Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.89

version 1.41.2.2, 2003/06/13 07:45:28 version 1.89, 2003/06/24 12:30:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.88  2003/06/23 17:54:56  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.87  2003/06/18 12:26:01  brouard
   computed from the time spent in each health state according to a    Version 0.96
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.86  2003/06/17 20:04:08  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Change position of html and gnuplot routines and added
   probability to be observed in state j at the second wave    routine fileappend.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.85  2003/06/17 13:12:43  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Repository): Check when date of death was earlier that
   complex model than "constant and age", you should modify the program    current date of interview. It may happen when the death was just
   where the markup *Covariates have to be included here again* invites    prior to the death. In this case, dh was negative and likelihood
   you to do it.  More covariates you add, slower the    was wrong (infinity). We still send an "Error" but patch by
   convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage of this computer programme, compared to a simple    (Repository): Because some people have very long ID (first column)
   multinomial logistic model, is clear when the delay between waves is not    we changed int to long in num[] and we added a new lvector for
   identical for each individual. Also, if a individual missed an    memory allocation. But we also truncated to 8 characters (left
   intermediate interview, the information is lost, but taken into    truncation)
   account using an interpolation or extrapolation.      (Repository): No more line truncation errors.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Repository): Replace "freqsummary" at a correct
   split into an exact number (nh*stepm) of unobserved intermediate    place. It differs from routine "prevalence" which may be called
   states. This elementary transition (by month or quarter trimester,    many times. Probs is memory consuming and must be used with
   semester or year) is model as a multinomial logistic.  The hPx    parcimony.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define GNUPLOTPROGRAM "wgnuplot"    model. More health states you consider, more time is necessary to reach the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Maximum Likelihood of the parameters involved in the model.  The
 #define FILENAMELENGTH 80    simplest model is the multinomial logistic model where pij is the
 /*#define DEBUG*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /*#define windows*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    you to do it.  More covariates you add, slower the
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    convergence.
   
 #define NINTERVMAX 8    The advantage of this computer programme, compared to a simple
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    multinomial logistic model, is clear when the delay between waves is not
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    identical for each individual. Also, if a individual missed an
 #define NCOVMAX 8 /* Maximum number of covariates */    intermediate interview, the information is lost, but taken into
 #define MAXN 20000    account using an interpolation or extrapolation.  
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    hPijx is the probability to be observed in state i at age x+h
 #define AGEBASE 40    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int erreur; /* Error number */    semester or year) is modelled as a multinomial logistic.  The hPx
 int nvar;    matrix is simply the matrix product of nh*stepm elementary matrices
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    and the contribution of each individual to the likelihood is simply
 int npar=NPARMAX;    hPijx.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Also this programme outputs the covariance matrix of the parameters but also
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    of the life expectancies. It also computes the stable prevalence. 
 int popbased=0;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int *wav; /* Number of waves for this individuual 0 is possible */             Institut national d'études démographiques, Paris.
 int maxwav; /* Maxim number of waves */    This software have been partly granted by Euro-REVES, a concerted action
 int jmin, jmax; /* min, max spacing between 2 waves */    from the European Union.
 int mle, weightopt;    It is copyrighted identically to a GNU software product, ie programme and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    software can be distributed freely for non commercial use. Latest version
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    
 FILE *ficgp,*ficresprob,*ficpop;    **********************************************************************/
 FILE *ficreseij;  /*
   char filerese[FILENAMELENGTH];    main
  FILE  *ficresvij;    read parameterfile
   char fileresv[FILENAMELENGTH];    read datafile
  FILE  *ficresvpl;    concatwav
   char fileresvpl[FILENAMELENGTH];    freqsummary
     if (mle >= 1)
 #define NR_END 1      mlikeli
 #define FREE_ARG char*    print results files
 #define FTOL 1.0e-10    if mle==1 
        computes hessian
 #define NRANSI    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ITMAX 200        begin-prev-date,...
     open gnuplot file
 #define TOL 2.0e-4    open html file
     stable prevalence
 #define CGOLD 0.3819660     for age prevalim()
 #define ZEPS 1.0e-10    h Pij x
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define GOLD 1.618034    health expectancies
 #define GLIMIT 100.0    Variance-covariance of DFLE
 #define TINY 1.0e-20    prevalence()
      movingaverage()
 static double maxarg1,maxarg2;    varevsij() 
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if popbased==1 varevsij(,popbased)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    total life expectancies
      Variance of stable prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))   end
 #define rint(a) floor(a+0.5)  */
   
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
   #include <math.h>
 int imx;  #include <stdio.h>
 int stepm;  #include <stdlib.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <unistd.h>
   
 int estepm;  #include <sys/time.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <time.h>
   #include "timeval.h"
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define MAXLINE 256
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define GNUPLOTPROGRAM "gnuplot"
 double **pmmij, ***probs, ***mobaverage;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double dateintmean=0;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double *weight;  /*#define windows*/
 int **s; /* Status */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double *agedc, **covar, idx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double ftolhess; /* Tolerance for computing hessian */  
   #define NINTERVMAX 8
 /**************** split *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
    char *s;                             /* pointer */  #define MAXN 20000
    int  l1, l2;                         /* length counters */  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
    l1 = strlen( path );                 /* length of path */  #define AGEBASE 40
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #ifdef unix
 #ifdef windows  #define DIRSEPARATOR '/'
    s = strrchr( path, '\\' );           /* find last / */  #define ODIRSEPARATOR '\\'
 #else  #else
    s = strrchr( path, '/' );            /* find last / */  #define DIRSEPARATOR '\\'
 #endif  #define ODIRSEPARATOR '/'
    if ( s == NULL ) {                   /* no directory, so use current */  #endif
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  /* $Id$ */
   /* $State$ */
       if ( getwd( dirc ) == NULL ) {  
 #else  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       extern char       *getcwd( );  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int nvar;
 #endif  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
          return( GLOCK_ERROR_GETCWD );  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
       strcpy( name, path );             /* we've got it */  int ndeath=1; /* Number of dead states */
    } else {                             /* strip direcotry from path */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       s++;                              /* after this, the filename */  int popbased=0;
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int *wav; /* Number of waves for this individuual 0 is possible */
       strcpy( name, s );                /* save file name */  int maxwav; /* Maxim number of waves */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int jmin, jmax; /* min, max spacing between 2 waves */
       dirc[l1-l2] = 0;                  /* add zero */  int gipmx, gsw; /* Global variables on the number of contributions 
    }                     to the likelihood and the sum of weights (done by funcone)*/
    l1 = strlen( dirc );                 /* length of directory */  int mle, weightopt;
 #ifdef windows  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #else  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #endif  double jmean; /* Mean space between 2 waves */
    s = strrchr( name, '.' );            /* find last / */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    s++;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    strcpy(ext,s);                       /* save extension */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1= strlen( name);  FILE *ficlog, *ficrespow;
    l2= strlen( s)+1;  int globpr; /* Global variable for printing or not */
    strncpy( finame, name, l1-l2);  double fretone; /* Only one call to likelihood */
    finame[l1-l2]= 0;  long ipmx; /* Number of contributions */
    return( 0 );                         /* we're done */  double sw; /* Sum of weights */
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************************************/  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 void replace(char *s, char*t)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int i;  FILE  *ficresvij;
   int lg=20;  char fileresv[FILENAMELENGTH];
   i=0;  FILE  *ficresvpl;
   lg=strlen(t);  char fileresvpl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char title[MAXLINE];
     (s[i] = t[i]);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 int nbocc(char *s, char occ)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i,j=0;  char lfileres[FILENAMELENGTH];
   int lg=20;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   lg=strlen(s);  char fileregp[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char popfile[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   return j;  
 }  #define NR_END 1
   #define FREE_ARG char*
 void cutv(char *u,char *v, char*t, char occ)  #define FTOL 1.0e-10
 {  
   int i,lg,j,p=0;  #define NRANSI 
   i=0;  #define ITMAX 200 
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define TOL 2.0e-4 
   }  
   #define CGOLD 0.3819660 
   lg=strlen(t);  #define ZEPS 1.0e-10 
   for(j=0; j<p; j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     (u[j] = t[j]);  
   }  #define GOLD 1.618034 
      u[p]='\0';  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /********************** nrerror ********************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 void nrerror(char error_text[])  
 {  static double sqrarg;
   fprintf(stderr,"ERREUR ...\n");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   fprintf(stderr,"%s\n",error_text);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   exit(1);  
 }  int imx; 
 /*********************** vector *******************/  int stepm;
 double *vector(int nl, int nh)  /* Stepm, step in month: minimum step interpolation*/
 {  
   double *v;  int estepm;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /************************ free vector ******************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void free_vector(double*v, int nl, int nh)  double **pmmij, ***probs;
 {  double dateintmean=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /************************ivector *******************************/  double *agedc, **covar, idx;
 int *ivector(long nl,long nh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   int *v;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double ftolhess; /* Tolerance for computing hessian */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /******************free ivector **************************/    char  *ss;                            /* pointer */
 void free_ivector(int *v, long nl, long nh)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /******************* imatrix *******************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 int **imatrix(long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   int **m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   /* allocate pointers to rows */      }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      strcpy( name, path );               /* we've got it */
   if (!m) nrerror("allocation failure 1 in matrix()");    } else {                              /* strip direcotry from path */
   m += NR_END;      ss++;                               /* after this, the filename */
   m -= nrl;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   /* allocate rows and set pointers to them */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] -= ncl;    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   /* return pointer to array of pointers to rows */  #endif
   return m;    */
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /****************** free_imatrix *************************/    strcpy(ext,ss);                       /* save extension */
 void free_imatrix(m,nrl,nrh,ncl,nch)    l1= strlen( name);
       int **m;    l2= strlen(ss)+1;
       long nch,ncl,nrh,nrl;    strncpy( finame, name, l1-l2);
      /* free an int matrix allocated by imatrix() */    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  
 }  
   /******************************************/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  void replace_back_to_slash(char *s, char*t)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int i;
   double **m;    int lg=0;
     i=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    lg=strlen(t);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;      (s[i] = t[i]);
   m -= nrl;      if (t[i]== '\\') s[i]='/';
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int nbocc(char *s, char occ)
   m[nrl] -= ncl;  {
     int i,j=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int lg=20;
   return m;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /*************************free matrix ************************/    if  (s[i] == occ ) j++;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {    return j;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /******************* ma3x *******************************/    /* cuts string t into u and v where u is ended by char occ excluding it
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 {       gives u="abcedf" and v="ghi2j" */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int i,lg,j,p=0;
   double ***m;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;  
   m -= nrl;    lg=strlen(t);
     for(j=0; j<p; j++) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      (u[j] = t[j]);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;       u[p]='\0';
   m[nrl] -= ncl;  
      for(j=0; j<= lg; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /********************** nrerror ********************/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void nrerror(char error_text[])
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      fprintf(stderr,"ERREUR ...\n");
   for (i=nrl+1; i<=nrh; i++) {    fprintf(stderr,"%s\n",error_text);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    exit(EXIT_FAILURE);
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  /*********************** vector *******************/
   }  double *vector(int nl, int nh)
   return m;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /*************************free ma3x ************************/    if (!v) nrerror("allocation failure in vector");
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /************************ free vector ******************/
   free((FREE_ARG)(m+nrl-NR_END));  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /************************ivector *******************************/
 extern double (*nrfunc)(double []);  int *ivector(long nl,long nh)
    {
 double f1dim(double x)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   int j;    if (!v) nrerror("allocation failure in ivector");
   double f;    return v-nl+NR_END;
   double *xt;  }
    
   xt=vector(1,ncom);  /******************free ivector **************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  void free_ivector(int *v, long nl, long nh)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    free((FREE_ARG)(v+nl-NR_END));
   return f;  }
 }  
   /************************lvector *******************************/
 /*****************brent *************************/  long *lvector(long nl,long nh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    long *v;
   int iter;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double a,b,d,etemp;    if (!v) nrerror("allocation failure in ivector");
   double fu,fv,fw,fx;    return v-nl+NR_END;
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    free((FREE_ARG)(v+nl-NR_END));
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /******************* imatrix *******************************/
     xm=0.5*(a+b);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  { 
     printf(".");fflush(stdout);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    /* allocate pointers to rows */ 
 #endif    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       *xmin=x;    m += NR_END; 
       return fx;    m -= nrl; 
     }    
     ftemp=fu;    
     if (fabs(e) > tol1) {    /* allocate rows and set pointers to them */ 
       r=(x-w)*(fx-fv);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       q=(x-v)*(fx-fw);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       p=(x-v)*q-(x-w)*r;    m[nrl] += NR_END; 
       q=2.0*(q-r);    m[nrl] -= ncl; 
       if (q > 0.0) p = -p;    
       q=fabs(q);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       etemp=e;    
       e=d;    /* return pointer to array of pointers to rows */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return m; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  } 
       else {  
         d=p/q;  /****************** free_imatrix *************************/
         u=x+d;  void free_imatrix(m,nrl,nrh,ncl,nch)
         if (u-a < tol2 || b-u < tol2)        int **m;
           d=SIGN(tol1,xm-x);        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
     } else {  { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  } 
     fu=(*f)(u);  
     if (fu <= fx) {  /******************* matrix *******************************/
       if (u >= x) a=x; else b=x;  double **matrix(long nrl, long nrh, long ncl, long nch)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         } else {    double **m;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=w;    if (!m) nrerror("allocation failure 1 in matrix()");
             w=u;    m += NR_END;
             fv=fw;    m -= nrl;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             v=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fv=fu;    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
         }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   nrerror("Too many iterations in brent");    return m;
   *xmin=x;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   return fx;     */
 }  }
   
 /****************** mnbrak ***********************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;  
    /******************* ma3x *******************************/
   *fa=(*func)(*ax);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     SHFT(dum,*ax,*bx,dum)    double ***m;
       SHFT(dum,*fb,*fa,dum)  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m) nrerror("allocation failure 1 in matrix()");
   *fc=(*func)(*cx);    m += NR_END;
   while (*fb > *fc) {    m -= nrl;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] -= ncl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       if (fu < *fc) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl][ncl] += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl][ncl] -= nll;
           }    for (j=ncl+1; j<=nch; j++) 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      m[nrl][j]=m[nrl][j-1]+nlay;
       u=ulim;    
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) {
     } else {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       u=(*cx)+GOLD*(*cx-*bx);      for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);        m[i][j]=m[i][j-1]+nlay;
     }    }
     SHFT(*ax,*bx,*cx,u)    return m; 
       SHFT(*fa,*fb,*fc,fu)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /*************** linmin ************************/  
   /*************************free ma3x ************************/
 int ncom;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /***************** f1dim *************************/
   double f1dim(double x);  extern int ncom; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  extern double *pcom,*xicom;
               double *fc, double (*func)(double));  extern double (*nrfunc)(double []); 
   int j;   
   double xx,xmin,bx,ax;  double f1dim(double x) 
   double fx,fb,fa;  { 
      int j; 
   ncom=n;    double f;
   pcom=vector(1,n);    double *xt; 
   xicom=vector(1,n);   
   nrfunc=func;    xt=vector(1,ncom); 
   for (j=1;j<=n;j++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     pcom[j]=p[j];    f=(*nrfunc)(xt); 
     xicom[j]=xi[j];    free_vector(xt,1,ncom); 
   }    return f; 
   ax=0.0;  } 
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*****************brent *************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 #ifdef DEBUG  { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int iter; 
 #endif    double a,b,d,etemp;
   for (j=1;j<=n;j++) {    double fu,fv,fw,fx;
     xi[j] *= xmin;    double ftemp;
     p[j] += xi[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);    a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /*************** powell ************************/    fw=fv=fx=(*f)(x); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for (iter=1;iter<=ITMAX;iter++) { 
             double (*func)(double []))      xm=0.5*(a+b); 
 {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   void linmin(double p[], double xi[], int n, double *fret,      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
               double (*func)(double []));      printf(".");fflush(stdout);
   int i,ibig,j;      fprintf(ficlog,".");fflush(ficlog);
   double del,t,*pt,*ptt,*xit;  #ifdef DEBUG
   double fp,fptt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double *xits;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   pt=vector(1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ptt=vector(1,n);  #endif
   xit=vector(1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   xits=vector(1,n);        *xmin=x; 
   *fret=(*func)(p);        return fx; 
   for (j=1;j<=n;j++) pt[j]=p[j];      } 
   for (*iter=1;;++(*iter)) {      ftemp=fu;
     fp=(*fret);      if (fabs(e) > tol1) { 
     ibig=0;        r=(x-w)*(fx-fv); 
     del=0.0;        q=(x-v)*(fx-fw); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        p=(x-v)*q-(x-w)*r; 
     for (i=1;i<=n;i++)        q=2.0*(q-r); 
       printf(" %d %.12f",i, p[i]);        if (q > 0.0) p = -p; 
     printf("\n");        q=fabs(q); 
     for (i=1;i<=n;i++) {        etemp=e; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        e=d; 
       fptt=(*fret);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #ifdef DEBUG          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("fret=%lf \n",*fret);        else { 
 #endif          d=p/q; 
       printf("%d",i);fflush(stdout);          u=x+d; 
       linmin(p,xit,n,fret,func);          if (u-a < tol2 || b-u < tol2) 
       if (fabs(fptt-(*fret)) > del) {            d=SIGN(tol1,xm-x); 
         del=fabs(fptt-(*fret));        } 
         ibig=i;      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG      } 
       printf("%d %.12e",i,(*fret));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (j=1;j<=n;j++) {      fu=(*f)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      if (fu <= fx) { 
         printf(" x(%d)=%.12e",j,xit[j]);        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       for(j=1;j<=n;j++)          SHFT(fv,fw,fx,fu) 
         printf(" p=%.12e",p[j]);          } else { 
       printf("\n");            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
     }              v=w; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              w=u; 
 #ifdef DEBUG              fv=fw; 
       int k[2],l;              fw=fu; 
       k[0]=1;            } else if (fu <= fv || v == x || v == w) { 
       k[1]=-1;              v=u; 
       printf("Max: %.12e",(*func)(p));              fv=fu; 
       for (j=1;j<=n;j++)            } 
         printf(" %.12e",p[j]);          } 
       printf("\n");    } 
       for(l=0;l<=1;l++) {    nrerror("Too many iterations in brent"); 
         for (j=1;j<=n;j++) {    *xmin=x; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return fx; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } 
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /****************** mnbrak ***********************/
       }  
 #endif  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   { 
       free_vector(xit,1,n);    double ulim,u,r,q, dum;
       free_vector(xits,1,n);    double fu; 
       free_vector(ptt,1,n);   
       free_vector(pt,1,n);    *fa=(*func)(*ax); 
       return;    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=n;j++) {        SHFT(dum,*fb,*fa,dum) 
       ptt[j]=2.0*p[j]-pt[j];        } 
       xit[j]=p[j]-pt[j];    *cx=(*bx)+GOLD*(*bx-*ax); 
       pt[j]=p[j];    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
     fptt=(*func)(ptt);      r=(*bx-*ax)*(*fb-*fc); 
     if (fptt < fp) {      q=(*bx-*cx)*(*fb-*fa); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       if (t < 0.0) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         linmin(p,xit,n,fret,func);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
           xi[j][ibig]=xi[j][n];        fu=(*func)(u); 
           xi[j][n]=xit[j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         }        fu=(*func)(u); 
 #ifdef DEBUG        if (fu < *fc) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         for(j=1;j<=n;j++)            SHFT(*fb,*fc,fu,(*func)(u)) 
           printf(" %.12e",xit[j]);            } 
         printf("\n");      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 #endif        u=ulim; 
       }        fu=(*func)(u); 
     }      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
 /**** Prevalence limit ****************/      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        } 
 {  } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** linmin ************************/
   
   int i, ii,j,k;  int ncom; 
   double min, max, maxmin, maxmax,sumnew=0.;  double *pcom,*xicom;
   double **matprod2();  double (*nrfunc)(double []); 
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double agefin, delaymax=50 ; /* Max number of years to converge */  { 
     double brent(double ax, double bx, double cx, 
   for (ii=1;ii<=nlstate+ndeath;ii++)                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=nlstate+ndeath;j++){    double f1dim(double x); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     int j; 
    cov[1]=1.;    double xx,xmin,bx,ax; 
      double fx,fb,fa;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    ncom=n; 
     newm=savm;    pcom=vector(1,n); 
     /* Covariates have to be included here again */    xicom=vector(1,n); 
      cov[2]=agefin;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) {      pcom[j]=p[j]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xicom[j]=xi[j]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    } 
       }    ax=0.0; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xx=1.0; 
       for (k=1; k<=cptcovprod;k++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
     savm=oldm;      p[j] += xi[j]; 
     oldm=newm;    } 
     maxmax=0.;    free_vector(xicom,1,n); 
     for(j=1;j<=nlstate;j++){    free_vector(pcom,1,n); 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /*************** powell ************************/
         sumnew=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              double (*func)(double [])) 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
         min=FMIN(min,prlim[i][j]);                double (*func)(double [])); 
       }    int i,ibig,j; 
       maxmin=max-min;    double del,t,*pt,*ptt,*xit;
       maxmax=FMAX(maxmax,maxmin);    double fp,fptt;
     }    double *xits;
     if(maxmax < ftolpl){    pt=vector(1,n); 
       return prlim;    ptt=vector(1,n); 
     }    xit=vector(1,n); 
   }    xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*************** transition probabilities ***************/    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      ibig=0; 
 {      del=0.0; 
   double s1, s2;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   /*double t34;*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   int i,j,j1, nc, ii, jj;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
     for(i=1; i<= nlstate; i++){        printf(" %d %.12f",i, p[i]);
     for(j=1; j<i;j++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficrespow," %.12lf", p[i]);
         /*s2 += param[i][j][nc]*cov[nc];*/      }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf("\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");
       ps[i][j]=s2;      for (i=1;i<=n;i++) { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("fret=%lf \n",*fret);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"fret=%lf \n",*fret);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }        printf("%d",i);fflush(stdout);
       ps[i][j]=s2;        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
     /*ps[3][2]=1;*/          del=fabs(fptt-(*fret)); 
           ibig=i; 
   for(i=1; i<= nlstate; i++){        } 
      s1=0;  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("%d %.12e",i,(*fret));
       s1+=exp(ps[i][j]);        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     ps[i][i]=1./(s1+1.);          printf(" x(%d)=%.12e",j,xit[j]);
     for(j=1; j<i; j++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     for(j=i+1; j<=nlstate+ndeath; j++)        for(j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf(" p=%.12e",p[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          fprintf(ficlog," p=%.12e",p[j]);
   } /* end i */        }
         printf("\n");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
   }        int k[2],l;
         k[0]=1;
         k[1]=-1;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        printf("Max: %.12e",(*func)(p));
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
      printf("%lf ",ps[ii][jj]);        for (j=1;j<=n;j++) {
    }          printf(" %.12e",p[j]);
     printf("\n ");          fprintf(ficlog," %.12e",p[j]);
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/        printf("\n");
 /*        fprintf(ficlog,"\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        for(l=0;l<=1;l++) {
   goto end;*/          for (j=1;j<=n;j++) {
     return ps;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**************** Product of 2 matrices ******************/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #endif
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns        free_vector(xit,1,n); 
      a pointer to pointers identical to out */        free_vector(xits,1,n); 
   long i, j, k;        free_vector(ptt,1,n); 
   for(i=nrl; i<= nrh; i++)        free_vector(pt,1,n); 
     for(k=ncolol; k<=ncoloh; k++)        return; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } 
         out[i][k] +=in[i][j]*b[j][k];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   return out;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       } 
 /************* Higher Matrix Product ***************/      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {        if (t < 0.0) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          linmin(p,xit,n,fret,func); 
      duration (i.e. until          for (j=1;j<=n;j++) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            xi[j][ibig]=xi[j][n]; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            xi[j][n]=xit[j]; 
      (typically every 2 years instead of every month which is too big).          }
      Model is determined by parameters x and covariates have to be  #ifdef DEBUG
      included manually here.          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   int i, j, d, h, k;            fprintf(ficlog," %.12e",xit[j]);
   double **out, cov[NCOVMAX];          }
   double **newm;          printf("\n");
           fprintf(ficlog,"\n");
   /* Hstepm could be zero and should return the unit matrix */  #endif
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  } 
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /**** Prevalence limit (stable prevalence)  ****************/
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       newm=savm;  {
       /* Covariates have to be included here again */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       cov[1]=1.;       matrix by transitions matrix until convergence is reached */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int i, ii,j,k;
       for (k=1; k<=cptcovage;k++)    double min, max, maxmin, maxmax,sumnew=0.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double **matprod2();
       for (k=1; k<=cptcovprod;k++)    double **out, cov[NCOVMAX], **pmij();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      for (j=1;j<=nlstate+ndeath;j++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;  
       oldm=newm;     cov[1]=1.;
     }   
     for(i=1; i<=nlstate+ndeath; i++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=1;j<=nlstate+ndeath;j++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         po[i][j][h]=newm[i][j];      newm=savm;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /* Covariates have to be included here again */
          */       cov[2]=agefin;
       }    
   } /* end h */        for (k=1; k<=cptcovn;k++) {
   return po;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*************** log-likelihood *************/        for (k=1; k<=cptcovprod;k++)
 double func( double *x)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i, ii, j, k, mi, d, kk;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **out;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double sw; /* Sum of weights */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double lli; /* Individual log likelihood */  
   int s1, s2;      savm=oldm;
   long ipmx;      oldm=newm;
   /*extern weight */      maxmax=0.;
   /* We are differentiating ll according to initial status */      for(j=1;j<=nlstate;j++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        min=1.;
   /*for(i=1;i<imx;i++)        max=0.;
     printf(" %d\n",s[4][i]);        for(i=1; i<=nlstate; i++) {
   */          sumnew=0;
   cov[1]=1.;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          max=FMAX(max,prlim[i][j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          min=FMIN(min,prlim[i][j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
     for(mi=1; mi<= wav[i]-1; mi++){        maxmin=max-min;
       for (ii=1;ii<=nlstate+ndeath;ii++)        maxmax=FMAX(maxmax,maxmin);
         for (j=1;j<=nlstate+ndeath;j++){      }
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(maxmax < ftolpl){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        return prlim;
         }      }
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /*************** transition probabilities ***************/ 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double s1, s2;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*double t34;*/
         savm=oldm;    int i,j,j1, nc, ii, jj;
         oldm=newm;  
              for(i=1; i<= nlstate; i++){
              for(j=1; j<i;j++){
       } /* end mult */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                /*s2 += param[i][j][nc]*cov[nc];*/
       s1=s[mw[mi][i]][i];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       s2=s[mw[mi+1][i]][i];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       if( s2 > nlstate){        }
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        ps[i][j]=s2;
            to the likelihood is the probability to die between last step unit time and current        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
            step unit time, which is also the differences between probability to die before dh      }
            and probability to die before dh-stepm .      for(j=i+1; j<=nlstate+ndeath;j++){
            In version up to 0.92 likelihood was computed        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            as if date of death was unknown. Death was treated as any other          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
            health state: the date of the interview describes the actual state          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
            and not the date of a change in health state. The former idea was        }
            to consider that at each interview the state was recorded        ps[i][j]=s2;
            (healthy, disable or death) and IMaCh was corrected; but when we      }
            introduced the exact date of death then we should have modified    }
            the contribution of an exact death to the likelihood. This new      /*ps[3][2]=1;*/
            contribution is smaller and very dependent of the step unit  
            stepm. It is no more the probability to die between last interview    for(i=1; i<= nlstate; i++){
            and month of death but the probability to survive from last       s1=0;
            interview up to one month before death multiplied by the      for(j=1; j<i; j++)
            probability to die within a month. Thanks to Chris        s1+=exp(ps[i][j]);
            Jackson for correcting this bug.  Former versions increased      for(j=i+1; j<=nlstate+ndeath; j++)
            mortality artificially. The bad side is that we add another loop        s1+=exp(ps[i][j]);
            which slows down the processing. The difference can be up to 10%      ps[i][i]=1./(s1+1.);
            lower mortality.      for(j=1; j<i; j++)
         */        ps[i][j]= exp(ps[i][j])*ps[i][i];
         lli=log(out[s1][s2] - savm[s1][s2]);      for(j=i+1; j<=nlstate+ndeath; j++)
       }else{        ps[i][j]= exp(ps[i][j])*ps[i][i];
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    } /* end i */
       }  
       ipmx +=1;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       sw += weight[i];      for(jj=1; jj<= nlstate+ndeath; jj++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ps[ii][jj]=0;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/        ps[ii][ii]=1;
     } /* end of wave */      }
   } /* end of individual */    }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(jj=1; jj<= nlstate+ndeath; jj++){
   /*exit(0);*/       printf("%lf ",ps[ii][jj]);
   return -l;     }
 }      printf("\n ");
       }
       printf("\n ");printf("%lf ",cov[2]);*/
 /*********** Maximum Likelihood Estimation ***************/  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    goto end;*/
 {      return ps;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  /**************** Product of 2 matrices ******************/
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=npar;j++)  {
       xi[i][j]=(i==j ? 1.0 : 0.0);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   printf("Powell\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       a pointer to pointers identical to out */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    long i, j, k;
     for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /**** Computes Hessian and covariance matrix ***/          out[i][k] +=in[i][j]*b[j][k];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    return out;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  
   int *indx;  /************* Higher Matrix Product ***************/
   
   double hessii(double p[], double delta, int theta, double delti[]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double hessij(double p[], double delti[], int i, int j);  {
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /* Computes the transition matrix starting at age 'age' over 
   void ludcmp(double **a, int npar, int *indx, double *d) ;       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   hess=matrix(1,npar,1,npar);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   printf("\nCalculation of the hessian matrix. Wait...\n");       (typically every 2 years instead of every month which is too big 
   for (i=1;i<=npar;i++){       for the memory).
     printf("%d",i);fflush(stdout);       Model is determined by parameters x and covariates have to be 
     hess[i][i]=hessii(p,ftolhess,i,delti);       included manually here. 
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/       */
   }  
      int i, j, d, h, k;
   for (i=1;i<=npar;i++) {    double **out, cov[NCOVMAX];
     for (j=1;j<=npar;j++)  {    double **newm;
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    /* Hstepm could be zero and should return the unit matrix */
         hess[i][j]=hessij(p,delti,i,j);    for (i=1;i<=nlstate+ndeath;i++)
         hess[j][i]=hess[i][j];          for (j=1;j<=nlstate+ndeath;j++){
         /*printf(" %lf ",hess[i][j]);*/        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\n");    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        newm=savm;
          /* Covariates have to be included here again */
   a=matrix(1,npar,1,npar);        cov[1]=1.;
   y=matrix(1,npar,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   x=vector(1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   indx=ivector(1,npar);        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (k=1; k<=cptcovprod;k++)
   ludcmp(a,npar,indx,&pd);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     x[j]=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     lubksb(a,npar,indx,x);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (i=1;i<=npar;i++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       matcov[i][j]=x[i];        savm=oldm;
     }        oldm=newm;
   }      }
       for(i=1; i<=nlstate+ndeath; i++)
   printf("\n#Hessian matrix#\n");        for(j=1;j<=nlstate+ndeath;j++) {
   for (i=1;i<=npar;i++) {          po[i][j][h]=newm[i][j];
     for (j=1;j<=npar;j++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       printf("%.3e ",hess[i][j]);           */
     }        }
     printf("\n");    } /* end h */
   }    return po;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*************** log-likelihood *************/
   ludcmp(a,npar,indx,&pd);  double func( double *x)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (j=1;j<=npar;j++) {    double **out;
     for (i=1;i<=npar;i++) x[i]=0;    double sw; /* Sum of weights */
     x[j]=1;    double lli; /* Individual log likelihood */
     lubksb(a,npar,indx,x);    int s1, s2;
     for (i=1;i<=npar;i++){    double bbh, survp;
       y[i][j]=x[i];    long ipmx;
       printf("%.3e ",y[i][j]);    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     printf("\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   */      printf(" %d\n",s[4][i]);
     */
   free_matrix(a,1,npar,1,npar);    cov[1]=1.;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*************** hessian matrix ****************/            for (j=1;j<=nlstate+ndeath;j++){
 double hessii( double x[], double delta, int theta, double delti[])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i;            }
   int l=1, lmax=20;          for(d=0; d<dh[mi][i]; d++){
   double k1,k2;            newm=savm;
   double p2[NPARMAX+1];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double res;            for (kk=1; kk<=cptcovage;kk++) {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double fx;            }
   int k=0,kmax=10;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double l1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   fx=func(x);            oldm=newm;
   for (i=1;i<=npar;i++) p2[i]=x[i];          } /* end mult */
   for(l=0 ; l <=lmax; l++){        
     l1=pow(10,l);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     delts=delt;          /* But now since version 0.9 we anticipate for bias and large stepm.
     for(k=1 ; k <kmax; k=k+1){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       delt = delta*(l1*k);           * (in months) between two waves is not a multiple of stepm, we rounded to 
       p2[theta]=x[theta] +delt;           * the nearest (and in case of equal distance, to the lowest) interval but now
       k1=func(p2)-fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       p2[theta]=x[theta]-delt;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       k2=func(p2)-fx;           * probability in order to take into account the bias as a fraction of the way
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * -stepm/2 to stepm/2 .
                 * For stepm=1 the results are the same as for previous versions of Imach.
 #ifdef DEBUG           * For stepm > 1 the results are less biased than in previous versions. 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           */
 #endif          s1=s[mw[mi][i]][i];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          s2=s[mw[mi+1][i]][i];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          bbh=(double)bh[mi][i]/(double)stepm; 
         k=kmax;          /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           */
         k=kmax; l=lmax*10.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         delts=delt;               to the likelihood is the probability to die between last step unit time and current 
       }               step unit time, which is also the differences between probability to die before dh 
     }               and probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
   delti[theta]=delts;          as if date of death was unknown. Death was treated as any other
   return res;          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
 }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
 double hessij( double x[], double delti[], int thetai,int thetaj)          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i;          contribution is smaller and very dependent of the step unit
   int l=1, l1, lmax=20;          stepm. It is no more the probability to die between last interview
   double k1,k2,k3,k4,res,fx;          and month of death but the probability to survive from last
   double p2[NPARMAX+1];          interview up to one month before death multiplied by the
   int k;          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   fx=func(x);          mortality artificially. The bad side is that we add another loop
   for (k=1; k<=2; k++) {          which slows down the processing. The difference can be up to 10%
     for (i=1;i<=npar;i++) p2[i]=x[i];          lower mortality.
     p2[thetai]=x[thetai]+delti[thetai]/k;            */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            lli=log(out[s1][s2] - savm[s1][s2]);
     k1=func(p2)-fx;          }else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     p2[thetai]=x[thetai]+delti[thetai]/k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          } 
     k2=func(p2)-fx;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ipmx +=1;
     k3=func(p2)-fx;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]-delti[thetai]/k;        } /* end of wave */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } /* end of individual */
     k4=func(p2)-fx;    }  else if(mle==2){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #ifdef DEBUG        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(mi=1; mi<= wav[i]-1; mi++){
 #endif          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   return res;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************** Inverse of matrix **************/          for(d=0; d<=dh[mi][i]; d++){
 void ludcmp(double **a, int n, int *indx, double *d)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,imax,j,k;            for (kk=1; kk<=cptcovage;kk++) {
   double big,dum,sum,temp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *vv;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   vv=vector(1,n);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   *d=1.0;            savm=oldm;
   for (i=1;i<=n;i++) {            oldm=newm;
     big=0.0;          } /* end mult */
     for (j=1;j<=n;j++)        
       if ((temp=fabs(a[i][j])) > big) big=temp;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /* But now since version 0.9 we anticipate for bias and large stepm.
     vv[i]=1.0/big;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (j=1;j<=n;j++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (i=1;i<j;i++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       sum=a[i][j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * probability in order to take into account the bias as a fraction of the way
       a[i][j]=sum;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     big=0.0;           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=j;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
       sum=a[i][j];           */
       for (k=1;k<j;k++)          s1=s[mw[mi][i]][i];
         sum -= a[i][k]*a[k][j];          s2=s[mw[mi+1][i]][i];
       a[i][j]=sum;          bbh=(double)bh[mi][i]/(double)stepm; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /* bias is positive if real duration
         big=dum;           * is higher than the multiple of stepm and negative otherwise.
         imax=i;           */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (j != imax) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       for (k=1;k<=n;k++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         dum=a[imax][k];          /*if(lli ==000.0)*/
         a[imax][k]=a[j][k];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         a[j][k]=dum;          ipmx +=1;
       }          sw += weight[i];
       *d = -(*d);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       vv[imax]=vv[j];        } /* end of wave */
     }      } /* end of individual */
     indx[j]=imax;    }  else if(mle==3){  /* exponential inter-extrapolation */
     if (a[j][j] == 0.0) a[j][j]=TINY;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (j != n) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       dum=1.0/(a[j][j]);        for(mi=1; mi<= wav[i]-1; mi++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 ;            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 void lubksb(double **a, int n, int *indx, double b[])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i,ii=0,ip,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double sum;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ip=indx[i];            savm=oldm;
     sum=b[ip];            oldm=newm;
     b[ip]=b[i];          } /* end mult */
     if (ii)        
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     else if (sum) ii=i;          /* But now since version 0.9 we anticipate for bias and large stepm.
     b[i]=sum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (i=n;i>=1;i--) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     sum=b[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     b[i]=sum/a[i][i];           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 /************ Frequencies ********************/           * For stepm > 1 the results are less biased than in previous versions. 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           */
 {  /* Some frequencies */          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          bbh=(double)bh[mi][i]/(double)stepm; 
   double ***freq; /* Frequencies */          /* bias is positive if real duration
   double *pp;           * is higher than the multiple of stepm and negative otherwise.
   double pos, k2, dateintsum=0,k2cpt=0;           */
   FILE *ficresp;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   char fileresp[FILENAMELENGTH];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   pp=vector(1,nlstate);          /*if(lli ==000.0)*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   strcpy(fileresp,"p");          ipmx +=1;
   strcat(fileresp,fileres);          sw += weight[i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        } /* end of wave */
     exit(0);      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcoveff;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k1=1; k1<=j;k1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){            }
       j1++;          for(d=0; d<dh[mi][i]; d++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            newm=savm;
         scanf("%d", i);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (i=-1; i<=nlstate+ndeath; i++)              for (kk=1; kk<=cptcovage;kk++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       dateintsum=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2cpt=0;            savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         if (bool==1) {          }else{
           for(m=firstpass; m<=lastpass; m++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);          }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ipmx +=1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          sw += weight[i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if (m<lastpass) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } /* end of individual */
               }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 dateintsum=dateintsum+k2;        for(mi=1; mi<= wav[i]-1; mi++){
                 k2cpt++;          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
         fprintf(ficresp, "**********\n#");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=nlstate;i++)            savm=oldm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            oldm=newm;
       fprintf(ficresp, "\n");          } /* end mult */
              
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
         if(i==(int)agemax+3)          s2=s[mw[mi+1][i]][i];
           printf("Total");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         else          ipmx +=1;
           printf("Age %d", i);          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             pp[jk] += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    } /* End of if */
           for(m=-1, pos=0; m <=0 ; m++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             pos += freq[jk][m][i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           if(pp[jk]>=1.e-10)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    return -l;
           else  }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }  /*************** log-likelihood *************/
   double funcone( double *x)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Same as likeli but slower because of a lot of printf and if */
             pp[jk] += freq[jk][m][i];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double lli; /* Individual log likelihood */
           pos += pp[jk];    double llt;
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           if(pos>=1.e-5)    double bbh, survp;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /*extern weight */
           else    /* We are differentiating ll according to initial status */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if( i <= (int) agemax){    /*for(i=1;i<imx;i++) 
             if(pos>=1.e-5){      printf(" %d\n",s[4][i]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    */
               probs[i][jk][j1]= pp[jk]/pos;    cov[1]=1.;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    for(k=1; k<=nlstate; k++) ll[k]=0.;
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1; m <=nlstate+ndeath; m++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i <= (int) agemax)          }
           fprintf(ficresp,"\n");        for(d=0; d<dh[mi][i]; d++){
         printf("\n");          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
   }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dateintmean=dateintsum/k2cpt;          }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fclose(ficresp);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          savm=oldm;
   free_vector(pp,1,nlstate);          oldm=newm;
          } /* end mult */
   /* End of Freq */        
 }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
 /************ Prevalence ********************/        bbh=(double)bh[mi][i]/(double)stepm; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        /* bias is positive if real duration
 {  /* Some frequencies */         * is higher than the multiple of stepm and negative otherwise.
           */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double ***freq; /* Frequencies */          lli=log(out[s1][s2] - savm[s1][s2]);
   double *pp;        } else if (mle==1){
   double pos, k2;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   pp=vector(1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   j1=0;          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   j=cptcoveff;          lli=log(out[s1][s2]); /* Original formula */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* End of if */
          ipmx +=1;
  for(k1=1; k1<=j;k1++){        sw += weight[i];
     for(i1=1; i1<=ncodemax[k1];i1++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       j1++;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
       for (i=-1; i<=nlstate+ndeath; i++)            fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         for (jk=-1; jk<=nlstate+ndeath; jk++)     %10.6f %10.6f %10.6f ", \
           for(m=agemin; m <= agemax+3; m++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             freq[i][jk][m]=0;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for (i=1; i<=imx; i++) {            llt +=ll[k]*gipmx/gsw;
         bool=1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if  (cptcovn>0) {          }
           for (z1=1; z1<=cptcoveff; z1++)          fprintf(ficresilk," %10.6f\n", -llt);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;      } /* end of wave */
         }    } /* end of individual */
         if (bool==1) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for(m=firstpass; m<=lastpass; m++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             k2=anint[m][i]+(mint[m][i]/12.);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    if(globpr==0){ /* First time we count the contributions and weights */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      gipmx=ipmx;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      gsw=sw;
               if (m<lastpass)    }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    return -l;
               else  }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  char *subdirf(char fileres[])
             }  {
           }    
         }    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    strcat(tmpout,fileres);
           for(jk=1; jk <=nlstate ; jk++){    return tmpout;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
               pp[jk] += freq[jk][m][i];  
           }  char *subdirf2(char fileres[], char *preop)
           for(jk=1; jk <=nlstate ; jk++){  {
             for(m=-1, pos=0; m <=0 ; m++)    
             pos += freq[jk][m][i];    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
            strcat(tmpout,preop);
          for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    return tmpout;
              pp[jk] += freq[jk][m][i];  }
          }  char *subdirf3(char fileres[], char *preop, char *preop2)
            {
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    
     strcpy(tmpout,optionfilefiname);
          for(jk=1; jk <=nlstate ; jk++){              strcat(tmpout,"/");
            if( i <= (int) agemax){    strcat(tmpout,preop);
              if(pos>=1.e-5){    strcat(tmpout,preop2);
                probs[i][jk][j1]= pp[jk]/pos;    strcat(tmpout,fileres);
              }    return tmpout;
            }  }
          }  
            void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         }  {
     }    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
         Plotting could be done.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);     */
   free_vector(pp,1,nlstate);    int k;
    
 }  /* End of Freq */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 /************* Waves Concatenation ***************/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      }
      Death is a valid wave (if date is known).      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      and mw[mi+1][i]. dh depends on stepm.      for(k=1; k<=nlstate; k++) 
      */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, mi, m;    }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    *fretone=(*funcone)(p);
     if(*globpri !=0){
   int j, k=0,jk, ju, jl;      fclose(ficresilk);
   double sum=0.;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   jmin=1e+5;      fflush(fichtm); 
   jmax=-1;    } 
   jmean=0.;    return;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  
     while(s[m][i] <= nlstate){  /*********** Maximum Likelihood Estimation ***************/
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       if(m >=lastpass)  {
         break;    int i,j, iter;
       else    double **xi;
         m++;    double fret;
     }/* end while */    double fretone; /* Only one call to likelihood */
     if (s[m][i] > nlstate){    char filerespow[FILENAMELENGTH];
       mi++;     /* Death is another wave */    xi=matrix(1,npar,1,npar);
       /* if(mi==0)  never been interviewed correctly before death */    for (i=1;i<=npar;i++)
          /* Only death is a correct wave */      for (j=1;j<=npar;j++)
       mw[mi][i]=m;        xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     wav[i]=mi;    strcat(filerespow,fileres);
     if(mi==0)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   for(i=1; i<=imx; i++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=nlstate;i++)
       if (stepm <=0)      for(j=1;j<=nlstate+ndeath;j++)
         dh[mi][i]=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       else{    fprintf(ficrespow,"\n");
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    powell(p,xi,npar,ftol,&iter,&fret,func);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    fclose(ficrespow);
           k=k+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           if (j >= jmax) jmax=j;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           if (j <= jmin) jmin=j;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  }
           }  
         }  /**** Computes Hessian and covariance matrix ***/
         else{  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    double  **a,**y,*x,pd;
           if (j >= jmax) jmax=j;    double **hess;
           else if (j <= jmin)jmin=j;    int i, j,jk;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int *indx;
           sum=sum+j;  
         }    double hessii(double p[], double delta, int theta, double delti[]);
         jk= j/stepm;    double hessij(double p[], double delti[], int i, int j);
         jl= j -jk*stepm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         ju= j -(jk+1)*stepm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if(jl <= -ju)  
           dh[mi][i]=jk;    hess=matrix(1,npar,1,npar);
         else  
           dh[mi][i]=jk+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
         if(dh[mi][i]==0)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
   }      hess[i][i]=hessii(p,ftolhess,i,delti);
   jmean=sum/k;      /*printf(" %f ",p[i]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      /*printf(" %lf ",hess[i][i]);*/
  }    }
 /*********** Tricode ****************************/    
 void tricode(int *Tvar, int **nbcode, int imx)    for (i=1;i<=npar;i++) {
 {      for (j=1;j<=npar;j++)  {
   int Ndum[20],ij=1, k, j, i;        if (j>i) { 
   int cptcode=0;          printf(".%d%d",i,j);fflush(stdout);
   cptcoveff=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j);
   for (k=0; k<19; k++) Ndum[k]=0;          hess[j][i]=hess[i][j];    
   for (k=1; k<=7; k++) ncodemax[k]=0;          /*printf(" %lf ",hess[i][j]);*/
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      }
     for (i=1; i<=imx; i++) {    }
       ij=(int)(covar[Tvar[j]][i]);    printf("\n");
       Ndum[ij]++;    fprintf(ficlog,"\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     for (i=0; i<=cptcode; i++) {    a=matrix(1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;    y=matrix(1,npar,1,npar);
     }    x=vector(1,npar);
     ij=1;    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for (i=1; i<=ncodemax[j]; i++) {    ludcmp(a,npar,indx,&pd);
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    for (j=1;j<=npar;j++) {
           nbcode[Tvar[j]][ij]=k;      for (i=1;i<=npar;i++) x[i]=0;
                x[j]=1;
           ij++;      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
         if (ij > ncodemax[j]) break;        matcov[i][j]=x[i];
       }        }
     }    }
   }    
     printf("\n#Hessian matrix#\n");
  for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
  for (i=1; i<=ncovmodel-2; i++) {      for (j=1;j<=npar;j++) { 
       ij=Tvar[i];        printf("%.3e ",hess[i][j]);
       Ndum[ij]++;        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
       printf("\n");
  ij=1;      fprintf(ficlog,"\n");
  for (i=1; i<=10; i++) {    }
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    /* Recompute Inverse */
      ij++;    for (i=1;i<=npar;i++)
    }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
  }    ludcmp(a,npar,indx,&pd);
    
     cptcoveff=ij-1;    /*  printf("\n#Hessian matrix recomputed#\n");
 }  
     for (j=1;j<=npar;j++) {
 /*********** Health Expectancies ****************/      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 {        y[i][j]=x[i];
   /* Health expectancies */        printf("%.3e ",y[i][j]);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        fprintf(ficlog,"%.3e ",y[i][j]);
   double age, agelim, hf;      }
   double ***p3mat,***varhe;      printf("\n");
   double **dnewm,**doldm;      fprintf(ficlog,"\n");
   double *xp;    }
   double **gp, **gm;    */
   double ***gradg, ***trgradg;  
   int theta;    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    free_vector(x,1,npar);
   xp=vector(1,npar);    free_ivector(indx,1,npar);
   dnewm=matrix(1,nlstate*2,1,npar);    free_matrix(hess,1,npar,1,npar);
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
    
   fprintf(ficreseij,"# Health expectancies\n");  }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
     for(j=1; j<=nlstate;j++)  double hessii( double x[], double delta, int theta, double delti[])
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  {
   fprintf(ficreseij,"\n");    int i;
     int l=1, lmax=20;
   if(estepm < stepm){    double k1,k2;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double p2[NPARMAX+1];
   }    double res;
   else  hstepm=estepm;      double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double fx;
    * This is mainly to measure the difference between two models: for example    int k=0,kmax=10;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double l1;
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    fx=func(x);
    * to the curvature of the survival function. If, for the same date, we    for (i=1;i<=npar;i++) p2[i]=x[i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for(l=0 ; l <=lmax; l++){
    * to compare the new estimate of Life expectancy with the same linear      l1=pow(10,l);
    * hypothesis. A more precise result, taking into account a more precise      delts=delt;
    * curvature will be obtained if estepm is as small as stepm. */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   /* For example we decided to compute the life expectancy with the smallest unit */        p2[theta]=x[theta] +delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k1=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim        p2[theta]=x[theta]-delt;
      nstepm is the number of stepm from age to agelin.        k2=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size        /*res= (k1-2.0*fx+k2)/delt/delt; */
      and note for a fixed period like estepm months */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef DEBUG
      means that if the survival funtion is printed only each two years of age and if        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      results. So we changed our mind and took the option of the best precision.  #endif
   */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     /* nhstepm age range expressed in number of stepm */          k=kmax; l=lmax*10.;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     /* if (stepm >= YEARM) hstepm=1;*/          delts=delt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    }
     gp=matrix(0,nhstepm,1,nlstate*2);    delti[theta]=delts;
     gm=matrix(0,nhstepm,1,nlstate*2);    return res; 
     
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    double hessij( double x[], double delti[], int thetai,int thetaj)
    {
     int i;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     /* Computing Variances of health expectancies */    double p2[NPARMAX+1];
     int k;
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    fx=func(x);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       cptj=0;      k1=func(p2)-fx;
       for(j=1; j<= nlstate; j++){    
         for(i=1; i<=nlstate; i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
           cptj=cptj+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      k2=func(p2)-fx;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    
           }      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
          
            p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1; i<=npar; i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      k4=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
        #ifdef DEBUG
       cptj=0;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(i=1;i<=nlstate;i++){  #endif
           cptj=cptj+1;    }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    return res;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
        { 
        int i,imax,j,k; 
     double big,dum,sum,temp; 
       for(j=1; j<= nlstate*2; j++)    double *vv; 
         for(h=0; h<=nhstepm-1; h++){   
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    vv=vector(1,n); 
         }    *d=1.0; 
     for (i=1;i<=n;i++) { 
      }      big=0.0; 
          for (j=1;j<=n;j++) 
 /* End theta */        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      vv[i]=1.0/big; 
     } 
      for(h=0; h<=nhstepm-1; h++)    for (j=1;j<=n;j++) { 
       for(j=1; j<=nlstate*2;j++)      for (i=1;i<j;i++) { 
         for(theta=1; theta <=npar; theta++)        sum=a[i][j]; 
         trgradg[h][j][theta]=gradg[h][theta][j];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       } 
      for(i=1;i<=nlstate*2;i++)      big=0.0; 
       for(j=1;j<=nlstate*2;j++)      for (i=j;i<=n;i++) { 
         varhe[i][j][(int)age] =0.;        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     for(h=0;h<=nhstepm-1;h++){          sum -= a[i][k]*a[k][j]; 
       for(k=0;k<=nhstepm-1;k++){        a[i][j]=sum; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          big=dum; 
         for(i=1;i<=nlstate*2;i++)          imax=i; 
           for(j=1;j<=nlstate*2;j++)        } 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } 
       }      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
                a[imax][k]=a[j][k]; 
     /* Computing expectancies */          a[j][k]=dum; 
     for(i=1; i<=nlstate;i++)        } 
       for(j=1; j<=nlstate;j++)        *d = -(*d); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        vv[imax]=vv[j]; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      } 
                indx[j]=imax; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficreseij,"%3.0f",age );      } 
     cptj=0;    } 
     for(i=1; i<=nlstate;i++)    free_vector(vv,1,n);  /* Doesn't work */
       for(j=1; j<=nlstate;j++){  ;
         cptj++;  } 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
     fprintf(ficreseij,"\n");  { 
        int i,ii=0,ip,j; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double sum; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);   
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=n;i++) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      ip=indx[i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   free_vector(xp,1,npar);      if (ii) 
   free_matrix(dnewm,1,nlstate*2,1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      else if (sum) ii=i; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      b[i]=sum; 
 }    } 
     for (i=n;i>=1;i--) { 
 /************ Variance ******************/      sum=b[i]; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 {      b[i]=sum/a[i][i]; 
   /* Variance of health expectancies */    } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  } 
   double **newm;  
   double **dnewm,**doldm;  /************ Frequencies ********************/
   int i, j, nhstepm, hstepm, h, nstepm ;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   int k, cptcode;  {  /* Some frequencies */
   double *xp;    
   double **gp, **gm;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double ***gradg, ***trgradg;    int first;
   double ***p3mat;    double ***freq; /* Frequencies */
   double age,agelim, hf;    double *pp, **prop;
   int theta;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    char fileresp[FILENAMELENGTH];
   fprintf(ficresvij,"# Age");    
   for(i=1; i<=nlstate;i++)    pp=vector(1,nlstate);
     for(j=1; j<=nlstate;j++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    strcpy(fileresp,"p");
   fprintf(ficresvij,"\n");    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   xp=vector(1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   doldm=matrix(1,nlstate,1,nlstate);      exit(0);
      }
   if(estepm < stepm){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     printf ("Problem %d lower than %d\n",estepm, stepm);    j1=0;
   }    
   else  hstepm=estepm;      j=cptcoveff;
   /* For example we decided to compute the life expectancy with the smallest unit */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    first=1;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(k1=1; k1<=j;k1++){
      and note for a fixed period like k years */      for(i1=1; i1<=ncodemax[k1];i1++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        j1++;
      survival function given by stepm (the optimization length). Unfortunately it        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      means that if the survival funtion is printed only each two years of age and if          scanf("%d", i);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for (i=-1; i<=nlstate+ndeath; i++)  
      results. So we changed our mind and took the option of the best precision.          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   */            for(m=iagemin; m <= iagemax+3; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              freq[i][jk][m]=0;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1; i<=nlstate; i++)  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(m=iagemin; m <= iagemax+3; m++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          prop[i][m]=0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        dateintsum=0;
     gp=matrix(0,nhstepm,1,nlstate);        k2cpt=0;
     gm=matrix(0,nhstepm,1,nlstate);        for (i=1; i<=imx; i++) {
           bool=1;
     for(theta=1; theta <=npar; theta++){          if  (cptcovn>0) {
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (z1=1; z1<=cptcoveff; z1++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
       if (popbased==1) {              k2=anint[m][i]+(mint[m][i]/12.);
         for(i=1; i<=nlstate;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           prlim[i][i]=probs[(int)age][i][ij];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(j=1; j<= nlstate; j++){                if (m<lastpass) {
         for(h=0; h<=nhstepm; h++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                }
         }                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
       for(i=1; i<=npar; i++) /* Computes gradient */                  k2cpt++;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
            }
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)         
           prlim[i][i]=probs[(int)age][i][ij];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
         if  (cptcovn>0) {
       for(j=1; j<= nlstate; j++){          fprintf(ficresp, "\n#********** Variable "); 
         for(h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
       for(j=1; j<= nlstate; j++)        
         for(h=0; h<=nhstepm; h++){        for(i=iagemin; i <= iagemax+3; i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
     } /* End theta */          }else{
             if(first==1){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);              first=0;
               printf("See log file for details...\n");
     for(h=0; h<=nhstepm; h++)            }
       for(j=1; j<=nlstate;j++)            fprintf(ficlog,"Age %d", i);
         for(theta=1; theta <=npar; theta++)          }
           trgradg[h][j][theta]=gradg[h][theta][j];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              pp[jk] += freq[jk][m][i]; 
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)          for(jk=1; jk <=nlstate ; jk++){
         vareij[i][j][(int)age] =0.;            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
     for(h=0;h<=nhstepm;h++){            if(pp[jk]>=1.e-10){
       for(k=0;k<=nhstepm;k++){              if(first==1){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              }
         for(i=1;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(j=1;j<=nlstate;j++)            }else{
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       }              pp[jk] += freq[jk][m][i];
     fprintf(ficresvij,"\n");          }       
     free_matrix(gp,0,nhstepm,1,nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_matrix(gm,0,nhstepm,1,nlstate);            pos += pp[jk];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            posprop += prop[jk][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   } /* End age */            if(pos>=1.e-5){
                if(first==1)
   free_vector(xp,1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(doldm,1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(dnewm,1,nlstate,1,nlstate);            }else{
               if(first==1)
 }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            if( i <= iagemax){
 {              if(pos>=1.e-5){
   /* Variance of prevalence limit */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double **newm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double **dnewm,**doldm;              }
   int i, j, nhstepm, hstepm;              else
   int k, cptcode;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double *xp;            }
   double *gp, *gm;          }
   double **gradg, **trgradg;          
   double age,agelim;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   int theta;            for(m=-1; m <=nlstate+ndeath; m++)
                  if(freq[jk][m][i] !=0 ) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");              if(first==1)
   fprintf(ficresvpl,"# Age");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for(i=1; i<=nlstate;i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresvpl," %1d-%1d",i,i);              }
   fprintf(ficresvpl,"\n");          if(i <= iagemax)
             fprintf(ficresp,"\n");
   xp=vector(1,npar);          if(first==1)
   dnewm=matrix(1,nlstate,1,npar);            printf("Others in log...\n");
   doldm=matrix(1,nlstate,1,nlstate);          fprintf(ficlog,"\n");
          }
   hstepm=1*YEARM; /* Every year of age */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    dateintmean=dateintsum/k2cpt; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fclose(ficresp);
     if (stepm >= YEARM) hstepm=1;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_vector(pp,1,nlstate);
     gradg=matrix(1,npar,1,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     gp=vector(1,nlstate);    /* End of Freq */
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  /************ Prevalence ********************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(i=1;i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
         gp[i] = prlim[i][i];    */
       
       for(i=1; i<=npar; i++) /* Computes gradient */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double ***freq; /* Frequencies */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double *pp, **prop;
       for(i=1;i<=nlstate;i++)    double pos,posprop; 
         gm[i] = prlim[i][i];    double  y2; /* in fractional years */
     int iagemin, iagemax;
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    iagemin= (int) agemin;
     } /* End theta */    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     trgradg =matrix(1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(j=1; j<=nlstate;j++)    j1=0;
       for(theta=1; theta <=npar; theta++)    
         trgradg[j][theta]=gradg[theta][j];    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;    for(k1=1; k1<=j;k1++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        j1++;
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresvpl,"%.0f ",age );            prop[i][m]=0.0;
     for(i=1; i<=nlstate;i++)       
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficresvpl,"\n");          bool=1;
     free_vector(gp,1,nlstate);          if  (cptcovn>0) {
     free_vector(gm,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(gradg,1,npar,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(trgradg,1,nlstate,1,npar);                bool=0;
   } /* End age */          } 
           if (bool==1) { 
   free_vector(xp,1,npar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   free_matrix(doldm,1,nlstate,1,npar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   free_matrix(dnewm,1,nlstate,1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 /************ Variance of one-step probabilities  ******************/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int i, j, i1, k1, j1, z1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   int k=0, cptcode;                } 
   double **dnewm,**doldm;              }
   double *xp;            } /* end selection of waves */
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double age,agelim, cov[NCOVMAX];        for(i=iagemin; i <= iagemax+3; i++){  
   int theta;          
   char fileresprob[FILENAMELENGTH];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   strcpy(fileresprob,"prob");          } 
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){     
     printf("Problem with resultfile: %s\n", fileresprob);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                probs[i][jk][j1]= prop[jk][i]/posprop;
                } 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");            } 
   fprintf(ficresprob,"# Age");          }/* end jk */ 
   for(i=1; i<=nlstate;i++)        }/* end i */ 
     for(j=1; j<=(nlstate+ndeath);j++)      } /* end i1 */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    } /* end k1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   fprintf(ficresprob,"\n");    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************* Waves Concatenation ***************/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   cov[1]=1;  {
   j=cptcoveff;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       Death is a valid wave (if date is known).
   j1=0;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for(k1=1; k1<=1;k1++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(i1=1; i1<=ncodemax[k1];i1++){       and mw[mi+1][i]. dh depends on stepm.
     j1++;       */
   
     if  (cptcovn>0) {    int i, mi, m;
       fprintf(ficresprob, "\n#********** Variable ");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       double sum=0., jmean=0.;*/
       fprintf(ficresprob, "**********\n#");    int first;
     }    int j, k=0,jk, ju, jl;
        double sum=0.;
       for (age=bage; age<=fage; age ++){    first=0;
         cov[2]=age;    jmin=1e+5;
         for (k=1; k<=cptcovn;k++) {    jmax=-1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    jmean=0.;
              for(i=1; i<=imx; i++){
         }      mi=0;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      m=firstpass;
         for (k=1; k<=cptcovprod;k++)      while(s[m][i] <= nlstate){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if(s[m][i]>=1)
                  mw[++mi][i]=m;
         gradg=matrix(1,npar,1,9);        if(m >=lastpass)
         trgradg=matrix(1,9,1,npar);          break;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        else
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          m++;
          }/* end while */
         for(theta=1; theta <=npar; theta++){      if (s[m][i] > nlstate){
           for(i=1; i<=npar; i++)        mi++;     /* Death is another wave */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* if(mi==0)  never been interviewed correctly before death */
                     /* Only death is a correct wave */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        mw[mi][i]=m;
                }
           k=0;  
           for(i=1; i<= (nlstate+ndeath); i++){      wav[i]=mi;
             for(j=1; j<=(nlstate+ndeath);j++){      if(mi==0){
               k=k+1;        if(first==0){
               gp[k]=pmmij[i][j];          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             }          first=1;
           }        }
                  if(first==1){
           for(i=1; i<=npar; i++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
          } /* end mi==0 */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    } /* End individuals */
           k=0;  
           for(i=1; i<=(nlstate+ndeath); i++){    for(i=1; i<=imx; i++){
             for(j=1; j<=(nlstate+ndeath);j++){      for(mi=1; mi<wav[i];mi++){
               k=k+1;        if (stepm <=0)
               gm[k]=pmmij[i][j];          dh[mi][i]=1;
             }        else{
           }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                  if (agedc[i] < 2*AGESUP) {
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                if(j==0) j=1;  /* Survives at least one month after exam */
         }              else if(j<0){
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                j=1; /* Careful Patch */
           for(theta=1; theta <=npar; theta++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             trgradg[j][theta]=gradg[theta][j];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              }
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              k=k+1;
                      if (j >= jmax) jmax=j;
         pmij(pmmij,cov,ncovmodel,x,nlstate);              if (j <= jmin) jmin=j;
                      sum=sum+j;
         k=0;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for(i=1; i<=(nlstate+ndeath); i++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;          }
             gm[k]=pmmij[i][j];          else{
           }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  k=k+1;
      /*printf("\n%d ",(int)age);            if (j >= jmax) jmax=j;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            else if (j <= jmin)jmin=j;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      }*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
         fprintf(ficresprob,"\n%d ",(int)age);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            sum=sum+j;
            }
       }          jk= j/stepm;
     }          jl= j -jk*stepm;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          ju= j -(jk+1)*stepm;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(jl==0){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              dh[mi][i]=jk;
   }              bh[mi][i]=0;
   free_vector(xp,1,npar);            }else{ /* We want a negative bias in order to only have interpolation ie
   fclose(ficresprob);                    * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
             }
 /******************* Printing html file ***********/          }else{
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            if(jl <= -ju){
  int lastpass, int stepm, int weightopt, char model[],\              dh[mi][i]=jk;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              bh[mi][i]=jl;       /* bias is positive if real duration
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                                   * is higher than the multiple of stepm and negative otherwise.
  char version[], int popforecast, int estepm ){                                   */
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;            else{
   /*char optionfilehtm[FILENAMELENGTH];*/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   strcpy(optionfilehtm,optionfile);            }
   strcat(optionfilehtm,".htm");            if(dh[mi][i]==0){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              dh[mi][i]=1; /* At least one step */
     printf("Problem with %s \n",optionfilehtm), exit(0);              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          } /* end if mle */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        }
 \n      } /* end wave */
 Total number of observations=%d <br>\n    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    jmean=sum/k;
 <hr  size=\"2\" color=\"#EC5E5E\">    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  <ul><li>Outputs files<br>\n    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  /*********** Tricode ****************************/
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  void tricode(int *Tvar, int **nbcode, int imx)
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  {
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
  fprintf(fichtm,"\n    int cptcode=0;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    cptcoveff=0; 
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n   
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    for (k=0; k<maxncov; k++) Ndum[k]=0;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    for (k=1; k<=7; k++) ncodemax[k]=0;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  if(popforecast==1) fprintf(fichtm,"\n      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                                 modality*/ 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         <br>",fileres,fileres,fileres,fileres);        Ndum[ij]++; /*store the modality */
  else        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 fprintf(fichtm," <li>Graphs</li><p>");                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
  m=cptcoveff;      }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       for (i=0; i<=cptcode; i++) {
  jj1=0;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
  for(k1=1; k1<=m;k1++){      }
    for(i1=1; i1<=ncodemax[k1];i1++){  
        jj1++;      ij=1; 
        if (cptcovn > 0) {      for (i=1; i<=ncodemax[j]; i++) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for (k=0; k<= maxncov; k++) {
          for (cpt=1; cpt<=cptcoveff;cpt++)          if (Ndum[k] != 0) {
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            nbcode[Tvar[j]][ij]=k; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        }            
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            ij++;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
        for(cpt=1; cpt<nlstate;cpt++){          if (ij > ncodemax[j]) break; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        }  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } 
        }    }  
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident   for (k=0; k< maxncov; k++) Ndum[k]=0;
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     for (i=1; i<=ncovmodel-2; i++) { 
      }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      for(cpt=1; cpt<=nlstate;cpt++) {     ij=Tvar[i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>     Ndum[ij]++;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and   ij=1;
 health expectancies in states (1) and (2): e%s%d.gif<br>   for (i=1; i<= maxncov; i++) {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     if((Ndum[i]!=0) && (i<=ncovcol)){
 fprintf(fichtm,"\n</body>");       Tvaraff[ij]=i; /*For printing */
    }       ij++;
    }     }
 fclose(fichtm);   }
 }   
    cptcoveff=ij-1; /*Number of simple covariates*/
 /******************* Gnuplot file **************/  }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   /*********** Health Expectancies ****************/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp.txt");  {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /* Health expectancies */
     printf("Problem with file %s",optionfilegnuplot);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   }    double age, agelim, hf;
     double ***p3mat,***varhe;
 #ifdef windows    double **dnewm,**doldm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double *xp;
 #endif    double **gp, **gm;
 m=pow(2,cptcoveff);    double ***gradg, ***trgradg;
      int theta;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    for (k1=1; k1<= m ; k1 ++) {    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficreseij,"# Health expectancies\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficreseij,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(estepm < stepm){
 }      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
      for (i=1; i<= nlstate ; i ++) {    else  hstepm=estepm;   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We compute the life expectancy from trapezoids spaced every estepm months
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * This is mainly to measure the difference between two models: for example
 }       * if stepm=24 months pijx are given only every 2 years and by summing them
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   /*2 eme*/     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<= nlstate+1 ; i ++) {       nhstepm is the number of hstepm from age to agelim 
       k=2*i;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
       for (j=1; j<= nlstate+1 ; j ++) {       and note for a fixed period like estepm months */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }         means that if the survival funtion is printed only each two years of age and if
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    */
       for (j=1; j<= nlstate+1 ; j ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
 }      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,"\" t\"\" w l 0,");      /* nhstepm age range expressed in number of stepm */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       for (j=1; j<= nlstate+1 ; j ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* if (stepm >= YEARM) hstepm=1;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       else fprintf(ficgp,"\" t\"\" w l 0,");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*3eme*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      /* Computing Variances of health expectancies */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       for(theta=1; theta <=npar; theta++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(i=1; i<=npar; i++){ 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
 */        cptj=0;
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
       }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     }            }
     }          }
          }
   /* CV preval stat */       
     for (k1=1; k1<= m ; k1 ++) {       
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(i=1; i<=npar; i++) 
       k=3;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
       for (i=1; i< nlstate ; i ++)        cptj=0;
         fprintf(ficgp,"+$%d",k+i+1);        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          for(i=1;i<=nlstate;i++){
                  cptj=cptj+1;
       l=3+(nlstate+ndeath)*cpt;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);          }
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(j=1; j<= nlstate*nlstate; j++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }            }
         } 
   /* proba elementaires */     
    for(i=1,jk=1; i <=nlstate; i++){  /* End theta */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for(j=1; j <=ncovmodel; j++){  
               for(h=0; h<=nhstepm-1; h++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=1; j<=nlstate*nlstate;j++)
           jk++;          for(theta=1; theta <=npar; theta++)
           fprintf(ficgp,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
         }       
       }  
     }       for(i=1;i<=nlstate*nlstate;i++)
     }        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       printf("%d|",(int)age);fflush(stdout);
    i=1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    for(k2=1; k2<=nlstate; k2++) {       for(h=0;h<=nhstepm-1;h++){
      k3=i;        for(k=0;k<=nhstepm-1;k++){
      for(k=1; k<=(nlstate+ndeath); k++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        if (k != k2){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(i=1;i<=nlstate*nlstate;i++)
 ij=1;            for(j=1;j<=nlstate*nlstate;j++)
         for(j=3; j <=ncovmodel; j++) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
             ij++;      /* Computing expectancies */
           }      for(i=1; i<=nlstate;i++)
           else        for(j=1; j<=nlstate;j++)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           fprintf(ficgp,")/(1");            
          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;  
           for(j=3; j <=ncovmodel; j++){      fprintf(ficreseij,"%3.0f",age );
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      cptj=0;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(i=1; i<=nlstate;i++)
             ij++;        for(j=1; j<=nlstate;j++){
           }          cptj++;
           else          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
           }      fprintf(ficreseij,"\n");
           fprintf(ficgp,")");     
         }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         i=i+ncovmodel;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    }
    }    printf("\n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficlog,"\n");
    }  
        free_vector(xp,1,npar);
   fclose(ficgp);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 }  /* end gnuplot */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   int i, cpt, cptcod;  {
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* Variance of health expectancies */
       for (i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* double **newm;*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    int i, j, nhstepm, hstepm, h, nstepm ;
       for (i=1; i<=nlstate;i++){    int k, cptcode;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *xp;
           for (cpt=0;cpt<=4;cpt++){    double **gp, **gm;  /* for var eij */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double ***gradg, ***trgradg; /*for var eij */
           }    double **gradgp, **trgradgp; /* for var p point j */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double *gpp, *gmp; /* for var p point j */
         }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       }    double ***p3mat;
     }    double age,agelim, hf;
        double ***mobaverage;
 }    int theta;
     char digit[4];
     char digitp[25];
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    char fileresprobmorprev[FILENAMELENGTH];
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if(popbased==1){
   int *popage;      if(mobilav!=0)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        strcpy(digitp,"-populbased-mobilav-");
   double *popeffectif,*popcount;      else strcpy(digitp,"-populbased-nomobil-");
   double ***p3mat;    }
   char fileresf[FILENAMELENGTH];    else 
       strcpy(digitp,"-stablbased-");
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileresf,"f");      }
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   if (mobilav==1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (stepm<=12) stepsize=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   agelim=AGESUP;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   yp1=modf(dateintmean,&yp);    }  
   anprojmean=yp;    fprintf(ficresprobmorprev,"\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficgp,"\n# Routine varevsij");
   mprojmean=yp;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   jprojmean=yp;  /*   } */
   if(jprojmean==0) jprojmean=1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if(mprojmean==0) jprojmean=1;  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){      for(j=1; j<=nlstate;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       k=k+1;    fprintf(ficresvij,"\n");
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    xp=vector(1,npar);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresf,"******\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
          gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
          gpp=vector(nlstate+1,nlstate+ndeath);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    gmp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      
     if(estepm < stepm){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    else  hstepm=estepm;   
              /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           for (h=0; h<=nhstepm; h++){       and note for a fixed period like k years */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed every two years of age and if
             for(j=1; j<=nlstate+ndeath;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;kk2=0;       results. So we changed our mind and took the option of the best precision.
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    agelim = AGESUP;
                 else {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
               if (h==(int)(calagedate+12*cpt)){      gp=matrix(0,nhstepm,1,nlstate);
                 fprintf(ficresf," %.3f", kk1);      gm=matrix(0,nhstepm,1,nlstate);
                          
               }  
             }      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
                if (popbased==1) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   fclose(ficresf);              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
 /************** Forecasting ******************/            for(i=1; i<=nlstate;i++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(j=1; j<= nlstate; j++){
   double *popeffectif,*popcount;          for(h=0; h<=nhstepm; h++){
   double ***p3mat,***tabpop,***tabpopprev;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* This for computing probability of death (h=1 means
   agelim=AGESUP;           computed over hstepm matrices product = hstepm*stepm months) 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;           as a weighted average of prlim.
          */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcpy(filerespop,"pop");        }    
   strcat(filerespop,fileres);        /* end probability of death */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
         if (popbased==1) {
   if (mobilav==1) {          if(mobilav ==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              prlim[i][i]=mobaverage[(int)age][i][ij];
   if (stepm<=12) stepsize=1;          }
          }
   agelim=AGESUP;  
          for(j=1; j<= nlstate; j++){
   hstepm=1;          for(h=0; h<=nhstepm; h++){
   hstepm=hstepm/stepm;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {        }
       printf("Problem with population file : %s\n",popfile);exit(0);        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     popage=ivector(0,AGESUP);           as a weighted average of prlim.
     popeffectif=vector(0,AGESUP);        */
     popcount=vector(0,AGESUP);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     i=1;             gmp[j] += prlim[i][i]*p3mat[i][j][1];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }    
            /* end probability of death */
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for(cptcov=1;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficrespop,"\n#******");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      } /* End theta */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(h=0; h<=nhstepm; h++) /* veij */
              for(j=1; j<=nlstate;j++)
       for (cpt=0; cpt<=0;cpt++) {          for(theta=1; theta <=npar; theta++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              trgradg[h][j][theta]=gradg[h][theta][j];
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;          trgradgp[j][theta]=gradgp[theta][j];
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){          vareij[i][j][(int)age] =0.;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(h=0;h<=nhstepm;h++){
             }        for(k=0;k<=nhstepm;k++){
             for(j=1; j<=nlstate+ndeath;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
               kk1=0.;kk2=0;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               for(i=1; i<=nlstate;i++) {                        for(i=1;i<=nlstate;i++)
                 if (mobilav==1)            for(j=1;j<=nlstate;j++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    
               }      /* pptj */
               if (h==(int)(calagedate+12*cpt)){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   /*fprintf(ficrespop," %.3f", kk1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               }          varppt[j][i]=doldmp[j][i];
             }      /* end ppptj */
             for(i=1; i<=nlstate;i++){      /*  x centered again */
               kk1=0.;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                 for(j=1; j<=nlstate;j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }      if (popbased==1) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        if(mobilav ==0){
             }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }else{ /* mobilav */ 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=mobaverage[(int)age][i][ij];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }      }
       }               
        /* This for computing probability of death (h=1 means
   /******/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           nhstepm = nhstepm/hstepm;      }    
                /* end probability of death */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=nlstate;i++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      } 
               kk1=0.;kk2=0;      fprintf(ficresprobmorprev,"\n");
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(ficresvij,"%.0f ",age );
               }      for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(j=1; j<=nlstate;j++){
             }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"\n");
         }      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
    }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_ivector(popage,0,AGESUP);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(popcount,0,AGESUP);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fclose(ficrespop);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 /***********************************************/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 /**************** Main Program *****************/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 /***********************************************/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 int main(int argc, char *argv[])    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 {  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   double fret;    free_matrix(dnewm,1,nlstate,1,npar);
   double **xi,tmp,delta;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double dum; /* Dummy variable */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***p3mat;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int *indx;    fclose(ficresprobmorprev);
   char line[MAXLINE], linepar[MAXLINE];    fflush(ficgp);
   char title[MAXLINE];    fflush(fichtm); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  }  /* end varevsij */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
    /************ Variance of prevlim ******************/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   char filerest[FILENAMELENGTH];    /* Variance of prevalence limit */
   char fileregp[FILENAMELENGTH];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   char popfile[FILENAMELENGTH];    double **newm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **dnewm,**doldm;
   int firstobs=1, lastobs=10;    int i, j, nhstepm, hstepm;
   int sdeb, sfin; /* Status at beginning and end */    int k, cptcode;
   int c,  h , cpt,l;    double *xp;
   int ju,jl, mi;    double *gp, *gm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double **gradg, **trgradg;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double age,agelim;
   int mobilav=0,popforecast=0;    int theta;
   int hstepm, nhstepm;     
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   double bage, fage, age, agelim, agebase;    for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;        fprintf(ficresvpl," %1d-%1d",i,i);
   double **prlim;    fprintf(ficresvpl,"\n");
   double *severity;  
   double ***param; /* Matrix of parameters */    xp=vector(1,npar);
   double  *p;    dnewm=matrix(1,nlstate,1,npar);
   double **matcov; /* Matrix of covariance */    doldm=matrix(1,nlstate,1,nlstate);
   double ***delti3; /* Scale */    
   double *delti; /* Scale */    hstepm=1*YEARM; /* Every year of age */
   double ***eij, ***vareij;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double **varpl; /* Variances of prevalence limits by age */    agelim = AGESUP;
   double *epj, vepp;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double kk1, kk2;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      gp=vector(1,nlstate);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
   char z[1]="c", occ;        for(i=1; i<=npar; i++){ /* Computes gradient */
 #include <sys/time.h>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   /* long total_usecs;          gp[i] = prlim[i][i];
   struct timeval start_time, end_time;      
          for(i=1; i<=npar; i++) /* Computes gradient */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   getcwd(pathcd, size);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   printf("\n%s",version);          gm[i] = prlim[i][i];
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");        for(i=1;i<=nlstate;i++)
     scanf("%s",pathtot);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   else{  
     strcpy(pathtot,argv[1]);      trgradg =matrix(1,nlstate,1,npar);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      for(j=1; j<=nlstate;j++)
   /*cygwin_split_path(pathtot,path,optionfile);        for(theta=1; theta <=npar; theta++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          trgradg[j][theta]=gradg[theta][j];
   /* cutv(path,optionfile,pathtot,'\\');*/  
       for(i=1;i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        varpl[i][(int)age] =0.;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   chdir(path);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   replace(pathc,path);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 /*-------- arguments in the command line --------*/  
       fprintf(ficresvpl,"%.0f ",age );
   strcpy(fileres,"r");      for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   strcat(fileres,".txt");    /* Other files have txt extension */      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   /*---------arguments file --------*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      free_matrix(trgradg,1,nlstate,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    } /* End age */
     goto end;  
   }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   strcpy(filereso,"o");    free_matrix(dnewm,1,nlstate,1,nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, j=0,  i1, k1, l1, t, tj;
     ungetc(c,ficpar);    int k2, l2, j1,  z1;
     fgets(line, MAXLINE, ficpar);    int k=0,l, cptcode;
     puts(line);    int first=1, first1;
     fputs(line,ficparo);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   ungetc(c,ficpar);    double *xp;
     double *gp, *gm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **gradg, **trgradg;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **mu;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double age,agelim, cov[NCOVMAX];
 while((c=getc(ficpar))=='#' && c!= EOF){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    char fileresprob[FILENAMELENGTH];
     puts(line);    char fileresprobcov[FILENAMELENGTH];
     fputs(line,ficparo);    char fileresprobcor[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    double ***varpij;
    
        strcpy(fileresprob,"prob"); 
   covar=matrix(0,NCOVMAX,1,n);    strcat(fileresprob,fileres);
   cptcovn=0;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   /* Read guess parameters */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    strcpy(fileresprobcor,"probcor"); 
     puts(line);    strcat(fileresprobcor,fileres);
     fputs(line,ficparo);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(i=1; i <=nlstate; i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       printf("%1d%1d",i,j);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         printf(" %lf",param[i][j][k]);    fprintf(ficresprob,"# Age");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       fscanf(ficpar,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       printf("\n");    fprintf(ficresprobcov,"# Age");
       fprintf(ficparo,"\n");  
     }  
      for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   p=param[1][1];        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /* Reads comments: lines beginning with '#' */      }  
   while((c=getc(ficpar))=='#' && c!= EOF){   /* fprintf(ficresprob,"\n");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcor,"\n");
     puts(line);   */
     fputs(line,ficparo);   xp=vector(1,npar);
   }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    first=1;
   for(i=1; i <=nlstate; i++){    fprintf(ficgp,"\n# Routine varprob");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(fichtm,"\n");
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    cov[1]=1;
       }    tj=cptcoveff;
       fscanf(ficpar,"\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       printf("\n");    j1=0;
       fprintf(ficparo,"\n");    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
   delti=delti3[1][1];        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   /* Reads comments: lines beginning with '#' */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob, "**********\n#\n");
     ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprobcov, "**********\n#\n");
     fputs(line,ficparo);          
   }          fprintf(ficgp, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   matcov=matrix(1,npar,1,npar);          
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     printf("%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficparo,"%s",str);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(j=1; j <=i; j++){          
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficresprobcor, "\n#********** Variable ");    
       printf(" %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresprobcor, "**********\n#");    
     }        }
     fscanf(ficpar,"\n");        
     printf("\n");        for (age=bage; age<=fage; age ++){ 
     fprintf(ficparo,"\n");          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   for(i=1; i <=npar; i++)            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
   printf("\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     /*-------- Rewriting paramater file ----------*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      strcpy(rfileres,"r");    /* "Rparameterfile */          gp=vector(1,(nlstate)*(nlstate+ndeath));
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
      strcat(rfileres,".");    /* */      
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(theta=1; theta <=npar; theta++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<=npar; i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
     fprintf(ficres,"#%s\n",version);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                
     /*-------- data file ----------*/            k=0;
     if((fic=fopen(datafile,"r"))==NULL)    {            for(i=1; i<= (nlstate); i++){
       printf("Problem with datafile: %s\n", datafile);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
                 gp[k]=pmmij[i][j];
     n= lastobs;              }
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);            
     num=ivector(1,n);            for(i=1; i<=npar; i++)
     moisnais=vector(1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     annais=vector(1,n);      
     moisdc=vector(1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     andc=vector(1,n);            k=0;
     agedc=vector(1,n);            for(i=1; i<=(nlstate); i++){
     cod=ivector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     weight=vector(1,n);                k=k+1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                gm[k]=pmmij[i][j];
     mint=matrix(1,maxwav,1,n);              }
     anint=matrix(1,maxwav,1,n);            }
     s=imatrix(1,maxwav+1,1,n);       
     adl=imatrix(1,maxwav+1,1,n);                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     tab=ivector(1,NCOVMAX);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     ncodemax=ivector(1,8);          }
   
     i=1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(theta=1; theta <=npar; theta++)
       if ((i >= firstobs) && (i <=lastobs)) {              trgradg[j][theta]=gradg[theta][j];
                  
         for (j=maxwav;j>=1;j--){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           strcpy(line,stra);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          
           k=0;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
         for (j=ncovcol;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         num[i]=atol(stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                      varpij[i][j][(int)age] = doldm[i][j];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         i=i+1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/          fprintf(ficresprob,"\n%d ",(int)age);
   imx=i-1; /* Number of individuals */          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    /*  for (i=1; i<=imx; i++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      if (s[4][i]==9)  s[4][i]=-1;          }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          i=0;
            for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   /* Calculation of the number of parameter from char model*/              i=i++;
   Tvar=ivector(1,15);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   Tprod=ivector(1,15);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   Tvaraff=ivector(1,15);              for (j=1; j<=i;j++){
   Tvard=imatrix(1,15,1,2);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   Tage=ivector(1,15);                      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                  }
   if (strlen(model) >1){            }
     j=0, j1=0, k1=1, k2=1;          }/* end of loop for state */
     j=nbocc(model,'+');        } /* end of loop for age */
     j1=nbocc(model,'*');  
     cptcovn=j+1;        /* Confidence intervalle of pij  */
     cptcovprod=j1;        /*
              fprintf(ficgp,"\nset noparametric;unset label");
     strcpy(modelsav,model);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       printf("Error. Non available option model=%s ",model);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       goto end;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for(i=(j+1); i>=1;i--){        */
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        first1=1;
       /*scanf("%d",i);*/        for (k2=1; k2<=(nlstate);k2++){
       if (strchr(strb,'*')) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         cutv(strd,strc,strb,'*');            if(l2==k2) continue;
         if (strcmp(strc,"age")==0) {            j=(k2-1)*(nlstate+ndeath)+l2;
           cptcovprod--;            for (k1=1; k1<=(nlstate);k1++){
           cutv(strb,stre,strd,'V');              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           Tvar[i]=atoi(stre);                if(l1==k1) continue;
           cptcovage++;                i=(k1-1)*(nlstate+ndeath)+l1;
             Tage[cptcovage]=i;                if(i<=j) continue;
             /*printf("stre=%s ", stre);*/                for (age=bage; age<=fage; age ++){ 
         }                  if ((int)age %5==0){
         else if (strcmp(strd,"age")==0) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           cptcovprod--;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cutv(strb,stre,strc,'V');                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvar[i]=atoi(stre);                    mu1=mu[i][(int) age]/stepm*YEARM ;
           cptcovage++;                    mu2=mu[j][(int) age]/stepm*YEARM;
           Tage[cptcovage]=i;                    c12=cv12/sqrt(v1*v2);
         }                    /* Computing eigen value of matrix of covariance */
         else {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(strb,stre,strc,'V');                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[i]=ncovcol+k1;                    /* Eigen vectors */
           cutv(strb,strc,strd,'V');                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           Tprod[k1]=i;                    /*v21=sqrt(1.-v11*v11); *//* error */
           Tvard[k1][1]=atoi(strc);                    v21=(lc1-v1)/cv12*v11;
           Tvard[k1][2]=atoi(stre);                    v12=-v21;
           Tvar[cptcovn+k2]=Tvard[k1][1];                    v22=v11;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    tnalp=v21/v11;
           for (k=1; k<=lastobs;k++)                    if(first1==1){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      first1=0;
           k1++;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           k2=k2+2;                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
       else {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        /*  scanf("%d",i);*/                    if(first==1){
       cutv(strd,strc,strb,'V');                      first=0;
       Tvar[i]=atoi(strc);                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       strcpy(modelsav,stra);                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         scanf("%d",i);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("cptcovprod=%d ", cptcovprod);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   scanf("%d ",i);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fclose(fic);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /*  if(mle==1){*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     if (weightopt != 1) { /* Maximisation without weights*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(i=1;i<=n;i++) weight[i]=1.0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
     /*-calculation of age at interview from date of interview and age at death -*/                      first=0;
     agev=matrix(1,maxwav,1,imx);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     for (i=1; i<=imx; i++) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(m=2; (m<= maxwav); m++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          anint[m][i]=9999;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          s[m][i]=-1;                    }/* if first */
        }                  } /* age mod 5 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                first=1;
               } /*l12 */
     for (i=1; i<=imx; i++)  {            } /* k12 */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          } /*l1 */
       for(m=1; (m<= maxwav); m++){        }/* k1 */
         if(s[m][i] >0){      } /* loop covariates */
           if (s[m][i] >= nlstate+1) {    }
             if(agedc[i]>0)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
               if(moisdc[i]!=99 && andc[i]!=9999)    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                 agev[m][i]=agedc[i];    free_vector(xp,1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fclose(ficresprob);
            else {    fclose(ficresprobcov);
               if (andc[i]!=9999){    fclose(ficresprobcor);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /*  fclose(ficgp);*/
               agev[m][i]=-1;  }
               }  
             }  
           }  /******************* Printing html file ***********/
           else if(s[m][i] !=9){ /* Should no more exist */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    int lastpass, int stepm, int weightopt, char model[],\
             if(mint[m][i]==99 || anint[m][i]==9999)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               agev[m][i]=1;                    int popforecast, int estepm ,\
             else if(agev[m][i] <agemin){                    double jprev1, double mprev1,double anprev1, \
               agemin=agev[m][i];                    double jprev2, double mprev2,double anprev2){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int jj1, k1, i1, cpt;
             }    /*char optionfilehtm[FILENAMELENGTH];*/
             else if(agev[m][i] >agemax){  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
               agemax=agev[m][i];  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
             }  /*   } */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
           }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
           else { /* =9 */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
             agev[m][i]=1;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
             s[m][i]=-1;   - Life expectancies by age and initial health status (estepm=%2d months): \
           }     <a href=\"%s\">%s</a> <br>\n</li>", \
         }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
         else /*= 0 Unknown */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
           agev[m][i]=1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
       }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){   m=cptcoveff;
         if (s[m][i] > (nlstate+ndeath)) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;   jj1=0;
         }   for(k1=1; k1<=m;k1++){
       }     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
        if (cptcovn > 0) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
     free_vector(severity,1,maxwav);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_imatrix(outcome,1,maxwav+1,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(moisnais,1,n);       }
     free_vector(annais,1,n);       /* Pij */
     /* free_matrix(mint,1,maxwav,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
        free_matrix(anint,1,maxwav,1,n);*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     free_vector(moisdc,1,n);       /* Quasi-incidences */
     free_vector(andc,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     wav=ivector(1,imx);         /* Stable prevalence in each health state */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         for(cpt=1; cpt<nlstate;cpt++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     /* Concatenates waves */         }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       Tcode=ivector(1,100);       }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       ncodemax[1]=1;  health expectancies in states (1) and (2): %s%d.png<br>\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           } /* end i1 */
    codtab=imatrix(1,100,1,10);   }/* End k1 */
    h=0;   fprintf(fichtm,"</ul>");
    m=pow(2,cptcoveff);  
    
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
      for(i=1; i <=(m/pow(2,k));i++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
        for(j=1; j <= ncodemax[k]; j++){   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
            h++;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
          }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
        }           rfileres,rfileres,\
      }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
    }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       codtab[1][2]=1;codtab[2][2]=2; */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
    /* for(i=1; i <=m ;i++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       for(k=1; k <=cptcovn; k++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       scanf("%d",i);*/  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        and prints on file fileres'p'. */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
       m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       jj1++;
             if (cptcovn > 0) {
     /* For Powell, parameters are in a vector p[] starting at p[1]         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         for (cpt=1; cpt<=cptcoveff;cpt++) 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     if(mle==1){       }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
      interval) in state (%d): %s%d%d.png <br>\
     /*--------- results files --------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       }
       } /* end i1 */
    }/* End k1 */
    jk=1;   fprintf(fichtm,"</ul>");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fflush(fichtm);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  /******************* Gnuplot file **************/
        if (k != i)  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
          {  
            printf("%d%d ",i,k);    char dirfileres[132],optfileres[132];
            fprintf(ficres,"%1d%1d ",i,k);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
            for(j=1; j <=ncovmodel; j++){    int ng;
              printf("%f ",p[jk]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
              fprintf(ficres,"%f ",p[jk]);  /*     printf("Problem with file %s",optionfilegnuplot); */
              jk++;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
            }  /*   } */
            printf("\n");  
            fprintf(ficres,"\n");    /*#ifdef windows */
          }    fprintf(ficgp,"cd \"%s\" \n",pathc);
      }      /*#endif */
    }    m=pow(2,cptcoveff);
  if(mle==1){  
     /* Computing hessian and covariance matrix */    strcpy(dirfileres,optionfilefiname);
     ftolhess=ftol; /* Usually correct */    strcpy(optfileres,"vpl");
     hesscov(matcov, p, npar, delti, ftolhess, func);   /* 1eme*/
  }    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     for (k1=1; k1<= m ; k1 ++) {
     printf("# Scales (for hessian or gradient estimation)\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for(j=1; j <=nlstate+ndeath; j++){       fprintf(ficgp,"set xlabel \"Age\" \n\
         if (j!=i) {  set ylabel \"Probability\" \n\
           fprintf(ficres,"%1d%1d",i,j);  set ter png small\n\
           printf("%1d%1d",i,j);  set size 0.65,0.65\n\
           for(k=1; k<=ncovmodel;k++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);       for (i=1; i<= nlstate ; i ++) {
             jk++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("\n");       }
           fprintf(ficres,"\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         }       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           } 
     k=1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       for (i=1; i<= nlstate ; i ++) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=npar;i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*  if (k>nlstate) k=1;       }  
       i1=(i-1)/(ncovmodel*nlstate)+1;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);    /*2 eme*/
       printf("%3d",i);    
       for(j=1; j<=i;j++){    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         printf(" %.5e",matcov[i][j]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
       fprintf(ficres,"\n");      for (i=1; i<= nlstate+1 ; i ++) {
       printf("\n");        k=2*i;
       k++;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
              if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     while((c=getc(ficpar))=='#' && c!= EOF){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       ungetc(c,ficpar);        }   
       fgets(line, MAXLINE, ficpar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       puts(line);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       fputs(line,ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
     ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     estepm=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        }   
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficgp,"\" t\"\" w l 0,");
     if (fage <= 2) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       bage = ageminpar;        for (j=1; j<= nlstate+1 ; j ++) {
       fage = agemaxpar;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
      }
     while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /*3eme*/
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        k=2+nlstate*(2*cpt-2);
   ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  set size 0.65,0.65\n\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fgets(line, MAXLINE, ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     puts(line);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fputs(line,ficparo);          
   }        */
   ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        } 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      }
     }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    
   fprintf(ficparo,"pop_based=%d\n",popbased);      /* CV preval stable (period) */
   fprintf(ficres,"pop_based=%d\n",popbased);      for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){        k=3;
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     puts(line);  set ter png small\nset size 0.65,0.65\n\
     fputs(line,ficparo);  unset log y\n\
   }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   ungetc(c,ficpar);        
         for (i=1; i< nlstate ; i ++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficgp,"+$%d",k+i+1);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++) {
     ungetc(c,ficpar);          l=3+(nlstate+ndeath)*cpt;
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"+$%d",l+i+1);
     puts(line);        }
     fputs(line,ficparo);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   }      } 
   ungetc(c,ficpar);    }  
     
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /* proba elementaires */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(i=1,jk=1; i <=nlstate; i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 /*------------ gnuplot -------------*/            jk++; 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            fprintf(ficgp,"\n");
            }
 /*------------ free_vector  -------------*/        }
  chdir(path);      }
       }
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         for(jk=1; jk <=m; jk++) {
  free_ivector(num,1,n);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  free_vector(agedc,1,n);         if (ng==2)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
  fclose(ficparo);         else
  fclose(ficres);           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 /*--------- index.htm --------*/         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   /*--------------- Prevalence limit --------------*/               if(ng==2)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   strcpy(filerespl,"pl");               else
   strcat(filerespl,fileres);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {               ij=1;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fprintf(ficrespl,"#Prevalence limit\n");                   ij++;
   fprintf(ficrespl,"#Age ");                 }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                 else
   fprintf(ficrespl,"\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }
   prlim=matrix(1,nlstate,1,nlstate);               fprintf(ficgp,")/(1");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               for(k1=1; k1 <=nlstate; k1++){   
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 ij=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                 for(j=3; j <=ncovmodel; j++){
   k=0;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   agebase=ageminpar;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   agelim=agemaxpar;                     ij++;
   ftolpl=1.e-10;                   }
   i1=cptcoveff;                   else
   if (cptcovn < 1){i1=1;}                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   for(cptcov=1;cptcov<=i1;cptcov++){                 fprintf(ficgp,")");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               }
         k=k+1;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fprintf(ficrespl,"\n#******");               i=i+ncovmodel;
         for(j=1;j<=cptcoveff;j++)             }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           } /* end k */
         fprintf(ficrespl,"******\n");         } /* end k2 */
               } /* end jk */
         for (age=agebase; age<=agelim; age++){     } /* end ng */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     fflush(ficgp); 
           fprintf(ficrespl,"%.0f",age );  }  /* end gnuplot */
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /*************** Moving average **************/
         }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       }  
     }    int i, cpt, cptcod;
   fclose(ficrespl);    int modcovmax =1;
     int mobilavrange, mob;
   /*------------- h Pij x at various ages ------------*/    double age;
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                             a covariate has 2 modalities */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      else mobilavrange=mobilav;
   /*if (stepm<=24) stepsize=2;*/      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
   agelim=AGESUP;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   hstepm=stepsize*YEARM; /* Every year of age */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   k=0;         we use a 5 terms etc. until the borders are no more concerned. 
   for(cptcov=1;cptcov<=i1;cptcov++){      */ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
       k=k+1;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         fprintf(ficrespij,"\n#****** ");          for (i=1; i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++)            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficrespij,"******\n");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                          mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }/* end age */
           fprintf(ficrespij,"# Age");      }/* end mob */
           for(i=1; i<=nlstate;i++)    }else return -1;
             for(j=1; j<=nlstate+ndeath;j++)    return 0;
               fprintf(ficrespij," %1d-%1d",i,j);  }/* End movingaverage */
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /************** Forecasting ******************/
             for(i=1; i<=nlstate;i++)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
               for(j=1; j<=nlstate+ndeath;j++)    /* proj1, year, month, day of starting projection 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       agemin, agemax range of age
             fprintf(ficrespij,"\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
              }       anproj2 year of en of projection (same day and month as proj1).
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
           fprintf(ficrespij,"\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         }    int *popage;
     }    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double ***p3mat;
     double ***mobaverage;
   fclose(ficrespij);    char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
   /*---------- Forecasting ------------------*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   if((stepm == 1) && (strcmp(model,".")==0)){   
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    strcpy(fileresf,"f"); 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    strcat(fileresf,fileres);
   }    if((ficresf=fopen(fileresf,"w"))==NULL) {
   else{      printf("Problem with forecast resultfile: %s\n", fileresf);
     erreur=108;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    printf("Computing forecasting: result on file '%s' \n", fileresf);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   /*---------- Health expectancies and variances ------------*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   strcpy(filerest,"t");    if (mobilav!=0) {
   strcat(filerest,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrest=fopen(filerest,"w"))==NULL) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      }
     }
   
   strcpy(filerese,"e");    stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcat(filerese,fileres);    if (stepm<=12) stepsize=1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    else  hstepm=estepm;   
   
  strcpy(fileresv,"v");    hstepm=hstepm/stepm; 
   strcat(fileresv,fileres);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                                 fractional in yp1 */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    mprojmean=yp;
   calagedate=-1;    yp1=modf((yp2*30.5),&yp);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   k=0;    if(mprojmean==0) jprojmean=1;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    i1=cptcoveff;
       k=k+1;    if (cptcovn < 1){i1=1;}
       fprintf(ficrest,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficrest,"******\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
       fprintf(ficreseij,"\n#****** ");  /*            if (h==(int)(YEARM*yearp)){ */
       for(j=1;j<=cptcoveff;j++)    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficreseij,"******\n");        k=k+1;
         fprintf(ficresf,"\n#******");
       fprintf(ficresvij,"\n#****** ");        for(j=1;j<=cptcoveff;j++) {
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficresvij,"******\n");        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1; j<=nlstate+ndeath;j++){ 
       oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)              
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              fprintf(ficresf," p%d%d",i,j);
            fprintf(ficresf," p.%d",j);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficresf,"\n");
              fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
            for (agec=fage; agec>=(ageminpar-1); agec--){ 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            nhstepm = nhstepm/hstepm; 
       fprintf(ficrest,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
       epj=vector(1,nlstate+1);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       for(age=bage; age <=fage ;age++){          
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (h=0; h<=nhstepm; h++){
         if (popbased==1) {              if (h*hstepm/YEARM*stepm ==yearp) {
           for(i=1; i<=nlstate;i++)                fprintf(ficresf,"\n");
             prlim[i][i]=probs[(int)age][i][k];                for(j=1;j<=cptcoveff;j++) 
         }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                        fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         fprintf(ficrest," %4.0f",age);              } 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              for(j=1; j<=nlstate+ndeath;j++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                ppij=0.;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                for(i=1; i<=nlstate;i++) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                  if (mobilav==1) 
           }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           epj[nlstate+1] +=epj[j];                  else {
         }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
         for(i=1, vepp=0.;i <=nlstate;i++)                  if (h*hstepm/YEARM*stepm== yearp) {
           for(j=1;j <=nlstate;j++)                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
             vepp += vareij[i][j][(int)age];                  }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                } /* end i */
         for(j=1;j <=nlstate;j++){                if (h*hstepm/YEARM*stepm==yearp) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                  fprintf(ficresf," %.3f", ppij);
         }                }
         fprintf(ficrest,"\n");              }/* end j */
       }            } /* end h */
     }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          } /* end agec */
 free_matrix(mint,1,maxwav,1,n);        } /* end yearp */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      } /* end cptcod */
     free_vector(weight,1,n);    } /* end  cptcov */
   fclose(ficreseij);         
   fclose(ficresvij);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrest);  
   fclose(ficpar);    fclose(ficresf);
   free_vector(epj,1,nlstate+1);  }
    
   /*------- Variance limit prevalence------*/    /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int *popage;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double calagedatem, agelim, kk1, kk2;
     exit(0);    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       k=k+1;    agelim=AGESUP;
       fprintf(ficresvpl,"\n#****** ");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficresvpl,"******\n");    
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(filerespop,"pop"); 
       oldm=oldms;savm=savms;    strcat(filerespop,fileres);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", filerespop);
  }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   fclose(ficresvpl);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (mobilav!=0) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_matrix(matcov,1,npar,1,npar);    if (stepm<=12) stepsize=1;
   free_vector(delti,1,npar);    
   free_matrix(agev,1,maxwav,1,imx);    agelim=AGESUP;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     hstepm=1;
   if(erreur >0)    hstepm=hstepm/stepm; 
     printf("End of Imach with error or warning %d\n",erreur);    
   else   printf("End of Imach\n");    if (popforecast==1) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      } 
   /*------ End -----------*/      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
  end:      
   /* chdir(pathcd);*/      i=1;   
  /*system("wgnuplot graph.plt");*/      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
  /*system("../gp37mgw/wgnuplot graph.plt");*/     
  /*system("cd ../gp37mgw");*/      imx=i;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  system(plotcmd);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
  /*#ifdef windows*/        fprintf(ficrespop,"\n#******");
   while (z[0] != 'q') {        for(j=1;j<=cptcoveff;j++) {
     /* chdir(path); */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }
     scanf("%s",z);        fprintf(ficrespop,"******\n");
     if (z[0] == 'c') system("./imach");        fprintf(ficrespop,"# Age");
     else if (z[0] == 'e') system(optionfilehtm);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     else if (z[0] == 'g') system(plotcmd);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     else if (z[0] == 'q') exit(0);        
   }        for (cpt=0; cpt<=0;cpt++) { 
   /*#endif */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 }          
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.89


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>