Diff for /imach/src/imach.c between versions 1.7 and 1.90

version 1.7, 2001/05/02 17:50:24 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.90  2003/06/24 12:34:15  brouard
   individuals from different ages are interviewed on their health status    (Module): Some bugs corrected for windows. Also, when
   or degree of  disability. At least a second wave of interviews    mle=-1 a template is output in file "or"mypar.txt with the design
   ("longitudinal") should  measure each new individual health status.    of the covariance matrix to be input.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.89  2003/06/24 12:30:52  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Some bugs corrected for windows. Also, when
   reach the Maximum Likelihood of the parameters involved in the model.    mle=-1 a template is output in file "or"mypar.txt with the design
   The simplest model is the multinomial logistic model where pij is    of the covariance matrix to be input.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.88  2003/06/23 17:54:56  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.87  2003/06/18 12:26:01  brouard
     *Covariates have to be included here again* invites you to do it.    Version 0.96
   More covariates you add, less is the speed of the convergence.  
     Revision 1.86  2003/06/17 20:04:08  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Change position of html and gnuplot routines and added
   delay between waves is not identical for each individual, or if some    routine fileappend.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Check when date of death was earlier that
   observed in state i at age x+h conditional to the observed state i at age    current date of interview. It may happen when the death was just
   x. The delay 'h' can be split into an exact number (nh*stepm) of    prior to the death. In this case, dh was negative and likelihood
   unobserved intermediate  states. This elementary transition (by month or    was wrong (infinity). We still send an "Error" but patch by
   quarter trimester, semester or year) is model as a multinomial logistic.    assuming that the date of death was just one stepm after the
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply hPijx.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   Also this programme outputs the covariance matrix of the parameters but also    memory allocation. But we also truncated to 8 characters (left
   of the life expectancies. It also computes the prevalence limits.    truncation)
      (Repository): No more line truncation errors.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.84  2003/06/13 21:44:43  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Replace "freqsummary" at a correct
   from the European Union.    place. It differs from routine "prevalence" which may be called
   It is copyrighted identically to a GNU software product, ie programme and    many times. Probs is memory consuming and must be used with
   software can be distributed freely for non commercial use. Latest version    parcimony.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   **********************************************************************/  
      Revision 1.83  2003/06/10 13:39:11  lievre
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <unistd.h>    Add log in  imach.c and  fullversion number is now printed.
   
 #define MAXLINE 256  */
 #define FILENAMELENGTH 80  /*
 /*#define DEBUG*/     Interpolated Markov Chain
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Short summary of the programme:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    
     This program computes Healthy Life Expectancies from
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define NINTERVMAX 8    case of a health survey which is our main interest) -2- at least a
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (if any) in individual health status.  Health expectancies are
 #define NCOVMAX 8 /* Maximum number of covariates */    computed from the time spent in each health state according to a
 #define MAXN 20000    model. More health states you consider, more time is necessary to reach the
 #define YEARM 12. /* Number of months per year */    Maximum Likelihood of the parameters involved in the model.  The
 #define AGESUP 130    simplest model is the multinomial logistic model where pij is the
 #define AGEBASE 40    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int nvar;    'age' is age and 'sex' is a covariate. If you want to have a more
 static int cptcov;    complex model than "constant and age", you should modify the program
 int cptcovn, cptcovage=0, cptcoveff=0;    where the markup *Covariates have to be included here again* invites
 int npar=NPARMAX;    you to do it.  More covariates you add, slower the
 int nlstate=2; /* Number of live states */    convergence.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int *wav; /* Number of waves for this individuual 0 is possible */    identical for each individual. Also, if a individual missed an
 int maxwav; /* Maxim number of waves */    intermediate interview, the information is lost, but taken into
 int mle, weightopt;    account using an interpolation or extrapolation.  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    hPijx is the probability to be observed in state i at age x+h
 double **oldm, **newm, **savm; /* Working pointers to matrices */    conditional to the observed state i at age x. The delay 'h' can be
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    states. This elementary transition (by month, quarter,
 FILE *ficgp, *fichtm;    semester or year) is modelled as a multinomial logistic.  The hPx
 FILE *ficreseij;    matrix is simply the matrix product of nh*stepm elementary matrices
   char filerese[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
  FILE  *ficresvij;    hPijx.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Also this programme outputs the covariance matrix of the parameters but also
   char fileresvpl[FILENAMELENGTH];    of the life expectancies. It also computes the stable prevalence. 
     
 #define NR_END 1    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define FREE_ARG char*             Institut national d'études démographiques, Paris.
 #define FTOL 1.0e-10    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define NRANSI    It is copyrighted identically to a GNU software product, ie programme and
 #define ITMAX 200    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define TOL 2.0e-4  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define CGOLD 0.3819660    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define ZEPS 1.0e-10    
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    **********************************************************************/
   /*
 #define GOLD 1.618034    main
 #define GLIMIT 100.0    read parameterfile
 #define TINY 1.0e-20    read datafile
     concatwav
 static double maxarg1,maxarg2;    freqsummary
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if (mle >= 1)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))      mlikeli
      print results files
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    if mle==1 
 #define rint(a) floor(a+0.5)       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 static double sqrarg;        begin-prev-date,...
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    open gnuplot file
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    open html file
     stable prevalence
 int imx;     for age prevalim()
 int stepm;    h Pij x
 /* Stepm, step in month: minimum step interpolation*/    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 int m,nb;    health expectancies
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Variance-covariance of DFLE
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    prevalence()
 double **pmmij;     movingaverage()
     varevsij() 
 double *weight;    if popbased==1 varevsij(,popbased)
 int **s; /* Status */    total life expectancies
 double *agedc, **covar, idx;    Variance of stable prevalence
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;   end
   */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  
   
 /**************** split *************************/   
 static  int split( char *path, char *dirc, char *name )  #include <math.h>
 {  #include <stdio.h>
    char *s;                             /* pointer */  #include <stdlib.h>
    int  l1, l2;                         /* length counters */  #include <unistd.h>
   
    l1 = strlen( path );                 /* length of path */  #include <sys/time.h>
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <time.h>
    s = strrchr( path, '\\' );           /* find last / */  #include "timeval.h"
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  #define MAXLINE 256
       extern char       *getwd( );  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       if ( getwd( dirc ) == NULL ) {  #define FILENAMELENGTH 132
 #else  /*#define DEBUG*/
       extern char       *getcwd( );  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
          return( GLOCK_ERROR_GETCWD );  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  #define NINTERVMAX 8
       s++;                              /* after this, the filename */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       l2 = strlen( s );                 /* length of filename */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NCOVMAX 8 /* Maximum number of covariates */
       strcpy( name, s );                /* save file name */  #define MAXN 20000
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define YEARM 12. /* Number of months per year */
       dirc[l1-l2] = 0;                  /* add zero */  #define AGESUP 130
    }  #define AGEBASE 40
    l1 = strlen( dirc );                 /* length of directory */  #ifdef unix
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define DIRSEPARATOR '/'
    return( 0 );                         /* we're done */  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 /******************************************/  #endif
   
 void replace(char *s, char*t)  /* $Id$ */
 {  /* $State$ */
   int i;  
   int lg=20;  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
   i=0;  char fullversion[]="$Revision$ $Date$"; 
   lg=strlen(t);  int erreur; /* Error number */
   for(i=0; i<= lg; i++) {  int nvar;
     (s[i] = t[i]);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     if (t[i]== '\\') s[i]='/';  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int nbocc(char *s, char occ)  int popbased=0;
 {  
   int i,j=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   int lg=20;  int maxwav; /* Maxim number of waves */
   i=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   lg=strlen(s);  int gipmx, gsw; /* Global variables on the number of contributions 
   for(i=0; i<= lg; i++) {                     to the likelihood and the sum of weights (done by funcone)*/
   if  (s[i] == occ ) j++;  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return j;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void cutv(char *u,char *v, char*t, char occ)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   int i,lg,j,p=0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   i=0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for(j=0; j<=strlen(t)-1; j++) {  FILE *ficlog, *ficrespow;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   lg=strlen(t);  double sw; /* Sum of weights */
   for(j=0; j<p; j++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     (u[j] = t[j]);  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      u[p]='\0';  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
    for(j=0; j<= lg; j++) {  FILE *ficreseij;
     if (j>=(p+1))(v[j-p-1] = t[j]);  char filerese[FILENAMELENGTH];
   }  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /********************** nrerror ********************/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void nrerror(char error_text[])  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  char tmpout[FILENAMELENGTH]; 
   fprintf(stderr,"%s\n",error_text);  char command[FILENAMELENGTH];
   exit(1);  int  outcmd=0;
 }  
 /*********************** vector *******************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double *vector(int nl, int nh)  char lfileres[FILENAMELENGTH];
 {  char filelog[FILENAMELENGTH]; /* Log file */
   double *v;  char filerest[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char fileregp[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  char popfile[FILENAMELENGTH];
   return v-nl+NR_END;  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 /************************ free vector ******************/  #define NR_END 1
 void free_vector(double*v, int nl, int nh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NRANSI 
   #define ITMAX 200 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define TOL 2.0e-4 
 {  
   int *v;  #define CGOLD 0.3819660 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define ZEPS 1.0e-10 
   if (!v) nrerror("allocation failure in ivector");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return v-nl+NR_END;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /******************free ivector **************************/  #define TINY 1.0e-20 
 void free_ivector(int *v, long nl, long nh)  
 {  static double maxarg1,maxarg2;
   free((FREE_ARG)(v+nl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /******************* imatrix *******************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define rint(a) floor(a+0.5)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  static double sqrarg;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int **m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    
   /* allocate pointers to rows */  int imx; 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int stepm;
   if (!m) nrerror("allocation failure 1 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m += NR_END;  
   m -= nrl;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   /* allocate rows and set pointers to them */  int m,nb;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  long *num;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m[nrl] += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl] -= ncl;  double **pmmij, ***probs;
    double dateintmean=0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    double *weight;
   /* return pointer to array of pointers to rows */  int **s; /* Status */
   return m;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /****************** free_imatrix *************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double ftolhess; /* Tolerance for computing hessian */
       int **m;  
       long nch,ncl,nrh,nrl;  /**************** split *************************/
      /* free an int matrix allocated by imatrix() */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    char  *ss;                            /* pointer */
   free((FREE_ARG) (m+nrl-NR_END));    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /******************* matrix *******************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double **matrix(long nrl, long nrh, long ncl, long nch)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double **m;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m) nrerror("allocation failure 1 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m += NR_END;        return( GLOCK_ERROR_GETCWD );
   m -= nrl;      }
       strcpy( name, path );               /* we've got it */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    } else {                              /* strip direcotry from path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      ss++;                               /* after this, the filename */
   m[nrl] += NR_END;      l2 = strlen( ss );                  /* length of filename */
   m[nrl] -= ncl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   return m;      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /*************************free matrix ************************/    /*#ifdef windows
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m+nrl-NR_END));  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /******************* ma3x *******************************/    ss++;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    l2= strlen(ss)+1;
   double ***m;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return( 0 );                          /* we're done */
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  
   /******************************************/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void replace_back_to_slash(char *s, char*t)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i;
     int lg=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
     lg=strlen(t);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    for(i=0; i<= lg; i++) {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      (s[i] = t[i]);
   m[nrl][ncl] += NR_END;      if (t[i]== '\\') s[i]='/';
   m[nrl][ncl] -= nll;    }
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    int nbocc(char *s, char occ)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    int i,j=0;
     for (j=ncl+1; j<=nch; j++)    int lg=20;
       m[i][j]=m[i][j-1]+nlay;    i=0;
   }    lg=strlen(s);
   return m;    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /*************************free ma3x ************************/    return j;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    /* cuts string t into u and v where u is ended by char occ excluding it
 }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
 /***************** f1dim *************************/    int i,lg,j,p=0;
 extern int ncom;    i=0;
 extern double *pcom,*xicom;    for(j=0; j<=strlen(t)-1; j++) {
 extern double (*nrfunc)(double []);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
 double f1dim(double x)  
 {    lg=strlen(t);
   int j;    for(j=0; j<p; j++) {
   double f;      (u[j] = t[j]);
   double *xt;    }
         u[p]='\0';
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     for(j=0; j<= lg; j++) {
   f=(*nrfunc)(xt);      if (j>=(p+1))(v[j-p-1] = t[j]);
   free_vector(xt,1,ncom);    }
   return f;  }
 }  
   /********************** nrerror ********************/
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  void nrerror(char error_text[])
 {  {
   int iter;    fprintf(stderr,"ERREUR ...\n");
   double a,b,d,etemp;    fprintf(stderr,"%s\n",error_text);
   double fu,fv,fw,fx;    exit(EXIT_FAILURE);
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /*********************** vector *******************/
   double e=0.0;  double *vector(int nl, int nh)
    {
   a=(ax < cx ? ax : cx);    double *v;
   b=(ax > cx ? ax : cx);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   x=w=v=bx;    if (!v) nrerror("allocation failure in vector");
   fw=fv=fx=(*f)(x);    return v-nl+NR_END;
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /************************ free vector ******************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_vector(double*v, int nl, int nh)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /************************ivector *******************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int *ivector(long nl,long nh)
       *xmin=x;  {
       return fx;    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     ftemp=fu;    if (!v) nrerror("allocation failure in ivector");
     if (fabs(e) > tol1) {    return v-nl+NR_END;
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************free ivector **************************/
       q=2.0*(q-r);  void free_ivector(int *v, long nl, long nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    free((FREE_ARG)(v+nl-NR_END));
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /************************lvector *******************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  long *lvector(long nl,long nh)
       else {  {
         d=p/q;    long *v;
         u=x+d;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         if (u-a < tol2 || b-u < tol2)    if (!v) nrerror("allocation failure in ivector");
           d=SIGN(tol1,xm-x);    return v-nl+NR_END;
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    free((FREE_ARG)(v+nl-NR_END));
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /******************* imatrix *******************************/
         SHFT(fv,fw,fx,fu)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         } else {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           if (u < x) a=u; else b=u;  { 
           if (fu <= fw || w == x) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
             v=w;    int **m; 
             w=u;    
             fv=fw;    /* allocate pointers to rows */ 
             fw=fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           } else if (fu <= fv || v == x || v == w) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
             v=u;    m += NR_END; 
             fv=fu;    m -= nrl; 
           }    
         }    
   }    /* allocate rows and set pointers to them */ 
   nrerror("Too many iterations in brent");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *xmin=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   return fx;    m[nrl] += NR_END; 
 }    m[nrl] -= ncl; 
     
 /****************** mnbrak ***********************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* return pointer to array of pointers to rows */ 
             double (*func)(double))    return m; 
 {  } 
   double ulim,u,r,q, dum;  
   double fu;  /****************** free_imatrix *************************/
    void free_imatrix(m,nrl,nrh,ncl,nch)
   *fa=(*func)(*ax);        int **m;
   *fb=(*func)(*bx);        long nch,ncl,nrh,nrl; 
   if (*fb > *fa) {       /* free an int matrix allocated by imatrix() */ 
     SHFT(dum,*ax,*bx,dum)  { 
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
   *cx=(*bx)+GOLD*(*bx-*ax);  } 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /******************* matrix *******************************/
     r=(*bx-*ax)*(*fb-*fc);  double **matrix(long nrl, long nrh, long ncl, long nch)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double **m;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m += NR_END;
       fu=(*func)(u);    m -= nrl;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           SHFT(*fb,*fc,fu,(*func)(u))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           }    m[nrl] += NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl] -= ncl;
       u=ulim;  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else {    return m;
       u=(*cx)+GOLD*(*cx-*bx);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       fu=(*func)(u);     */
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*************** linmin ************************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 int ncom;  
 double *pcom,*xicom;  /******************* ma3x *******************************/
 double (*nrfunc)(double []);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double f1dim(double x);    if (!m) nrerror("allocation failure 1 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m += NR_END;
               double *fc, double (*func)(double));    m -= nrl;
   int j;  
   double xx,xmin,bx,ax;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double fx,fb,fa;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   ncom=n;    m[nrl] -= ncl;
   pcom=vector(1,n);  
   xicom=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     pcom[j]=p[j];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xicom[j]=xi[j];    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   ax=0.0;    for (j=ncl+1; j<=nch; j++) 
   xx=1.0;      m[nrl][j]=m[nrl][j-1]+nlay;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for (i=nrl+1; i<=nrh; i++) {
 #ifdef DEBUG      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      for (j=ncl+1; j<=nch; j++) 
 #endif        m[i][j]=m[i][j-1]+nlay;
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;    return m; 
     p[j] += xi[j];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   free_vector(xicom,1,n);    */
   free_vector(pcom,1,n);  }
 }  
   /*************************free ma3x ************************/
 /*************** powell ************************/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /***************** f1dim *************************/
   double fp,fptt;  extern int ncom; 
   double *xits;  extern double *pcom,*xicom;
   pt=vector(1,n);  extern double (*nrfunc)(double []); 
   ptt=vector(1,n);   
   xit=vector(1,n);  double f1dim(double x) 
   xits=vector(1,n);  { 
   *fret=(*func)(p);    int j; 
   for (j=1;j<=n;j++) pt[j]=p[j];    double f;
   for (*iter=1;;++(*iter)) {    double *xt; 
     fp=(*fret);   
     ibig=0;    xt=vector(1,ncom); 
     del=0.0;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    f=(*nrfunc)(xt); 
     for (i=1;i<=n;i++)    free_vector(xt,1,ncom); 
       printf(" %d %.12f",i, p[i]);    return f; 
     printf("\n");  } 
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /*****************brent *************************/
       fptt=(*fret);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 #ifdef DEBUG  { 
       printf("fret=%lf \n",*fret);    int iter; 
 #endif    double a,b,d,etemp;
       printf("%d",i);fflush(stdout);    double fu,fv,fw,fx;
       linmin(p,xit,n,fret,func);    double ftemp;
       if (fabs(fptt-(*fret)) > del) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         del=fabs(fptt-(*fret));    double e=0.0; 
         ibig=i;   
       }    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       printf("%d %.12e",i,(*fret));    x=w=v=bx; 
       for (j=1;j<=n;j++) {    fw=fv=fx=(*f)(x); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (iter=1;iter<=ITMAX;iter++) { 
         printf(" x(%d)=%.12e",j,xit[j]);      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for(j=1;j<=n;j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         printf(" p=%.12e",p[j]);      printf(".");fflush(stdout);
       printf("\n");      fprintf(ficlog,".");fflush(ficlog);
 #endif  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       int k[2],l;  #endif
       k[0]=1;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       k[1]=-1;        *xmin=x; 
       printf("Max: %.12e",(*func)(p));        return fx; 
       for (j=1;j<=n;j++)      } 
         printf(" %.12e",p[j]);      ftemp=fu;
       printf("\n");      if (fabs(e) > tol1) { 
       for(l=0;l<=1;l++) {        r=(x-w)*(fx-fv); 
         for (j=1;j<=n;j++) {        q=(x-v)*(fx-fw); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        p=(x-v)*q-(x-w)*r; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        q=2.0*(q-r); 
         }        if (q > 0.0) p = -p; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=fabs(q); 
       }        etemp=e; 
 #endif        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       free_vector(xit,1,n);        else { 
       free_vector(xits,1,n);          d=p/q; 
       free_vector(ptt,1,n);          u=x+d; 
       free_vector(pt,1,n);          if (u-a < tol2 || b-u < tol2) 
       return;            d=SIGN(tol1,xm-x); 
     }        } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      } else { 
     for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ptt[j]=2.0*p[j]-pt[j];      } 
       xit[j]=p[j]-pt[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       pt[j]=p[j];      fu=(*f)(u); 
     }      if (fu <= fx) { 
     fptt=(*func)(ptt);        if (u >= x) a=x; else b=x; 
     if (fptt < fp) {        SHFT(v,w,x,u) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);          SHFT(fv,fw,fx,fu) 
       if (t < 0.0) {          } else { 
         linmin(p,xit,n,fret,func);            if (u < x) a=u; else b=u; 
         for (j=1;j<=n;j++) {            if (fu <= fw || w == x) { 
           xi[j][ibig]=xi[j][n];              v=w; 
           xi[j][n]=xit[j];              w=u; 
         }              fv=fw; 
 #ifdef DEBUG              fw=fu; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            } else if (fu <= fv || v == x || v == w) { 
         for(j=1;j<=n;j++)              v=u; 
           printf(" %.12e",xit[j]);              fv=fu; 
         printf("\n");            } 
 #endif          } 
       }    } 
     }    nrerror("Too many iterations in brent"); 
   }    *xmin=x; 
 }    return fx; 
   } 
 /**** Prevalence limit ****************/  
   /****************** mnbrak ***********************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit              double (*func)(double)) 
      matrix by transitions matrix until convergence is reached */  { 
     double ulim,u,r,q, dum;
   int i, ii,j,k;    double fu; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    *fa=(*func)(*ax); 
   double **out, cov[NCOVMAX], **pmij();    *fb=(*func)(*bx); 
   double **newm;    if (*fb > *fa) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   for (ii=1;ii<=nlstate+ndeath;ii++)        } 
     for (j=1;j<=nlstate+ndeath;j++){    *cx=(*bx)+GOLD*(*bx-*ax); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
    cov[1]=1.;      q=(*bx-*cx)*(*fb-*fa); 
        u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     newm=savm;      if ((*bx-u)*(u-*cx) > 0.0) { 
     /* Covariates have to be included here again */        fu=(*func)(u); 
      cov[2]=agefin;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
          fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) {        if (fu < *fc) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
       }            } 
       for (k=1; k<=cptcovage;k++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        u=ulim; 
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fu=(*func)(u); 
       } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        } 
   } 
     savm=oldm;  
     oldm=newm;  /*************** linmin ************************/
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  int ncom; 
       min=1.;  double *pcom,*xicom;
       max=0.;  double (*nrfunc)(double []); 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double brent(double ax, double bx, double cx, 
         max=FMAX(max,prlim[i][j]);                 double (*f)(double), double tol, double *xmin); 
         min=FMIN(min,prlim[i][j]);    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       maxmin=max-min;                double *fc, double (*func)(double)); 
       maxmax=FMAX(maxmax,maxmin);    int j; 
     }    double xx,xmin,bx,ax; 
     if(maxmax < ftolpl){    double fx,fb,fa;
       return prlim;   
     }    ncom=n; 
   }    pcom=vector(1,n); 
 }    xicom=vector(1,n); 
     nrfunc=func; 
 /*************** transition probabilities **********/    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      xicom[j]=xi[j]; 
 {    } 
   double s1, s2;    ax=0.0; 
   /*double t34;*/    xx=1.0; 
   int i,j,j1, nc, ii, jj;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
     for(j=1; j<i;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         /*s2 += param[i][j][nc]*cov[nc];*/  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (j=1;j<=n;j++) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      xi[j] *= xmin; 
       }      p[j] += xi[j]; 
       ps[i][j]=s2;    } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** powell ************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
       ps[i][j]=s2;  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
   for(i=1; i<= nlstate; i++){    int i,ibig,j; 
      s1=0;    double del,t,*pt,*ptt,*xit;
     for(j=1; j<i; j++)    double fp,fptt;
       s1+=exp(ps[i][j]);    double *xits;
     for(j=i+1; j<=nlstate+ndeath; j++)    pt=vector(1,n); 
       s1+=exp(ps[i][j]);    ptt=vector(1,n); 
     ps[i][i]=1./(s1+1.);    xit=vector(1,n); 
     for(j=1; j<i; j++)    xits=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fret=(*func)(p); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (*iter=1;;++(*iter)) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fp=(*fret); 
   } /* end i */      ibig=0; 
       del=0.0; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       ps[ii][jj]=0;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       ps[ii][ii]=1;      for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      }
     for(jj=1; jj<= nlstate+ndeath; jj++){      printf("\n");
      printf("%lf ",ps[ii][jj]);      fprintf(ficlog,"\n");
    }      fprintf(ficrespow,"\n");
     printf("\n ");      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf("\n ");printf("%lf ",cov[2]);*/        fptt=(*fret); 
 /*  #ifdef DEBUG
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        printf("fret=%lf \n",*fret);
   goto end;*/        fprintf(ficlog,"fret=%lf \n",*fret);
     return ps;  #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /**************** Product of 2 matrices ******************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #ifdef DEBUG
   /* in, b, out are matrice of pointers which should have been initialized        printf("%d %.12e",i,(*fret));
      before: only the contents of out is modified. The function returns        fprintf(ficlog,"%d %.12e",i,(*fret));
      a pointer to pointers identical to out */        for (j=1;j<=n;j++) {
   long i, j, k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for(i=nrl; i<= nrh; i++)          printf(" x(%d)=%.12e",j,xit[j]);
     for(k=ncolol; k<=ncoloh; k++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        }
         out[i][k] +=in[i][j]*b[j][k];        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   return out;          fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
         fprintf(ficlog,"\n");
 /************* Higher Matrix Product ***************/  #endif
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        int k[2],l;
      duration (i.e. until        k[0]=1;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        k[1]=-1;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        printf("Max: %.12e",(*func)(p));
      (typically every 2 years instead of every month which is too big).        fprintf(ficlog,"Max: %.12e",(*func)(p));
      Model is determined by parameters x and covariates have to be        for (j=1;j<=n;j++) {
      included manually here.          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
      */        }
         printf("\n");
   int i, j, d, h, k;        fprintf(ficlog,"\n");
   double **out, cov[NCOVMAX];        for(l=0;l<=1;l++) {
   double **newm;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* Hstepm could be zero and should return the unit matrix */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=nlstate+ndeath;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=nlstate+ndeath;j++){          }
       oldm[i][j]=(i==j ? 1.0 : 0.0);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       po[i][j][0]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  
       newm=savm;        free_vector(xit,1,n); 
       /* Covariates have to be included here again */        free_vector(xits,1,n); 
       cov[1]=1.;        free_vector(ptt,1,n); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        free_vector(pt,1,n); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        return; 
 for (k=1; k<=cptcovage;k++)      } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
    for (k=1; k<=cptcovprod;k++)      for (j=1;j<=n;j++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fptt=(*func)(ptt); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if (fptt < fp) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       savm=oldm;        if (t < 0.0) { 
       oldm=newm;          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
     for(i=1; i<=nlstate+ndeath; i++)            xi[j][ibig]=xi[j][n]; 
       for(j=1;j<=nlstate+ndeath;j++) {            xi[j][n]=xit[j]; 
         po[i][j][h]=newm[i][j];          }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #ifdef DEBUG
          */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   } /* end h */          for(j=1;j<=n;j++){
   return po;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
           printf("\n");
 /*************** log-likelihood *************/          fprintf(ficlog,"\n");
 double func( double *x)  #endif
 {        }
   int i, ii, j, k, mi, d, kk;      } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;  } 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /**** Prevalence limit (stable prevalence)  ****************/
   long ipmx;  
   /*extern weight */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /*for(i=1;i<imx;i++)       matrix by transitions matrix until convergence is reached */
 printf(" %d\n",s[4][i]);  
   */    int i, ii,j,k;
   cov[1]=1.;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double **out, cov[NCOVMAX], **pmij();
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double **newm;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double agefin, delaymax=50 ; /* Max number of years to converge */
        for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=1;j<=nlstate+ndeath;j++){
             for(d=0; d<dh[mi][i]; d++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               newm=savm;      }
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
               for (kk=1; kk<=cptcovage;kk++) {     cov[1]=1.;
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];   
                  /*printf("%d %d",kk,Tage[kk]);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/      newm=savm;
               /*cov[3]=pow(cov[2],2)/1000.;*/      /* Covariates have to be included here again */
        cov[2]=agefin;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (k=1; k<=cptcovn;k++) {
           savm=oldm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           oldm=newm;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       } /* end mult */        for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       ipmx +=1;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       sw += weight[i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     } /* end of wave */  
   } /* end of individual */      savm=oldm;
       oldm=newm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      maxmax=0.;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for(j=1;j<=nlstate;j++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        min=1.;
   return -l;        max=0.;
 }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*********** Maximum Likelihood Estimation ***************/          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          min=FMIN(min,prlim[i][j]);
 {        }
   int i,j, iter;        maxmin=max-min;
   double **xi,*delti;        maxmax=FMAX(maxmax,maxmin);
   double fret;      }
   xi=matrix(1,npar,1,npar);      if(maxmax < ftolpl){
   for (i=1;i<=npar;i++)        return prlim;
     for (j=1;j<=npar;j++)      }
       xi[i][j]=(i==j ? 1.0 : 0.0);    }
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /*************** transition probabilities ***************/ 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 }    double s1, s2;
     /*double t34;*/
 /**** Computes Hessian and covariance matrix ***/    int i,j,j1, nc, ii, jj;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {      for(i=1; i<= nlstate; i++){
   double  **a,**y,*x,pd;      for(j=1; j<i;j++){
   double **hess;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i, j,jk;          /*s2 += param[i][j][nc]*cov[nc];*/
   int *indx;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double hessii(double p[], double delta, int theta, double delti[]);        }
   double hessij(double p[], double delti[], int i, int j);        ps[i][j]=s2;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;      }
       for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   hess=matrix(1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   printf("\nCalculation of the hessian matrix. Wait...\n");        }
   for (i=1;i<=npar;i++){        ps[i][j]=s2;
     printf("%d",i);fflush(stdout);      }
     hess[i][i]=hessii(p,ftolhess,i,delti);    }
     /*printf(" %f ",p[i]);*/      /*ps[3][2]=1;*/
   }  
     for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++) {       s1=0;
     for (j=1;j<=npar;j++)  {      for(j=1; j<i; j++)
       if (j>i) {        s1+=exp(ps[i][j]);
         printf(".%d%d",i,j);fflush(stdout);      for(j=i+1; j<=nlstate+ndeath; j++)
         hess[i][j]=hessij(p,delti,i,j);        s1+=exp(ps[i][j]);
         hess[j][i]=hess[i][j];      ps[i][i]=1./(s1+1.);
       }      for(j=1; j<i; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
   }      for(j=i+1; j<=nlstate+ndeath; j++)
   printf("\n");        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    } /* end i */
    
   a=matrix(1,npar,1,npar);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   y=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   x=vector(1,npar);        ps[ii][jj]=0;
   indx=ivector(1,npar);        ps[ii][ii]=1;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    }
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for (i=1;i<=npar;i++) x[i]=0;      for(jj=1; jj<= nlstate+ndeath; jj++){
     x[j]=1;       printf("%lf ",ps[ii][jj]);
     lubksb(a,npar,indx,x);     }
     for (i=1;i<=npar;i++){      printf("\n ");
       matcov[i][j]=x[i];      }
     }      printf("\n ");printf("%lf ",cov[2]);*/
   }  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
   printf("\n#Hessian matrix#\n");    goto end;*/
   for (i=1;i<=npar;i++) {      return ps;
     for (j=1;j<=npar;j++) {  }
       printf("%.3e ",hess[i][j]);  
     }  /**************** Product of 2 matrices ******************/
     printf("\n");  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   /* Recompute Inverse */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=npar;i++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* in, b, out are matrice of pointers which should have been initialized 
   ludcmp(a,npar,indx,&pd);       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   /*  printf("\n#Hessian matrix recomputed#\n");    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   for (j=1;j<=npar;j++) {      for(k=ncolol; k<=ncoloh; k++)
     for (i=1;i<=npar;i++) x[i]=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     x[j]=1;          out[i][k] +=in[i][j]*b[j][k];
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    return out;
       y[i][j]=x[i];  }
       printf("%.3e ",y[i][j]);  
     }  
     printf("\n");  /************* Higher Matrix Product ***************/
   }  
   */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   free_matrix(a,1,npar,1,npar);    /* Computes the transition matrix starting at age 'age' over 
   free_matrix(y,1,npar,1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
   free_vector(x,1,npar);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_ivector(indx,1,npar);       nhstepm*hstepm matrices. 
   free_matrix(hess,1,npar,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
        for the memory).
 }       Model is determined by parameters x and covariates have to be 
        included manually here. 
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])       */
 {  
   int i;    int i, j, d, h, k;
   int l=1, lmax=20;    double **out, cov[NCOVMAX];
   double k1,k2;    double **newm;
   double p2[NPARMAX+1];  
   double res;    /* Hstepm could be zero and should return the unit matrix */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (i=1;i<=nlstate+ndeath;i++)
   double fx;      for (j=1;j<=nlstate+ndeath;j++){
   int k=0,kmax=10;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double l1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   fx=func(x);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++) p2[i]=x[i];    for(h=1; h <=nhstepm; h++){
   for(l=0 ; l <=lmax; l++){      for(d=1; d <=hstepm; d++){
     l1=pow(10,l);        newm=savm;
     delts=delt;        /* Covariates have to be included here again */
     for(k=1 ; k <kmax; k=k+1){        cov[1]=1.;
       delt = delta*(l1*k);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k1=func(p2)-fx;        for (k=1; k<=cptcovage;k++)
       p2[theta]=x[theta]-delt;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       k2=func(p2)-fx;        for (k=1; k<=cptcovprod;k++)
       /*res= (k1-2.0*fx+k2)/delt/delt; */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        
 #ifdef DEBUG        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 #endif        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        savm=oldm;
         k=kmax;        oldm=newm;
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(i=1; i<=nlstate+ndeath; i++)
         k=kmax; l=lmax*10.;        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         delts=delt;           */
       }        }
     }    } /* end h */
   }    return po;
   delti[theta]=delts;  }
   return res;  
    
 }  /*************** log-likelihood *************/
   double func( double *x)
 double hessij( double x[], double delti[], int thetai,int thetaj)  {
 {    int i, ii, j, k, mi, d, kk;
   int i;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int l=1, l1, lmax=20;    double **out;
   double k1,k2,k3,k4,res,fx;    double sw; /* Sum of weights */
   double p2[NPARMAX+1];    double lli; /* Individual log likelihood */
   int k;    int s1, s2;
     double bbh, survp;
   fx=func(x);    long ipmx;
   for (k=1; k<=2; k++) {    /*extern weight */
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* We are differentiating ll according to initial status */
     p2[thetai]=x[thetai]+delti[thetai]/k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*for(i=1;i<imx;i++) 
     k1=func(p2)-fx;      printf(" %d\n",s[4][i]);
      */
     p2[thetai]=x[thetai]+delti[thetai]/k;    cov[1]=1.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    if(mle==1){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k3=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k4=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG            }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for(d=0; d<dh[mi][i]; d++){
 #endif            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   return res;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************** Inverse of matrix **************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void ludcmp(double **a, int n, int *indx, double *d)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int i,imax,j,k;            oldm=newm;
   double big,dum,sum,temp;          } /* end mult */
   double *vv;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   vv=vector(1,n);          /* But now since version 0.9 we anticipate for bias and large stepm.
   *d=1.0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (i=1;i<=n;i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     big=0.0;           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (j=1;j<=n;j++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if ((temp=fabs(a[i][j])) > big) big=temp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * probability in order to take into account the bias as a fraction of the way
     vv[i]=1.0/big;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   for (j=1;j<=n;j++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<j;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
       sum=a[i][j];           */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s1=s[mw[mi][i]][i];
       a[i][j]=sum;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     big=0.0;          /* bias is positive if real duration
     for (i=j;i<=n;i++) {           * is higher than the multiple of stepm and negative otherwise.
       sum=a[i][j];           */
       for (k=1;k<j;k++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         sum -= a[i][k]*a[k][j];          if( s2 > nlstate){ 
       a[i][j]=sum;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       if ( (dum=vv[i]*fabs(sum)) >= big) {               to the likelihood is the probability to die between last step unit time and current 
         big=dum;               step unit time, which is also the differences between probability to die before dh 
         imax=i;               and probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
     if (j != imax) {          health state: the date of the interview describes the actual state
       for (k=1;k<=n;k++) {          and not the date of a change in health state. The former idea was
         dum=a[imax][k];          to consider that at each interview the state was recorded
         a[imax][k]=a[j][k];          (healthy, disable or death) and IMaCh was corrected; but when we
         a[j][k]=dum;          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
       *d = -(*d);          contribution is smaller and very dependent of the step unit
       vv[imax]=vv[j];          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
     indx[j]=imax;          interview up to one month before death multiplied by the
     if (a[j][j] == 0.0) a[j][j]=TINY;          probability to die within a month. Thanks to Chris
     if (j != n) {          Jackson for correcting this bug.  Former versions increased
       dum=1.0/(a[j][j]);          mortality artificially. The bad side is that we add another loop
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   free_vector(vv,1,n);  /* Doesn't work */            lli=log(out[s1][s2] - savm[s1][s2]);
 ;          }else{
 }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 void lubksb(double **a, int n, int *indx, double b[])          } 
 {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int i,ii=0,ip,j;          /*if(lli ==000.0)*/
   double sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   for (i=1;i<=n;i++) {          sw += weight[i];
     ip=indx[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     sum=b[ip];        } /* end of wave */
     b[ip]=b[i];      } /* end of individual */
     if (ii)    }  else if(mle==2){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     else if (sum) ii=i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[i]=sum;        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=n;i>=1;i--) {            for (j=1;j<=nlstate+ndeath;j++){
     sum=b[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum/a[i][i];            }
   }          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Frequencies ********************/            for (kk=1; kk<=cptcovage;kk++) {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {  /* Some frequencies */            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */            savm=oldm;
   double *pp;            oldm=newm;
   double pos;          } /* end mult */
   FILE *ficresp;        
   char fileresp[FILENAMELENGTH];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
   pp=vector(1,nlstate);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   strcpy(fileresp,"p");           * the nearest (and in case of equal distance, to the lowest) interval but now
   strcat(fileresp,fileres);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * probability in order to take into account the bias as a fraction of the way
     exit(0);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * For stepm=1 the results are the same as for previous versions of Imach.
   j1=0;           * For stepm > 1 the results are less biased than in previous versions. 
            */
   j=cptcoveff;          s1=s[mw[mi][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   for(k1=1; k1<=j;k1++){          /* bias is positive if real duration
    for(i1=1; i1<=ncodemax[k1];i1++){           * is higher than the multiple of stepm and negative otherwise.
        j1++;           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for (i=-1; i<=nlstate+ndeath; i++)            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            for(m=agemin; m <= agemax+3; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
              freq[i][jk][m]=0;          /*if(lli ==000.0)*/
                  /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
        for (i=1; i<=imx; i++) {          ipmx +=1;
          bool=1;          sw += weight[i];
          if  (cptcovn>0) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            for (z1=1; z1<=cptcoveff; z1++)        } /* end of wave */
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;      } /* end of individual */
          }    }  else if(mle==3){  /* exponential inter-extrapolation */
           if (bool==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for(m=firstpass; m<=lastpass-1; m++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for(mi=1; mi<= wav[i]-1; mi++){
              if(agev[m][i]==1) agev[m][i]=agemax+2;          for (ii=1;ii<=nlstate+ndeath;ii++)
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
        }          for(d=0; d<dh[mi][i]; d++){
         if  (cptcovn>0) {            newm=savm;
          fprintf(ficresp, "\n#********** Variable ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (kk=1; kk<=cptcovage;kk++) {
        }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        fprintf(ficresp, "**********\n#");            }
        for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        fprintf(ficresp, "\n");            savm=oldm;
                    oldm=newm;
   for(i=(int)agemin; i <= (int)agemax+3; i++){          } /* end mult */
     if(i==(int)agemax+3)        
       printf("Total");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     else          /* But now since version 0.9 we anticipate for bias and large stepm.
       printf("Age %d", i);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(jk=1; jk <=nlstate ; jk++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         pp[jk] += freq[jk][m][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for(jk=1; jk <=nlstate ; jk++){           * probability in order to take into account the bias as a fraction of the way
       for(m=-1, pos=0; m <=0 ; m++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         pos += freq[jk][m][i];           * -stepm/2 to stepm/2 .
       if(pp[jk]>=1.e-10)           * For stepm=1 the results are the same as for previous versions of Imach.
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * For stepm > 1 the results are less biased than in previous versions. 
       else           */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          /* bias is positive if real duration
         pp[jk] += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
     }           */
     for(jk=1,pos=0; jk <=nlstate ; jk++)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       pos += pp[jk];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if(pos>=1.e-5)          /*if(lli ==000.0)*/
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       else          ipmx +=1;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
       if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(pos>=1.e-5)        } /* end of wave */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } /* end of individual */
       else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(m=-1; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(i <= (int) agemax)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp,"\n");            }
     printf("\n");          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fclose(ficresp);            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          
   free_vector(pp,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* End of Freq */            savm=oldm;
             oldm=newm;
 /************* Waves Concatenation ***************/          } /* end mult */
         
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          if( s2 > nlstate){ 
      Death is a valid wave (if date is known).            lli=log(out[s1][s2] - savm[s1][s2]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          }else{
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      and mw[mi+1][i]. dh depends on stepm.          }
      */          ipmx +=1;
           sw += weight[i];
   int i, mi, m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 float sum=0.;        } /* end of wave */
       } /* end of individual */
   for(i=1; i<=imx; i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     mi=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     m=firstpass;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     while(s[m][i] <= nlstate){        for(mi=1; mi<= wav[i]-1; mi++){
       if(s[m][i]>=1)          for (ii=1;ii<=nlstate+ndeath;ii++)
         mw[++mi][i]=m;            for (j=1;j<=nlstate+ndeath;j++){
       if(m >=lastpass)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
         m++;          for(d=0; d<dh[mi][i]; d++){
     }/* end while */            newm=savm;
     if (s[m][i] > nlstate){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mi++;     /* Death is another wave */            for (kk=1; kk<=cptcovage;kk++) {
       /* if(mi==0)  never been interviewed correctly before death */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          /* Only death is a correct wave */            }
       mw[mi][i]=m;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     wav[i]=mi;            savm=oldm;
     if(mi==0)            oldm=newm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     for(mi=1; mi<wav[i];mi++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } /* end of wave */
           if(j=0) j=1;  /* Survives at least one month after exam */      } /* end of individual */
         }    } /* End of if */
         else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           k=k+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if (j >= jmax) jmax=j;    return -l;
           else if (j <= jmin)jmin=j;  }
           sum=sum+j;  
         }  /*************** log-likelihood *************/
         jk= j/stepm;  double funcone( double *x)
         jl= j -jk*stepm;  {
         ju= j -(jk+1)*stepm;    /* Same as likeli but slower because of a lot of printf and if */
         if(jl <= -ju)    int i, ii, j, k, mi, d, kk;
           dh[mi][i]=jk;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         else    double **out;
           dh[mi][i]=jk+1;    double lli; /* Individual log likelihood */
         if(dh[mi][i]==0)    double llt;
           dh[mi][i]=1; /* At least one step */    int s1, s2;
       }    double bbh, survp;
     }    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
 /*********** Tricode ****************************/      printf(" %d\n",s[4][i]);
 void tricode(int *Tvar, int **nbcode, int imx)    */
 {    cov[1]=1.;
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   cptcoveff=0;  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=0; k<19; k++) Ndum[k]=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;          }
       if (ij > cptcode) cptcode=ij;        for(d=0; d<dh[mi][i]; d++){
     }          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          for (kk=1; kk<=cptcovage;kk++) {
     for (i=0; i<=cptcode; i++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(Ndum[i]!=0) ncodemax[j]++;          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     ij=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
     for (i=1; i<=ncodemax[j]; i++) {          oldm=newm;
       for (k=0; k<=19; k++) {        } /* end mult */
         if (Ndum[k] != 0) {        
           nbcode[Tvar[j]][ij]=k;        s1=s[mw[mi][i]][i];
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/        s2=s[mw[mi+1][i]][i];
           ij++;        bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
         if (ij > ncodemax[j]) break;         * is higher than the multiple of stepm and negative otherwise.
       }           */
     }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
  for (i=1; i<=10; i++) {        } else if (mle==1){
       ij=Tvar[i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       Ndum[ij]++;        } else if(mle==2){
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  ij=1;        } else if(mle==3){  /* exponential inter-extrapolation */
  for (i=1; i<=cptcovn; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    if((Ndum[i]!=0) && (i<=ncov)){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      Tvaraff[i]=ij;          lli=log(out[s1][s2]); /* Original formula */
    ij++;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
    }          lli=log(out[s1][s2]); /* Original formula */
  }        } /* End of if */
          ipmx +=1;
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        sw += weight[i];
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*printf("j=%d %d\n",j,Tvar[j]);*/  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  }        if(globpr){
            fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);   %10.6f %10.6f %10.6f ", \
     scanf("%d",i);*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 /*********** Health Expectancies ****************/            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          }
 {          fprintf(ficresilk," %10.6f\n", -llt);
   /* Health expectancies */        }
   int i, j, nhstepm, hstepm, h;      } /* end of wave */
   double age, agelim,hf;    } /* end of individual */
   double ***p3mat;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficreseij,"# Health expectancies\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficreseij,"# Age");    if(globpr==0){ /* First time we count the contributions and weights */
   for(i=1; i<=nlstate;i++)      gipmx=ipmx;
     for(j=1; j<=nlstate;j++)      gsw=sw;
       fprintf(ficreseij," %1d-%1d",i,j);    }
   fprintf(ficreseij,"\n");    return -l;
   }
   hstepm=1*YEARM; /*  Every j years of age (in month) */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  char *subdirf(char fileres[])
   {
   agelim=AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcpy(tmpout,optionfilefiname);
     /* nhstepm age range expressed in number of stepm */    strcat(tmpout,"/"); /* Add to the right */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    strcat(tmpout,fileres);
     /* Typically if 20 years = 20*12/6=40 stepm */    return tmpout;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  char *subdirf2(char fileres[], char *preop)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     strcat(tmpout,preop);
     for(i=1; i<=nlstate;i++)    strcat(tmpout,fileres);
       for(j=1; j<=nlstate;j++)    return tmpout;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  }
           eij[i][j][(int)age] +=p3mat[i][j][h];  char *subdirf3(char fileres[], char *preop, char *preop2)
         }  {
        
     hf=1;    strcpy(tmpout,optionfilefiname);
     if (stepm >= YEARM) hf=stepm/YEARM;    strcat(tmpout,"/");
     fprintf(ficreseij,"%.0f",age );    strcat(tmpout,preop);
     for(i=1; i<=nlstate;i++)    strcat(tmpout,preop2);
       for(j=1; j<=nlstate;j++){    strcat(tmpout,fileres);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    return tmpout;
       }  }
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
 }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 /************ Variance ******************/       to check the exact contribution to the likelihood.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       Plotting could be done.
 {     */
   /* Variance of health expectancies */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **dnewm,**doldm;      strcpy(fileresilk,"ilk"); 
   int i, j, nhstepm, hstepm, h;      strcat(fileresilk,fileres);
   int k, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    double *xp;        printf("Problem with resultfile: %s\n", fileresilk);
   double **gp, **gm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double ***gradg, ***trgradg;      }
   double ***p3mat;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age,agelim;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int theta;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvij,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    *fretone=(*funcone)(p);
   fprintf(ficresvij,"\n");    if(*globpri !=0){
       fclose(ficresilk);
   xp=vector(1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   dnewm=matrix(1,nlstate,1,npar);      fflush(fichtm); 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      return;
   hstepm=1*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*********** Maximum Likelihood Estimation ***************/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,j, iter;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double **xi;
     gp=matrix(0,nhstepm,1,nlstate);    double fret;
     gm=matrix(0,nhstepm,1,nlstate);    double fretone; /* Only one call to likelihood */
     char filerespow[FILENAMELENGTH];
     for(theta=1; theta <=npar; theta++){    xi=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcpy(filerespow,"pow"); 
       for(j=1; j<= nlstate; j++){    strcat(filerespow,fileres);
         for(h=0; h<=nhstepm; h++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         }    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
        for (i=1;i<=nlstate;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for(j=1;j<=nlstate+ndeath;j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(j=1; j<= nlstate; j++){    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fclose(ficrespow);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /**** Computes Hessian and covariance matrix ***/
     } /* End theta */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double  **a,**y,*x,pd;
     double **hess;
     for(h=0; h<=nhstepm; h++)    int i, j,jk;
       for(j=1; j<=nlstate;j++)    int *indx;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    double hessii(double p[], double delta, int theta, double delti[]);
     double hessij(double p[], double delti[], int i, int j);
     for(i=1;i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1;j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){    hess=matrix(1,npar,1,npar);
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    printf("\nCalculation of the hessian matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++){
           for(j=1;j<=nlstate;j++)      printf("%d",i);fflush(stdout);
             vareij[i][j][(int)age] += doldm[i][j];      fprintf(ficlog,"%d",i);fflush(ficlog);
       }      hess[i][i]=hessii(p,ftolhess,i,delti);
     }      /*printf(" %f ",p[i]);*/
     h=1;      /*printf(" %lf ",hess[i][i]);*/
     if (stepm >= YEARM) h=stepm/YEARM;    }
     fprintf(ficresvij,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++)  {
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficresvij,"\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_matrix(gp,0,nhstepm,1,nlstate);          hess[i][j]=hessij(p,delti,i,j);
     free_matrix(gm,0,nhstepm,1,nlstate);          hess[j][i]=hess[i][j];    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */    }
      printf("\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    
     a=matrix(1,npar,1,npar);
 /************ Variance of prevlim ******************/    y=matrix(1,npar,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    x=vector(1,npar);
 {    indx=ivector(1,npar);
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double **newm;    ludcmp(a,npar,indx,&pd);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for (j=1;j<=npar;j++) {
   int k, cptcode;      for (i=1;i<=npar;i++) x[i]=0;
   double *xp;      x[j]=1;
   double *gp, *gm;      lubksb(a,npar,indx,x);
   double **gradg, **trgradg;      for (i=1;i<=npar;i++){ 
   double age,agelim;        matcov[i][j]=x[i];
   int theta;      }
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    printf("\n#Hessian matrix#\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    for (i=1;i<=npar;i++) { 
   fprintf(ficresvpl,"\n");      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   xp=vector(1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);      printf("\n");
        fprintf(ficlog,"\n");
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    /* Recompute Inverse */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=npar;i++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if (stepm >= YEARM) hstepm=1;    ludcmp(a,npar,indx,&pd);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    /*  printf("\n#Hessian matrix recomputed#\n");
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(theta=1; theta <=npar; theta++){      x[j]=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */      lubksb(a,npar,indx,x);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++){ 
       }        y[i][j]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("%.3e ",y[i][j]);
       for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
         gp[i] = prlim[i][i];      }
          printf("\n");
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficlog,"\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    free_vector(x,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_ivector(indx,1,npar);
     } /* End theta */    free_matrix(hess,1,npar,1,npar);
   
     trgradg =matrix(1,nlstate,1,npar);  
   }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)  /*************** hessian matrix ****************/
         trgradg[j][theta]=gradg[theta][j];  double hessii( double x[], double delta, int theta, double delti[])
   {
     for(i=1;i<=nlstate;i++)    int i;
       varpl[i][(int)age] =0.;    int l=1, lmax=20;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double k1,k2;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double p2[NPARMAX+1];
     for(i=1;i<=nlstate;i++)    double res;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     fprintf(ficresvpl,"%.0f ",age );    int k=0,kmax=10;
     for(i=1; i<=nlstate;i++)    double l1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    fx=func(x);
     free_vector(gp,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(gm,1,nlstate);    for(l=0 ; l <=lmax; l++){
     free_matrix(gradg,1,npar,1,nlstate);      l1=pow(10,l);
     free_matrix(trgradg,1,nlstate,1,npar);      delts=delt;
   } /* End age */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   free_vector(xp,1,npar);        p2[theta]=x[theta] +delt;
   free_matrix(doldm,1,nlstate,1,npar);        k1=func(p2)-fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   #ifdef DEBUG
 /***********************************************/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /**************** Main Program *****************/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /***********************************************/  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 /*int main(int argc, char *argv[])*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 int main()          k=kmax;
 {        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;          k=kmax; l=lmax*10.;
   double agedeb, agefin,hf;        }
   double agemin=1.e20, agemax=-1.e20;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   double fret;        }
   double **xi,tmp,delta;      }
     }
   double dum; /* Dummy variable */    delti[theta]=delts;
   double ***p3mat;    return res; 
   int *indx;    
   char line[MAXLINE], linepar[MAXLINE];  }
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  double hessij( double x[], double delti[], int thetai,int thetaj)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  {
   char filerest[FILENAMELENGTH];    int i;
   char fileregp[FILENAMELENGTH];    int l=1, l1, lmax=20;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double k1,k2,k3,k4,res,fx;
   int firstobs=1, lastobs=10;    double p2[NPARMAX+1];
   int sdeb, sfin; /* Status at beginning and end */    int k;
   int c,  h , cpt,l;  
   int ju,jl, mi;    fx=func(x);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (k=1; k<=2; k++) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   int hstepm, nhstepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double bage, fage, age, agelim, agebase;      k1=func(p2)-fx;
   double ftolpl=FTOL;    
   double **prlim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *severity;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***param; /* Matrix of parameters */      k2=func(p2)-fx;
   double  *p;    
   double **matcov; /* Matrix of covariance */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***delti3; /* Scale */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *delti; /* Scale */      k3=func(p2)-fx;
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *epj, vepp;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      k4=func(p2)-fx;
   char *alph[]={"a","a","b","c","d","e"}, str[4];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   char z[1]="c", occ;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #include <sys/time.h>      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #include <time.h>  #endif
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    }
   /* long total_usecs;    return res;
   struct timeval start_time, end_time;  }
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   printf("\nIMACH, Version 0.64a");    int i,imax,j,k; 
   printf("\nEnter the parameter file name: ");    double big,dum,sum,temp; 
     double *vv; 
 #ifdef windows   
   scanf("%s",pathtot);    vv=vector(1,n); 
   getcwd(pathcd, size);    *d=1.0; 
   /*cygwin_split_path(pathtot,path,optionfile);    for (i=1;i<=n;i++) { 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      big=0.0; 
   /* cutv(path,optionfile,pathtot,'\\');*/      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
 split(pathtot, path,optionfile);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   chdir(path);      vv[i]=1.0/big; 
   replace(pathc,path);    } 
 #endif    for (j=1;j<=n;j++) { 
 #ifdef unix      for (i=1;i<j;i++) { 
   scanf("%s",optionfile);        sum=a[i][j]; 
 #endif        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /*-------- arguments in the command line --------*/      } 
       big=0.0; 
   strcpy(fileres,"r");      for (i=j;i<=n;i++) { 
   strcat(fileres, optionfile);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   /*---------arguments file --------*/          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     printf("Problem with optionfile %s\n",optionfile);          big=dum; 
     goto end;          imax=i; 
   }        } 
       } 
   strcpy(filereso,"o");      if (j != imax) { 
   strcat(filereso,fileres);        for (k=1;k<=n;k++) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {          dum=a[imax][k]; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
         } 
   /* Reads comments: lines beginning with '#' */        *d = -(*d); 
   while((c=getc(ficpar))=='#' && c!= EOF){        vv[imax]=vv[j]; 
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      indx[j]=imax; 
     puts(line);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fputs(line,ficparo);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   ungetc(c,ficpar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  ;
   } 
   covar=matrix(0,NCOVMAX,1,n);      
   if (strlen(model)<=1) cptcovn=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   else {  { 
     j=0;    int i,ii=0,ip,j; 
     j=nbocc(model,'+');    double sum; 
     cptcovn=j+1;   
   }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   ncovmodel=2+cptcovn;      sum=b[ip]; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      b[ip]=b[i]; 
        if (ii) 
   /* Read guess parameters */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* Reads comments: lines beginning with '#' */      else if (sum) ii=i; 
   while((c=getc(ficpar))=='#' && c!= EOF){      b[i]=sum; 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    for (i=n;i>=1;i--) { 
     puts(line);      sum=b[i]; 
     fputs(line,ficparo);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   ungetc(c,ficpar);    } 
    } 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  /************ Frequencies ********************/
     for(j=1; j <=nlstate+ndeath-1; j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {  /* Some frequencies */
       fprintf(ficparo,"%1d%1d",i1,j1);    
       printf("%1d%1d",i,j);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(k=1; k<=ncovmodel;k++){    int first;
         fscanf(ficpar," %lf",&param[i][j][k]);    double ***freq; /* Frequencies */
         printf(" %lf",param[i][j][k]);    double *pp, **prop;
         fprintf(ficparo," %lf",param[i][j][k]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    FILE *ficresp;
       fscanf(ficpar,"\n");    char fileresp[FILENAMELENGTH];
       printf("\n");    
       fprintf(ficparo,"\n");    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
      strcpy(fileresp,"p");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    strcat(fileresp,fileres);
   p=param[1][1];    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   while((c=getc(ficpar))=='#' && c!= EOF){      exit(0);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     puts(line);    j1=0;
     fputs(line,ficparo);    
   }    j=cptcoveff;
   ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    first=1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    for(k1=1; k1<=j;k1++){
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i1=1; i1<=ncodemax[k1];i1++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        j1++;
       printf("%1d%1d",i,j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficparo,"%1d%1d",i1,j1);          scanf("%d", i);*/
       for(k=1; k<=ncovmodel;k++){        for (i=-1; i<=nlstate+ndeath; i++)  
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         printf(" %le",delti3[i][j][k]);            for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficparo," %le",delti3[i][j][k]);              freq[i][jk][m]=0;
       }  
       fscanf(ficpar,"\n");      for (i=1; i<=nlstate; i++)  
       printf("\n");        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficparo,"\n");          prop[i][m]=0;
     }        
   }        dateintsum=0;
   delti=delti3[1][1];        k2cpt=0;
          for (i=1; i<=imx; i++) {
   /* Reads comments: lines beginning with '#' */          bool=1;
   while((c=getc(ficpar))=='#' && c!= EOF){          if  (cptcovn>0) {
     ungetc(c,ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     fgets(line, MAXLINE, ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     puts(line);                bool=0;
     fputs(line,ficparo);          }
   }          if (bool==1){
   ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){
                k2=anint[m][i]+(mint[m][i]/12.);
   matcov=matrix(1,npar,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for(i=1; i <=npar; i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fscanf(ficpar,"%s",&str);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("%s",str);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficparo,"%s",str);                if (m<lastpass) {
     for(j=1; j <=i; j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fscanf(ficpar," %le",&matcov[i][j]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       printf(" %.5le",matcov[i][j]);                }
       fprintf(ficparo," %.5le",matcov[i][j]);                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     fscanf(ficpar,"\n");                  dateintsum=dateintsum+k2;
     printf("\n");                  k2cpt++;
     fprintf(ficparo,"\n");                }
   }                /*}*/
   for(i=1; i <=npar; i++)            }
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];        }
             
   printf("\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
         if  (cptcovn>0) {
     /*-------- data file ----------*/          fprintf(ficresp, "\n#********** Variable "); 
     if((ficres =fopen(fileres,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with resultfile: %s\n", fileres);goto end;          fprintf(ficresp, "**********\n#");
     }        }
     fprintf(ficres,"#%s\n",version);        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficresp, "\n");
       printf("Problem with datafile: %s\n", datafile);goto end;        
     }        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     n= lastobs;            fprintf(ficlog,"Total");
     severity = vector(1,maxwav);          }else{
     outcome=imatrix(1,maxwav+1,1,n);            if(first==1){
     num=ivector(1,n);              first=0;
     moisnais=vector(1,n);              printf("See log file for details...\n");
     annais=vector(1,n);            }
     moisdc=vector(1,n);            fprintf(ficlog,"Age %d", i);
     andc=vector(1,n);          }
     agedc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     cod=ivector(1,n);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     weight=vector(1,n);              pp[jk] += freq[jk][m][i]; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){
     anint=matrix(1,maxwav,1,n);            for(m=-1, pos=0; m <=0 ; m++)
     s=imatrix(1,maxwav+1,1,n);              pos += freq[jk][m][i];
     adl=imatrix(1,maxwav+1,1,n);                if(pp[jk]>=1.e-10){
     tab=ivector(1,NCOVMAX);              if(first==1){
     ncodemax=ivector(1,8);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     i=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     while (fgets(line, MAXLINE, fic) != NULL)    {            }else{
       if ((i >= firstobs) && (i <=lastobs)) {              if(first==1)
                        printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (j=maxwav;j>=1;j--){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                      pp[jk] += freq[jk][m][i];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }       
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            posprop += prop[jk][i];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            if(pos>=1.e-5){
         for (j=ncov;j>=1;j--){              if(first==1)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         num[i]=atol(stra);            }else{
               if(first==1)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         i=i+1;            }
       }            if( i <= iagemax){
     }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     /*scanf("%d",i);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
   imx=i-1; /* Number of individuals */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   /* Calculation of the number of parameter from char model*/              else
   Tvar=ivector(1,15);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   Tprod=ivector(1,15);            }
   Tvaraff=ivector(1,15);          }
   Tvard=imatrix(1,15,1,2);          
   Tage=ivector(1,15);                for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
   if (strlen(model) >1){              if(freq[jk][m][i] !=0 ) {
     j=0, j1=0, k1=1, k2=1;              if(first==1)
     j=nbocc(model,'+');                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     j1=nbocc(model,'*');                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     cptcovn=j+1;              }
     cptcovprod=j1;          if(i <= iagemax)
                fprintf(ficresp,"\n");
     strcpy(modelsav,model);          if(first==1)
    if (j==0) {            printf("Others in log...\n");
       if (j1==0){          fprintf(ficlog,"\n");
         cutv(stra,strb,modelsav,'V');        }
         Tvar[1]=atoi(strb);      }
       }    }
       else if (j1==1) {    dateintmean=dateintsum/k2cpt; 
         cutv(stra,strb,modelsav,'*');   
         Tage[1]=1; cptcovage++;    fclose(ficresp);
         if (strcmp(stra,"age")==0) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
           cptcovprod--;    free_vector(pp,1,nlstate);
           cutv(strd,strc,strb,'V');    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           Tvar[1]=atoi(strc);    /* End of Freq */
         }  }
         else if (strcmp(strb,"age")==0) {  
           cptcovprod--;  /************ Prevalence ********************/
           cutv(strd,strc,stra,'V');  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           Tvar[1]=atoi(strc);  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         else {       in each health status at the date of interview (if between dateprev1 and dateprev2).
           cutv(strd,strc,strb,'V');       We still use firstpass and lastpass as another selection.
           cutv(stre,strd,stra,'V');    */
           Tvar[1]=ncov+1;   
           for (k=1; k<=lastobs;k++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];    double ***freq; /* Frequencies */
         }    double *pp, **prop;
         /*printf("%s %s %s\n", stra,strb,modelsav);    double pos,posprop; 
 printf("%d ",Tvar[1]);    double  y2; /* in fractional years */
 scanf("%d",i);*/    int iagemin, iagemax;
       }  
     }    iagemin= (int) agemin;
    else {    iagemax= (int) agemax;
       for(i=j; i>=1;i--){    /*pp=vector(1,nlstate);*/
         cutv(stra,strb,modelsav,'+');    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         /*printf("%s %s %s\n", stra,strb,modelsav);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           scanf("%d",i);*/    j1=0;
         if (strchr(strb,'*')) {    
           cutv(strd,strc,strb,'*');    j=cptcoveff;
           if (strcmp(strc,"age")==0) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             cptcovprod--;    
             cutv(strb,stre,strd,'V');    for(k1=1; k1<=j;k1++){
             Tvar[i+1]=atoi(stre);      for(i1=1; i1<=ncodemax[k1];i1++){
             cptcovage++;        j1++;
             Tage[cptcovage]=i+1;        
             printf("stre=%s ", stre);        for (i=1; i<=nlstate; i++)  
           }          for(m=iagemin; m <= iagemax+3; m++)
           else if (strcmp(strd,"age")==0) {            prop[i][m]=0.0;
             cptcovprod--;       
             cutv(strb,stre,strc,'V');        for (i=1; i<=imx; i++) { /* Each individual */
             Tvar[i+1]=atoi(stre);          bool=1;
             cptcovage++;          if  (cptcovn>0) {
             Tage[cptcovage]=i+1;            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           else {                bool=0;
             cutv(strb,stre,strc,'V');          } 
             Tvar[i+1]=ncov+k1;          if (bool==1) { 
             cutv(strb,strc,strd,'V');            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             Tprod[k1]=i+1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             Tvard[k1][1]=atoi(strc);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             Tvard[k1][2]=atoi(stre);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             Tvar[cptcovn+k2]=Tvard[k1][1];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             Tvar[cptcovn+k2+1]=Tvard[k1][2];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             for (k=1; k<=lastobs;k++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             k1++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             k2=k2+2;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           }                } 
         }              }
         else {            } /* end selection of waves */
           cutv(strd,strc,strb,'V');          }
           /* printf("%s %s %s", strd,strc,strb);*/        }
           Tvar[i+1]=atoi(strc);        for(i=iagemin; i <= iagemax+3; i++){  
         }          
         strcpy(modelsav,stra);            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }            posprop += prop[jk][i]; 
       cutv(strd,strc,stra,'V');          } 
       Tvar[1]=atoi(strc);  
     }          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
   /* for (i=1; i<=5; i++)              if(posprop>=1.e-5){ 
      printf("i=%d %d ",i,Tvar[i]);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/              } 
  /*printf("cptcovprod=%d ", cptcovprod);*/            } 
   /*  scanf("%d ",i);*/          }/* end jk */ 
     fclose(fic);        }/* end i */ 
       } /* end i1 */
     /*  if(mle==1){*/    } /* end k1 */
     if (weightopt != 1) { /* Maximisation without weights*/    
       for(i=1;i<=n;i++) weight[i]=1.0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }    /*free_vector(pp,1,nlstate);*/
     /*-calculation of age at interview from date of interview and age at death -*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     agev=matrix(1,maxwav,1,imx);  }  /* End of prevalence */
      
     for (i=1; i<=imx; i++)  {  /************* Waves Concatenation ***************/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         if(s[m][i] >0){  {
           if (s[m][i] == nlstate+1) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             if(agedc[i]>0)       Death is a valid wave (if date is known).
               if(moisdc[i]!=99 && andc[i]!=9999)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               agev[m][i]=agedc[i];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             else{       and mw[mi+1][i]. dh depends on stepm.
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       */
               agev[m][i]=-1;  
             }    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           else if(s[m][i] !=9){ /* Should no more exist */       double sum=0., jmean=0.;*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int first;
             if(mint[m][i]==99 || anint[m][i]==9999)    int j, k=0,jk, ju, jl;
               agev[m][i]=1;    double sum=0.;
             else if(agev[m][i] <agemin){    first=0;
               agemin=agev[m][i];    jmin=1e+5;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    jmax=-1;
             }    jmean=0.;
             else if(agev[m][i] >agemax){    for(i=1; i<=imx; i++){
               agemax=agev[m][i];      mi=0;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      m=firstpass;
             }      while(s[m][i] <= nlstate){
             /*agev[m][i]=anint[m][i]-annais[i];*/        if(s[m][i]>=1)
             /*   agev[m][i] = age[i]+2*m;*/          mw[++mi][i]=m;
           }        if(m >=lastpass)
           else { /* =9 */          break;
             agev[m][i]=1;        else
             s[m][i]=-1;          m++;
           }      }/* end while */
         }      if (s[m][i] > nlstate){
         else /*= 0 Unknown */        mi++;     /* Death is another wave */
           agev[m][i]=1;        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
            mw[mi][i]=m;
     }      }
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){      wav[i]=mi;
         if (s[m][i] > (nlstate+ndeath)) {      if(mi==0){
           printf("Error: Wrong value in nlstate or ndeath\n");          if(first==0){
           goto end;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
       }        }
     }        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
       } /* end mi==0 */
     free_vector(severity,1,maxwav);    } /* End individuals */
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    for(i=1; i<=imx; i++){
     free_vector(annais,1,n);      for(mi=1; mi<wav[i];mi++){
     free_matrix(mint,1,maxwav,1,n);        if (stepm <=0)
     free_matrix(anint,1,maxwav,1,n);          dh[mi][i]=1;
     free_vector(moisdc,1,n);        else{
     free_vector(andc,1,n);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     wav=ivector(1,imx);              if(j==0) j=1;  /* Survives at least one month after exam */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              else if(j<0){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    j=1; /* Careful Patch */
     /* Concatenates waves */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
       Tcode=ivector(1,100);              k=k+1;
       nbcode=imatrix(1,nvar,1,8);              if (j >= jmax) jmax=j;
       ncodemax[1]=1;              if (j <= jmin) jmin=j;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              sum=sum+j;
                    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    codtab=imatrix(1,100,1,10);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    h=0;            }
    m=pow(2,cptcoveff);          }
            else{
    for(k=1;k<=cptcoveff; k++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      for(i=1; i <=(m/pow(2,k));i++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        for(j=1; j <= ncodemax[k]; j++){            k=k+1;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            if (j >= jmax) jmax=j;
            h++;            else if (j <= jmin)jmin=j;
            if (h>m) h=1;codtab[h][k]=j;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
          }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        }            if(j<0){
      }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
    /*for(i=1; i <=m ;i++){          }
      for(k=1; k <=cptcovn; k++){          jk= j/stepm;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          jl= j -jk*stepm;
      }          ju= j -(jk+1)*stepm;
      printf("\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    }            if(jl==0){
    scanf("%d",i);*/              dh[mi][i]=jk;
                  bh[mi][i]=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age            }else{ /* We want a negative bias in order to only have interpolation ie
        and prints on file fileres'p'. */                    * at the price of an extra matrix product in likelihood */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
     /* For Powell, parameters are in a vector p[] starting at p[1]                                   */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            else{
               dh[mi][i]=jk+1;
     if(mle==1){              bh[mi][i]=ju;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            }
     }            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
     /*--------- results files --------------*/              bh[mi][i]=ju; /* At least one step */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
    jk=1;          } /* end if mle */
    fprintf(ficres,"# Parameters\n");        }
    printf("# Parameters\n");      } /* end wave */
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){    jmean=sum/k;
        if (k != i)    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
            printf("%d%d ",i,k);   }
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){  /*********** Tricode ****************************/
              printf("%f ",p[jk]);  void tricode(int *Tvar, int **nbcode, int imx)
              fprintf(ficres,"%f ",p[jk]);  {
              jk++;    
            }    int Ndum[20],ij=1, k, j, i, maxncov=19;
            printf("\n");    int cptcode=0;
            fprintf(ficres,"\n");    cptcoveff=0; 
          }   
      }    for (k=0; k<maxncov; k++) Ndum[k]=0;
    }    for (k=1; k<=7; k++) ncodemax[k]=0;
  if(mle==1){  
     /* Computing hessian and covariance matrix */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     ftolhess=ftol; /* Usually correct */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     hesscov(matcov, p, npar, delti, ftolhess, func);                                 modality*/ 
  }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     fprintf(ficres,"# Scales\n");        Ndum[ij]++; /*store the modality */
     printf("# Scales\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      for(i=1,jk=1; i <=nlstate; i++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       for(j=1; j <=nlstate+ndeath; j++){                                         Tvar[j]. If V=sex and male is 0 and 
         if (j!=i) {                                         female is 1, then  cptcode=1.*/
           fprintf(ficres,"%1d%1d",i,j);      }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      for (i=0; i<=cptcode; i++) {
             printf(" %.5e",delti[jk]);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             fprintf(ficres," %.5e",delti[jk]);      }
             jk++;  
           }      ij=1; 
           printf("\n");      for (i=1; i<=ncodemax[j]; i++) {
           fprintf(ficres,"\n");        for (k=0; k<= maxncov; k++) {
         }          if (Ndum[k] != 0) {
       }            nbcode[Tvar[j]][ij]=k; 
       }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                
     k=1;            ij++;
     fprintf(ficres,"# Covariance\n");          }
     printf("# Covariance\n");          if (ij > ncodemax[j]) break; 
     for(i=1;i<=npar;i++){        }  
       /*  if (k>nlstate) k=1;      } 
       i1=(i-1)/(ncovmodel*nlstate)+1;    }  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);   for (i=1; i<=ncovmodel-2; i++) { 
       for(j=1; j<=i;j++){     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(ficres," %.5e",matcov[i][j]);     ij=Tvar[i];
         printf(" %.5e",matcov[i][j]);     Ndum[ij]++;
       }   }
       fprintf(ficres,"\n");  
       printf("\n");   ij=1;
       k++;   for (i=1; i<= maxncov; i++) {
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
     while((c=getc(ficpar))=='#' && c!= EOF){       ij++;
       ungetc(c,ficpar);     }
       fgets(line, MAXLINE, ficpar);   }
       puts(line);   
       fputs(line,ficparo);   cptcoveff=ij-1; /*Number of simple covariates*/
     }  }
     ungetc(c,ficpar);  
    /*********** Health Expectancies ****************/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     if (fage <= 2) {  
       bage = agemin;  {
       fage = agemax;    /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double ***p3mat,***varhe;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double **dnewm,**doldm;
     double *xp;
        double **gp, **gm;
 /*------------ gnuplot -------------*/    double ***gradg, ***trgradg;
 chdir(pathcd);    int theta;
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
 #ifdef windows    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 #endif    
 m=pow(2,cptcoveff);    fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficreseij,"# Age");
  /* 1eme*/    for(i=1; i<=nlstate;i++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++)
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
 #ifdef unix    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    else  hstepm=estepm;   
 #endif    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
 for (i=1; i<= nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * we are calculating an estimate of the Life Expectancy assuming a linear 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * progression in between and thus overestimating or underestimating according
 }     * to the curvature of the survival function. If, for the same date, we 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for (i=1; i<= nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * hypothesis. A more precise result, taking into account a more precise
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * curvature will be obtained if estepm is as small as stepm. */
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* For example we decided to compute the life expectancy with the smallest unit */
      for (i=1; i<= nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nhstepm is the number of hstepm from age to agelim 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nstepm is the number of stepm from age to agelin. 
 }         Look at hpijx to understand the reason of that which relies in memory size
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       and note for a fixed period like estepm months */
 #ifdef unix    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 fprintf(ficgp,"\nset ter gif small size 400,300");       survival function given by stepm (the optimization length). Unfortunately it
 #endif       means that if the survival funtion is printed only each two years of age and if
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
   }    */
   /*2 eme*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   for (k1=1; k1<= m ; k1 ++) {    agelim=AGESUP;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
     for (i=1; i<= nlstate+1 ; i ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       k=2*i;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      /* if (stepm >= YEARM) hstepm=1;*/
       for (j=1; j<= nlstate+1 ; j ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 }        gp=matrix(0,nhstepm,1,nlstate*nlstate);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (j=1; j<= nlstate+1 ; j ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      /* Computing Variances of health expectancies */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }        cptj=0;
          for(j=1; j<= nlstate; j++){
   /*3eme*/          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
   for (k1=1; k1<= m ; k1 ++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       k=2+nlstate*(cpt-1);            }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          }
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);       
       }       
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i=1; i<=npar; i++) 
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
   /* CV preval stat */        cptj=0;
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate; j++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(i=1;i<=nlstate;i++){
       k=3;            cptj=cptj+1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                }
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<= nlstate*nlstate; j++)
       for (i=1; i< nlstate ; i ++) {          for(h=0; h<=nhstepm-1; h++){
         l=3+(nlstate+ndeath)*cpt;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficgp,"+$%d",l+i+1);          }
       }       } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  /* End theta */
     }  
   }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   /* proba elementaires */       for(h=0; h<=nhstepm-1; h++)
    for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<=nlstate*nlstate;j++)
     for(k=1; k <=(nlstate+ndeath); k++){          for(theta=1; theta <=npar; theta++)
       if (k != i) {            trgradg[h][j][theta]=gradg[h][theta][j];
         for(j=1; j <=ncovmodel; j++){       
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/       for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=1;j<=nlstate*nlstate;j++)
           jk++;          varhe[i][j][(int)age] =0.;
           fprintf(ficgp,"\n");  
         }       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   for(jk=1; jk <=m; jk++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          for(i=1;i<=nlstate*nlstate;i++)
    i=1;            for(j=1;j<=nlstate*nlstate;j++)
    for(k2=1; k2<=nlstate; k2++) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
      k3=i;        }
      for(k=1; k<=(nlstate+ndeath); k++) {      }
        if (k != k2){      /* Computing expectancies */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for(i=1; i<=nlstate;i++)
 ij=1;        for(j=1; j<=nlstate;j++)
         for(j=3; j <=ncovmodel; j++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            
             ij++;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           }  
           else          }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }      fprintf(ficreseij,"%3.0f",age );
           fprintf(ficgp,")/(1");      cptj=0;
              for(i=1; i<=nlstate;i++)
         for(k1=1; k1 <=nlstate; k1++){          for(j=1; j<=nlstate;j++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          cptj++;
 ij=1;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           for(j=3; j <=ncovmodel; j++){        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficreseij,"\n");
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     
             ij++;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           else      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,")");    }
         }    printf("\n");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficlog,"\n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    free_vector(xp,1,npar);
        }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  }
   }  
      /************ Variance ******************/
   fclose(ficgp);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
      {
 chdir(path);    /* Variance of health expectancies */
     free_matrix(agev,1,maxwav,1,imx);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_ivector(wav,1,imx);    /* double **newm;*/
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **dnewm,**doldm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
     free_imatrix(s,1,maxwav+1,1,n);    int k, cptcode;
        double *xp;
        double **gp, **gm;  /* for var eij */
     free_ivector(num,1,n);    double ***gradg, ***trgradg; /*for var eij */
     free_vector(agedc,1,n);    double **gradgp, **trgradgp; /* for var p point j */
     free_vector(weight,1,n);    double *gpp, *gmp; /* for var p point j */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fclose(ficparo);    double ***p3mat;
     fclose(ficres);    double age,agelim, hf;
     /*  }*/    double ***mobaverage;
        int theta;
    /*________fin mle=1_________*/    char digit[4];
        char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
     /* No more information from the sample is required now */  
   /* Reads comments: lines beginning with '#' */    if(popbased==1){
   while((c=getc(ficpar))=='#' && c!= EOF){      if(mobilav!=0)
     ungetc(c,ficpar);        strcpy(digitp,"-populbased-mobilav-");
     fgets(line, MAXLINE, ficpar);      else strcpy(digitp,"-populbased-nomobil-");
     puts(line);    }
     fputs(line,ficparo);    else 
   }      strcpy(digitp,"-stablbased-");
   ungetc(c,ficpar);  
      if (mobilav!=0) {
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*--------- index.htm --------*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   if((fichtm=fopen("index.htm","w"))==NULL)    {    }
     printf("Problem with index.htm \n");goto end;  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    strcat(fileresprobmorprev,fileres);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  fprintf(fichtm," <li>Graphs</li>\n<p>");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  m=cptcoveff;      fprintf(ficresprobmorprev," p.%-d SE",j);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  j1=0;    }  
  for(k1=1; k1<=m;k1++){    fprintf(ficresprobmorprev,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficgp,"\n# Routine varevsij");
        j1++;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        if (cptcovn > 0) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          fprintf(fichtm,"<hr>************ Results for covariates");  /*   } */
          for (cpt=1; cpt<=cptcoveff;cpt++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr>");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
        }    fprintf(ficresvij,"# Age");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    for(i=1; i<=nlstate;i++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for(j=1; j<=nlstate;j++)
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    fprintf(ficresvij,"\n");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
        }    xp=vector(1,npar);
     for(cpt=1; cpt<=nlstate;cpt++) {    dnewm=matrix(1,nlstate,1,npar);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    doldm=matrix(1,nlstate,1,nlstate);
 interval) in state (%d): v%s%d%d.gif <br>    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    gpp=vector(nlstate+1,nlstate+ndeath);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    gmp=vector(nlstate+1,nlstate+ndeath);
      }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    
 health expectancies in states (1) and (2): e%s%d.gif<br>    if(estepm < stepm){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(fichtm,"\n</body>");    }
    }    else  hstepm=estepm;   
  }    /* For example we decided to compute the life expectancy with the smallest unit */
 fclose(fichtm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   /*--------------- Prevalence limit --------------*/       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   strcpy(filerespl,"pl");       and note for a fixed period like k years */
   strcat(filerespl,fileres);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       survival function given by stepm (the optimization length). Unfortunately it
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficrespl,"#Prevalence limit\n");    */
   fprintf(ficrespl,"#Age ");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    agelim = AGESUP;
   fprintf(ficrespl,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   prlim=matrix(1,nlstate,1,nlstate);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gp=matrix(0,nhstepm,1,nlstate);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gm=matrix(0,nhstepm,1,nlstate);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  
   agebase=agemin;      for(theta=1; theta <=npar; theta++){
   agelim=agemax;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   ftolpl=1.e-10;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   i1=cptcoveff;        }
   if (cptcovn < 1){i1=1;}        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (popbased==1) {
         k=k+1;          if(mobilav ==0){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"\n#******");              prlim[i][i]=probs[(int)age][i][ij];
         for(j=1;j<=cptcoveff;j++)          }else{ /* mobilav */ 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
           fprintf(ficrespl,"%.0f",age );        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
           fprintf(ficrespl," %.5f", prlim[i][i]);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficrespl,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
     }        /* This for computing probability of death (h=1 means
   fclose(ficrespl);           computed over hstepm matrices product = hstepm*stepm months) 
   /*------------- h Pij x at various ages ------------*/           as a weighted average of prlim.
          */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   printf("Computing pij: result on file '%s' \n", filerespij);        /* end probability of death */
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (stepm<=24) stepsize=2;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   agelim=AGESUP;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   hstepm=stepsize*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        if (popbased==1) {
            if(mobilav ==0){
   k=0;            for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              prlim[i][i]=probs[(int)age][i][ij];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }else{ /* mobilav */ 
       k=k+1;            for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"\n#****** ");              prlim[i][i]=mobaverage[(int)age][i][ij];
         for(j=1;j<=cptcoveff;j++)          }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespij,"******\n");  
                for(j=1; j<= nlstate; j++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for(h=0; h<=nhstepm; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"# Age");           computed over hstepm matrices product = hstepm*stepm months) 
           for(i=1; i<=nlstate;i++)           as a weighted average of prlim.
             for(j=1; j<=nlstate+ndeath;j++)        */
               fprintf(ficrespij," %1d-%1d",i,j);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficrespij,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           for (h=0; h<=nhstepm; h++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }    
             for(i=1; i<=nlstate;i++)        /* end probability of death */
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(j=1; j<= nlstate; j++) /* vareij */
             fprintf(ficrespij,"\n");          for(h=0; h<=nhstepm; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   
   fclose(ficrespij);      } /* End theta */
   
   /*---------- Health expectancies and variances ------------*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   strcpy(filerest,"t");      for(h=0; h<=nhstepm; h++) /* veij */
   strcat(filerest,fileres);        for(j=1; j<=nlstate;j++)
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(theta=1; theta <=npar; theta++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   strcpy(filerese,"e");    
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          vareij[i][j][(int)age] =0.;
   
  strcpy(fileresv,"v");      for(h=0;h<=nhstepm;h++){
   strcat(fileresv,fileres);        for(k=0;k<=nhstepm;k++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;      /* pptj */
       fprintf(ficrest,"\n#****** ");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficrest,"******\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       fprintf(ficreseij,"\n#****** ");      /* end ppptj */
       for(j=1;j<=cptcoveff;j++)      /*  x centered again */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficreseij,"******\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       fprintf(ficresvij,"\n#****** ");      if (popbased==1) {
       for(j=1;j<=cptcoveff;j++)        if(mobilav ==0){
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"******\n");            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;            prlim[i][i]=mobaverage[(int)age][i][ij];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;               
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      /* This for computing probability of death (h=1 means
               computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         as a weighted average of prlim.
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      */
       fprintf(ficrest,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       hf=1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       if (stepm >= YEARM) hf=stepm/YEARM;      }    
       epj=vector(1,nlstate+1);      /* end probability of death */
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         fprintf(ficrest," %.0f",age);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(i=1; i<=nlstate;i++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           }        }
           epj[nlstate+1] +=epj[j];      } 
         }      fprintf(ficresprobmorprev,"\n");
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      fprintf(ficresvij,"%.0f ",age );
             vepp += vareij[i][j][(int)age];      for(i=1; i<=nlstate;i++)
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for(j=1; j<=nlstate;j++){
         for(j=1;j <=nlstate;j++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        }
         }      fprintf(ficresvij,"\n");
         fprintf(ficrest,"\n");      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fclose(ficreseij);    } /* End age */
  fclose(ficresvij);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fclose(ficrest);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fclose(ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   free_vector(epj,1,nlstate+1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /*  scanf("%d ",i); */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /*------- Variance limit prevalence------*/      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 strcpy(fileresvpl,"vpl");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   strcat(fileresvpl,fileres);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     exit(0);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  k=0;  */
  for(cptcov=1;cptcov<=i1;cptcov++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");    free_vector(xp,1,npar);
      for(j=1;j<=cptcoveff;j++)    free_matrix(doldm,1,nlstate,1,nlstate);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewm,1,nlstate,1,npar);
      fprintf(ficresvpl,"******\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      oldm=oldms;savm=savms;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fclose(ficresprobmorprev);
    }    fflush(ficgp);
  }    fflush(fichtm); 
   }  /* end varevsij */
   fclose(ficresvpl);  
   /************ Variance of prevlim ******************/
   /*---------- End : free ----------------*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  {
      /* Variance of prevalence limit */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double **newm;
      double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int k, cptcode;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *xp;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *gp, *gm;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **gradg, **trgradg;
      double age,agelim;
   free_matrix(matcov,1,npar,1,npar);    int theta;
   free_vector(delti,1,npar);     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   printf("End of Imach\n");        fprintf(ficresvpl," %1d-%1d",i,i);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficresvpl,"\n");
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    xp=vector(1,npar);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    dnewm=matrix(1,nlstate,1,npar);
   /*------ End -----------*/    doldm=matrix(1,nlstate,1,nlstate);
     
  end:    hstepm=1*YEARM; /* Every year of age */
 #ifdef windows    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
  chdir(pathcd);    agelim = AGESUP;
 #endif    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  system("wgnuplot graph.plt");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
 #ifdef windows      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   while (z[0] != 'q') {      gradg=matrix(1,npar,1,nlstate);
     chdir(pathcd);      gp=vector(1,nlstate);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      gm=vector(1,nlstate);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      for(theta=1; theta <=npar; theta++){
     else if (z[0] == 'e') {        for(i=1; i<=npar; i++){ /* Computes gradient */
       chdir(path);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       system("index.htm");        }
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     else if (z[0] == 'q') exit(0);        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
 #endif      
 }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     /*  fclose(ficgp);*/
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.7  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>