Diff for /imach/src/imach.c between versions 1.2 and 1.90

version 1.2, 2001/03/13 18:10:26 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.90  2003/06/24 12:34:15  brouard
   individuals from different ages are interviewed on their health status    (Module): Some bugs corrected for windows. Also, when
   or degree of  disability. At least a second wave of interviews    mle=-1 a template is output in file "or"mypar.txt with the design
   ("longitudinal") should  measure each new individual health status.    of the covariance matrix to be input.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.89  2003/06/24 12:30:52  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Some bugs corrected for windows. Also, when
   reach the Maximum Likelihood of the parameters involved in the model.    mle=-1 a template is output in file "or"mypar.txt with the design
   The simplest model is the multinomial logistic model where pij is    of the covariance matrix to be input.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.88  2003/06/23 17:54:56  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.87  2003/06/18 12:26:01  brouard
     *Covariates have to be included here again* invites you to do it.    Version 0.96
   More covariates you add, less is the speed of the convergence.  
     Revision 1.86  2003/06/17 20:04:08  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Change position of html and gnuplot routines and added
   delay between waves is not identical for each individual, or if some    routine fileappend.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Check when date of death was earlier that
   observed in state i at age x+h conditional to the observed state i at age    current date of interview. It may happen when the death was just
   x. The delay 'h' can be split into an exact number (nh*stepm) of    prior to the death. In this case, dh was negative and likelihood
   unobserved intermediate  states. This elementary transition (by month or    was wrong (infinity). We still send an "Error" but patch by
   quarter trimester, semester or year) is model as a multinomial logistic.    assuming that the date of death was just one stepm after the
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply hPijx.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   Also this programme outputs the covariance matrix of the parameters but also    memory allocation. But we also truncated to 8 characters (left
   of the life expectancies. It also computes the prevalence limits.    truncation)
      (Repository): No more line truncation errors.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.84  2003/06/13 21:44:43  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Replace "freqsummary" at a correct
   from the European Union.    place. It differs from routine "prevalence" which may be called
   It is copyrighted identically to a GNU software product, ie programme and    many times. Probs is memory consuming and must be used with
   software can be distributed freely for non commercial use. Latest version    parcimony.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   **********************************************************************/  
      Revision 1.83  2003/06/10 13:39:11  lievre
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <unistd.h>    Add log in  imach.c and  fullversion number is now printed.
   
 #define MAXLINE 256  */
 #define FILENAMELENGTH 80  /*
 /*#define DEBUG*/     Interpolated Markov Chain
 #define windows  
     Short summary of the programme:
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NINTERVMAX 8    first survey ("cross") where individuals from different ages are
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    interviewed on their health status or degree of disability (in the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    case of a health survey which is our main interest) -2- at least a
 #define NCOVMAX 8 /* Maximum number of covariates */    second wave of interviews ("longitudinal") which measure each change
 #define MAXN 80000    (if any) in individual health status.  Health expectancies are
 #define YEARM 12. /* Number of months per year */    computed from the time spent in each health state according to a
 #define AGESUP 130    model. More health states you consider, more time is necessary to reach the
 #define AGEBASE 40    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 int nvar;    conditional to be observed in state i at the first wave. Therefore
 static int cptcov;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int cptcovn;    'age' is age and 'sex' is a covariate. If you want to have a more
 int npar=NPARMAX;    complex model than "constant and age", you should modify the program
 int nlstate=2; /* Number of live states */    where the markup *Covariates have to be included here again* invites
 int ndeath=1; /* Number of dead states */    you to do it.  More covariates you add, slower the
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    convergence.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    The advantage of this computer programme, compared to a simple
 int maxwav; /* Maxim number of waves */    multinomial logistic model, is clear when the delay between waves is not
 int mle, weightopt;    identical for each individual. Also, if a individual missed an
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    intermediate interview, the information is lost, but taken into
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    account using an interpolation or extrapolation.  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    hPijx is the probability to be observed in state i at age x+h
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    conditional to the observed state i at age x. The delay 'h' can be
 FILE *ficgp, *fichtm;    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *ficreseij;    states. This elementary transition (by month, quarter,
   char filerese[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
  FILE  *ficresvij;    matrix is simply the matrix product of nh*stepm elementary matrices
   char fileresv[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
  FILE  *ficresvpl;    hPijx.
   char fileresvpl[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
     
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define NR_END 1             Institut national d'études démographiques, Paris.
 #define FREE_ARG char*    This software have been partly granted by Euro-REVES, a concerted action
 #define FTOL 1.0e-10    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define NRANSI    software can be distributed freely for non commercial use. Latest version
 #define ITMAX 200    can be accessed at http://euroreves.ined.fr/imach .
   
 #define TOL 2.0e-4    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define CGOLD 0.3819660    
 #define ZEPS 1.0e-10    **********************************************************************/
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  /*
     main
 #define GOLD 1.618034    read parameterfile
 #define GLIMIT 100.0    read datafile
 #define TINY 1.0e-20    concatwav
     freqsummary
 static double maxarg1,maxarg2;    if (mle >= 1)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))      mlikeli
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    print results files
      if mle==1 
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))       computes hessian
 #define rint(a) floor(a+0.5)    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 static double sqrarg;    open gnuplot file
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    open html file
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    stable prevalence
      for age prevalim()
 int imx;    h Pij x
 int stepm;    variance of p varprob
 /* Stepm, step in month: minimum step interpolation*/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int m,nb;    Variance-covariance of DFLE
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    prevalence()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     movingaverage()
 double **pmmij;    varevsij() 
     if popbased==1 varevsij(,popbased)
 double *weight;    total life expectancies
 int **s; /* Status */    Variance of stable prevalence
 double *agedc, **covar, idx;   end
 int **nbcode, *Tcode, *Tvar, **codtab;  */
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  
    
   #include <math.h>
 /******************************************/  #include <stdio.h>
   #include <stdlib.h>
 void replace(char *s, char*t)  #include <unistd.h>
 {  
   int i;  #include <sys/time.h>
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define MAXLINE 256
     (s[i] = t[i]);  #define GNUPLOTPROGRAM "gnuplot"
     if (t[i]== '\\') s[i]='/';  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
 }  /*#define DEBUG*/
   /*#define windows*/
 int nbocc(char *s, char occ)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int i,j=0;  
   int lg=20;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   i=0;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define NINTERVMAX 8
   if  (s[i] == occ ) j++;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return j;  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void cutv(char *u,char *v, char*t, char occ)  #define AGESUP 130
 {  #define AGEBASE 40
   int i,lg,j,p;  #ifdef unix
   i=0;  #define DIRSEPARATOR '/'
   if (t[0]== occ) p=0;  #define ODIRSEPARATOR '\\'
   for(j=0; j<=strlen(t)-1; j++) {  #else
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;  #define DIRSEPARATOR '\\'
   }  #define ODIRSEPARATOR '/'
   #endif
   lg=strlen(t);  
   for(j=0; j<p; j++) {  /* $Id$ */
     (u[j] = t[j]);  /* $State$ */
     u[p]='\0';  
   }  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
    for(j=0; j<= lg; j++) {  int erreur; /* Error number */
     if (j>=(p+1))(v[j-p-1] = t[j]);  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /********************** nrerror ********************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 void nrerror(char error_text[])  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   fprintf(stderr,"ERREUR ...\n");  int maxwav; /* Maxim number of waves */
   fprintf(stderr,"%s\n",error_text);  int jmin, jmax; /* min, max spacing between 2 waves */
   exit(1);  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
 /*********************** vector *******************/  int mle, weightopt;
 double *vector(int nl, int nh)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double *v;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!v) nrerror("allocation failure in vector");  double jmean; /* Mean space between 2 waves */
   return v-nl+NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /************************ free vector ******************/  FILE *ficlog, *ficrespow;
 void free_vector(double*v, int nl, int nh)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   free((FREE_ARG)(v+nl-NR_END));  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ivector *******************************/  FILE *ficresilk;
 int *ivector(long nl,long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   int *v;  FILE *fichtm; /* Html File */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficreseij;
   if (!v) nrerror("allocation failure in ivector");  char filerese[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************free ivector **************************/  char fileresvpl[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************* imatrix *******************************/  int  outcmd=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char lfileres[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char filelog[FILENAMELENGTH]; /* Log file */
   int **m;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   /* allocate pointers to rows */  char popfile[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  #define NR_END 1
    #define FREE_ARG char*
    #define FTOL 1.0e-10
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define NRANSI 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ITMAX 200 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define TOL 2.0e-4 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
   /* return pointer to array of pointers to rows */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return m;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /****************** free_imatrix *************************/  #define TINY 1.0e-20 
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  static double maxarg1,maxarg2;
       long nch,ncl,nrh,nrl;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      /* free an int matrix allocated by imatrix() */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG) (m+nrl-NR_END));  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /******************* matrix *******************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int imx; 
   double **m;  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int estepm;
   m += NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m -= nrl;  
   int m,nb;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  long *num;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m[nrl] += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl] -= ncl;  double **pmmij, ***probs;
   double dateintmean=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*************************free matrix ************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double ftolhess; /* Tolerance for computing hessian */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( ss == NULL ) {                   /* no directory, so use current */
   m += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m -= nrl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] += NR_END;        return( GLOCK_ERROR_GETCWD );
   m[nrl] -= ncl;      }
       strcpy( name, path );               /* we've got it */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      l2 = strlen( ss );                  /* length of filename */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl][ncl] += NR_END;      strcpy( name, ss );         /* save file name */
   m[nrl][ncl] -= nll;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=ncl+1; j<=nch; j++)      dirc[l1-l2] = 0;                    /* add zero */
     m[nrl][j]=m[nrl][j-1]+nlay;    }
      l1 = strlen( dirc );                  /* length of directory */
   for (i=nrl+1; i<=nrh; i++) {    /*#ifdef windows
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
     for (j=ncl+1; j<=nch; j++)  #else
       m[i][j]=m[i][j-1]+nlay;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   }  #endif
   return m;    */
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /*************************free ma3x ************************/    strcpy(ext,ss);                       /* save extension */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    l1= strlen( name);
 {    l2= strlen(ss)+1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    strncpy( finame, name, l1-l2);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    finame[l1-l2]= 0;
   free((FREE_ARG)(m+nrl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /***************** f1dim *************************/  
 extern int ncom;  /******************************************/
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  void replace_back_to_slash(char *s, char*t)
    {
 double f1dim(double x)    int i;
 {    int lg=0;
   int j;    i=0;
   double f;    lg=strlen(t);
   double *xt;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   xt=vector(1,ncom);      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    }
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*****************brent *************************/    int lg=20;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(s);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;    if  (s[i] == occ ) j++;
   double fu,fv,fw,fx;    }
   double ftemp;    return j;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    void cutv(char *u,char *v, char*t, char occ)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    /* cuts string t into u and v where u is ended by char occ excluding it
   x=w=v=bx;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   fw=fv=fx=(*f)(x);       gives u="abcedf" and v="ghi2j" */
   for (iter=1;iter<=ITMAX;iter++) {    int i,lg,j,p=0;
     xm=0.5*(a+b);    i=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for(j=0; j<=strlen(t)-1; j++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     printf(".");fflush(stdout);    }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    lg=strlen(t);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;       u[p]='\0';
       return fx;  
     }     for(j=0; j<= lg; j++) {
     ftemp=fu;      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /********************** nrerror ********************/
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  void nrerror(char error_text[])
       q=fabs(q);  {
       etemp=e;    fprintf(stderr,"ERREUR ...\n");
       e=d;    fprintf(stderr,"%s\n",error_text);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    exit(EXIT_FAILURE);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  /*********************** vector *******************/
         d=p/q;  double *vector(int nl, int nh)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    double *v;
           d=SIGN(tol1,xm-x);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
     } else {    return v-nl+NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /************************ free vector ******************/
     fu=(*f)(u);  void free_vector(double*v, int nl, int nh)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    free((FREE_ARG)(v+nl-NR_END));
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  /************************ivector *******************************/
           if (u < x) a=u; else b=u;  int *ivector(long nl,long nh)
           if (fu <= fw || w == x) {  {
             v=w;    int *v;
             w=u;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             fv=fw;    if (!v) nrerror("allocation failure in ivector");
             fw=fu;    return v-nl+NR_END;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /******************free ivector **************************/
           }  void free_ivector(int *v, long nl, long nh)
         }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /****************** mnbrak ***********************/    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!v) nrerror("allocation failure in ivector");
             double (*func)(double))    return v-nl+NR_END;
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(v+nl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   *cx=(*bx)+GOLD*(*bx-*ax);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   *fc=(*func)(*cx);  { 
   while (*fb > *fc) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     r=(*bx-*ax)*(*fb-*fc);    int **m; 
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* allocate pointers to rows */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if ((*bx-u)*(u-*cx) > 0.0) {    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    
       fu=(*func)(u);    
       if (fu < *fc) {    /* allocate rows and set pointers to them */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           SHFT(*fb,*fc,fu,(*func)(u))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           }    m[nrl] += NR_END; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl] -= ncl; 
       u=ulim;    
       fu=(*func)(u);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    /* return pointer to array of pointers to rows */ 
       fu=(*func)(u);    return m; 
     }  } 
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /*************** linmin ************************/       /* free an int matrix allocated by imatrix() */ 
   { 
 int ncom;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double *pcom,*xicom;    free((FREE_ARG) (m+nrl-NR_END)); 
 double (*nrfunc)(double []);  } 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /******************* matrix *******************************/
 {  double **matrix(long nrl, long nrh, long ncl, long nch)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double f1dim(double x);    double **m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int j;    if (!m) nrerror("allocation failure 1 in matrix()");
   double xx,xmin,bx,ax;    m += NR_END;
   double fx,fb,fa;    m -= nrl;
    
   ncom=n;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   pcom=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xicom=vector(1,n);    m[nrl] += NR_END;
   nrfunc=func;    m[nrl] -= ncl;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     xicom[j]=xi[j];    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ax=0.0;     */
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /******************* ma3x *******************************/
   free_vector(xicom,1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   free_vector(pcom,1,n);  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl;
               double (*func)(double []));  
   int i,ibig,j;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double del,t,*pt,*ptt,*xit;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double fp,fptt;    m[nrl] += NR_END;
   double *xits;    m[nrl] -= ncl;
   pt=vector(1,n);  
   ptt=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   xit=vector(1,n);  
   xits=vector(1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fret=(*func)(p);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl][ncl] += NR_END;
   for (*iter=1;;++(*iter)) {    m[nrl][ncl] -= nll;
     fp=(*fret);    for (j=ncl+1; j<=nch; j++) 
     ibig=0;      m[nrl][j]=m[nrl][j-1]+nlay;
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) {
     for (i=1;i<=n;i++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf(" %d %.12f",i, p[i]);      for (j=ncl+1; j<=nch; j++) 
     printf("\n");        m[i][j]=m[i][j-1]+nlay;
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return m; 
       fptt=(*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("fret=%lf \n",*fret);    */
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /*************************free ma3x ************************/
       if (fabs(fptt-(*fret)) > del) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         del=fabs(fptt-(*fret));  {
         ibig=i;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /***************** f1dim *************************/
         printf(" x(%d)=%.12e",j,xit[j]);  extern int ncom; 
       }  extern double *pcom,*xicom;
       for(j=1;j<=n;j++)  extern double (*nrfunc)(double []); 
         printf(" p=%.12e",p[j]);   
       printf("\n");  double f1dim(double x) 
 #endif  { 
     }    int j; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double f;
 #ifdef DEBUG    double *xt; 
       int k[2],l;   
       k[0]=1;    xt=vector(1,ncom); 
       k[1]=-1;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       printf("Max: %.12e",(*func)(p));    f=(*nrfunc)(xt); 
       for (j=1;j<=n;j++)    free_vector(xt,1,ncom); 
         printf(" %.12e",p[j]);    return f; 
       printf("\n");  } 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*****************brent *************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  { 
         }    int iter; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
 #endif    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
       free_vector(xit,1,n);   
       free_vector(xits,1,n);    a=(ax < cx ? ax : cx); 
       free_vector(ptt,1,n);    b=(ax > cx ? ax : cx); 
       free_vector(pt,1,n);    x=w=v=bx; 
       return;    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      xm=0.5*(a+b); 
     for (j=1;j<=n;j++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ptt[j]=2.0*p[j]-pt[j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       xit[j]=p[j]-pt[j];      printf(".");fflush(stdout);
       pt[j]=p[j];      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     fptt=(*func)(ptt);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (fptt < fp) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       if (t < 0.0) {  #endif
         linmin(p,xit,n,fret,func);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         for (j=1;j<=n;j++) {        *xmin=x; 
           xi[j][ibig]=xi[j][n];        return fx; 
           xi[j][n]=xit[j];      } 
         }      ftemp=fu;
 #ifdef DEBUG      if (fabs(e) > tol1) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        r=(x-w)*(fx-fv); 
         for(j=1;j<=n;j++)        q=(x-v)*(fx-fw); 
           printf(" %.12e",xit[j]);        p=(x-v)*q-(x-w)*r; 
         printf("\n");        q=2.0*(q-r); 
 #endif        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
     }        etemp=e; 
   }        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /**** Prevalence limit ****************/        else { 
           d=p/q; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          u=x+d; 
 {          if (u-a < tol2 || b-u < tol2) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit            d=SIGN(tol1,xm-x); 
      matrix by transitions matrix until convergence is reached */        } 
       } else { 
   int i, ii,j,k;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double min, max, maxmin, maxmax,sumnew=0.;      } 
   double **matprod2();      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double **out, cov[NCOVMAX], **pmij();      fu=(*f)(u); 
   double **newm;      if (fu <= fx) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   for (ii=1;ii<=nlstate+ndeath;ii++)          SHFT(fv,fw,fx,fu) 
     for (j=1;j<=nlstate+ndeath;j++){          } else { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              v=w; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              w=u; 
     newm=savm;              fv=fw; 
     /* Covariates have to be included here again */              fw=fu; 
     cov[1]=1.;            } else if (fu <= fv || v == x || v == w) { 
     cov[2]=agefin;              v=u; 
     if (cptcovn>0){              fv=fu; 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}            } 
     }          } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    } 
     nrerror("Too many iterations in brent"); 
     savm=oldm;    *xmin=x; 
     oldm=newm;    return fx; 
     maxmax=0.;  } 
     for(j=1;j<=nlstate;j++){  
       min=1.;  /****************** mnbrak ***********************/
       max=0.;  
       for(i=1; i<=nlstate; i++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         sumnew=0;              double (*func)(double)) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double ulim,u,r,q, dum;
         max=FMAX(max,prlim[i][j]);    double fu; 
         min=FMIN(min,prlim[i][j]);   
       }    *fa=(*func)(*ax); 
       maxmin=max-min;    *fb=(*func)(*bx); 
       maxmax=FMAX(maxmax,maxmin);    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     if(maxmax < ftolpl){        SHFT(dum,*fb,*fa,dum) 
       return prlim;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*************** transition probabilities **********/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double s1, s2;      if ((*bx-u)*(u-*cx) > 0.0) { 
   /*double t34;*/        fu=(*func)(u); 
   int i,j,j1, nc, ii, jj;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
     for(i=1; i<= nlstate; i++){        if (fu < *fc) { 
     for(j=1; j<i;j++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            SHFT(*fb,*fc,fu,(*func)(u)) 
         /*s2 += param[i][j][nc]*cov[nc];*/            } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        u=ulim; 
       }        fu=(*func)(u); 
       ps[i][j]=s2;      } else { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
     for(j=i+1; j<=nlstate+ndeath;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      SHFT(*ax,*bx,*cx,u) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(*fa,*fb,*fc,fu) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        } 
       }  } 
       ps[i][j]=s2;  
     }  /*************** linmin ************************/
   }  
   for(i=1; i<= nlstate; i++){  int ncom; 
      s1=0;  double *pcom,*xicom;
     for(j=1; j<i; j++)  double (*nrfunc)(double []); 
       s1+=exp(ps[i][j]);   
     for(j=i+1; j<=nlstate+ndeath; j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       s1+=exp(ps[i][j]);  { 
     ps[i][i]=1./(s1+1.);    double brent(double ax, double bx, double cx, 
     for(j=1; j<i; j++)                 double (*f)(double), double tol, double *xmin); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f1dim(double x); 
     for(j=i+1; j<=nlstate+ndeath; j++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ps[i][j]= exp(ps[i][j])*ps[i][i];                double *fc, double (*func)(double)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int j; 
   } /* end i */    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){   
     for(jj=1; jj<= nlstate+ndeath; jj++){    ncom=n; 
       ps[ii][jj]=0;    pcom=vector(1,n); 
       ps[ii][ii]=1;    xicom=vector(1,n); 
     }    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      xicom[j]=xi[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
      printf("%lf ",ps[ii][jj]);    ax=0.0; 
    }    xx=1.0; 
     printf("\n ");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf("\n ");printf("%lf ",cov[2]);*/  #ifdef DEBUG
 /*    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   goto end;*/  #endif
     return ps;    for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
 /**************** Product of 2 matrices ******************/    } 
     free_vector(xicom,1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free_vector(pcom,1,n); 
 {  } 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** powell ************************/
   /* in, b, out are matrice of pointers which should have been initialized  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      before: only the contents of out is modified. The function returns              double (*func)(double [])) 
      a pointer to pointers identical to out */  { 
   long i, j, k;    void linmin(double p[], double xi[], int n, double *fret, 
   for(i=nrl; i<= nrh; i++)                double (*func)(double [])); 
     for(k=ncolol; k<=ncoloh; k++)    int i,ibig,j; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double del,t,*pt,*ptt,*xit;
         out[i][k] +=in[i][j]*b[j][k];    double fp,fptt;
     double *xits;
   return out;    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
     xits=vector(1,n); 
 /************* Higher Matrix Product ***************/    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      ibig=0; 
      duration (i.e. until      del=0.0; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
      (typically every 2 years instead of every month which is too big).      fprintf(ficrespow,"%d %.12f",*iter,*fret);
      Model is determined by parameters x and covariates have to be      for (i=1;i<=n;i++) {
      included manually here.        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
      */        fprintf(ficrespow," %.12lf", p[i]);
       }
   int i, j, d, h, k;      printf("\n");
   double **out, cov[NCOVMAX];      fprintf(ficlog,"\n");
   double **newm;      fprintf(ficrespow,"\n");
       for (i=1;i<=n;i++) { 
   /* Hstepm could be zero and should return the unit matrix */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=nlstate+ndeath;i++)        fptt=(*fret); 
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);        printf("fret=%lf \n",*fret);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("%d",i);fflush(stdout);
   for(h=1; h <=nhstepm; h++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(d=1; d <=hstepm; d++){        linmin(p,xit,n,fret,func); 
       newm=savm;        if (fabs(fptt-(*fret)) > del) { 
       /* Covariates have to be included here again */          del=fabs(fptt-(*fret)); 
       cov[1]=1.;          ibig=i; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        } 
       if (cptcovn>0){  #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (j=1;j<=n;j++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          printf(" x(%d)=%.12e",j,xit[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       savm=oldm;        }
       oldm=newm;        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     for(i=1; i<=nlstate+ndeath; i++)          fprintf(ficlog," p=%.12e",p[j]);
       for(j=1;j<=nlstate+ndeath;j++) {        }
         po[i][j][h]=newm[i][j];        printf("\n");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fprintf(ficlog,"\n");
          */  #endif
       }      } 
   } /* end h */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   return po;  #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
         k[1]=-1;
 /*************** log-likelihood *************/        printf("Max: %.12e",(*func)(p));
 double func( double *x)        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   int i, ii, j, k, mi, d;          printf(" %.12e",p[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          fprintf(ficlog," %.12e",p[j]);
   double **out;        }
   double sw; /* Sum of weights */        printf("\n");
   double lli; /* Individual log likelihood */        fprintf(ficlog,"\n");
   long ipmx;        for(l=0;l<=1;l++) {
   /*extern weight */          for (j=1;j<=n;j++) {
   /* We are differentiating ll according to initial status */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*for(i=1;i<imx;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 printf(" %d\n",s[4][i]);          }
   */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
        for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        free_vector(xit,1,n); 
             for(d=0; d<dh[mi][i]; d++){        free_vector(xits,1,n); 
         newm=savm;        free_vector(ptt,1,n); 
           cov[1]=1.;        free_vector(pt,1,n); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        return; 
           if (cptcovn>0){      } 
             for (k=1; k<=cptcovn;k++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               cov[2+k]=covar[Tvar[k]][i];      for (j=1;j<=n;j++) { 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/        ptt[j]=2.0*p[j]-pt[j]; 
             }        xit[j]=p[j]-pt[j]; 
             }        pt[j]=p[j]; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fptt=(*func)(ptt); 
           savm=oldm;      if (fptt < fp) { 
           oldm=newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       } /* end mult */        if (t < 0.0) { 
              linmin(p,xit,n,fret,func); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          for (j=1;j<=n;j++) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            xi[j][ibig]=xi[j][n]; 
       ipmx +=1;            xi[j][n]=xit[j]; 
       sw += weight[i];          }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
     } /* end of wave */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   } /* end of individual */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            printf(" %.12e",xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            fprintf(ficlog," %.12e",xit[j]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          }
           printf("\n");
   return -l;          fprintf(ficlog,"\n");
 }  #endif
         }
       } 
 /*********** Maximum Likelihood Estimation ***************/    } 
   } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /**** Prevalence limit (stable prevalence)  ****************/
   int i,j, iter;  
   double **xi,*delti;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double fret;  {
   xi=matrix(1,npar,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++)       matrix by transitions matrix until convergence is reached */
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    int i, ii,j,k;
   printf("Powell\n");    double min, max, maxmin, maxmax,sumnew=0.;
   powell(p,xi,npar,ftol,&iter,&fret,func);    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double **newm;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /**** Computes Hessian and covariance matrix ***/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      }
 {  
   double  **a,**y,*x,pd;     cov[1]=1.;
   double **hess;   
   int i, j,jk;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int *indx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   double hessii(double p[], double delta, int theta, double delti[]);      /* Covariates have to be included here again */
   double hessij(double p[], double delti[], int i, int j);       cov[2]=agefin;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   hess=matrix(1,npar,1,npar);        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf(" %f ",p[i]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {      savm=oldm;
       if (j>i) {      oldm=newm;
         printf(".%d%d",i,j);fflush(stdout);      maxmax=0.;
         hess[i][j]=hessij(p,delti,i,j);      for(j=1;j<=nlstate;j++){
         hess[j][i]=hess[i][j];        min=1.;
       }        max=0.;
     }        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   printf("\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);        maxmin=max-min;
   x=vector(1,npar);        maxmax=FMAX(maxmax,maxmin);
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)      if(maxmax < ftolpl){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        return prlim;
   ludcmp(a,npar,indx,&pd);      }
     }
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** transition probabilities ***************/ 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       matcov[i][j]=x[i];  {
     }    double s1, s2;
   }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {      for(i=1; i<= nlstate; i++){
     for (j=1;j<=npar;j++) {      for(j=1; j<i;j++){
       printf("%.3e ",hess[i][j]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }          /*s2 += param[i][j][nc]*cov[nc];*/
     printf("\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   /* Recompute Inverse */        ps[i][j]=s2;
   for (i=1;i<=npar;i++)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      }
   ludcmp(a,npar,indx,&pd);      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /*  printf("\n#Hessian matrix recomputed#\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   for (j=1;j<=npar;j++) {        }
     for (i=1;i<=npar;i++) x[i]=0;        ps[i][j]=s2;
     x[j]=1;      }
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){      /*ps[3][2]=1;*/
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);    for(i=1; i<= nlstate; i++){
     }       s1=0;
     printf("\n");      for(j=1; j<i; j++)
   }        s1+=exp(ps[i][j]);
   */      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
   free_matrix(a,1,npar,1,npar);      ps[i][i]=1./(s1+1.);
   free_matrix(y,1,npar,1,npar);      for(j=1; j<i; j++)
   free_vector(x,1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_ivector(indx,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
   free_matrix(hess,1,npar,1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
 }  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /*************** hessian matrix ****************/      for(jj=1; jj<= nlstate+ndeath; jj++){
 double hessii( double x[], double delta, int theta, double delti[])        ps[ii][jj]=0;
 {        ps[ii][ii]=1;
   int i;      }
   int l=1, lmax=20;    }
   double k1,k2;  
   double p2[NPARMAX+1];  
   double res;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double fx;       printf("%lf ",ps[ii][jj]);
   int k=0,kmax=10;     }
   double l1;      printf("\n ");
       }
   fx=func(x);      printf("\n ");printf("%lf ",cov[2]);*/
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*
   for(l=0 ; l <=lmax; l++){    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     l1=pow(10,l);    goto end;*/
     delts=delt;      return ps;
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /**************** Product of 2 matrices ******************/
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       k2=func(p2)-fx;  {
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          /* in, b, out are matrice of pointers which should have been initialized 
 #ifdef DEBUG       before: only the contents of out is modified. The function returns
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       a pointer to pointers identical to out */
 #endif    long i, j, k;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for(i=nrl; i<= nrh; i++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(k=ncolol; k<=ncoloh; k++)
         k=kmax;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;    return out;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  
       }  /************* Higher Matrix Product ***************/
     }  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   delti[theta]=delts;  {
   return res;      /* Computes the transition matrix starting at age 'age' over 
 }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 double hessij( double x[], double delti[], int thetai,int thetaj)       nhstepm*hstepm matrices. 
 {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int i;       (typically every 2 years instead of every month which is too big 
   int l=1, l1, lmax=20;       for the memory).
   double k1,k2,k3,k4,res,fx;       Model is determined by parameters x and covariates have to be 
   double p2[NPARMAX+1];       included manually here. 
   int k;  
        */
   fx=func(x);  
   for (k=1; k<=2; k++) {    int i, j, d, h, k;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double **out, cov[NCOVMAX];
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     k2=func(p2)-fx;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(h=1; h <=nhstepm; h++){
     k3=func(p2)-fx;      for(d=1; d <=hstepm; d++){
          newm=savm;
     p2[thetai]=x[thetai]-delti[thetai]/k;        /* Covariates have to be included here again */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        cov[1]=1.;
     k4=func(p2)-fx;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #ifdef DEBUG        for (k=1; k<=cptcovage;k++)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #endif        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   return res;  
 }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 /************** Inverse of matrix **************/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 void ludcmp(double **a, int n, int *indx, double *d)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i,imax,j,k;        savm=oldm;
   double big,dum,sum,temp;        oldm=newm;
   double *vv;      }
        for(i=1; i<=nlstate+ndeath; i++)
   vv=vector(1,n);        for(j=1;j<=nlstate+ndeath;j++) {
   *d=1.0;          po[i][j][h]=newm[i][j];
   for (i=1;i<=n;i++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     big=0.0;           */
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;    } /* end h */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return po;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /*************** log-likelihood *************/
       sum=a[i][j];  double func( double *x)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     big=0.0;    double **out;
     for (i=j;i<=n;i++) {    double sw; /* Sum of weights */
       sum=a[i][j];    double lli; /* Individual log likelihood */
       for (k=1;k<j;k++)    int s1, s2;
         sum -= a[i][k]*a[k][j];    double bbh, survp;
       a[i][j]=sum;    long ipmx;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*extern weight */
         big=dum;    /* We are differentiating ll according to initial status */
         imax=i;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     if (j != imax) {    */
       for (k=1;k<=n;k++) {    cov[1]=1.;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         a[j][k]=dum;  
       }    if(mle==1){
       *d = -(*d);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       vv[imax]=vv[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     indx[j]=imax;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (a[j][j] == 0.0) a[j][j]=TINY;            for (j=1;j<=nlstate+ndeath;j++){
     if (j != n) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       dum=1.0/(a[j][j]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 ;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void lubksb(double **a, int n, int *indx, double b[])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i,ii=0,ip,j;            savm=oldm;
   double sum;            oldm=newm;
            } /* end mult */
   for (i=1;i<=n;i++) {        
     ip=indx[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     sum=b[ip];          /* But now since version 0.9 we anticipate for bias and large stepm.
     b[ip]=b[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if (ii)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * the nearest (and in case of equal distance, to the lowest) interval but now
     else if (sum) ii=i;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     b[i]=sum;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   }           * probability in order to take into account the bias as a fraction of the way
   for (i=n;i>=1;i--) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     sum=b[i];           * -stepm/2 to stepm/2 .
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * For stepm=1 the results are the same as for previous versions of Imach.
     b[i]=sum/a[i][i];           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Frequencies ********************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          /* bias is positive if real duration
 {  /* Some frequencies */           * is higher than the multiple of stepm and negative otherwise.
             */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double ***freq; /* Frequencies */          if( s2 > nlstate){ 
   double *pp;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   double pos;               to the likelihood is the probability to die between last step unit time and current 
   FILE *ficresp;               step unit time, which is also the differences between probability to die before dh 
   char fileresp[FILENAMELENGTH];               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   pp=vector(1,nlstate);          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   strcpy(fileresp,"p");          and not the date of a change in health state. The former idea was
   strcat(fileresp,fileres);          to consider that at each interview the state was recorded
   if((ficresp=fopen(fileresp,"w"))==NULL) {          (healthy, disable or death) and IMaCh was corrected; but when we
     printf("Problem with prevalence resultfile: %s\n", fileresp);          introduced the exact date of death then we should have modified
     exit(0);          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          stepm. It is no more the probability to die between last interview
   j1=0;          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
   j=cptcovn;          probability to die within a month. Thanks to Chris
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   for(k1=1; k1<=j;k1++){          which slows down the processing. The difference can be up to 10%
    for(i1=1; i1<=ncodemax[k1];i1++){          lower mortality.
        j1++;            */
             lli=log(out[s1][s2] - savm[s1][s2]);
         for (i=-1; i<=nlstate+ndeath; i++)            }else{
          for (jk=-1; jk<=nlstate+ndeath; jk++)              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            for(m=agemin; m <= agemax+3; m++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
              freq[i][jk][m]=0;          } 
                  /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
        for (i=1; i<=imx; i++) {          /*if(lli ==000.0)*/
          bool=1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          if  (cptcovn>0) {          ipmx +=1;
            for (z1=1; z1<=cptcovn; z1++)          sw += weight[i];
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          }        } /* end of wave */
           if (bool==1) {      } /* end of individual */
            for(m=firstpass; m<=lastpass-1; m++){    }  else if(mle==2){
              if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
            }            for (j=1;j<=nlstate+ndeath;j++){
          }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
          fprintf(ficresp, "\n#Variable");          for(d=0; d<=dh[mi][i]; d++){
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);            newm=savm;
        }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        fprintf(ficresp, "\n#");            for (kk=1; kk<=cptcovage;kk++) {
        for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
        fprintf(ficresp, "\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=(int)agemin; i <= (int)agemax+3; i++){            savm=oldm;
     if(i==(int)agemax+3)            oldm=newm;
       printf("Total");          } /* end mult */
     else        
       printf("Age %d", i);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(jk=1; jk <=nlstate ; jk++){          /* But now since version 0.9 we anticipate for bias and large stepm.
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         pp[jk] += freq[jk][m][i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(jk=1; jk <=nlstate ; jk++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(m=-1, pos=0; m <=0 ; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         pos += freq[jk][m][i];           * probability in order to take into account the bias as a fraction of the way
       if(pp[jk]>=1.e-10)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * -stepm/2 to stepm/2 .
       else           * For stepm=1 the results are the same as for previous versions of Imach.
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
     for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
         pp[jk] += freq[jk][m][i];          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     for(jk=1,pos=0; jk <=nlstate ; jk++)           * is higher than the multiple of stepm and negative otherwise.
       pos += pp[jk];           */
     for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if(pos>=1.e-5)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*if(lli ==000.0)*/
       if( i <= (int) agemax){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(pos>=1.e-5)          ipmx +=1;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(m=-1; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(mi=1; mi<= wav[i]-1; mi++){
     if(i <= (int) agemax)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresp,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
  }          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 }  /* End of Freq */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************* Waves Concatenation ***************/            savm=oldm;
             oldm=newm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          } /* end mult */
 {        
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      Death is a valid wave (if date is known).          /* But now since version 0.9 we anticipate for bias and large stepm.
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * If stepm is larger than one month (smallest stepm) and if the exact delay 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * (in months) between two waves is not a multiple of stepm, we rounded to 
      and mw[mi+1][i]. dh depends on stepm.           * the nearest (and in case of equal distance, to the lowest) interval but now
      */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int i, mi, m;           * probability in order to take into account the bias as a fraction of the way
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 float sum=0.;           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=1; i<=imx; i++){           * For stepm > 1 the results are less biased than in previous versions. 
     mi=0;           */
     m=firstpass;          s1=s[mw[mi][i]][i];
     while(s[m][i] <= nlstate){          s2=s[mw[mi+1][i]][i];
       if(s[m][i]>=1)          bbh=(double)bh[mi][i]/(double)stepm; 
         mw[++mi][i]=m;          /* bias is positive if real duration
       if(m >=lastpass)           * is higher than the multiple of stepm and negative otherwise.
         break;           */
       else          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         m++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }/* end while */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     if (s[m][i] > nlstate){          /*if(lli ==000.0)*/
       mi++;     /* Death is another wave */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       /* if(mi==0)  never been interviewed correctly before death */          ipmx +=1;
          /* Only death is a correct wave */          sw += weight[i];
       mw[mi][i]=m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
       } /* end of individual */
     wav[i]=mi;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     if(mi==0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
     for(mi=1; mi<wav[i];mi++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (stepm <=0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;            }
       else{          for(d=0; d<dh[mi][i]; d++){
         if (s[mw[mi+1][i]][i] > nlstate) {            newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(j=0) j=1;  /* Survives at least one month after exam */            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           k=k+1;            savm=oldm;
           if (j >= jmax) jmax=j;            oldm=newm;
           else if (j <= jmin)jmin=j;          } /* end mult */
           sum=sum+j;        
         }          s1=s[mw[mi][i]][i];
         jk= j/stepm;          s2=s[mw[mi+1][i]][i];
         jl= j -jk*stepm;          if( s2 > nlstate){ 
         ju= j -(jk+1)*stepm;            lli=log(out[s1][s2] - savm[s1][s2]);
         if(jl <= -ju)          }else{
           dh[mi][i]=jk;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         else          }
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        } /* end of wave */
   }      } /* end of individual */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Tricode ****************************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void tricode(int *Tvar, int **nbcode, int imx)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   int Ndum[80],ij, k, j, i;            for (j=1;j<=nlstate+ndeath;j++){
   int cptcode=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<79; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;            }
            for(d=0; d<dh[mi][i]; d++){
   for (j=1; j<=cptcovn; j++) {            newm=savm;
     for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=(int)(covar[Tvar[j]][i]);            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (ij > cptcode) cptcode=ij;            }
     }          
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=0; i<=cptcode; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(Ndum[i]!=0) ncodemax[j]++;            savm=oldm;
     }            oldm=newm;
            } /* end mult */
     ij=1;        
     for (i=1; i<=ncodemax[j]; i++) {          s1=s[mw[mi][i]][i];
       for (k=0; k<=79; k++) {          s2=s[mw[mi+1][i]][i];
         if (Ndum[k] != 0) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           nbcode[Tvar[j]][ij]=k;          ipmx +=1;
           ij++;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (ij > ncodemax[j]) break;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }          } /* end of wave */
     }      } /* end of individual */
   }      } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*********** Health Expectancies ****************/    return -l;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {  /*************** log-likelihood *************/
   /* Health expectancies */  double funcone( double *x)
   int i, j, nhstepm, hstepm, h;  {
   double age, agelim,hf;    /* Same as likeli but slower because of a lot of printf and if */
   double ***p3mat;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fprintf(ficreseij,"# Health expectancies\n");    double **out;
   fprintf(ficreseij,"# Age");    double lli; /* Individual log likelihood */
   for(i=1; i<=nlstate;i++)    double llt;
     for(j=1; j<=nlstate;j++)    int s1, s2;
       fprintf(ficreseij," %1d-%1d",i,j);    double bbh, survp;
   fprintf(ficreseij,"\n");    /*extern weight */
     /* We are differentiating ll according to initial status */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   agelim=AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    cov[1]=1.;
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(mi=1; mi<= wav[i]-1; mi++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for (ii=1;ii<=nlstate+ndeath;ii++)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for (j=1;j<=nlstate+ndeath;j++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     for(i=1; i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++)          newm=savm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           eij[i][j][(int)age] +=p3mat[i][j][h];          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     hf=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (stepm >= YEARM) hf=stepm/YEARM;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficreseij,"%.0f",age );          savm=oldm;
     for(i=1; i<=nlstate;i++)          oldm=newm;
       for(j=1; j<=nlstate;j++){        } /* end mult */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        
       }        s1=s[mw[mi][i]][i];
     fprintf(ficreseij,"\n");        s2=s[mw[mi+1][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
 }         * is higher than the multiple of stepm and negative otherwise.
          */
 /************ Variance ******************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli=log(out[s1][s2] - savm[s1][s2]);
 {        } else if (mle==1){
   /* Variance of health expectancies */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if(mle==2){
   double **newm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==3){  /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int k, cptcode;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    double *xp;          lli=log(out[s1][s2]); /* Original formula */
   double **gp, **gm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double ***gradg, ***trgradg;          lli=log(out[s1][s2]); /* Original formula */
   double ***p3mat;        } /* End of if */
   double age,agelim;        ipmx +=1;
   int theta;        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvij,"# Age");        if(globpr){
   for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     for(j=1; j<=nlstate;j++)   %10.6f %10.6f %10.6f ", \
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficresvij,"\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   xp=vector(1,npar);            llt +=ll[k]*gipmx/gsw;
   dnewm=matrix(1,nlstate,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   doldm=matrix(1,nlstate,1,nlstate);          }
            fprintf(ficresilk," %10.6f\n", -llt);
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end of wave */
   agelim = AGESUP;    } /* end of individual */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (stepm >= YEARM) hstepm=1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if(globpr==0){ /* First time we count the contributions and weights */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gipmx=ipmx;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      gsw=sw;
     gp=matrix(0,nhstepm,1,nlstate);    }
     gm=matrix(0,nhstepm,1,nlstate);    return -l;
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  char *subdirf(char fileres[])
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcpy(tmpout,optionfilefiname);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcat(tmpout,"/"); /* Add to the right */
       for(j=1; j<= nlstate; j++){    strcat(tmpout,fileres);
         for(h=0; h<=nhstepm; h++){    return tmpout;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  char *subdirf2(char fileres[], char *preop)
       }  {
        
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(tmpout,optionfilefiname);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(tmpout,"/");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      strcat(tmpout,preop);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcat(tmpout,fileres);
       for(j=1; j<= nlstate; j++){    return tmpout;
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  char *subdirf3(char fileres[], char *preop, char *preop2)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  {
         }    
       }    strcpy(tmpout,optionfilefiname);
       for(j=1; j<= nlstate; j++)    strcat(tmpout,"/");
         for(h=0; h<=nhstepm; h++){    strcat(tmpout,preop);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcat(tmpout,preop2);
         }    strcat(tmpout,fileres);
     } /* End theta */    return tmpout;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(h=0; h<=nhstepm; h++)  {
       for(j=1; j<=nlstate;j++)    /* This routine should help understanding what is done with 
         for(theta=1; theta <=npar; theta++)       the selection of individuals/waves and
           trgradg[h][j][theta]=gradg[h][theta][j];       to check the exact contribution to the likelihood.
        Plotting could be done.
     for(i=1;i<=nlstate;i++)     */
       for(j=1;j<=nlstate;j++)    int k;
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(k=0;k<=nhstepm;k++){      strcpy(fileresilk,"ilk"); 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      strcat(fileresilk,fileres);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         for(i=1;i<=nlstate;i++)        printf("Problem with resultfile: %s\n", fileresilk);
           for(j=1;j<=nlstate;j++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             vareij[i][j][(int)age] += doldm[i][j];      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     h=1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     if (stepm >= YEARM) h=stepm/YEARM;      for(k=1; k<=nlstate; k++) 
     fprintf(ficresvij,"%.0f ",age );        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(i=1; i<=nlstate;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }    *fretone=(*funcone)(p);
     fprintf(ficresvij,"\n");    if(*globpri !=0){
     free_matrix(gp,0,nhstepm,1,nlstate);      fclose(ficresilk);
     free_matrix(gm,0,nhstepm,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fflush(fichtm); 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return;
   } /* End age */  }
    
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /*********** Maximum Likelihood Estimation ***************/
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 }  {
     int i,j, iter;
 /************ Variance of prevlim ******************/    double **xi;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double fret;
 {    double fretone; /* Only one call to likelihood */
   /* Variance of prevalence limit */    char filerespow[FILENAMELENGTH];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    xi=matrix(1,npar,1,npar);
   double **newm;    for (i=1;i<=npar;i++)
   double **dnewm,**doldm;      for (j=1;j<=npar;j++)
   int i, j, nhstepm, hstepm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int k, cptcode;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double *xp;    strcpy(filerespow,"pow"); 
   double *gp, *gm;    strcat(filerespow,fileres);
   double **gradg, **trgradg;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double age,agelim;      printf("Problem with resultfile: %s\n", filerespow);
   int theta;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   fprintf(ficresvpl,"# Age");    for (i=1;i<=nlstate;i++)
   for(i=1; i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficresvpl," %1d-%1d",i,i);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficresvpl,"\n");    fprintf(ficrespow,"\n");
   
   xp=vector(1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   hstepm=1*YEARM; /* Every year of age */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /**** Computes Hessian and covariance matrix ***/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    double  **a,**y,*x,pd;
     gm=vector(1,nlstate);    double **hess;
     int i, j,jk;
     for(theta=1; theta <=npar; theta++){    int *indx;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[]);
       }    double hessij(double p[], double delti[], int i, int j);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(i=1;i<=nlstate;i++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         gp[i] = prlim[i][i];  
        hess=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nCalculation of the hessian matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++){
         gm[i] = prlim[i][i];      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       for(i=1;i<=nlstate;i++)      hess[i][i]=hessii(p,ftolhess,i,delti);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      /*printf(" %f ",p[i]);*/
     } /* End theta */      /*printf(" %lf ",hess[i][i]);*/
     }
     trgradg =matrix(1,nlstate,1,npar);    
     for (i=1;i<=npar;i++) {
     for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)  {
       for(theta=1; theta <=npar; theta++)        if (j>i) { 
         trgradg[j][theta]=gradg[theta][j];          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(i=1;i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j);
       varpl[i][(int)age] =0.;          hess[j][i]=hess[i][j];    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          /*printf(" %lf ",hess[i][j]);*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
     printf("\n");
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficresvpl,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_vector(gp,1,nlstate);    
     free_vector(gm,1,nlstate);    a=matrix(1,npar,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    y=matrix(1,npar,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    x=vector(1,npar);
   } /* End age */    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(doldm,1,nlstate,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 /***********************************************/        matcov[i][j]=x[i];
 /**************** Main Program *****************/      }
 /***********************************************/    }
   
 /*int main(int argc, char *argv[])*/    printf("\n#Hessian matrix#\n");
 int main()    fprintf(ficlog,"\n#Hessian matrix#\n");
 {    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;        printf("%.3e ",hess[i][j]);
   double agedeb, agefin,hf;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double agemin=1.e20, agemax=-1.e20;      }
       printf("\n");
   double fret;      fprintf(ficlog,"\n");
   double **xi,tmp,delta;    }
   
   double dum; /* Dummy variable */    /* Recompute Inverse */
   double ***p3mat;    for (i=1;i<=npar;i++)
   int *indx;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   char line[MAXLINE], linepar[MAXLINE];    ludcmp(a,npar,indx,&pd);
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /*  printf("\n#Hessian matrix recomputed#\n");
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  
   char filerest[FILENAMELENGTH];    for (j=1;j<=npar;j++) {
   char fileregp[FILENAMELENGTH];      for (i=1;i<=npar;i++) x[i]=0;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      x[j]=1;
   int firstobs=1, lastobs=10;      lubksb(a,npar,indx,x);
   int sdeb, sfin; /* Status at beginning and end */      for (i=1;i<=npar;i++){ 
   int c,  h , cpt,l;        y[i][j]=x[i];
   int ju,jl, mi;        printf("%.3e ",y[i][j]);
   int i1,j1, k1,jk,aa,bb, stepsize;        fprintf(ficlog,"%.3e ",y[i][j]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }
        printf("\n");
   int hstepm, nhstepm;      fprintf(ficlog,"\n");
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;    */
   double **prlim;  
   double *severity;    free_matrix(a,1,npar,1,npar);
   double ***param; /* Matrix of parameters */    free_matrix(y,1,npar,1,npar);
   double  *p;    free_vector(x,1,npar);
   double **matcov; /* Matrix of covariance */    free_ivector(indx,1,npar);
   double ***delti3; /* Scale */    free_matrix(hess,1,npar,1,npar);
   double *delti; /* Scale */  
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  }
   double *epj, vepp;  
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  /*************** hessian matrix ****************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  double hessii( double x[], double delta, int theta, double delti[])
   char z[1]="c", occ;  {
 #include <sys/time.h>    int i;
 #include <time.h>    int l=1, lmax=20;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double k1,k2;
   /* long total_usecs;    double p2[NPARMAX+1];
   struct timeval start_time, end_time;    double res;
      double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double fx;
     int k=0,kmax=10;
     double l1;
   printf("\nIMACH, Version 0.63");  
   printf("\nEnter the parameter file name: ");    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
 #ifdef windows    for(l=0 ; l <=lmax; l++){
   scanf("%s",pathtot);      l1=pow(10,l);
   getcwd(pathcd, size);      delts=delt;
   cutv(path,optionfile,pathtot,'\\');      for(k=1 ; k <kmax; k=k+1){
   chdir(path);        delt = delta*(l1*k);
   replace(pathc,path);        p2[theta]=x[theta] +delt;
 #endif        k1=func(p2)-fx;
 #ifdef unix        p2[theta]=x[theta]-delt;
   scanf("%s",optionfile);        k2=func(p2)-fx;
 #endif        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /*-------- arguments in the command line --------*/        
   #ifdef DEBUG
   strcpy(fileres,"r");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   strcat(fileres, optionfile);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   /*---------arguments file --------*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          k=kmax;
     printf("Problem with optionfile %s\n",optionfile);        }
     goto end;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
         }
   strcpy(filereso,"o");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   strcat(filereso,fileres);          delts=delt;
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      }
   }    }
     delti[theta]=delts;
   /* Reads comments: lines beginning with '#' */    return res; 
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  double hessij( double x[], double delti[], int thetai,int thetaj)
     fputs(line,ficparo);  {
   }    int i;
   ungetc(c,ficpar);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double p2[NPARMAX+1];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    int k;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  
     fx=func(x);
   covar=matrix(1,NCOVMAX,1,n);        for (k=1; k<=2; k++) {
   if (strlen(model)<=1) cptcovn=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
   else {      p2[thetai]=x[thetai]+delti[thetai]/k;
     j=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     j=nbocc(model,'+');      k1=func(p2)-fx;
     cptcovn=j+1;    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   ncovmodel=2+cptcovn;      k2=func(p2)-fx;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   /* Read guess parameters */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* Reads comments: lines beginning with '#' */      k3=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fgets(line, MAXLINE, ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     puts(line);      k4=func(p2)-fx;
     fputs(line,ficparo);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   }  #ifdef DEBUG
   ungetc(c,ficpar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  #endif
     for(i=1; i <=nlstate; i++)    }
     for(j=1; j <=nlstate+ndeath-1; j++){    return res;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /************** Inverse of matrix **************/
       for(k=1; k<=ncovmodel;k++){  void ludcmp(double **a, int n, int *indx, double *d) 
         fscanf(ficpar," %lf",&param[i][j][k]);  { 
         printf(" %lf",param[i][j][k]);    int i,imax,j,k; 
         fprintf(ficparo," %lf",param[i][j][k]);    double big,dum,sum,temp; 
       }    double *vv; 
       fscanf(ficpar,"\n");   
       printf("\n");    vv=vector(1,n); 
       fprintf(ficparo,"\n");    *d=1.0; 
     }    for (i=1;i<=n;i++) { 
        big=0.0; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for (j=1;j<=n;j++) 
   p=param[1][1];        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* Reads comments: lines beginning with '#' */      vv[i]=1.0/big; 
   while((c=getc(ficpar))=='#' && c!= EOF){    } 
     ungetc(c,ficpar);    for (j=1;j<=n;j++) { 
     fgets(line, MAXLINE, ficpar);      for (i=1;i<j;i++) { 
     puts(line);        sum=a[i][j]; 
     fputs(line,ficparo);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   ungetc(c,ficpar);      } 
       big=0.0; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (i=j;i<=n;i++) { 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        sum=a[i][j]; 
   for(i=1; i <=nlstate; i++){        for (k=1;k<j;k++) 
     for(j=1; j <=nlstate+ndeath-1; j++){          sum -= a[i][k]*a[k][j]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        a[i][j]=sum; 
       printf("%1d%1d",i,j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficparo,"%1d%1d",i1,j1);          big=dum; 
       for(k=1; k<=ncovmodel;k++){          imax=i; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);        } 
         printf(" %le",delti3[i][j][k]);      } 
         fprintf(ficparo," %le",delti3[i][j][k]);      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
       fscanf(ficpar,"\n");          dum=a[imax][k]; 
       printf("\n");          a[imax][k]=a[j][k]; 
       fprintf(ficparo,"\n");          a[j][k]=dum; 
     }        } 
   }        *d = -(*d); 
   delti=delti3[1][1];        vv[imax]=vv[j]; 
        } 
   /* Reads comments: lines beginning with '#' */      indx[j]=imax; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ungetc(c,ficpar);      if (j != n) { 
     fgets(line, MAXLINE, ficpar);        dum=1.0/(a[j][j]); 
     puts(line);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fputs(line,ficparo);      } 
   }    } 
   ungetc(c,ficpar);    free_vector(vv,1,n);  /* Doesn't work */
    ;
   matcov=matrix(1,npar,1,npar);  } 
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  void lubksb(double **a, int n, int *indx, double b[]) 
     printf("%s",str);  { 
     fprintf(ficparo,"%s",str);    int i,ii=0,ip,j; 
     for(j=1; j <=i; j++){    double sum; 
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);    for (i=1;i<=n;i++) { 
       fprintf(ficparo," %.5le",matcov[i][j]);      ip=indx[i]; 
     }      sum=b[ip]; 
     fscanf(ficpar,"\n");      b[ip]=b[i]; 
     printf("\n");      if (ii) 
     fprintf(ficparo,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   }      else if (sum) ii=i; 
   for(i=1; i <=npar; i++)      b[i]=sum; 
     for(j=i+1;j<=npar;j++)    } 
       matcov[i][j]=matcov[j][i];    for (i=n;i>=1;i--) { 
          sum=b[i]; 
   printf("\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     } 
    if(mle==1){  } 
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {  /************ Frequencies ********************/
       printf("Problem with resultfile: %s\n", fileres);goto end;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     }  {  /* Some frequencies */
     fprintf(ficres,"#%s\n",version);    
        int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     if((fic=fopen(datafile,"r"))==NULL)    {    int first;
       printf("Problem with datafile: %s\n", datafile);goto end;    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     n= lastobs;    FILE *ficresp;
     severity = vector(1,maxwav);    char fileresp[FILENAMELENGTH];
     outcome=imatrix(1,maxwav+1,1,n);    
     num=ivector(1,n);    pp=vector(1,nlstate);
     moisnais=vector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     annais=vector(1,n);    strcpy(fileresp,"p");
     moisdc=vector(1,n);    strcat(fileresp,fileres);
     andc=vector(1,n);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     agedc=vector(1,n);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     cod=ivector(1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     weight=vector(1,n);      exit(0);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     anint=matrix(1,maxwav,1,n);    j1=0;
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);        j=cptcoveff;
     tab=ivector(1,NCOVMAX);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     ncodemax=ivector(1,NCOVMAX);  
     first=1;
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    for(k1=1; k1<=j;k1++){
       if ((i >= firstobs) && (i <=lastobs)) {      for(i1=1; i1<=ncodemax[k1];i1++){
                j1++;
         for (j=maxwav;j>=1;j--){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          scanf("%d", i);*/
           strcpy(line,stra);        for (i=-1; i<=nlstate+ndeath; i++)  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=iagemin; m <= iagemax+3; m++)
         }              freq[i][jk][m]=0;
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1; i<=nlstate; i++)  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        dateintsum=0;
         k2cpt=0;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=1; i<=imx; i++) {
         for (j=ncov;j>=1;j--){          bool=1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
         num[i]=atol(stra);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          }
           if (bool==1){
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
         i=i+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /*scanf("%d",i);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   imx=i-1; /* Number of individuals */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   /* Calculation of the number of parameter from char model*/                }
   Tvar=ivector(1,8);                    
                    if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   if (strlen(model) >1){                  dateintsum=dateintsum+k2;
     j=0;                  k2cpt++;
     j=nbocc(model,'+');                }
     cptcovn=j+1;                /*}*/
              }
     strcpy(modelsav,model);          }
     if (j==0) {        }
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     else {  
       for(i=j; i>=1;i--){        if  (cptcovn>0) {
         cutv(stra,strb,modelsav,'+');          fprintf(ficresp, "\n#********** Variable "); 
         if (strchr(strb,'*')) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strd,strc,strb,'*');          fprintf(ficresp, "**********\n#");
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        }
           cutv(strb,strc,strd,'V');        for(i=1; i<=nlstate;i++) 
           for (k=1; k<=lastobs;k++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        fprintf(ficresp, "\n");
         }        
         else {        for(i=iagemin; i <= iagemax+3; i++){
           cutv(strd,strc,strb,'V');          if(i==iagemax+3){
           Tvar[i+1]=atoi(strc);            fprintf(ficlog,"Total");
         }          }else{
         strcpy(modelsav,stra);              if(first==1){
       }              first=0;
       /*cutv(strd,strc,stra,'V');*/              printf("See log file for details...\n");
       Tvar[1]=atoi(strc);            }
     }            fprintf(ficlog,"Age %d", i);
   }          }
   /*printf("tvar=%d ",Tvar[1]);*/          for(jk=1; jk <=nlstate ; jk++){
   /*scanf("%d ",i);*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fclose(fic);              pp[jk] += freq[jk][m][i]; 
           }
     if (weightopt != 1) { /* Maximisation without weights*/          for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=n;i++) weight[i]=1.0;            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
     /*-calculation of age at interview from date of interview and age at death -*/            if(pp[jk]>=1.e-10){
     agev=matrix(1,maxwav,1,imx);              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for (i=1; i<=imx; i++)  {              }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(m=1; (m<= maxwav); m++){            }else{
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;                if(first==1)
         if(s[m][i] >0){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           if (s[m][i] == nlstate+1) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if(agedc[i]>0)            }
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];  
             else{          for(jk=1; jk <=nlstate ; jk++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               agev[m][i]=-1;              pp[jk] += freq[jk][m][i];
             }          }       
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           else if(s[m][i] !=9){ /* Should no more exist */            pos += pp[jk];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            posprop += prop[jk][i];
             if(mint[m][i]==99 || anint[m][i]==9999){          }
               agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */            if(pos>=1.e-5){
             }              if(first==1)
             else if(agev[m][i] <agemin){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               agemin=agev[m][i];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }else{
             }              if(first==1)
             else if(agev[m][i] >agemax){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               agemax=agev[m][i];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            }
             }            if( i <= iagemax){
             /*agev[m][i]=anint[m][i]-annais[i];*/              if(pos>=1.e-5){
             /*   agev[m][i] = age[i]+2*m;*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           }                /*probs[i][jk][j1]= pp[jk]/pos;*/
           else { /* =9 */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             agev[m][i]=1;              }
             s[m][i]=-1;              else
           }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         }            }
         else /*= 0 Unknown */          }
           agev[m][i]=1;          
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
     for (i=1; i<=imx; i++)  {              if(first==1)
       for(m=1; (m<= maxwav); m++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         if (s[m][i] > (nlstate+ndeath)) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           printf("Error: Wrong value in nlstate or ndeath\n");                }
           goto end;          if(i <= iagemax)
         }            fprintf(ficresp,"\n");
       }          if(first==1)
     }            printf("Others in log...\n");
           fprintf(ficlog,"\n");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
       }
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);    dateintmean=dateintsum/k2cpt; 
     free_vector(moisnais,1,n);   
     free_vector(annais,1,n);    fclose(ficresp);
     free_matrix(mint,1,maxwav,1,n);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_matrix(anint,1,maxwav,1,n);    free_vector(pp,1,nlstate);
     free_vector(moisdc,1,n);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(andc,1,n);    /* End of Freq */
   }
      
     wav=ivector(1,imx);  /************ Prevalence ********************/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  {  
        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     /* Concatenates waves */       in each health status at the date of interview (if between dateprev1 and dateprev2).
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       We still use firstpass and lastpass as another selection.
     */
    
 Tcode=ivector(1,100);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
    nbcode=imatrix(1,nvar,1,8);      double ***freq; /* Frequencies */
    ncodemax[1]=1;    double *pp, **prop;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double pos,posprop; 
      double  y2; /* in fractional years */
    codtab=imatrix(1,100,1,10);    int iagemin, iagemax;
    h=0;  
    m=pow(2,cptcovn);    iagemin= (int) agemin;
      iagemax= (int) agemax;
    for(k=1;k<=cptcovn; k++){    /*pp=vector(1,nlstate);*/
      for(i=1; i <=(m/pow(2,k));i++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        for(j=1; j <= ncodemax[k]; j++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    j1=0;
            h++;    
            if (h>m) h=1;codtab[h][k]=j;    j=cptcoveff;
          }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        }    
      }    for(k1=1; k1<=j;k1++){
    }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
    /*for(i=1; i <=m ;i++){        
      for(k=1; k <=cptcovn; k++){        for (i=1; i<=nlstate; i++)  
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          for(m=iagemin; m <= iagemax+3; m++)
      }            prop[i][m]=0.0;
      printf("\n");       
    }        for (i=1; i<=imx; i++) { /* Each individual */
   scanf("%d",i);*/          bool=1;
              if  (cptcovn>0) {
    /* Calculates basic frequencies. Computes observed prevalence at single age            for (z1=1; z1<=cptcoveff; z1++) 
        and prints on file fileres'p'. */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                bool=0;
           } 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (bool==1) { 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* For Powell, parameters are in a vector p[] starting at p[1]                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     /*scanf("%d",i);*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
                  }
     /*--------- results files --------------*/            } /* end selection of waves */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          }
            }
    jk=1;        for(i=iagemin; i <= iagemax+3; i++){  
    fprintf(ficres,"# Parameters\n");          
    printf("# Parameters\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    for(i=1,jk=1; i <=nlstate; i++){            posprop += prop[jk][i]; 
      for(k=1; k <=(nlstate+ndeath); k++){          } 
        if (k != i)  
          {          for(jk=1; jk <=nlstate ; jk++){     
            printf("%d%d ",i,k);            if( i <=  iagemax){ 
            fprintf(ficres,"%1d%1d ",i,k);              if(posprop>=1.e-5){ 
            for(j=1; j <=ncovmodel; j++){                probs[i][jk][j1]= prop[jk][i]/posprop;
              printf("%f ",p[jk]);              } 
              fprintf(ficres,"%f ",p[jk]);            } 
              jk++;          }/* end jk */ 
            }        }/* end i */ 
            printf("\n");      } /* end i1 */
            fprintf(ficres,"\n");    } /* end k1 */
          }    
      }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    }    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     /* Computing hessian and covariance matrix */  }  /* End of prevalence */
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  /************* Waves Concatenation ***************/
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      for(i=1,jk=1; i <=nlstate; i++){  {
       for(j=1; j <=nlstate+ndeath; j++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         if (j!=i) {       Death is a valid wave (if date is known).
           fprintf(ficres,"%1d%1d",i,j);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           printf("%1d%1d",i,j);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           for(k=1; k<=ncovmodel;k++){       and mw[mi+1][i]. dh depends on stepm.
             printf(" %.5e",delti[jk]);       */
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           printf("\n");       double sum=0., jmean=0.;*/
           fprintf(ficres,"\n");    int first;
         }    int j, k=0,jk, ju, jl;
       }    double sum=0.;
       }    first=0;
        jmin=1e+5;
     k=1;    jmax=-1;
     fprintf(ficres,"# Covariance\n");    jmean=0.;
     printf("# Covariance\n");    for(i=1; i<=imx; i++){
     for(i=1;i<=npar;i++){      mi=0;
       /*  if (k>nlstate) k=1;      m=firstpass;
       i1=(i-1)/(ncovmodel*nlstate)+1;      while(s[m][i] <= nlstate){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        if(s[m][i]>=1)
       printf("%s%d%d",alph[k],i1,tab[i]);*/          mw[++mi][i]=m;
       fprintf(ficres,"%3d",i);        if(m >=lastpass)
       printf("%3d",i);          break;
       for(j=1; j<=i;j++){        else
         fprintf(ficres," %.5e",matcov[i][j]);          m++;
         printf(" %.5e",matcov[i][j]);      }/* end while */
       }      if (s[m][i] > nlstate){
       fprintf(ficres,"\n");        mi++;     /* Death is another wave */
       printf("\n");        /* if(mi==0)  never been interviewed correctly before death */
       k++;           /* Only death is a correct wave */
     }        mw[mi][i]=m;
          }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);      wav[i]=mi;
       fgets(line, MAXLINE, ficpar);      if(mi==0){
       puts(line);        if(first==0){
       fputs(line,ficparo);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     }          first=1;
     ungetc(c,ficpar);        }
          if(first==1){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
            }
     if (fage <= 2) {      } /* end mi==0 */
       bage = agemin;    } /* End individuals */
       fage = agemax;  
     }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if (stepm <=0)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          dh[mi][i]=1;
 /*------------ gnuplot -------------*/        else{
 chdir(pathcd);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if((ficgp=fopen("graph.plt","w"))==NULL) {            if (agedc[i] < 2*AGESUP) {
     printf("Problem with file graph.gp");goto end;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
 #ifdef windows              else if(j<0){
   fprintf(ficgp,"cd \"%s\" \n",pathc);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif                j=1; /* Careful Patch */
 m=pow(2,cptcovn);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  /* 1eme*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   for (cpt=1; cpt<= nlstate ; cpt ++) {              }
    for (k1=1; k1<= m ; k1 ++) {              k=k+1;
               if (j >= jmax) jmax=j;
 #ifdef windows              if (j <= jmin) jmin=j;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              sum=sum+j;
 #endif              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #ifdef unix              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            }
 #endif          }
           else{
 for (i=1; i<= nlstate ; i ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");            k=k+1;
 }            if (j >= jmax) jmax=j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            else if (j <= jmin)jmin=j;
     for (i=1; i<= nlstate ; i ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(j<0){
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            jk= j/stepm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          jl= j -jk*stepm;
 #ifdef unix          ju= j -(jk+1)*stepm;
 fprintf(ficgp,"\nset ter gif small size 400,300");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 #endif            if(jl==0){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=jk;
    }              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
   /*2 eme*/                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            }
              }else{
     for (i=1; i<= nlstate+1 ; i ++) {            if(jl <= -ju){
       k=2*i;              dh[mi][i]=jk;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for (j=1; j<= nlstate+1 ; j ++) {                                   * is higher than the multiple of stepm and negative otherwise.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              else{
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              dh[mi][i]=jk+1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              bh[mi][i]=ju;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            if(dh[mi][i]==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=1; /* At least one step */
         else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju; /* At least one step */
 }                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          } /* end if mle */
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      jmean=sum/k;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }   }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   /*3eme*/  {
     
   for (k1=1; k1<= m ; k1 ++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int cptcode=0;
       k=2+nlstate*(cpt-1);    cptcoveff=0; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);   
       for (i=1; i< nlstate ; i ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    for (k=1; k<=7; k++) ncodemax[k]=0;
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /* CV preval stat */        Ndum[ij]++; /*store the modality */
   for (k1=1; k1<= m ; k1 ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for (cpt=1; cpt<nlstate ; cpt ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       k=3;                                         Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);                                         female is 1, then  cptcode=1.*/
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (i=0; i<=cptcode; i++) {
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      ij=1; 
         l=3+(nlstate+ndeath)*cpt;      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficgp,"+$%d",l+i+1);        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              nbcode[Tvar[j]][ij]=k; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
   }            ij++;
           }
   /* proba elementaires */          if (ij > ncodemax[j]) break; 
   for(i=1,jk=1; i <=nlstate; i++){        }  
     for(k=1; k <=(nlstate+ndeath); k++){      } 
       if (k != i) {    }  
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/  
         for(j=1; j <=ncovmodel; j++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);  
           jk++;   for (i=1; i<=ncovmodel-2; i++) { 
           fprintf(ficgp,"\n");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         }     ij=Tvar[i];
       }     Ndum[ij]++;
     }   }
   }  
   for(jk=1; jk <=m; jk++) {   ij=1;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);   for (i=1; i<= maxncov; i++) {
   for(i=1; i <=nlstate; i++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(k=1; k <=(nlstate+ndeath); k++){       Tvaraff[ij]=i; /*For printing */
       if (k != i) {       ij++;
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);     }
         for(j=3; j <=ncovmodel; j++)   }
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
         fprintf(ficgp,")/(1");   cptcoveff=ij-1; /*Number of simple covariates*/
         for(k1=1; k1 <=(nlstate+ndeath); k1++)  }
           if (k1 != i) {  
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);  /*********** Health Expectancies ****************/
             for(j=3; j <=ncovmodel; j++)  
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
             fprintf(ficgp,")");  
           }  {
         fprintf(ficgp,") t \"p%d%d\" ", i,k);    /* Health expectancies */
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       }    double age, agelim, hf;
     }    double ***p3mat,***varhe;
   }    double **dnewm,**doldm;
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      double *xp;
   }    double **gp, **gm;
   fclose(ficgp);    double ***gradg, ***trgradg;
        int theta;
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_ivector(wav,1,imx);    xp=vector(1,npar);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
     free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficreseij,"# Health expectancies\n");
        fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
     free_ivector(num,1,n);      for(j=1; j<=nlstate;j++)
     free_vector(agedc,1,n);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_vector(weight,1,n);    fprintf(ficreseij,"\n");
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);    if(estepm < stepm){
     fclose(ficres);      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
        else  hstepm=estepm;   
    /*________fin mle=1_________*/    /* We compute the life expectancy from trapezoids spaced every estepm months
         * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
     /* No more information from the sample is required now */     * progression in between and thus overestimating or underestimating according
   /* Reads comments: lines beginning with '#' */     * to the curvature of the survival function. If, for the same date, we 
   while((c=getc(ficpar))=='#' && c!= EOF){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     ungetc(c,ficpar);     * to compare the new estimate of Life expectancy with the same linear 
     fgets(line, MAXLINE, ficpar);     * hypothesis. A more precise result, taking into account a more precise
     puts(line);     * curvature will be obtained if estepm is as small as stepm. */
     fputs(line,ficparo);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       nstepm is the number of stepm from age to agelin. 
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       and note for a fixed period like estepm months */
 /*--------- index.htm --------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if((fichtm=fopen("index.htm","w"))==NULL)    {       means that if the survival funtion is printed only each two years of age and if
     printf("Problem with index.htm \n");goto end;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
     */
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    agelim=AGESUP;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      /* nhstepm age range expressed in number of stepm */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      /* if (stepm >= YEARM) hstepm=1;*/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
  fprintf(fichtm," <li>Graphs</li>\n<p>");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
  m=cptcovn;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  j1=0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
  for(k1=1; k1<=m;k1++){   
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr>************ Results for covariates");      /* Computing Variances of health expectancies */
          for (cpt=1; cpt<=cptcovn;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);       for(theta=1; theta <=npar; theta++){
          fprintf(fichtm," ************\n<hr>");        for(i=1; i<=npar; i++){ 
        }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        cptj=0;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(j=1; j<= nlstate; j++){
        }          for(i=1; i<=nlstate; i++){
     for(cpt=1; cpt<=nlstate;cpt++) {            cptj=cptj+1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 interval) in state (%d): v%s%d%d.gif <br>              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              }
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       
      }        for(i=1; i<=npar; i++) 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 health expectancies in states (1) and (2): e%s%d.gif<br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        
 fprintf(fichtm,"\n</body>");        cptj=0;
    }        for(j=1; j<= nlstate; j++){
  }          for(i=1;i<=nlstate;i++){
 fclose(fichtm);            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   /*--------------- Prevalence limit --------------*/  
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   strcpy(filerespl,"pl");            }
   strcat(filerespl,fileres);          }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fprintf(ficrespl,"#Prevalence limit\n");          }
   fprintf(ficrespl,"#Age ");       } 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     
   fprintf(ficrespl,"\n");  /* End theta */
    
   prlim=matrix(1,nlstate,1,nlstate);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(h=0; h<=nhstepm-1; h++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate*nlstate;j++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            trgradg[h][j][theta]=gradg[h][theta][j];
   k=0;       
   agebase=agemin;  
   agelim=agemax;       for(i=1;i<=nlstate*nlstate;i++)
   ftolpl=1.e-10;        for(j=1;j<=nlstate*nlstate;j++)
   i1=cptcovn;          varhe[i][j][(int)age] =0.;
   if (cptcovn < 1){i1=1;}  
        printf("%d|",(int)age);fflush(stdout);
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for(h=0;h<=nhstepm-1;h++){
         k=k+1;        for(k=0;k<=nhstepm-1;k++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespl,"\n#****** ");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         for(j=1;j<=cptcovn;j++)          for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficrespl,"******\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* Computing expectancies */
           fprintf(ficrespl,"%.0f",age );      for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
           fprintf(ficrespl," %.5f", prlim[i][i]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           fprintf(ficrespl,"\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         }            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
   fclose(ficrespl);          }
   /*------------- h Pij x at various ages ------------*/  
        fprintf(ficreseij,"%3.0f",age );
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      cptj=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1; j<=nlstate;j++){
   }          cptj++;
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficreseij,"\n");
   if (stepm<=24) stepsize=2;     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"\n");
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    free_vector(xp,1,npar);
         for(j=1;j<=cptcovn;j++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficrespij,"******\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
          }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /************ Variance ******************/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    /* Variance of health expectancies */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           fprintf(ficrespij,"# Age");    /* double **newm;*/
           for(i=1; i<=nlstate;i++)    double **dnewm,**doldm;
             for(j=1; j<=nlstate+ndeath;j++)    double **dnewmp,**doldmp;
               fprintf(ficrespij," %1d-%1d",i,j);    int i, j, nhstepm, hstepm, h, nstepm ;
           fprintf(ficrespij,"\n");    int k, cptcode;
           for (h=0; h<=nhstepm; h++){    double *xp;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **gp, **gm;  /* for var eij */
             for(i=1; i<=nlstate;i++)    double ***gradg, ***trgradg; /*for var eij */
               for(j=1; j<=nlstate+ndeath;j++)    double **gradgp, **trgradgp; /* for var p point j */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double *gpp, *gmp; /* for var p point j */
             fprintf(ficrespij,"\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           }    double ***p3mat;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age,agelim, hf;
           fprintf(ficrespij,"\n");    double ***mobaverage;
         }    int theta;
     }    char digit[4];
   }    char digitp[25];
   
   fclose(ficrespij);    char fileresprobmorprev[FILENAMELENGTH];
   
   /*---------- Health expectancies and variances ------------*/    if(popbased==1){
       if(mobilav!=0)
   strcpy(filerest,"t");        strcpy(digitp,"-populbased-mobilav-");
   strcat(filerest,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficrest=fopen(filerest,"w"))==NULL) {    }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    else 
   }      strcpy(digitp,"-stablbased-");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerese,"e");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(filerese,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     strcpy(fileresprobmorprev,"prmorprev"); 
  strcpy(fileresv,"v");    sprintf(digit,"%-d",ij);
   strcat(fileresv,fileres);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   k=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=k+1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficrest,"\n#****** ");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1;j<=cptcovn;j++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"******\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1;j<=cptcovn;j++)    }  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficreseij,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for(j=1;j<=cptcovn;j++)  /*   } */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficresvij,"******\n");  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresvij,"# Age");
       oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        for(j=1; j<=nlstate;j++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       oldm=oldms;savm=savms;    fprintf(ficresvij,"\n");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
          xp=vector(1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    dnewm=matrix(1,nlstate,1,npar);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficrest,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
            doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       hf=1;  
       if (stepm >= YEARM) hf=stepm/YEARM;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       epj=vector(1,nlstate+1);    gpp=vector(nlstate+1,nlstate+ndeath);
       for(age=bage; age <=fage ;age++){    gmp=vector(nlstate+1,nlstate+ndeath);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficrest," %.0f",age);    
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    if(estepm < stepm){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    }
           }    else  hstepm=estepm;   
           epj[nlstate+1] +=epj[j];    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(i=1, vepp=0.;i <=nlstate;i++)       nhstepm is the number of hstepm from age to agelim 
           for(j=1;j <=nlstate;j++)       nstepm is the number of stepm from age to agelin. 
             vepp += vareij[i][j][(int)age];       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       and note for a fixed period like k years */
         for(j=1;j <=nlstate;j++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed every two years of age and if
         fprintf(ficrest,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            agelim = AGESUP;
  fclose(ficreseij);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  fclose(ficresvij);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficrest);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(epj,1,nlstate+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*  scanf("%d ",i); */      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   /*------- Variance limit prevalence------*/    
   
 strcpy(fileresvpl,"vpl");      for(theta=1; theta <=npar; theta++){
   strcat(fileresvpl,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
         if (popbased==1) {
  k=0;          if(mobilav ==0){
  for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              prlim[i][i]=probs[(int)age][i][ij];
      k=k+1;          }else{ /* mobilav */ 
      fprintf(ficresvpl,"\n#****** ");            for(i=1; i<=nlstate;i++)
      for(j=1;j<=cptcovn;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
      fprintf(ficresvpl,"******\n");        }
          
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(j=1; j<= nlstate; j++){
      oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  }          }
         }
   fclose(ficresvpl);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   /*---------- End : free ----------------*/           as a weighted average of prlim.
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(matcov,1,npar,1,npar);   
   free_vector(delti,1,npar);        if (popbased==1) {
            if(mobilav ==0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   printf("End of Imach\n");          }else{ /* mobilav */ 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/  
         for(j=1; j<= nlstate; j++){
  end:          for(h=0; h<=nhstepm; h++){
 #ifdef windows            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  chdir(pathcd);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 #endif          }
  system("wgnuplot ../gp37mgw/graph.plt");        }
         /* This for computing probability of death (h=1 means
 #ifdef windows           computed over hstepm matrices product = hstepm*stepm months) 
   while (z[0] != 'q') {           as a weighted average of prlim.
     chdir(pathcd);        */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     scanf("%s",z);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     if (z[0] == 'c') system("./imach");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     else if (z[0] == 'e') {        }    
       chdir(path);        /* end probability of death */
       system("index.htm");  
     }        for(j=1; j<= nlstate; j++) /* vareij */
     else if (z[0] == 'q') exit(0);          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #endif          }
 }  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     /*  fclose(ficgp);*/
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>