i]=-1;
   free_ivector(Tage,1,15);        }
   free_ivector(Tcode,1,100);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
   fflush(fichtm);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
   fflush(ficgp);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
             s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
   if(erreur >0){      }
     printf("End of Imach with error or warning %d\n",erreur);    }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  
   }else{    for (i=1; i<=imx; i++)  {
    printf("End of Imach\n");      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
    fprintf(ficlog,"End of Imach\n");      for(m=firstpass; (m<= lastpass); m++){
   }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   printf("See log file on %s\n",filelog);          if (s[m][i] >= nlstate+1) {
   fclose(ficlog);            if(agedc[i]>0)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   (void) gettimeofday(&end_time,&tzp);                agev[m][i]=agedc[i];
   tm = *localtime(&end_time.tv_sec);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   tmg = *gmtime(&end_time.tv_sec);              else {
   strcpy(strtend,asctime(&tm));                if ((int)andc[i]!=9999){
   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend);                   nbwarn++;
   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend);                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);                }
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);              }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          }
 /*   if(fileappend(fichtm,optionfilehtm)){ */          else if(s[m][i] !=9){ /* Standard case, age in fractional
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);                                   years but with the precision of a month */
   fclose(fichtm);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   fclose(ficgp);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   /*------ End -----------*/              agev[m][i]=1;
             else if(agev[m][i] <agemin){
   end:              agemin=agev[m][i];
 #ifdef windows              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   /* chdir(pathcd);*/            }
 #endif             else if(agev[m][i] >agemax){
   chdir(path);              agemax=agev[m][i];
  /*system("wgnuplot graph.plt");*/              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/            }
  /*system("cd ../gp37mgw");*/            /*agev[m][i]=anint[m][i]-annais[i];*/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            /*     agev[m][i] = age[i]+2*m;*/
   strcpy(plotcmd,GNUPLOTPROGRAM);          }
   strcat(plotcmd," ");          else { /* =9 */
   strcat(plotcmd,optionfilegnuplot);            agev[m][i]=1;
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);            s[m][i]=-1;
   system(plotcmd);          }
   printf(" Wait...");        }
         else /*= 0 Unknown */
  /*#ifdef windows*/          agev[m][i]=1;
   while (z[0] != 'q') {      }
     /* chdir(path); */     
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    }
     scanf("%s",z);    for (i=1; i<=imx; i++)  {
     if (z[0] == 'c') system("./imach");      for(m=firstpass; (m<=lastpass); m++){
     else if (z[0] == 'e') system(optionfilehtm);        if (s[m][i] > (nlstate+ndeath)) {
     else if (z[0] == 'g') system(plotcmd);          nberr++;
     else if (z[0] == 'q') exit(0);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   }          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   /*#endif */          goto end;
 }        }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.89  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>