Diff for /imach/src/imach.c between versions 1.3 and 1.90

version 1.3, 2001/05/02 17:21:42 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.90  2003/06/24 12:34:15  brouard
   individuals from different ages are interviewed on their health status    (Module): Some bugs corrected for windows. Also, when
   or degree of  disability. At least a second wave of interviews    mle=-1 a template is output in file "or"mypar.txt with the design
   ("longitudinal") should  measure each new individual health status.    of the covariance matrix to be input.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.89  2003/06/24 12:30:52  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Some bugs corrected for windows. Also, when
   reach the Maximum Likelihood of the parameters involved in the model.    mle=-1 a template is output in file "or"mypar.txt with the design
   The simplest model is the multinomial logistic model where pij is    of the covariance matrix to be input.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.88  2003/06/23 17:54:56  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.87  2003/06/18 12:26:01  brouard
     *Covariates have to be included here again* invites you to do it.    Version 0.96
   More covariates you add, less is the speed of the convergence.  
     Revision 1.86  2003/06/17 20:04:08  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Change position of html and gnuplot routines and added
   delay between waves is not identical for each individual, or if some    routine fileappend.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Check when date of death was earlier that
   observed in state i at age x+h conditional to the observed state i at age    current date of interview. It may happen when the death was just
   x. The delay 'h' can be split into an exact number (nh*stepm) of    prior to the death. In this case, dh was negative and likelihood
   unobserved intermediate  states. This elementary transition (by month or    was wrong (infinity). We still send an "Error" but patch by
   quarter trimester, semester or year) is model as a multinomial logistic.    assuming that the date of death was just one stepm after the
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply hPijx.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   Also this programme outputs the covariance matrix of the parameters but also    memory allocation. But we also truncated to 8 characters (left
   of the life expectancies. It also computes the prevalence limits.    truncation)
      (Repository): No more line truncation errors.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.84  2003/06/13 21:44:43  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Replace "freqsummary" at a correct
   from the European Union.    place. It differs from routine "prevalence" which may be called
   It is copyrighted identically to a GNU software product, ie programme and    many times. Probs is memory consuming and must be used with
   software can be distributed freely for non commercial use. Latest version    parcimony.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   **********************************************************************/  
      Revision 1.83  2003/06/10 13:39:11  lievre
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <unistd.h>    Add log in  imach.c and  fullversion number is now printed.
   
 #define MAXLINE 256  */
 #define FILENAMELENGTH 80  /*
 /*#define DEBUG*/     Interpolated Markov Chain
 #define windows  
     Short summary of the programme:
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NINTERVMAX 8    first survey ("cross") where individuals from different ages are
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    interviewed on their health status or degree of disability (in the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    case of a health survey which is our main interest) -2- at least a
 #define NCOVMAX 8 /* Maximum number of covariates */    second wave of interviews ("longitudinal") which measure each change
 #define MAXN 20000    (if any) in individual health status.  Health expectancies are
 #define YEARM 12. /* Number of months per year */    computed from the time spent in each health state according to a
 #define AGESUP 130    model. More health states you consider, more time is necessary to reach the
 #define AGEBASE 40    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 int nvar;    conditional to be observed in state i at the first wave. Therefore
 static int cptcov;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int cptcovn;    'age' is age and 'sex' is a covariate. If you want to have a more
 int npar=NPARMAX;    complex model than "constant and age", you should modify the program
 int nlstate=2; /* Number of live states */    where the markup *Covariates have to be included here again* invites
 int ndeath=1; /* Number of dead states */    you to do it.  More covariates you add, slower the
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    convergence.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    The advantage of this computer programme, compared to a simple
 int maxwav; /* Maxim number of waves */    multinomial logistic model, is clear when the delay between waves is not
 int mle, weightopt;    identical for each individual. Also, if a individual missed an
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    intermediate interview, the information is lost, but taken into
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    account using an interpolation or extrapolation.  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    hPijx is the probability to be observed in state i at age x+h
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    conditional to the observed state i at age x. The delay 'h' can be
 FILE *ficgp, *fichtm;    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *ficreseij;    states. This elementary transition (by month, quarter,
   char filerese[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
  FILE  *ficresvij;    matrix is simply the matrix product of nh*stepm elementary matrices
   char fileresv[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
  FILE  *ficresvpl;    hPijx.
   char fileresvpl[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
     
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define NR_END 1             Institut national d'études démographiques, Paris.
 #define FREE_ARG char*    This software have been partly granted by Euro-REVES, a concerted action
 #define FTOL 1.0e-10    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define NRANSI    software can be distributed freely for non commercial use. Latest version
 #define ITMAX 200    can be accessed at http://euroreves.ined.fr/imach .
   
 #define TOL 2.0e-4    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define CGOLD 0.3819660    
 #define ZEPS 1.0e-10    **********************************************************************/
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  /*
     main
 #define GOLD 1.618034    read parameterfile
 #define GLIMIT 100.0    read datafile
 #define TINY 1.0e-20    concatwav
     freqsummary
 static double maxarg1,maxarg2;    if (mle >= 1)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))      mlikeli
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    print results files
      if mle==1 
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))       computes hessian
 #define rint(a) floor(a+0.5)    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 static double sqrarg;    open gnuplot file
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    open html file
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    stable prevalence
      for age prevalim()
 int imx;    h Pij x
 int stepm;    variance of p varprob
 /* Stepm, step in month: minimum step interpolation*/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int m,nb;    Variance-covariance of DFLE
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    prevalence()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     movingaverage()
 double **pmmij;    varevsij() 
     if popbased==1 varevsij(,popbased)
 double *weight;    total life expectancies
 int **s; /* Status */    Variance of stable prevalence
 double *agedc, **covar, idx;   end
 int **nbcode, *Tcode, *Tvar, **codtab;  */
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  
    
   #include <math.h>
 /******************************************/  #include <stdio.h>
   #include <stdlib.h>
 void replace(char *s, char*t)  #include <unistd.h>
 {  
   int i;  #include <sys/time.h>
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define MAXLINE 256
     (s[i] = t[i]);  #define GNUPLOTPROGRAM "gnuplot"
     if (t[i]== '\\') s[i]='/';  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
 }  /*#define DEBUG*/
   /*#define windows*/
 int nbocc(char *s, char occ)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int i,j=0;  
   int lg=20;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   i=0;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define NINTERVMAX 8
   if  (s[i] == occ ) j++;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return j;  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void cutv(char *u,char *v, char*t, char occ)  #define AGESUP 130
 {  #define AGEBASE 40
   int i,lg,j,p;  #ifdef unix
   i=0;  #define DIRSEPARATOR '/'
   for(j=0; j<=strlen(t)-1; j++) {  #define ODIRSEPARATOR '\\'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #else
   }  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
   lg=strlen(t);  #endif
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  /* $Id$ */
     u[p]='\0';  /* $State$ */
   }  
   char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
    for(j=0; j<= lg; j++) {  char fullversion[]="$Revision$ $Date$"; 
     if (j>=(p+1))(v[j-p-1] = t[j]);  int erreur; /* Error number */
   }  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /********************** nrerror ********************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void nrerror(char error_text[])  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  int *wav; /* Number of waves for this individuual 0 is possible */
   exit(1);  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
 /*********************** vector *******************/  int gipmx, gsw; /* Global variables on the number of contributions 
 double *vector(int nl, int nh)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   double *v;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!v) nrerror("allocation failure in vector");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   return v-nl+NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /************************ free vector ******************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 void free_vector(double*v, int nl, int nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   free((FREE_ARG)(v+nl-NR_END));  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /************************ivector *******************************/  double sw; /* Sum of weights */
 int *ivector(long nl,long nh)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   int *v;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficresprobmorprev;
   if (!v) nrerror("allocation failure in ivector");  FILE *fichtm; /* Html File */
   return v-nl+NR_END;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /******************free ivector **************************/  char fileresv[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /******************* imatrix *******************************/  char tmpout[FILENAMELENGTH]; 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char command[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int  outcmd=0;
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int **m;  char lfileres[FILENAMELENGTH];
    char filelog[FILENAMELENGTH]; /* Log file */
   /* allocate pointers to rows */  char filerest[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char fileregp[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char popfile[FILENAMELENGTH];
   m += NR_END;  
   m -= nrl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    
    #define NR_END 1
   /* allocate rows and set pointers to them */  #define FREE_ARG char*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FTOL 1.0e-10
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NRANSI 
   m[nrl] -= ncl;  #define ITMAX 200 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define TOL 2.0e-4 
    
   /* return pointer to array of pointers to rows */  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /****************** free_imatrix *************************/  #define GOLD 1.618034 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLIMIT 100.0 
       int **m;  #define TINY 1.0e-20 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m+nrl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **m;  
   int imx; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int stepm;
   if (!m) nrerror("allocation failure 1 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m += NR_END;  
   m -= nrl;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int m,nb;
   m[nrl] += NR_END;  long *num;
   m[nrl] -= ncl;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **pmmij, ***probs;
   return m;  double dateintmean=0;
 }  
   double *weight;
 /*************************free matrix ************************/  int **s; /* Status */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /******************* ma3x *******************************/  /**************** split *************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    char  *ss;                            /* pointer */
   double ***m;    int   l1, l2;                         /* length counters */
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    l1 = strlen(path );                   /* length of path */
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m -= nrl;    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /* get current working directory */
   m[nrl] += NR_END;      /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl] -= ncl;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      }
       strcpy( name, path );               /* we've got it */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    } else {                              /* strip direcotry from path */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      ss++;                               /* after this, the filename */
   m[nrl][ncl] += NR_END;      l2 = strlen( ss );                  /* length of filename */
   m[nrl][ncl] -= nll;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (j=ncl+1; j<=nch; j++)      strcpy( name, ss );         /* save file name */
     m[nrl][j]=m[nrl][j-1]+nlay;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
        dirc[l1-l2] = 0;                    /* add zero */
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    l1 = strlen( dirc );                  /* length of directory */
     for (j=ncl+1; j<=nch; j++)    /*#ifdef windows
       m[i][j]=m[i][j-1]+nlay;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   }  #else
   return m;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     */
 /*************************free ma3x ************************/    ss = strrchr( name, '.' );            /* find last / */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    l1= strlen( name);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l2= strlen(ss)+1;
   free((FREE_ARG)(m+nrl-NR_END));    strncpy( finame, name, l1-l2);
 }    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /******************************************/
    
 double f1dim(double x)  void replace_back_to_slash(char *s, char*t)
 {  {
   int j;    int i;
   double f;    int lg=0;
   double *xt;    i=0;
      lg=strlen(t);
   xt=vector(1,ncom);    for(i=0; i<= lg; i++) {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      (s[i] = t[i]);
   f=(*nrfunc)(xt);      if (t[i]== '\\') s[i]='/';
   free_vector(xt,1,ncom);    }
   return f;  }
 }  
   int nbocc(char *s, char occ)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    int i,j=0;
 {    int lg=20;
   int iter;    i=0;
   double a,b,d,etemp;    lg=strlen(s);
   double fu,fv,fw,fx;    for(i=0; i<= lg; i++) {
   double ftemp;    if  (s[i] == occ ) j++;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    }
   double e=0.0;    return j;
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  void cutv(char *u,char *v, char*t, char occ)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    /* cuts string t into u and v where u is ended by char occ excluding it
   for (iter=1;iter<=ITMAX;iter++) {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     xm=0.5*(a+b);       gives u="abcedf" and v="ghi2j" */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    int i,lg,j,p=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    i=0;
     printf(".");fflush(stdout);    for(j=0; j<=strlen(t)-1; j++) {
 #ifdef DEBUG      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    lg=strlen(t);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    for(j=0; j<p; j++) {
       *xmin=x;      (u[j] = t[j]);
       return fx;    }
     }       u[p]='\0';
     ftemp=fu;  
     if (fabs(e) > tol1) {     for(j=0; j<= lg; j++) {
       r=(x-w)*(fx-fv);      if (j>=(p+1))(v[j-p-1] = t[j]);
       q=(x-v)*(fx-fw);    }
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /********************** nrerror ********************/
       q=fabs(q);  
       etemp=e;  void nrerror(char error_text[])
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    fprintf(stderr,"ERREUR ...\n");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    fprintf(stderr,"%s\n",error_text);
       else {    exit(EXIT_FAILURE);
         d=p/q;  }
         u=x+d;  /*********************** vector *******************/
         if (u-a < tol2 || b-u < tol2)  double *vector(int nl, int nh)
           d=SIGN(tol1,xm-x);  {
       }    double *v;
     } else {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /************************ free vector ******************/
       if (u >= x) a=x; else b=x;  void free_vector(double*v, int nl, int nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(v+nl-NR_END));
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /************************ivector *******************************/
             v=w;  int *ivector(long nl,long nh)
             w=u;  {
             fv=fw;    int *v;
             fw=fu;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           } else if (fu <= fv || v == x || v == w) {    if (!v) nrerror("allocation failure in ivector");
             v=u;    return v-nl+NR_END;
             fv=fu;  }
           }  
         }  /******************free ivector **************************/
   }  void free_ivector(int *v, long nl, long nh)
   nrerror("Too many iterations in brent");  {
   *xmin=x;    free((FREE_ARG)(v+nl-NR_END));
   return fx;  }
 }  
   /************************lvector *******************************/
 /****************** mnbrak ***********************/  long *lvector(long nl,long nh)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    long *v;
             double (*func)(double))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
   double ulim,u,r,q, dum;    return v-nl+NR_END;
   double fu;  }
    
   *fa=(*func)(*ax);  /******************free lvector **************************/
   *fb=(*func)(*bx);  void free_lvector(long *v, long nl, long nh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /******************* imatrix *******************************/
   *fc=(*func)(*cx);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   while (*fb > *fc) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     r=(*bx-*ax)*(*fb-*fc);  { 
     q=(*bx-*cx)*(*fb-*fa);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int **m; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /* allocate pointers to rows */ 
     if ((*bx-u)*(u-*cx) > 0.0) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
       if (fu < *fc) {    
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))    /* allocate rows and set pointers to them */ 
           }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       u=ulim;    m[nrl] += NR_END; 
       fu=(*func)(u);    m[nrl] -= ncl; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       fu=(*func)(u);    
     }    /* return pointer to array of pointers to rows */ 
     SHFT(*ax,*bx,*cx,u)    return m; 
       SHFT(*fa,*fb,*fc,fu)  } 
       }  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** linmin ************************/        int **m;
         long nch,ncl,nrh,nrl; 
 int ncom;       /* free an int matrix allocated by imatrix() */ 
 double *pcom,*xicom;  { 
 double (*nrfunc)(double []);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  } 
 {  
   double brent(double ax, double bx, double cx,  /******************* matrix *******************************/
                double (*f)(double), double tol, double *xmin);  double **matrix(long nrl, long nrh, long ncl, long nch)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
               double *fc, double (*func)(double));    double **m;
   int j;  
   double xx,xmin,bx,ax;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fx,fb,fa;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   ncom=n;    m -= nrl;
   pcom=vector(1,n);  
   xicom=vector(1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   nrfunc=func;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (j=1;j<=n;j++) {    m[nrl] += NR_END;
     pcom[j]=p[j];    m[nrl] -= ncl;
     xicom[j]=xi[j];  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   ax=0.0;    return m;
   xx=1.0;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*************************free matrix ************************/
 #endif  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     p[j] += xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /******************* ma3x *******************************/
 }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 /*************** powell ************************/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double ***m;
             double (*func)(double []))  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!m) nrerror("allocation failure 1 in matrix()");
               double (*func)(double []));    m += NR_END;
   int i,ibig,j;    m -= nrl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   pt=vector(1,n);    m[nrl] += NR_END;
   ptt=vector(1,n);    m[nrl] -= ncl;
   xit=vector(1,n);  
   xits=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fp=(*fret);    m[nrl][ncl] += NR_END;
     ibig=0;    m[nrl][ncl] -= nll;
     del=0.0;    for (j=ncl+1; j<=nch; j++) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      m[nrl][j]=m[nrl][j-1]+nlay;
     for (i=1;i<=n;i++)    
       printf(" %d %.12f",i, p[i]);    for (i=nrl+1; i<=nrh; i++) {
     printf("\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (i=1;i<=n;i++) {      for (j=ncl+1; j<=nch; j++) 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        m[i][j]=m[i][j-1]+nlay;
       fptt=(*fret);    }
 #ifdef DEBUG    return m; 
       printf("fret=%lf \n",*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #endif             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("%d",i);fflush(stdout);    */
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /*************************free ma3x ************************/
         ibig=i;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       }  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("%d %.12e",i,(*fret));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /***************** f1dim *************************/
       for(j=1;j<=n;j++)  extern int ncom; 
         printf(" p=%.12e",p[j]);  extern double *pcom,*xicom;
       printf("\n");  extern double (*nrfunc)(double []); 
 #endif   
     }  double f1dim(double x) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  { 
 #ifdef DEBUG    int j; 
       int k[2],l;    double f;
       k[0]=1;    double *xt; 
       k[1]=-1;   
       printf("Max: %.12e",(*func)(p));    xt=vector(1,ncom); 
       for (j=1;j<=n;j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         printf(" %.12e",p[j]);    f=(*nrfunc)(xt); 
       printf("\n");    free_vector(xt,1,ncom); 
       for(l=0;l<=1;l++) {    return f; 
         for (j=1;j<=n;j++) {  } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*****************brent *************************/
         }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  { 
       }    int iter; 
 #endif    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
       free_vector(xit,1,n);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       free_vector(xits,1,n);    double e=0.0; 
       free_vector(ptt,1,n);   
       free_vector(pt,1,n);    a=(ax < cx ? ax : cx); 
       return;    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    fw=fv=fx=(*f)(x); 
     for (j=1;j<=n;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
       ptt[j]=2.0*p[j]-pt[j];      xm=0.5*(a+b); 
       xit[j]=p[j]-pt[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       pt[j]=p[j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     fptt=(*func)(ptt);      fprintf(ficlog,".");fflush(ficlog);
     if (fptt < fp) {  #ifdef DEBUG
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       if (t < 0.0) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         linmin(p,xit,n,fret,func);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         for (j=1;j<=n;j++) {  #endif
           xi[j][ibig]=xi[j][n];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           xi[j][n]=xit[j];        *xmin=x; 
         }        return fx; 
 #ifdef DEBUG      } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      ftemp=fu;
         for(j=1;j<=n;j++)      if (fabs(e) > tol1) { 
           printf(" %.12e",xit[j]);        r=(x-w)*(fx-fv); 
         printf("\n");        q=(x-v)*(fx-fw); 
 #endif        p=(x-v)*q-(x-w)*r; 
       }        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /**** Prevalence limit ****************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        else { 
 {          d=p/q; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          u=x+d; 
      matrix by transitions matrix until convergence is reached */          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   int i, ii,j,k;        } 
   double min, max, maxmin, maxmax,sumnew=0.;      } else { 
   double **matprod2();        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **out, cov[NCOVMAX], **pmij();      } 
   double **newm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      fu=(*f)(u); 
       if (fu <= fx) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)        if (u >= x) a=x; else b=x; 
     for (j=1;j<=nlstate+ndeath;j++){        SHFT(v,w,x,u) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          SHFT(fv,fw,fx,fu) 
     }          } else { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            if (u < x) a=u; else b=u; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){            if (fu <= fw || w == x) { 
     newm=savm;              v=w; 
     /* Covariates have to be included here again */              w=u; 
     cov[1]=1.;              fv=fw; 
     cov[2]=agefin;              fw=fu; 
     if (cptcovn>0){            } else if (fu <= fv || v == x || v == w) { 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}              v=u; 
     }              fv=fu; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);            } 
           } 
     savm=oldm;    } 
     oldm=newm;    nrerror("Too many iterations in brent"); 
     maxmax=0.;    *xmin=x; 
     for(j=1;j<=nlstate;j++){    return fx; 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /****************** mnbrak ***********************/
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         prlim[i][j]= newm[i][j]/(1-sumnew);              double (*func)(double)) 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    double ulim,u,r,q, dum;
       }    double fu; 
       maxmin=max-min;   
       maxmax=FMAX(maxmax,maxmin);    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     if(maxmax < ftolpl){    if (*fb > *fa) { 
       return prlim;      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /*************** transition probabilities **********/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double s1, s2;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /*double t34;*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i,j,j1, nc, ii, jj;      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
     for(i=1; i<= nlstate; i++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (fu < *fc) { 
         /*s2 += param[i][j][nc]*cov[nc];*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            SHFT(*fb,*fc,fu,(*func)(u)) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       ps[i][j]=s2;        u=ulim; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fu=(*func)(u); 
     }      } else { 
     for(j=i+1; j<=nlstate+ndeath;j++){        u=(*cx)+GOLD*(*cx-*bx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fu=(*func)(u); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       ps[i][j]=s2;        } 
     }  } 
   }  
   for(i=1; i<= nlstate; i++){  /*************** linmin ************************/
      s1=0;  
     for(j=1; j<i; j++)  int ncom; 
       s1+=exp(ps[i][j]);  double *pcom,*xicom;
     for(j=i+1; j<=nlstate+ndeath; j++)  double (*nrfunc)(double []); 
       s1+=exp(ps[i][j]);   
     ps[i][i]=1./(s1+1.);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=1; j<i; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double brent(double ax, double bx, double cx, 
     for(j=i+1; j<=nlstate+ndeath; j++)                 double (*f)(double), double tol, double *xmin); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f1dim(double x); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   } /* end i */                double *fc, double (*func)(double)); 
     int j; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double xx,xmin,bx,ax; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fx,fb,fa;
       ps[ii][jj]=0;   
       ps[ii][ii]=1;    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
     nrfunc=func; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      pcom[j]=p[j]; 
      printf("%lf ",ps[ii][jj]);      xicom[j]=xi[j]; 
    }    } 
     printf("\n ");    ax=0.0; 
     }    xx=1.0; 
     printf("\n ");printf("%lf ",cov[2]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /*    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef DEBUG
   goto end;*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     return ps;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
 /**************** Product of 2 matrices ******************/      xi[j] *= xmin; 
       p[j] += xi[j]; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    } 
 {    free_vector(xicom,1,n); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free_vector(pcom,1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** powell ************************/
      a pointer to pointers identical to out */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   long i, j, k;              double (*func)(double [])) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    void linmin(double p[], double xi[], int n, double *fret, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)                double (*func)(double [])); 
         out[i][k] +=in[i][j]*b[j][k];    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   return out;    double fp,fptt;
 }    double *xits;
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /************* Higher Matrix Product ***************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (*iter=1;;++(*iter)) { 
      duration (i.e. until      fp=(*fret); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      ibig=0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      del=0.0; 
      (typically every 2 years instead of every month which is too big).      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
      Model is determined by parameters x and covariates have to be      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
      included manually here.      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
      */        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   int i, j, d, h, k;        fprintf(ficrespow," %.12lf", p[i]);
   double **out, cov[NCOVMAX];      }
   double **newm;      printf("\n");
       fprintf(ficlog,"\n");
   /* Hstepm could be zero and should return the unit matrix */      fprintf(ficrespow,"\n");
   for (i=1;i<=nlstate+ndeath;i++)      for (i=1;i<=n;i++) { 
     for (j=1;j<=nlstate+ndeath;j++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fptt=(*fret); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"fret=%lf \n",*fret);
   for(h=1; h <=nhstepm; h++){  #endif
     for(d=1; d <=hstepm; d++){        printf("%d",i);fflush(stdout);
       newm=savm;        fprintf(ficlog,"%d",i);fflush(ficlog);
       /* Covariates have to be included here again */        linmin(p,xit,n,fret,func); 
       cov[1]=1.;        if (fabs(fptt-(*fret)) > del) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          del=fabs(fptt-(*fret)); 
       if (cptcovn>0){          ibig=i; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        } 
     }  #ifdef DEBUG
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf("%d %.12e",i,(*fret));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        for (j=1;j<=n;j++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       savm=oldm;          printf(" x(%d)=%.12e",j,xit[j]);
       oldm=newm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     for(i=1; i<=nlstate+ndeath; i++)        for(j=1;j<=n;j++) {
       for(j=1;j<=nlstate+ndeath;j++) {          printf(" p=%.12e",p[j]);
         po[i][j][h]=newm[i][j];          fprintf(ficlog," p=%.12e",p[j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */        printf("\n");
       }        fprintf(ficlog,"\n");
   } /* end h */  #endif
   return po;      } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
         int k[2],l;
 /*************** log-likelihood *************/        k[0]=1;
 double func( double *x)        k[1]=-1;
 {        printf("Max: %.12e",(*func)(p));
   int i, ii, j, k, mi, d;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (j=1;j<=n;j++) {
   double **out;          printf(" %.12e",p[j]);
   double sw; /* Sum of weights */          fprintf(ficlog," %.12e",p[j]);
   double lli; /* Individual log likelihood */        }
   long ipmx;        printf("\n");
   /*extern weight */        fprintf(ficlog,"\n");
   /* We are differentiating ll according to initial status */        for(l=0;l<=1;l++) {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (j=1;j<=n;j++) {
   /*for(i=1;i<imx;i++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 printf(" %d\n",s[4][i]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
        for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             for(d=0; d<dh[mi][i]; d++){  
         newm=savm;        free_vector(xit,1,n); 
           cov[1]=1.;        free_vector(xits,1,n); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        free_vector(ptt,1,n); 
           if (cptcovn>0){        free_vector(pt,1,n); 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];        return; 
             }      } 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for (j=1;j<=n;j++) { 
           savm=oldm;        ptt[j]=2.0*p[j]-pt[j]; 
           oldm=newm;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       } 
       } /* end mult */      fptt=(*func)(ptt); 
          if (fptt < fp) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        if (t < 0.0) { 
       ipmx +=1;          linmin(p,xit,n,fret,func); 
       sw += weight[i];          for (j=1;j<=n;j++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            xi[j][ibig]=xi[j][n]; 
     } /* end of wave */            xi[j][n]=xit[j]; 
   } /* end of individual */          }
   #ifdef DEBUG
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          for(j=1;j<=n;j++){
   return -l;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
           printf("\n");
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog,"\n");
   #endif
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {      } 
   int i,j, iter;    } 
   double **xi,*delti;  } 
   double fret;  
   xi=matrix(1,npar,1,npar);  /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   powell(p,xi,npar,ftol,&iter,&fret,func);       matrix by transitions matrix until convergence is reached */
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int i, ii,j,k;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 /**** Computes Hessian and covariance matrix ***/    double agefin, delaymax=50 ; /* Max number of years to converge */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   double  **a,**y,*x,pd;      for (j=1;j<=nlstate+ndeath;j++){
   double **hess;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j,jk;      }
   int *indx;  
      cov[1]=1.;
   double hessii(double p[], double delta, int theta, double delti[]);   
   double hessij(double p[], double delti[], int i, int j);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   void ludcmp(double **a, int npar, int *indx, double *d) ;      newm=savm;
       /* Covariates have to be included here again */
        cov[2]=agefin;
   hess=matrix(1,npar,1,npar);    
         for (k=1; k<=cptcovn;k++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     printf("%d",i);fflush(stdout);        }
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     /*printf(" %f ",p[i]);*/        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for (i=1;i<=npar;i++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (j=1;j<=npar;j++)  {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       if (j>i) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         printf(".%d%d",i,j);fflush(stdout);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      savm=oldm;
       }      oldm=newm;
     }      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   printf("\n");        min=1.;
         max=0.;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   a=matrix(1,npar,1,npar);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   y=matrix(1,npar,1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
   x=vector(1,npar);          max=FMAX(max,prlim[i][j]);
   indx=ivector(1,npar);          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        maxmin=max-min;
   ludcmp(a,npar,indx,&pd);        maxmax=FMAX(maxmax,maxmin);
       }
   for (j=1;j<=npar;j++) {      if(maxmax < ftolpl){
     for (i=1;i<=npar;i++) x[i]=0;        return prlim;
     x[j]=1;      }
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  /*************** transition probabilities ***************/ 
   }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   printf("\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {    double s1, s2;
     for (j=1;j<=npar;j++) {    /*double t34;*/
       printf("%.3e ",hess[i][j]);    int i,j,j1, nc, ii, jj;
     }  
     printf("\n");      for(i=1; i<= nlstate; i++){
   }      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /* Recompute Inverse */          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=npar;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   ludcmp(a,npar,indx,&pd);        }
         ps[i][j]=s2;
   /*  printf("\n#Hessian matrix recomputed#\n");        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
   for (j=1;j<=npar;j++) {      for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) x[i]=0;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     x[j]=1;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     lubksb(a,npar,indx,x);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];        ps[i][j]=s2;
       printf("%.3e ",y[i][j]);      }
     }    }
     printf("\n");      /*ps[3][2]=1;*/
   }  
   */    for(i=1; i<= nlstate; i++){
        s1=0;
   free_matrix(a,1,npar,1,npar);      for(j=1; j<i; j++)
   free_matrix(y,1,npar,1,npar);        s1+=exp(ps[i][j]);
   free_vector(x,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
   free_ivector(indx,1,npar);        s1+=exp(ps[i][j]);
   free_matrix(hess,1,npar,1,npar);      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 }      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 /*************** hessian matrix ****************/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 double hessii( double x[], double delta, int theta, double delti[])    } /* end i */
 {  
   int i;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int l=1, lmax=20;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double k1,k2;        ps[ii][jj]=0;
   double p2[NPARMAX+1];        ps[ii][ii]=1;
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    }
   double fx;  
   int k=0,kmax=10;  
   double l1;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   fx=func(x);       printf("%lf ",ps[ii][jj]);
   for (i=1;i<=npar;i++) p2[i]=x[i];     }
   for(l=0 ; l <=lmax; l++){      printf("\n ");
     l1=pow(10,l);      }
     delts=delt;      printf("\n ");printf("%lf ",cov[2]);*/
     for(k=1 ; k <kmax; k=k+1){  /*
       delt = delta*(l1*k);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       p2[theta]=x[theta] +delt;    goto end;*/
       k1=func(p2)-fx;      return ps;
       p2[theta]=x[theta]-delt;  }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /**************** Product of 2 matrices ******************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 #endif       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* in, b, out are matrice of pointers which should have been initialized 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       before: only the contents of out is modified. The function returns
         k=kmax;       a pointer to pointers identical to out */
       }    long i, j, k;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for(i=nrl; i<= nrh; i++)
         k=kmax; l=lmax*10.;      for(k=ncolol; k<=ncoloh; k++)
       }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          out[i][k] +=in[i][j]*b[j][k];
         delts=delt;  
       }    return out;
     }  }
   }  
   delti[theta]=delts;  
   return res;  /************* Higher Matrix Product ***************/
    
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* Computes the transition matrix starting at age 'age' over 
 {       'nhstepm*hstepm*stepm' months (i.e. until
   int i;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int l=1, l1, lmax=20;       nhstepm*hstepm matrices. 
   double k1,k2,k3,k4,res,fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double p2[NPARMAX+1];       (typically every 2 years instead of every month which is too big 
   int k;       for the memory).
        Model is determined by parameters x and covariates have to be 
   fx=func(x);       included manually here. 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];       */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, j, d, h, k;
     k1=func(p2)-fx;    double **out, cov[NCOVMAX];
      double **newm;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Hstepm could be zero and should return the unit matrix */
     k2=func(p2)-fx;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     k3=func(p2)-fx;      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetai]=x[thetai]-delti[thetai]/k;    for(h=1; h <=nhstepm; h++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(d=1; d <=hstepm; d++){
     k4=func(p2)-fx;        newm=savm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        /* Covariates have to be included here again */
 #ifdef DEBUG        cov[1]=1.;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 #endif        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
   return res;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  
 {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   int i,imax,j,k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double big,dum,sum,temp;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double *vv;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
   vv=vector(1,n);        oldm=newm;
   *d=1.0;      }
   for (i=1;i<=n;i++) {      for(i=1; i<=nlstate+ndeath; i++)
     big=0.0;        for(j=1;j<=nlstate+ndeath;j++) {
     for (j=1;j<=n;j++)          po[i][j][h]=newm[i][j];
       if ((temp=fabs(a[i][j])) > big) big=temp;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           */
     vv[i]=1.0/big;        }
   }    } /* end h */
   for (j=1;j<=n;j++) {    return po;
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*************** log-likelihood *************/
     }  double func( double *x)
     big=0.0;  {
     for (i=j;i<=n;i++) {    int i, ii, j, k, mi, d, kk;
       sum=a[i][j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (k=1;k<j;k++)    double **out;
         sum -= a[i][k]*a[k][j];    double sw; /* Sum of weights */
       a[i][j]=sum;    double lli; /* Individual log likelihood */
       if ( (dum=vv[i]*fabs(sum)) >= big) {    int s1, s2;
         big=dum;    double bbh, survp;
         imax=i;    long ipmx;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     if (j != imax) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for (k=1;k<=n;k++) {    /*for(i=1;i<imx;i++) 
         dum=a[imax][k];      printf(" %d\n",s[4][i]);
         a[imax][k]=a[j][k];    */
         a[j][k]=dum;    cov[1]=1.;
       }  
       *d = -(*d);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       vv[imax]=vv[j];  
     }    if(mle==1){
     indx[j]=imax;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != n) {        for(mi=1; mi<= wav[i]-1; mi++){
       dum=1.0/(a[j][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void lubksb(double **a, int n, int *indx, double b[])            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,ii=0,ip,j;            }
   double sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=n;i++) {            savm=oldm;
     ip=indx[i];            oldm=newm;
     sum=b[ip];          } /* end mult */
     b[ip]=b[i];        
     if (ii)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     else if (sum) ii=i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     b[i]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=n;i>=1;i--) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     sum=b[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * probability in order to take into account the bias as a fraction of the way
     b[i]=sum/a[i][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          s1=s[mw[mi][i]][i];
 {  /* Some frequencies */          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /* bias is positive if real duration
   double ***freq; /* Frequencies */           * is higher than the multiple of stepm and negative otherwise.
   double *pp;           */
   double pos;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   FILE *ficresp;          if( s2 > nlstate){ 
   char fileresp[FILENAMELENGTH];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
   pp=vector(1,nlstate);               step unit time, which is also the differences between probability to die before dh 
                and probability to die before dh-stepm . 
   strcpy(fileresp,"p");               In version up to 0.92 likelihood was computed
   strcat(fileresp,fileres);          as if date of death was unknown. Death was treated as any other
   if((ficresp=fopen(fileresp,"w"))==NULL) {          health state: the date of the interview describes the actual state
     printf("Problem with prevalence resultfile: %s\n", fileresp);          and not the date of a change in health state. The former idea was
     exit(0);          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          introduced the exact date of death then we should have modified
   j1=0;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   j=cptcovn;          stepm. It is no more the probability to die between last interview
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
   for(k1=1; k1<=j;k1++){          probability to die within a month. Thanks to Chris
    for(i1=1; i1<=ncodemax[k1];i1++){          Jackson for correcting this bug.  Former versions increased
        j1++;          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         for (i=-1; i<=nlstate+ndeath; i++)            lower mortality.
          for (jk=-1; jk<=nlstate+ndeath; jk++)              */
            for(m=agemin; m <= agemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
              freq[i][jk][m]=0;          }else{
                    lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for (i=1; i<=imx; i++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          bool=1;          } 
          if  (cptcovn>0) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            for (z1=1; z1<=cptcovn; z1++)          /*if(lli ==000.0)*/
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          }          ipmx +=1;
           if (bool==1) {          sw += weight[i];
            for(m=firstpass; m<=lastpass-1; m++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
              if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    }  else if(mle==2){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          }        for(mi=1; mi<= wav[i]-1; mi++){
        }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
          fprintf(ficresp, "\n#Variable");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        }            }
        fprintf(ficresp, "\n#");          for(d=0; d<=dh[mi][i]; d++){
        for(i=1; i<=nlstate;i++)            newm=savm;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        fprintf(ficresp, "\n");            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=(int)agemin; i <= (int)agemax+3; i++){            }
     if(i==(int)agemax+3)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("Total");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     else            savm=oldm;
       printf("Age %d", i);            oldm=newm;
     for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        
         pp[jk] += freq[jk][m][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
     for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(m=-1, pos=0; m <=0 ; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         pos += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
       if(pp[jk]>=1.e-10)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       else           * probability in order to take into account the bias as a fraction of the way
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     for(jk=1; jk <=nlstate ; jk++){           * For stepm=1 the results are the same as for previous versions of Imach.
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)           * For stepm > 1 the results are less biased than in previous versions. 
         pp[jk] += freq[jk][m][i];           */
     }          s1=s[mw[mi][i]][i];
     for(jk=1,pos=0; jk <=nlstate ; jk++)          s2=s[mw[mi+1][i]][i];
       pos += pp[jk];          bbh=(double)bh[mi][i]/(double)stepm; 
     for(jk=1; jk <=nlstate ; jk++){          /* bias is positive if real duration
       if(pos>=1.e-5)           * is higher than the multiple of stepm and negative otherwise.
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
       else          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       if( i <= (int) agemax){          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
         if(pos>=1.e-5)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*if(lli ==000.0)*/
       else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
       for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }  else if(mle==3){  /* exponential inter-extrapolation */
     if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************* Waves Concatenation ***************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            oldm=newm;
      Death is a valid wave (if date is known).          } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      and mw[mi+1][i]. dh depends on stepm.          /* But now since version 0.9 we anticipate for bias and large stepm.
      */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i, mi, m;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 float sum=0.;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   for(i=1; i<=imx; i++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     mi=0;           * -stepm/2 to stepm/2 .
     m=firstpass;           * For stepm=1 the results are the same as for previous versions of Imach.
     while(s[m][i] <= nlstate){           * For stepm > 1 the results are less biased than in previous versions. 
       if(s[m][i]>=1)           */
         mw[++mi][i]=m;          s1=s[mw[mi][i]][i];
       if(m >=lastpass)          s2=s[mw[mi+1][i]][i];
         break;          bbh=(double)bh[mi][i]/(double)stepm; 
       else          /* bias is positive if real duration
         m++;           * is higher than the multiple of stepm and negative otherwise.
     }/* end while */           */
     if (s[m][i] > nlstate){          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       mi++;     /* Death is another wave */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       /* if(mi==0)  never been interviewed correctly before death */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          /* Only death is a correct wave */          /*if(lli ==000.0)*/
       mw[mi][i]=m;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
           sw += weight[i];
     wav[i]=mi;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if(mi==0)        } /* end of wave */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(mi=1; mi<wav[i];mi++){        for(mi=1; mi<= wav[i]-1; mi++){
       if (stepm <=0)          for (ii=1;ii<=nlstate+ndeath;ii++)
         dh[mi][i]=1;            for (j=1;j<=nlstate+ndeath;j++){
       else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j=0) j=1;  /* Survives at least one month after exam */          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           else if (j <= jmin)jmin=j;          
           sum=sum+j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;            savm=oldm;
         jl= j -jk*stepm;            oldm=newm;
         ju= j -(jk+1)*stepm;          } /* end mult */
         if(jl <= -ju)        
           dh[mi][i]=jk;          s1=s[mw[mi][i]][i];
         else          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk+1;          if( s2 > nlstate){ 
         if(dh[mi][i]==0)            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=1; /* At least one step */          }else{
       }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
   }          ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end of wave */
 {      } /* end of individual */
   int Ndum[80],ij, k, j, i;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int cptcode=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=0; k<79; k++) Ndum[k]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1; j<=cptcovn; j++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;            }
       if (ij > cptcode) cptcode=ij;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=0; i<=cptcode; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       if(Ndum[i]!=0) ncodemax[j]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
            
     ij=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=79; k++) {            savm=oldm;
         if (Ndum[k] != 0) {            oldm=newm;
           nbcode[Tvar[j]][ij]=k;          } /* end mult */
           ij++;        
         }          s1=s[mw[mi][i]][i];
         if (ij > ncodemax[j]) break;          s2=s[mw[mi+1][i]][i];
       }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          ipmx +=1;
   }            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 /*********** Health Expectancies ****************/      } /* end of individual */
     } /* End of if */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Health expectancies */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j, nhstepm, hstepm, h;    return -l;
   double age, agelim,hf;  }
   double ***p3mat;  
    /*************** log-likelihood *************/
   fprintf(ficreseij,"# Health expectancies\n");  double funcone( double *x)
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
     for(j=1; j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
       fprintf(ficreseij," %1d-%1d",i,j);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fprintf(ficreseij,"\n");    double **out;
     double lli; /* Individual log likelihood */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    double llt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int s1, s2;
     double bbh, survp;
   agelim=AGESUP;    /*extern weight */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We are differentiating ll according to initial status */
     /* nhstepm age range expressed in number of stepm */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /*for(i=1;i<imx;i++) 
     /* Typically if 20 years = 20*12/6=40 stepm */      printf(" %d\n",s[4][i]);
     if (stepm >= YEARM) hstepm=1;    */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    cov[1]=1.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for(k=1; k<=nlstate; k++) ll[k]=0.;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++)          for (j=1;j<=nlstate+ndeath;j++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           eij[i][j][(int)age] +=p3mat[i][j][h];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
            for(d=0; d<dh[mi][i]; d++){
     hf=1;          newm=savm;
     if (stepm >= YEARM) hf=stepm/YEARM;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"%.0f",age );          for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficreseij,"\n");          savm=oldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          oldm=newm;
   }        } /* end mult */
 }        
         s1=s[mw[mi][i]][i];
 /************ Variance ******************/        s2=s[mw[mi+1][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        bbh=(double)bh[mi][i]/(double)stepm; 
 {        /* bias is positive if real duration
   /* Variance of health expectancies */         * is higher than the multiple of stepm and negative otherwise.
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/         */
   double **newm;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double **dnewm,**doldm;          lli=log(out[s1][s2] - savm[s1][s2]);
   int i, j, nhstepm, hstepm, h;        } else if (mle==1){
   int k, cptcode;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    double *xp;        } else if(mle==2){
   double **gp, **gm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double ***gradg, ***trgradg;        } else if(mle==3){  /* exponential inter-extrapolation */
   double ***p3mat;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double age,agelim;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int theta;          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
    fprintf(ficresvij,"# Covariances of life expectancies\n");          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficresvij,"# Age");        } /* End of if */
   for(i=1; i<=nlstate;i++)        ipmx +=1;
     for(j=1; j<=nlstate;j++)        sw += weight[i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   xp=vector(1,npar);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   dnewm=matrix(1,nlstate,1,npar);   %10.6f %10.6f %10.6f ", \
   doldm=matrix(1,nlstate,1,nlstate);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   hstepm=1*YEARM; /* Every year of age */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            llt +=ll[k]*gipmx/gsw;
   agelim = AGESUP;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresilk," %10.6f\n", -llt);
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* end of individual */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gp=matrix(0,nhstepm,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     gm=matrix(0,nhstepm,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     for(theta=1; theta <=npar; theta++){      gipmx=ipmx;
       for(i=1; i<=npar; i++){ /* Computes gradient */      gsw=sw;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    return -l;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(j=1; j<= nlstate; j++){  char *subdirf(char fileres[])
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
       }    strcat(tmpout,fileres);
        return tmpout;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    char *subdirf2(char fileres[], char *preop)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){    strcpy(tmpout,optionfilefiname);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    strcat(tmpout,"/");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    strcat(tmpout,preop);
         }    strcat(tmpout,fileres);
       }    return tmpout;
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  char *subdirf3(char fileres[], char *preop, char *preop2)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    
     } /* End theta */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     for(h=0; h<=nhstepm; h++)    strcat(tmpout,fileres);
       for(j=1; j<=nlstate;j++)    return tmpout;
         for(theta=1; theta <=npar; theta++)  }
           trgradg[h][j][theta]=gradg[h][theta][j];  
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(i=1;i<=nlstate;i++)  {
       for(j=1;j<=nlstate;j++)    /* This routine should help understanding what is done with 
         vareij[i][j][(int)age] =0.;       the selection of individuals/waves and
     for(h=0;h<=nhstepm;h++){       to check the exact contribution to the likelihood.
       for(k=0;k<=nhstepm;k++){       Plotting could be done.
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);     */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int k;
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
             vareij[i][j][(int)age] += doldm[i][j];      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     h=1;        printf("Problem with resultfile: %s\n", fileresilk);
     if (stepm >= YEARM) h=stepm/YEARM;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for(j=1; j<=nlstate;j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     fprintf(ficresvij,"\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    *fretone=(*funcone)(p);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){
   } /* End age */      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_vector(xp,1,npar);      fflush(fichtm); 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    return;
   }
 }  
   
 /************ Variance of prevlim ******************/  /*********** Maximum Likelihood Estimation ***************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* Variance of prevalence limit */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i,j, iter;
   double **newm;    double **xi;
   double **dnewm,**doldm;    double fret;
   int i, j, nhstepm, hstepm;    double fretone; /* Only one call to likelihood */
   int k, cptcode;    char filerespow[FILENAMELENGTH];
   double *xp;    xi=matrix(1,npar,1,npar);
   double *gp, *gm;    for (i=1;i<=npar;i++)
   double **gradg, **trgradg;      for (j=1;j<=npar;j++)
   double age,agelim;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int theta;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        strcpy(filerespow,"pow"); 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    strcat(filerespow,fileres);
   fprintf(ficresvpl,"# Age");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficresvpl,"\n");    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   xp=vector(1,npar);    for (i=1;i<=nlstate;i++)
   dnewm=matrix(1,nlstate,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
   doldm=matrix(1,nlstate,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    powell(p,xi,npar,ftol,&iter,&fret,func);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fclose(ficrespow);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     if (stepm >= YEARM) hstepm=1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  }
     gm=vector(1,nlstate);  
   /**** Computes Hessian and covariance matrix ***/
     for(theta=1; theta <=npar; theta++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++){ /* Computes gradient */  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       }    double **hess;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, j,jk;
       for(i=1;i<=nlstate;i++)    int *indx;
         gp[i] = prlim[i][i];  
        double hessii(double p[], double delta, int theta, double delti[]);
       for(i=1; i<=npar; i++) /* Computes gradient */    double hessij(double p[], double delti[], int i, int j);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];    hess=matrix(1,npar,1,npar);
   
       for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     } /* End theta */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     trgradg =matrix(1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
     for(j=1; j<=nlstate;j++)      /*printf(" %f ",p[i]);*/
       for(theta=1; theta <=npar; theta++)      /*printf(" %lf ",hess[i][i]);*/
         trgradg[j][theta]=gradg[theta][j];    }
     
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       varpl[i][(int)age] =0.;      for (j=1;j<=npar;j++)  {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        if (j>i) { 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          printf(".%d%d",i,j);fflush(stdout);
     for(i=1;i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
     fprintf(ficresvpl,"%.0f ",age );          /*printf(" %lf ",hess[i][j]);*/
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    printf("\n");
     free_vector(gm,1,nlstate);    fprintf(ficlog,"\n");
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   } /* End age */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   free_vector(xp,1,npar);    a=matrix(1,npar,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    x=vector(1,npar);
     indx=ivector(1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   
 /***********************************************/    for (j=1;j<=npar;j++) {
 /**************** Main Program *****************/      for (i=1;i<=npar;i++) x[i]=0;
 /***********************************************/      x[j]=1;
       lubksb(a,npar,indx,x);
 /*int main(int argc, char *argv[])*/      for (i=1;i<=npar;i++){ 
 int main()        matcov[i][j]=x[i];
 {      }
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;  
   double agedeb, agefin,hf;    printf("\n#Hessian matrix#\n");
   double agemin=1.e20, agemax=-1.e20;    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   double fret;      for (j=1;j<=npar;j++) { 
   double **xi,tmp,delta;        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   double dum; /* Dummy variable */      }
   double ***p3mat;      printf("\n");
   int *indx;      fprintf(ficlog,"\n");
   char line[MAXLINE], linepar[MAXLINE];    }
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* Recompute Inverse */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    for (i=1;i<=npar;i++)
   char filerest[FILENAMELENGTH];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   char fileregp[FILENAMELENGTH];    ludcmp(a,npar,indx,&pd);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    /*  printf("\n#Hessian matrix recomputed#\n");
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    for (j=1;j<=npar;j++) {
   int ju,jl, mi;      for (i=1;i<=npar;i++) x[i]=0;
   int i1,j1, k1,jk,aa,bb, stepsize;      x[j]=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   int hstepm, nhstepm;        y[i][j]=x[i];
   double bage, fage, age, agelim, agebase;        printf("%.3e ",y[i][j]);
   double ftolpl=FTOL;        fprintf(ficlog,"%.3e ",y[i][j]);
   double **prlim;      }
   double *severity;      printf("\n");
   double ***param; /* Matrix of parameters */      fprintf(ficlog,"\n");
   double  *p;    }
   double **matcov; /* Matrix of covariance */    */
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    free_matrix(a,1,npar,1,npar);
   double ***eij, ***vareij;    free_matrix(y,1,npar,1,npar);
   double **varpl; /* Variances of prevalence limits by age */    free_vector(x,1,npar);
   double *epj, vepp;    free_ivector(indx,1,npar);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    free_matrix(hess,1,npar,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   char z[1]="c", occ;  
 #include <sys/time.h>  }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /*************** hessian matrix ****************/
   /* long total_usecs;  double hessii( double x[], double delta, int theta, double delti[])
   struct timeval start_time, end_time;  {
      int i;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int l=1, lmax=20;
     double k1,k2;
     double p2[NPARMAX+1];
   printf("\nIMACH, Version 0.63");    double res;
   printf("\nEnter the parameter file name: ");    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 #ifdef windows    int k=0,kmax=10;
   scanf("%s",pathtot);    double l1;
   getcwd(pathcd, size);  
   cutv(path,optionfile,pathtot,'\\');    fx=func(x);
   chdir(path);    for (i=1;i<=npar;i++) p2[i]=x[i];
   replace(pathc,path);    for(l=0 ; l <=lmax; l++){
 #endif      l1=pow(10,l);
 #ifdef unix      delts=delt;
   scanf("%s",optionfile);      for(k=1 ; k <kmax; k=k+1){
 #endif        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
 /*-------- arguments in the command line --------*/        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   strcpy(fileres,"r");        k2=func(p2)-fx;
   strcat(fileres, optionfile);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /*---------arguments file --------*/        
   #ifdef DEBUG
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     goto end;  #endif
   }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   strcpy(filereso,"o");          k=kmax;
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          k=kmax; l=lmax*10.;
   }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /* Reads comments: lines beginning with '#' */          delts=delt;
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    delti[theta]=delts;
     fputs(line,ficparo);    return res; 
   }    
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  double hessij( double x[], double delti[], int thetai,int thetaj)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    int i;
     int l=1, l1, lmax=20;
   covar=matrix(1,NCOVMAX,1,n);        double k1,k2,k3,k4,res,fx;
   if (strlen(model)<=1) cptcovn=0;    double p2[NPARMAX+1];
   else {    int k;
     j=0;  
     j=nbocc(model,'+');    fx=func(x);
     cptcovn=j+1;    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   ncovmodel=2+cptcovn;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      k1=func(p2)-fx;
      
   /* Read guess parameters */      p2[thetai]=x[thetai]+delti[thetai]/k;
   /* Reads comments: lines beginning with '#' */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   while((c=getc(ficpar))=='#' && c!= EOF){      k2=func(p2)-fx;
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     puts(line);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fputs(line,ficparo);      k3=func(p2)-fx;
   }    
   ungetc(c,ficpar);      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      k4=func(p2)-fx;
     for(i=1; i <=nlstate; i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j <=nlstate+ndeath-1; j++){  #ifdef DEBUG
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       printf("%1d%1d",i,j);  #endif
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    return res;
         printf(" %lf",param[i][j][k]);  }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  /************** Inverse of matrix **************/
       fscanf(ficpar,"\n");  void ludcmp(double **a, int n, int *indx, double *d) 
       printf("\n");  { 
       fprintf(ficparo,"\n");    int i,imax,j,k; 
     }    double big,dum,sum,temp; 
      double *vv; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
   p=param[1][1];    vv=vector(1,n); 
      *d=1.0; 
   /* Reads comments: lines beginning with '#' */    for (i=1;i<=n;i++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){      big=0.0; 
     ungetc(c,ficpar);      for (j=1;j<=n;j++) 
     fgets(line, MAXLINE, ficpar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     puts(line);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fputs(line,ficparo);      vv[i]=1.0/big; 
   }    } 
   ungetc(c,ficpar);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        sum=a[i][j]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   for(i=1; i <=nlstate; i++){        a[i][j]=sum; 
     for(j=1; j <=nlstate+ndeath-1; j++){      } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      big=0.0; 
       printf("%1d%1d",i,j);      for (i=j;i<=n;i++) { 
       fprintf(ficparo,"%1d%1d",i1,j1);        sum=a[i][j]; 
       for(k=1; k<=ncovmodel;k++){        for (k=1;k<j;k++) 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          sum -= a[i][k]*a[k][j]; 
         printf(" %le",delti3[i][j][k]);        a[i][j]=sum; 
         fprintf(ficparo," %le",delti3[i][j][k]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
       fscanf(ficpar,"\n");          imax=i; 
       printf("\n");        } 
       fprintf(ficparo,"\n");      } 
     }      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   delti=delti3[1][1];          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
   /* Reads comments: lines beginning with '#' */          a[j][k]=dum; 
   while((c=getc(ficpar))=='#' && c!= EOF){        } 
     ungetc(c,ficpar);        *d = -(*d); 
     fgets(line, MAXLINE, ficpar);        vv[imax]=vv[j]; 
     puts(line);      } 
     fputs(line,ficparo);      indx[j]=imax; 
   }      if (a[j][j] == 0.0) a[j][j]=TINY; 
   ungetc(c,ficpar);      if (j != n) { 
          dum=1.0/(a[j][j]); 
   matcov=matrix(1,npar,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   for(i=1; i <=npar; i++){      } 
     fscanf(ficpar,"%s",&str);    } 
     printf("%s",str);    free_vector(vv,1,n);  /* Doesn't work */
     fprintf(ficparo,"%s",str);  ;
     for(j=1; j <=i; j++){  } 
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficparo," %.5le",matcov[i][j]);  { 
     }    int i,ii=0,ip,j; 
     fscanf(ficpar,"\n");    double sum; 
     printf("\n");   
     fprintf(ficparo,"\n");    for (i=1;i<=n;i++) { 
   }      ip=indx[i]; 
   for(i=1; i <=npar; i++)      sum=b[ip]; 
     for(j=i+1;j<=npar;j++)      b[ip]=b[i]; 
       matcov[i][j]=matcov[j][i];      if (ii) 
            for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   printf("\n");      else if (sum) ii=i; 
       b[i]=sum; 
     } 
    if(mle==1){    for (i=n;i>=1;i--) { 
     /*-------- data file ----------*/      sum=b[i]; 
     if((ficres =fopen(fileres,"w"))==NULL) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       printf("Problem with resultfile: %s\n", fileres);goto end;      b[i]=sum/a[i][i]; 
     }    } 
     fprintf(ficres,"#%s\n",version);  } 
      
     if((fic=fopen(datafile,"r"))==NULL)    {  /************ Frequencies ********************/
       printf("Problem with datafile: %s\n", datafile);goto end;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     }  {  /* Some frequencies */
     
     n= lastobs;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     severity = vector(1,maxwav);    int first;
     outcome=imatrix(1,maxwav+1,1,n);    double ***freq; /* Frequencies */
     num=ivector(1,n);    double *pp, **prop;
     moisnais=vector(1,n);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     annais=vector(1,n);    FILE *ficresp;
     moisdc=vector(1,n);    char fileresp[FILENAMELENGTH];
     andc=vector(1,n);    
     agedc=vector(1,n);    pp=vector(1,nlstate);
     cod=ivector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     weight=vector(1,n);    strcpy(fileresp,"p");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    strcat(fileresp,fileres);
     mint=matrix(1,maxwav,1,n);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     anint=matrix(1,maxwav,1,n);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     s=imatrix(1,maxwav+1,1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     adl=imatrix(1,maxwav+1,1,n);          exit(0);
     tab=ivector(1,NCOVMAX);    }
     ncodemax=ivector(1,8);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
     i=1;    
     while (fgets(line, MAXLINE, fic) != NULL)    {    j=cptcoveff;
       if ((i >= firstobs) && (i <=lastobs)) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          
         for (j=maxwav;j>=1;j--){    first=1;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    for(k1=1; k1<=j;k1++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                  scanf("%d", i);*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=-1; i<=nlstate+ndeath; i++)  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              freq[i][jk][m]=0;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
       for (i=1; i<=nlstate; i++)  
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(m=iagemin; m <= iagemax+3; m++)
         for (j=ncov;j>=1;j--){          prop[i][m]=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        
         }        dateintsum=0;
         num[i]=atol(stra);        k2cpt=0;
         for (i=1; i<=imx; i++) {
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/          bool=1;
           if  (cptcovn>0) {
         i=i+1;            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
           }
     /*scanf("%d",i);*/          if (bool==1){
   imx=i-1; /* Number of individuals */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   /* Calculation of the number of parameter from char model*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   Tvar=ivector(1,8);                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if (strlen(model) >1){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     j=0;                if (m<lastpass) {
     j=nbocc(model,'+');                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     cptcovn=j+1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
     strcpy(modelsav,model);                
     if (j==0) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);                  dateintsum=dateintsum+k2;
     }                  k2cpt++;
     else {                }
       for(i=j; i>=1;i--){                /*}*/
         cutv(stra,strb,modelsav,'+');            }
         if (strchr(strb,'*')) {          }
           cutv(strd,strc,strb,'*');        }
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;         
           cutv(strb,strc,strd,'V');        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           for (k=1; k<=lastobs;k++)  
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
         else {cutv(strd,strc,strb,'V');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         Tvar[i+1]=atoi(strc);          fprintf(ficresp, "**********\n#");
         }        }
         strcpy(modelsav,stra);          for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       cutv(strd,strc,stra,'V');        fprintf(ficresp, "\n");
       Tvar[1]=atoi(strc);        
     }        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   /*printf("tvar=%d ",Tvar[1]);            fprintf(ficlog,"Total");
   scanf("%d ",i);*/          }else{
     fclose(fic);            if(first==1){
               first=0;
     if (weightopt != 1) { /* Maximisation without weights*/              printf("See log file for details...\n");
       for(i=1;i<=n;i++) weight[i]=1.0;            }
     }            fprintf(ficlog,"Age %d", i);
     /*-calculation of age at interview from date of interview and age at death -*/          }
     agev=matrix(1,maxwav,1,imx);          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for (i=1; i<=imx; i++)  {              pp[jk] += freq[jk][m][i]; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){          for(jk=1; jk <=nlstate ; jk++){
         if(s[m][i] >0){            for(m=-1, pos=0; m <=0 ; m++)
           if (s[m][i] == nlstate+1) {              pos += freq[jk][m][i];
             if(agedc[i]>0)            if(pp[jk]>=1.e-10){
               if(moisdc[i]!=99 && andc[i]!=9999)              if(first==1){
               agev[m][i]=agedc[i];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             else{              }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               agev[m][i]=-1;            }else{
             }              if(first==1)
           }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           else if(s[m][i] !=9){ /* Should no more exist */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){          for(jk=1; jk <=nlstate ; jk++){
               agemin=agev[m][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              pp[jk] += freq[jk][m][i];
             }          }       
             else if(agev[m][i] >agemax){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               agemax=agev[m][i];            pos += pp[jk];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            posprop += prop[jk][i];
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(jk=1; jk <=nlstate ; jk++){
             /*   agev[m][i] = age[i]+2*m;*/            if(pos>=1.e-5){
           }              if(first==1)
           else { /* =9 */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             agev[m][i]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             s[m][i]=-1;            }else{
           }              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         else /*= 0 Unknown */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           agev[m][i]=1;            }
       }            if( i <= iagemax){
                  if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (i=1; i<=imx; i++)  {                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(m=1; (m<= maxwav); m++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         if (s[m][i] > (nlstate+ndeath)) {              }
           printf("Error: Wrong value in nlstate or ndeath\n");                else
           goto end;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         }            }
       }          }
     }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
     free_vector(severity,1,maxwav);              if(first==1)
     free_imatrix(outcome,1,maxwav+1,1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(moisnais,1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(annais,1,n);              }
     free_matrix(mint,1,maxwav,1,n);          if(i <= iagemax)
     free_matrix(anint,1,maxwav,1,n);            fprintf(ficresp,"\n");
     free_vector(moisdc,1,n);          if(first==1)
     free_vector(andc,1,n);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
            }
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    dateintmean=dateintsum/k2cpt; 
       
     /* Concatenates waves */    fclose(ficresp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 Tcode=ivector(1,100);    /* End of Freq */
    nbcode=imatrix(1,nvar,1,8);    }
    ncodemax[1]=1;  
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    codtab=imatrix(1,100,1,10);  {  
    h=0;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    m=pow(2,cptcovn);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
    for(k=1;k<=cptcovn; k++){    */
      for(i=1; i <=(m/pow(2,k));i++){   
        for(j=1; j <= ncodemax[k]; j++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    double ***freq; /* Frequencies */
            h++;    double *pp, **prop;
            if (h>m) h=1;codtab[h][k]=j;    double pos,posprop; 
          }    double  y2; /* in fractional years */
        }    int iagemin, iagemax;
      }  
    }    iagemin= (int) agemin;
     iagemax= (int) agemax;
    /*for(i=1; i <=m ;i++){    /*pp=vector(1,nlstate);*/
      for(k=1; k <=cptcovn; k++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      }    j1=0;
      printf("\n");    
    }*/    j=cptcoveff;
    /*scanf("%d",i);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
    /* Calculates basic frequencies. Computes observed prevalence at single age    for(k1=1; k1<=j;k1++){
        and prints on file fileres'p'. */      for(i1=1; i1<=ncodemax[k1];i1++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        j1++;
         
         for (i=1; i<=nlstate; i++)  
   /*scanf("%d ",i);*/          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
        
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=imx; i++) { /* Each individual */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          bool=1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if  (cptcovn>0) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (z1=1; z1<=cptcoveff; z1++) 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
     /* For Powell, parameters are in a vector p[] starting at p[1]          } 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if (bool==1) { 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /*--------- results files --------------*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    jk=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
    fprintf(ficres,"# Parameters\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
    printf("# Parameters\n");                } 
    for(i=1,jk=1; i <=nlstate; i++){              }
      for(k=1; k <=(nlstate+ndeath); k++){            } /* end selection of waves */
        if (k != i)          }
          {        }
            printf("%d%d ",i,k);        for(i=iagemin; i <= iagemax+3; i++){  
            fprintf(ficres,"%1d%1d ",i,k);          
            for(j=1; j <=ncovmodel; j++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              printf("%f ",p[jk]);            posprop += prop[jk][i]; 
              fprintf(ficres,"%f ",p[jk]);          } 
              jk++;  
            }          for(jk=1; jk <=nlstate ; jk++){     
            printf("\n");            if( i <=  iagemax){ 
            fprintf(ficres,"\n");              if(posprop>=1.e-5){ 
          }                probs[i][jk][j1]= prop[jk][i]/posprop;
      }              } 
    }            } 
           }/* end jk */ 
     /* Computing hessian and covariance matrix */        }/* end i */ 
     ftolhess=ftol; /* Usually correct */      } /* end i1 */
     hesscov(matcov, p, npar, delti, ftolhess, func);    } /* end k1 */
     fprintf(ficres,"# Scales\n");    
     printf("# Scales\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      for(i=1,jk=1; i <=nlstate; i++){    /*free_vector(pp,1,nlstate);*/
       for(j=1; j <=nlstate+ndeath; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         if (j!=i) {  }  /* End of prevalence */
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);  /************* Waves Concatenation ***************/
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficres," %.5e",delti[jk]);  {
             jk++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           }       Death is a valid wave (if date is known).
           printf("\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficres,"\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
       }       */
       }  
        int i, mi, m;
     k=1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fprintf(ficres,"# Covariance\n");       double sum=0., jmean=0.;*/
     printf("# Covariance\n");    int first;
     for(i=1;i<=npar;i++){    int j, k=0,jk, ju, jl;
       /*  if (k>nlstate) k=1;    double sum=0.;
       i1=(i-1)/(ncovmodel*nlstate)+1;    first=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    jmin=1e+5;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    jmax=-1;
       fprintf(ficres,"%3d",i);    jmean=0.;
       printf("%3d",i);    for(i=1; i<=imx; i++){
       for(j=1; j<=i;j++){      mi=0;
         fprintf(ficres," %.5e",matcov[i][j]);      m=firstpass;
         printf(" %.5e",matcov[i][j]);      while(s[m][i] <= nlstate){
       }        if(s[m][i]>=1)
       fprintf(ficres,"\n");          mw[++mi][i]=m;
       printf("\n");        if(m >=lastpass)
       k++;          break;
     }        else
              m++;
     while((c=getc(ficpar))=='#' && c!= EOF){      }/* end while */
       ungetc(c,ficpar);      if (s[m][i] > nlstate){
       fgets(line, MAXLINE, ficpar);        mi++;     /* Death is another wave */
       puts(line);        /* if(mi==0)  never been interviewed correctly before death */
       fputs(line,ficparo);           /* Only death is a correct wave */
     }        mw[mi][i]=m;
     ungetc(c,ficpar);      }
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      wav[i]=mi;
          if(mi==0){
     if (fage <= 2) {        if(first==0){
       bage = agemin;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fage = agemax;          first=1;
     }        }
         if(first==1){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
 /*------------ gnuplot -------------*/      } /* end mi==0 */
 chdir(pathcd);    } /* End individuals */
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
   fprintf(ficgp,"cd \"%s\" \n",pathc);          dh[mi][i]=1;
 #endif        else{
 m=pow(2,cptcovn);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
  /* 1eme*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
    for (k1=1; k1<= m ; k1 ++) {              else if(j<0){
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef windows                j=1; /* Careful Patch */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef unix                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              }
 #endif              k=k+1;
               if (j >= jmax) jmax=j;
 for (i=1; i<= nlstate ; i ++) {              if (j <= jmin) jmin=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            k=k+1;
      for (i=1; i<= nlstate ; i ++) {            if (j >= jmax) jmax=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            else if (j <= jmin)jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            if(j<0){
 #ifdef unix              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\nset ter gif small size 400,300");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif            }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            sum=sum+j;
    }          }
   }          jk= j/stepm;
   /*2 eme*/          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   for (k1=1; k1<= m ; k1 ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            if(jl==0){
                  dh[mi][i]=jk;
     for (i=1; i<= nlstate+1 ; i ++) {              bh[mi][i]=0;
       k=2*i;            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                    * at the price of an extra matrix product in likelihood */
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }else{
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if(jl <= -ju){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              dh[mi][i]=jk;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for (j=1; j<= nlstate+1 ; j ++) {                                   * is higher than the multiple of stepm and negative otherwise.
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   */
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              else{
       fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(dh[mi][i]==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=1; /* At least one step */
 }                bh[mi][i]=ju; /* At least one step */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       else fprintf(ficgp,"\" t\"\" w l 0,");            }
     }          } /* end if mle */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        }
   }      } /* end wave */
      }
   /*3eme*/    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (cpt=1; cpt<= nlstate ; cpt ++) {   }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  /*********** Tricode ****************************/
       for (i=1; i< nlstate ; i ++) {  void tricode(int *Tvar, int **nbcode, int imx)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  {
       }    
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     }    int cptcode=0;
    }    cptcoveff=0; 
     
   /* CV preval stat */    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k1=1; k1<= m ; k1 ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       for (i=1; i< nlstate ; i ++)                                 modality*/ 
         fprintf(ficgp,"+$%d",k+i+1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        Ndum[ij]++; /*store the modality */
              /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       l=3+(nlstate+ndeath)*cpt;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                                         Tvar[j]. If V=sex and male is 0 and 
       for (i=1; i< nlstate ; i ++) {                                         female is 1, then  cptcode=1.*/
         l=3+(nlstate+ndeath)*cpt;      }
         fprintf(ficgp,"+$%d",l+i+1);  
       }      for (i=0; i<=cptcode; i++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
     }  
   }      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
   /* proba elementaires */        for (k=0; k<= maxncov; k++) {
   for(i=1,jk=1; i <=nlstate; i++){          if (Ndum[k] != 0) {
     for(k=1; k <=(nlstate+ndeath); k++){            nbcode[Tvar[j]][ij]=k; 
       if (k != i) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/            
         for(j=1; j <=ncovmodel; j++){            ij++;
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          }
           jk++;          if (ij > ncodemax[j]) break; 
           fprintf(ficgp,"\n");        }  
         }      } 
       }    }  
     }  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);   for (i=1; i<=ncovmodel-2; i++) { 
   for(i=1; i <=nlstate; i++) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     for(k=1; k <=(nlstate+ndeath); k++){     ij=Tvar[i];
       if (k != i) {     Ndum[ij]++;
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);   }
         for(j=3; j <=ncovmodel; j++)  
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   ij=1;
         fprintf(ficgp,")/(1");   for (i=1; i<= maxncov; i++) {
         for(k1=1; k1 <=(nlstate+ndeath); k1++)     if((Ndum[i]!=0) && (i<=ncovcol)){
           if (k1 != i) {       Tvaraff[ij]=i; /*For printing */
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);       ij++;
             for(j=3; j <=ncovmodel; j++)     }
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   }
             fprintf(ficgp,")");   
           }   cptcoveff=ij-1; /*Number of simple covariates*/
         fprintf(ficgp,") t \"p%d%d\" ", i,k);  }
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
       }  /*********** Health Expectancies ****************/
     }  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
   }  {
      /* Health expectancies */
  fclose(ficgp);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
     chdir(path);    double ***p3mat,***varhe;
     free_matrix(agev,1,maxwav,1,imx);    double **dnewm,**doldm;
     free_ivector(wav,1,imx);    double *xp;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **gp, **gm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double ***gradg, ***trgradg;
        int theta;
     free_imatrix(s,1,maxwav+1,1,n);  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     free_ivector(num,1,n);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_vector(agedc,1,n);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_vector(weight,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficreseij,"# Health expectancies\n");
     fclose(ficparo);    fprintf(ficreseij,"# Age");
     fclose(ficres);    for(i=1; i<=nlstate;i++)
    }      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
    /*________fin mle=1_________*/    fprintf(ficreseij,"\n");
      
     if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
     /* No more information from the sample is required now */    }
   /* Reads comments: lines beginning with '#' */    else  hstepm=estepm;   
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We compute the life expectancy from trapezoids spaced every estepm months
     ungetc(c,ficpar);     * This is mainly to measure the difference between two models: for example
     fgets(line, MAXLINE, ficpar);     * if stepm=24 months pijx are given only every 2 years and by summing them
     puts(line);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fputs(line,ficparo);     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   ungetc(c,ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);     * curvature will be obtained if estepm is as small as stepm. */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /* For example we decided to compute the life expectancy with the smallest unit */
 /*--------- index.htm --------*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   if((fichtm=fopen("index.htm","w"))==NULL)    {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with index.htm \n");goto end;       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n       survival function given by stepm (the optimization length). Unfortunately it
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       means that if the survival funtion is printed only each two years of age and if
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>       results. So we changed our mind and took the option of the best precision.
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    agelim=AGESUP;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  fprintf(fichtm," <li>Graphs</li>\n<p>");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
  m=cptcovn;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
  j1=0;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
  for(k1=1; k1<=m;k1++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        if (cptcovn > 0) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          fprintf(fichtm,"<hr>************ Results for covariates");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
          for (cpt=1; cpt<=cptcovn;cpt++)   
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr>");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      /* Computing Variances of health expectancies */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){       for(theta=1; theta <=npar; theta++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(i=1; i<=npar; i++){ 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }        }
     for(cpt=1; cpt<=nlstate;cpt++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    
 interval) in state (%d): v%s%d%d.gif <br>        cptj=0;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1; j<= nlstate; j++){
      }          for(i=1; i<=nlstate; i++){
      for(cpt=1; cpt<=nlstate;cpt++) {            cptj=cptj+1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.gif<br>        }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);       
 fprintf(fichtm,"\n</body>");       
    }        for(i=1; i<=npar; i++) 
  }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fclose(fichtm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
   /*--------------- Prevalence limit --------------*/        cptj=0;
          for(j=1; j<= nlstate; j++){
   strcpy(filerespl,"pl");          for(i=1;i<=nlstate;i++){
   strcat(filerespl,fileres);            cptj=cptj+1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            }
   fprintf(ficrespl,"#Prevalence limit\n");          }
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<= nlstate*nlstate; j++)
   fprintf(ficrespl,"\n");          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   prlim=matrix(1,nlstate,1,nlstate);          }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* End theta */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   k=0;  
   agebase=agemin;       for(h=0; h<=nhstepm-1; h++)
   agelim=agemax;        for(j=1; j<=nlstate*nlstate;j++)
   ftolpl=1.e-10;          for(theta=1; theta <=npar; theta++)
   i1=cptcovn;            trgradg[h][j][theta]=gradg[h][theta][j];
   if (cptcovn < 1){i1=1;}       
   
   for(cptcov=1;cptcov<=i1;cptcov++){       for(i=1;i<=nlstate*nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1;j<=nlstate*nlstate;j++)
         k=k+1;          varhe[i][j][(int)age] =0.;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#****** ");       printf("%d|",(int)age);fflush(stdout);
         for(j=1;j<=cptcovn;j++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       for(h=0;h<=nhstepm-1;h++){
         fprintf(ficrespl,"******\n");        for(k=0;k<=nhstepm-1;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for (age=agebase; age<=agelim; age++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficrespl,"%.0f",age );            for(j=1;j<=nlstate*nlstate;j++)
           for(i=1; i<=nlstate;i++)              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficrespl," %.5f", prlim[i][i]);        }
           fprintf(ficrespl,"\n");      }
         }      /* Computing expectancies */
       }      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
   fclose(ficrespl);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /*------------- h Pij x at various ages ------------*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          }
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=24) stepsize=2;        for(j=1; j<=nlstate;j++){
           cptj++;
   agelim=AGESUP;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficreseij,"\n");
       
   k=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       k=k+1;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespij,"\n#****** ");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1;j<=cptcovn;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    printf("\n");
         fprintf(ficrespij,"******\n");    fprintf(ficlog,"\n");
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_vector(xp,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           oldm=oldms;savm=savms;  }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  /************ Variance ******************/
           for(i=1; i<=nlstate;i++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
             for(j=1; j<=nlstate+ndeath;j++)  {
               fprintf(ficrespij," %1d-%1d",i,j);    /* Variance of health expectancies */
           fprintf(ficrespij,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for (h=0; h<=nhstepm; h++){    /* double **newm;*/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **dnewm,**doldm;
             for(i=1; i<=nlstate;i++)    double **dnewmp,**doldmp;
               for(j=1; j<=nlstate+ndeath;j++)    int i, j, nhstepm, hstepm, h, nstepm ;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int k, cptcode;
             fprintf(ficrespij,"\n");    double *xp;
           }    double **gp, **gm;  /* for var eij */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***gradg, ***trgradg; /*for var eij */
           fprintf(ficrespij,"\n");    double **gradgp, **trgradgp; /* for var p point j */
         }    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
     double age,agelim, hf;
   fclose(ficrespij);    double ***mobaverage;
     int theta;
   /*---------- Health expectancies and variances ------------*/    char digit[4];
     char digitp[25];
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    char fileresprobmorprev[FILENAMELENGTH];
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if(popbased==1){
   }      if(mobilav!=0)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
   strcpy(filerese,"e");    else 
   strcat(filerese,fileres);      strcpy(digitp,"-stablbased-");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  strcpy(fileresv,"v");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   k=0;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcat(fileresprobmorprev,fileres);
       k=k+1;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficrest,"\n#****** ");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1;j<=cptcovn;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    }
       fprintf(ficrest,"******\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficreseij,"\n#****** ");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1;j<=cptcovn;j++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficreseij,"******\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1;j<=cptcovn;j++)    }  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficresvij,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       oldm=oldms;savm=savms;  /*   } */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresvij,"# Age");
          for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      for(j=1; j<=nlstate;j++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       fprintf(ficrest,"\n");    fprintf(ficresvij,"\n");
          
       hf=1;    xp=vector(1,npar);
       if (stepm >= YEARM) hf=stepm/YEARM;    dnewm=matrix(1,nlstate,1,npar);
       epj=vector(1,nlstate+1);    doldm=matrix(1,nlstate,1,nlstate);
       for(age=bage; age <=fage ;age++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    gpp=vector(nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    gmp=vector(nlstate+1,nlstate+ndeath);
           }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           epj[nlstate+1] +=epj[j];    
         }    if(estepm < stepm){
         for(i=1, vepp=0.;i <=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(j=1;j <=nlstate;j++)    }
             vepp += vareij[i][j][(int)age];    else  hstepm=estepm;   
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    /* For example we decided to compute the life expectancy with the smallest unit */
         for(j=1;j <=nlstate;j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrest,"\n");       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed every two years of age and if
  fclose(ficreseij);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  fclose(ficresvij);       results. So we changed our mind and took the option of the best precision.
   fclose(ficrest);    */
   fclose(ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_vector(epj,1,nlstate+1);    agelim = AGESUP;
   /*scanf("%d ",i); */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*------- Variance limit prevalence------*/        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 strcpy(fileresvpl,"vpl");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   strcat(fileresvpl,fileres);      gp=matrix(0,nhstepm,1,nlstate);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      gm=matrix(0,nhstepm,1,nlstate);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  k=0;        }
  for(cptcov=1;cptcov<=i1;cptcov++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");        if (popbased==1) {
      for(j=1;j<=cptcovn;j++)          if(mobilav ==0){
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"******\n");              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(i=1; i<=nlstate;i++)
      oldm=oldms;savm=savms;              prlim[i][i]=mobaverage[(int)age][i][ij];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
    }        }
  }    
         for(j=1; j<= nlstate; j++){
   fclose(ficresvpl);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /*---------- End : free ----------------*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          }
          }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        /* This for computing probability of death (h=1 means
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }    
          /* end probability of death */
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("End of Imach\n");   
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        if (popbased==1) {
            if(mobilav ==0){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for(i=1; i<=nlstate;i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/              prlim[i][i]=probs[(int)age][i][ij];
   /*------ End -----------*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  end:              prlim[i][i]=mobaverage[(int)age][i][ij];
 #ifdef windows          }
  chdir(pathcd);        }
 #endif  
  system("wgnuplot graph.plt");        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 #ifdef windows            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   while (z[0] != 'q') {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     chdir(pathcd);          }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        }
     scanf("%s",z);        /* This for computing probability of death (h=1 means
     if (z[0] == 'c') system("./imach");           computed over hstepm matrices product = hstepm*stepm months) 
     else if (z[0] == 'e') {           as a weighted average of prlim.
       chdir(path);        */
       system("index.htm");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     else if (z[0] == 'q') exit(0);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
 #endif        /* end probability of death */
 }  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     /*  fclose(ficgp);*/
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.3  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>