Diff for /imach/src/imach.c between versions 1.13 and 1.92

version 1.13, 2002/02/20 17:02:08 version 1.92, 2003/06/25 16:30:45
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.92  2003/06/25 16:30:45  brouard
   individuals from different ages are interviewed on their health status    (Module): On windows (cygwin) function asctime_r doesn't
   or degree of  disability. At least a second wave of interviews    exist so I changed back to asctime which exists.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.91  2003/06/25 15:30:29  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Repository): Duplicated warning errors corrected.
   of life states). More degrees you consider, more time is necessary to    (Repository): Elapsed time after each iteration is now output. It
   reach the Maximum Likelihood of the parameters involved in the model.    helps to forecast when convergence will be reached. Elapsed time
   The simplest model is the multinomial logistic model where pij is    is stamped in powell.  We created a new html file for the graphs
   the probabibility to be observed in state j at the second wave conditional    concerning matrix of covariance. It has extension -cov.htm.
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.90  2003/06/24 12:34:15  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Some bugs corrected for windows. Also, when
   age", you should modify the program where the markup    mle=-1 a template is output in file "or"mypar.txt with the design
     *Covariates have to be included here again* invites you to do it.    of the covariance matrix to be input.
   More covariates you add, less is the speed of the convergence.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Some bugs corrected for windows. Also, when
   delay between waves is not identical for each individual, or if some    mle=-1 a template is output in file "or"mypar.txt with the design
   individual missed an interview, the information is not rounded or lost, but    of the covariance matrix to be input.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.88  2003/06/23 17:54:56  brouard
   observed in state i at age x+h conditional to the observed state i at age    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.87  2003/06/18 12:26:01  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Version 0.96
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   Also this programme outputs the covariance matrix of the parameters but also    routine fileappend.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.85  2003/06/17 13:12:43  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Repository): Check when date of death was earlier that
            Institut national d'études démographiques, Paris.    current date of interview. It may happen when the death was just
   This software have been partly granted by Euro-REVES, a concerted action    prior to the death. In this case, dh was negative and likelihood
   from the European Union.    was wrong (infinity). We still send an "Error" but patch by
   It is copyrighted identically to a GNU software product, ie programme and    assuming that the date of death was just one stepm after the
   software can be distributed freely for non commercial use. Latest version    interview.
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Because some people have very long ID (first column)
   **********************************************************************/    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
 #include <math.h>    truncation)
 #include <stdio.h>    (Repository): No more line truncation errors.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXLINE 256    place. It differs from routine "prevalence" which may be called
 #define FILENAMELENGTH 80    many times. Probs is memory consuming and must be used with
 /*#define DEBUG*/    parcimony.
 #define windows    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*
 #define NCOVMAX 8 /* Maximum number of covariates */     Interpolated Markov Chain
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Short summary of the programme:
 #define AGESUP 130    
 #define AGEBASE 40    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int nvar;    interviewed on their health status or degree of disability (in the
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    case of a health survey which is our main interest) -2- at least a
 int npar=NPARMAX;    second wave of interviews ("longitudinal") which measure each change
 int nlstate=2; /* Number of live states */    (if any) in individual health status.  Health expectancies are
 int ndeath=1; /* Number of dead states */    computed from the time spent in each health state according to a
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int *wav; /* Number of waves for this individuual 0 is possible */    simplest model is the multinomial logistic model where pij is the
 int maxwav; /* Maxim number of waves */    probability to be observed in state j at the second wave
 int jmin, jmax; /* min, max spacing between 2 waves */    conditional to be observed in state i at the first wave. Therefore
 int mle, weightopt;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    'age' is age and 'sex' is a covariate. If you want to have a more
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    complex model than "constant and age", you should modify the program
 double jmean; /* Mean space between 2 waves */    where the markup *Covariates have to be included here again* invites
 double **oldm, **newm, **savm; /* Working pointers to matrices */    you to do it.  More covariates you add, slower the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    convergence.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob;    The advantage of this computer programme, compared to a simple
 FILE *ficreseij;    multinomial logistic model, is clear when the delay between waves is not
   char filerese[FILENAMELENGTH];    identical for each individual. Also, if a individual missed an
  FILE  *ficresvij;    intermediate interview, the information is lost, but taken into
   char fileresv[FILENAMELENGTH];    account using an interpolation or extrapolation.  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define NR_END 1    split into an exact number (nh*stepm) of unobserved intermediate
 #define FREE_ARG char*    states. This elementary transition (by month, quarter,
 #define FTOL 1.0e-10    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define NRANSI    and the contribution of each individual to the likelihood is simply
 #define ITMAX 200    hPijx.
   
 #define TOL 2.0e-4    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 #define CGOLD 0.3819660    
 #define ZEPS 1.0e-10    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define GOLD 1.618034    from the European Union.
 #define GLIMIT 100.0    It is copyrighted identically to a GNU software product, ie programme and
 #define TINY 1.0e-20    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    **********************************************************************/
 #define rint(a) floor(a+0.5)  /*
     main
 static double sqrarg;    read parameterfile
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read datafile
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    concatwav
     freqsummary
 int imx;    if (mle >= 1)
 int stepm;      mlikeli
 /* Stepm, step in month: minimum step interpolation*/    print results files
     if mle==1 
 int m,nb;       computes hessian
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    read end of parameter file: agemin, agemax, bage, fage, estepm
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;        begin-prev-date,...
 double **pmmij, ***probs, ***mobaverage;    open gnuplot file
     open html file
 double *weight;    stable prevalence
 int **s; /* Status */     for age prevalim()
 double *agedc, **covar, idx;    h Pij x
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    health expectancies
 double ftolhess; /* Tolerance for computing hessian */    Variance-covariance of DFLE
     prevalence()
 /**************** split *************************/     movingaverage()
 static  int split( char *path, char *dirc, char *name )    varevsij() 
 {    if popbased==1 varevsij(,popbased)
    char *s;                             /* pointer */    total life expectancies
    int  l1, l2;                         /* length counters */    Variance of stable prevalence
    end
    l1 = strlen( path );                 /* length of path */  */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */   
       extern char       *getwd( );  #include <math.h>
   #include <stdio.h>
       if ( getwd( dirc ) == NULL ) {  #include <stdlib.h>
 #else  #include <unistd.h>
       extern char       *getcwd( );  
   #include <sys/time.h>
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <time.h>
 #endif  #include "timeval.h"
          return( GLOCK_ERROR_GETCWD );  
       }  #define MAXLINE 256
       strcpy( name, path );             /* we've got it */  #define GNUPLOTPROGRAM "gnuplot"
    } else {                             /* strip direcotry from path */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       s++;                              /* after this, the filename */  #define FILENAMELENGTH 132
       l2 = strlen( s );                 /* length of filename */  /*#define DEBUG*/
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define windows*/
       strcpy( name, s );                /* save file name */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       dirc[l1-l2] = 0;                  /* add zero */  
    }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    l1 = strlen( dirc );                 /* length of directory */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************************************/  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void replace(char *s, char*t)  #define AGESUP 130
 {  #define AGEBASE 40
   int i;  #ifdef unix
   int lg=20;  #define DIRSEPARATOR '/'
   i=0;  #define ODIRSEPARATOR '\\'
   lg=strlen(t);  #else
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '\\'
     (s[i] = t[i]);  #define ODIRSEPARATOR '/'
     if (t[i]== '\\') s[i]='/';  #endif
   }  
 }  /* $Id$ */
   /* $State$ */
 int nbocc(char *s, char occ)  
 {  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
   int i,j=0;  char fullversion[]="$Revision$ $Date$"; 
   int lg=20;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   i=0;  int nvar;
   lg=strlen(s);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(i=0; i<= lg; i++) {  int npar=NPARMAX;
   if  (s[i] == occ ) j++;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   return j;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 void cutv(char *u,char *v, char*t, char occ)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   int i,lg,j,p=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions 
   for(j=0; j<=strlen(t)-1; j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(t);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(j=0; j<p; j++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     (u[j] = t[j]);  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
      u[p]='\0';  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    for(j=0; j<= lg; j++) {  FILE *ficlog, *ficrespow;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /********************** nrerror ********************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 void nrerror(char error_text[])  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   fprintf(stderr,"ERREUR ...\n");  FILE *fichtm, *fichtmcov; /* Html File */
   fprintf(stderr,"%s\n",error_text);  FILE *ficreseij;
   exit(1);  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
 /*********************** vector *******************/  char fileresv[FILENAMELENGTH];
 double *vector(int nl, int nh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   double *v;  char title[MAXLINE];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   return v-nl+NR_END;  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char lfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /************************ivector *******************************/  char popfile[FILENAMELENGTH];
 int *ivector(long nl,long nh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!v) nrerror("allocation failure in ivector");  struct timezone tzp;
   return v-nl+NR_END;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /******************free ivector **************************/  extern long time();
 void free_ivector(int *v, long nl, long nh)  char strcurr[80], strfor[80];
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NRANSI 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define ITMAX 200 
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define TOL 2.0e-4 
   int **m;  
    #define CGOLD 0.3819660 
   /* allocate pointers to rows */  #define ZEPS 1.0e-10 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GOLD 1.618034 
   m -= nrl;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
    
   /* allocate rows and set pointers to them */  static double maxarg1,maxarg2;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] += NR_END;    
   m[nrl] -= ncl;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    static double sqrarg;
   /* return pointer to array of pointers to rows */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   return m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  
   int imx; 
 /****************** free_imatrix *************************/  int stepm;
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* Stepm, step in month: minimum step interpolation*/
       int **m;  
       long nch,ncl,nrh,nrl;  int estepm;
      /* free an int matrix allocated by imatrix() */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int m,nb;
   free((FREE_ARG) (m+nrl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /******************* matrix *******************************/  double **pmmij, ***probs;
 double **matrix(long nrl, long nrh, long ncl, long nch)  double dateintmean=0;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double *weight;
   double **m;  int **s; /* Status */
   double *agedc, **covar, idx;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m -= nrl;  double ftolhess; /* Tolerance for computing hessian */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /**************** split *************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*************************free matrix ************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /* get current working directory */
   free((FREE_ARG)(m+nrl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************* ma3x *******************************/      }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      ss++;                               /* after this, the filename */
   double ***m;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strcpy( name, ss );         /* save file name */
   if (!m) nrerror("allocation failure 1 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m -= nrl;    }
     l1 = strlen( dirc );                  /* length of directory */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /*#ifdef windows
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m[nrl] += NR_END;  #else
   m[nrl] -= ncl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    */
     ss = strrchr( name, '.' );            /* find last / */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    ss++;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    strcpy(ext,ss);                       /* save extension */
   m[nrl][ncl] += NR_END;    l1= strlen( name);
   m[nrl][ncl] -= nll;    l2= strlen(ss)+1;
   for (j=ncl+1; j<=nch; j++)    strncpy( finame, name, l1-l2);
     m[nrl][j]=m[nrl][j-1]+nlay;    finame[l1-l2]= 0;
      return( 0 );                          /* we're done */
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /******************************************/
   }  
   return m;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /*************************free ma3x ************************/    int lg=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    i=0;
 {    lg=strlen(t);
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      (s[i] = t[i]);
   free((FREE_ARG)(m+nrl-NR_END));      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /***************** f1dim *************************/  
 extern int ncom;  int nbocc(char *s, char occ)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    int i,j=0;
      int lg=20;
 double f1dim(double x)    i=0;
 {    lg=strlen(s);
   int j;    for(i=0; i<= lg; i++) {
   double f;    if  (s[i] == occ ) j++;
   double *xt;    }
      return j;
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  void cutv(char *u,char *v, char*t, char occ)
   free_vector(xt,1,ncom);  {
   return f;    /* cuts string t into u and v where u is ended by char occ excluding it
 }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
 /*****************brent *************************/    int i,lg,j,p=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    for(j=0; j<=strlen(t)-1; j++) {
   int iter;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double a,b,d,etemp;    }
   double fu,fv,fw,fx;  
   double ftemp;    lg=strlen(t);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(j=0; j<p; j++) {
   double e=0.0;      (u[j] = t[j]);
      }
   a=(ax < cx ? ax : cx);       u[p]='\0';
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;     for(j=0; j<= lg; j++) {
   fw=fv=fx=(*f)(x);      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /********************** nrerror ********************/
     printf(".");fflush(stdout);  
 #ifdef DEBUG  void nrerror(char error_text[])
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    fprintf(stderr,"ERREUR ...\n");
 #endif    fprintf(stderr,"%s\n",error_text);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    exit(EXIT_FAILURE);
       *xmin=x;  }
       return fx;  /*********************** vector *******************/
     }  double *vector(int nl, int nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    double *v;
       r=(x-w)*(fx-fv);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       q=(x-v)*(fx-fw);    if (!v) nrerror("allocation failure in vector");
       p=(x-v)*q-(x-w)*r;    return v-nl+NR_END;
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /************************ free vector ******************/
       etemp=e;  void free_vector(double*v, int nl, int nh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    free((FREE_ARG)(v+nl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************ivector *******************************/
         u=x+d;  int *ivector(long nl,long nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    int *v;
       }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     } else {    if (!v) nrerror("allocation failure in ivector");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /******************free ivector **************************/
     if (fu <= fx) {  void free_ivector(int *v, long nl, long nh)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    free((FREE_ARG)(v+nl-NR_END));
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /************************lvector *******************************/
           if (fu <= fw || w == x) {  long *lvector(long nl,long nh)
             v=w;  {
             w=u;    long *v;
             fv=fw;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
             fw=fu;    if (!v) nrerror("allocation failure in ivector");
           } else if (fu <= fv || v == x || v == w) {    return v-nl+NR_END;
             v=u;  }
             fv=fu;  
           }  /******************free lvector **************************/
         }  void free_lvector(long *v, long nl, long nh)
   }  {
   nrerror("Too many iterations in brent");    free((FREE_ARG)(v+nl-NR_END));
   *xmin=x;  }
   return fx;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /****************** mnbrak ***********************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
             double (*func)(double))    int **m; 
 {    
   double ulim,u,r,q, dum;    /* allocate pointers to rows */ 
   double fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   *fa=(*func)(*ax);    m += NR_END; 
   *fb=(*func)(*bx);    m -= nrl; 
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   *fc=(*func)(*cx);    m[nrl] += NR_END; 
   while (*fb > *fc) {    m[nrl] -= ncl; 
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    /* return pointer to array of pointers to rows */ 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return m; 
     if ((*bx-u)*(u-*cx) > 0.0) {  } 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /****************** free_imatrix *************************/
       fu=(*func)(u);  void free_imatrix(m,nrl,nrh,ncl,nch)
       if (fu < *fc) {        int **m;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        long nch,ncl,nrh,nrl; 
           SHFT(*fb,*fc,fu,(*func)(u))       /* free an int matrix allocated by imatrix() */ 
           }  { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       u=ulim;    free((FREE_ARG) (m+nrl-NR_END)); 
       fu=(*func)(u);  } 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************* matrix *******************************/
       fu=(*func)(u);  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     SHFT(*ax,*bx,*cx,u)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       SHFT(*fa,*fb,*fc,fu)    double **m;
       }  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** linmin ************************/    m += NR_END;
     m -= nrl;
 int ncom;  
 double *pcom,*xicom;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double (*nrfunc)(double []);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl] -= ncl;
 {  
   double brent(double ax, double bx, double cx,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                double (*f)(double), double tol, double *xmin);    return m;
   double f1dim(double x);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     */
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /*************************free matrix ************************/
   double fx,fb,fa;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
   ncom=n;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   pcom=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
     pcom[j]=p[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     xicom[j]=xi[j];  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ax=0.0;    double ***m;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m -= nrl;
 #endif  
   for (j=1;j<=n;j++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     xi[j] *= xmin;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p[j] += xi[j];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /*************** powell ************************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl][ncl] += NR_END;
             double (*func)(double []))    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   void linmin(double p[], double xi[], int n, double *fret,      m[nrl][j]=m[nrl][j-1]+nlay;
               double (*func)(double []));    
   int i,ibig,j;    for (i=nrl+1; i<=nrh; i++) {
   double del,t,*pt,*ptt,*xit;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double fp,fptt;      for (j=ncl+1; j<=nch; j++) 
   double *xits;        m[i][j]=m[i][j-1]+nlay;
   pt=vector(1,n);    }
   ptt=vector(1,n);    return m; 
   xit=vector(1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   xits=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   *fret=(*func)(p);    */
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /*************************free ma3x ************************/
     ibig=0;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (i=1;i<=n;i++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n");  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /***************** f1dim *************************/
       fptt=(*fret);  extern int ncom; 
 #ifdef DEBUG  extern double *pcom,*xicom;
       printf("fret=%lf \n",*fret);  extern double (*nrfunc)(double []); 
 #endif   
       printf("%d",i);fflush(stdout);  double f1dim(double x) 
       linmin(p,xit,n,fret,func);  { 
       if (fabs(fptt-(*fret)) > del) {    int j; 
         del=fabs(fptt-(*fret));    double f;
         ibig=i;    double *xt; 
       }   
 #ifdef DEBUG    xt=vector(1,ncom); 
       printf("%d %.12e",i,(*fret));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (j=1;j<=n;j++) {    f=(*nrfunc)(xt); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free_vector(xt,1,ncom); 
         printf(" x(%d)=%.12e",j,xit[j]);    return f; 
       }  } 
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*****************brent *************************/
       printf("\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 #endif  { 
     }    int iter; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double a,b,d,etemp;
 #ifdef DEBUG    double fu,fv,fw,fx;
       int k[2],l;    double ftemp;
       k[0]=1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       k[1]=-1;    double e=0.0; 
       printf("Max: %.12e",(*func)(p));   
       for (j=1;j<=n;j++)    a=(ax < cx ? ax : cx); 
         printf(" %.12e",p[j]);    b=(ax > cx ? ax : cx); 
       printf("\n");    x=w=v=bx; 
       for(l=0;l<=1;l++) {    fw=fv=fx=(*f)(x); 
         for (j=1;j<=n;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      xm=0.5*(a+b); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
 #endif  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       free_vector(xit,1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       free_vector(xits,1,n);  #endif
       free_vector(ptt,1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       free_vector(pt,1,n);        *xmin=x; 
       return;        return fx; 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      ftemp=fu;
     for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
       ptt[j]=2.0*p[j]-pt[j];        r=(x-w)*(fx-fv); 
       xit[j]=p[j]-pt[j];        q=(x-v)*(fx-fw); 
       pt[j]=p[j];        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     fptt=(*func)(ptt);        if (q > 0.0) p = -p; 
     if (fptt < fp) {        q=fabs(q); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        etemp=e; 
       if (t < 0.0) {        e=d; 
         linmin(p,xit,n,fret,func);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for (j=1;j<=n;j++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           xi[j][ibig]=xi[j][n];        else { 
           xi[j][n]=xit[j];          d=p/q; 
         }          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            d=SIGN(tol1,xm-x); 
         for(j=1;j<=n;j++)        } 
           printf(" %.12e",xit[j]);      } else { 
         printf("\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 /**** Prevalence limit ****************/          SHFT(fv,fw,fx,fu) 
           } else { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit              v=w; 
      matrix by transitions matrix until convergence is reached */              w=u; 
               fv=fw; 
   int i, ii,j,k;              fw=fu; 
   double min, max, maxmin, maxmax,sumnew=0.;            } else if (fu <= fv || v == x || v == w) { 
   double **matprod2();              v=u; 
   double **out, cov[NCOVMAX], **pmij();              fv=fu; 
   double **newm;            } 
   double agefin, delaymax=50 ; /* Max number of years to converge */          } 
     } 
   for (ii=1;ii<=nlstate+ndeath;ii++)    nrerror("Too many iterations in brent"); 
     for (j=1;j<=nlstate+ndeath;j++){    *xmin=x; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return fx; 
     }  } 
   
    cov[1]=1.;  /****************** mnbrak ***********************/
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              double (*func)(double)) 
     newm=savm;  { 
     /* Covariates have to be included here again */    double ulim,u,r,q, dum;
      cov[2]=agefin;    double fu; 
     
       for (k=1; k<=cptcovn;k++) {    *fa=(*func)(*ax); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *fb=(*func)(*bx); 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
       for (k=1; k<=cptcovage;k++)        SHFT(dum,*fb,*fa,dum) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)    *cx=(*bx)+GOLD*(*bx-*ax); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      r=(*bx-*ax)*(*fb-*fc); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
     savm=oldm;      if ((*bx-u)*(u-*cx) > 0.0) { 
     oldm=newm;        fu=(*func)(u); 
     maxmax=0.;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1;j<=nlstate;j++){        fu=(*func)(u); 
       min=1.;        if (fu < *fc) { 
       max=0.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(i=1; i<=nlstate; i++) {            SHFT(*fb,*fc,fu,(*func)(u)) 
         sumnew=0;            } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        u=ulim; 
         max=FMAX(max,prlim[i][j]);        fu=(*func)(u); 
         min=FMIN(min,prlim[i][j]);      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       maxmin=max-min;        fu=(*func)(u); 
       maxmax=FMAX(maxmax,maxmin);      } 
     }      SHFT(*ax,*bx,*cx,u) 
     if(maxmax < ftolpl){        SHFT(*fa,*fb,*fc,fu) 
       return prlim;        } 
     }  } 
   }  
 }  /*************** linmin ************************/
   
 /*************** transition probabilities ***************/  int ncom; 
   double *pcom,*xicom;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double (*nrfunc)(double []); 
 {   
   double s1, s2;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /*double t34;*/  { 
   int i,j,j1, nc, ii, jj;    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
     for(i=1; i<= nlstate; i++){    double f1dim(double x); 
     for(j=1; j<i;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){                double *fc, double (*func)(double)); 
         /*s2 += param[i][j][nc]*cov[nc];*/    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double xx,xmin,bx,ax; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double fx,fb,fa;
       }   
       ps[i][j]=s2;    ncom=n; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){    nrfunc=func; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (j=1;j<=n;j++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      pcom[j]=p[j]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      xicom[j]=xi[j]; 
       }    } 
       ps[i][j]=(s2);    ax=0.0; 
     }    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     /*ps[3][2]=1;*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for(i=1; i<= nlstate; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      s1=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);    for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      xi[j] *= xmin; 
       s1+=exp(ps[i][j]);      p[j] += xi[j]; 
     ps[i][i]=1./(s1+1.);    } 
     for(j=1; j<i; j++)    free_vector(xicom,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free_vector(pcom,1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char *asc_diff_time(long time_sec, char ascdiff[])
   } /* end i */  {
     long sec_left, days, hours, minutes;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    days = (time_sec) / (60*60*24);
     for(jj=1; jj<= nlstate+ndeath; jj++){    sec_left = (time_sec) % (60*60*24);
       ps[ii][jj]=0;    hours = (sec_left) / (60*60) ;
       ps[ii][ii]=1;    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
   }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*************** powell ************************/
    }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     printf("\n ");              double (*func)(double [])) 
     }  { 
     printf("\n ");printf("%lf ",cov[2]);*/    void linmin(double p[], double xi[], int n, double *fret, 
 /*                double (*func)(double [])); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int i,ibig,j; 
   goto end;*/    double del,t,*pt,*ptt,*xit;
     return ps;    double fp,fptt;
 }    double *xits;
     int niterf, itmp;
 /**************** Product of 2 matrices ******************/  
     pt=vector(1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    xits=vector(1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *fret=(*func)(p); 
   /* in, b, out are matrice of pointers which should have been initialized    for (j=1;j<=n;j++) pt[j]=p[j]; 
      before: only the contents of out is modified. The function returns    for (*iter=1;;++(*iter)) { 
      a pointer to pointers identical to out */      fp=(*fret); 
   long i, j, k;      ibig=0; 
   for(i=nrl; i<= nrh; i++)      del=0.0; 
     for(k=ncolol; k<=ncoloh; k++)      last_time=curr_time;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      (void) gettimeofday(&curr_time,&tzp);
         out[i][k] +=in[i][j]*b[j][k];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   return out;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 }      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /************* Higher Matrix Product ***************/        fprintf(ficrespow," %.12lf", p[i]);
       }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf("\n");
 {      fprintf(ficlog,"\n");
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      fprintf(ficrespow,"\n");fflush(ficrespow);
      duration (i.e. until      if(*iter <=3){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        tm = *localtime(&curr_time.tv_sec);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        strcpy(strcurr,asctime(&tmf));
      (typically every 2 years instead of every month which is too big).  /*       asctime_r(&tm,strcurr); */
      Model is determined by parameters x and covariates have to be        forecast_time=curr_time;
      included manually here.        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')
      */          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int i, j, d, h, k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double **out, cov[NCOVMAX];        for(niterf=10;niterf<=30;niterf+=10){
   double **newm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   /* Hstepm could be zero and should return the unit matrix */  /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=nlstate+ndeath;i++)          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=nlstate+ndeath;j++){          itmp = strlen(strfor);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          if(strfor[itmp-1]=='\n')
       po[i][j][0]=(i==j ? 1.0 : 0.0);          strfor[itmp-1]='\0';
     }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(h=1; h <=nhstepm; h++){        }
     for(d=1; d <=hstepm; d++){      }
       newm=savm;      for (i=1;i<=n;i++) { 
       /* Covariates have to be included here again */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       cov[1]=1.;        fptt=(*fret); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("fret=%lf \n",*fret);
       for (k=1; k<=cptcovage;k++)        fprintf(ficlog,"fret=%lf \n",*fret);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)        printf("%d",i);fflush(stdout);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          del=fabs(fptt-(*fret)); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          ibig=i; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
       savm=oldm;        printf("%d %.12e",i,(*fret));
       oldm=newm;        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
     for(i=1; i<=nlstate+ndeath; i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for(j=1;j<=nlstate+ndeath;j++) {          printf(" x(%d)=%.12e",j,xit[j]);
         po[i][j][h]=newm[i][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */        for(j=1;j<=n;j++) {
       }          printf(" p=%.12e",p[j]);
   } /* end h */          fprintf(ficlog," p=%.12e",p[j]);
   return po;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
   #endif
 /*************** log-likelihood *************/      } 
 double func( double *x)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;        int k[2],l;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        k[0]=1;
   double **out;        k[1]=-1;
   double sw; /* Sum of weights */        printf("Max: %.12e",(*func)(p));
   double lli; /* Individual log likelihood */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   long ipmx;        for (j=1;j<=n;j++) {
   /*extern weight */          printf(" %.12e",p[j]);
   /* We are differentiating ll according to initial status */          fprintf(ficlog," %.12e",p[j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        }
   /*for(i=1;i<imx;i++)        printf("\n");
     printf(" %d\n",s[4][i]);        fprintf(ficlog,"\n");
   */        for(l=0;l<=1;l++) {
   cov[1]=1.;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for(k=1; k<=nlstate; k++) ll[k]=0.;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
     for(mi=1; mi<= wav[i]-1; mi++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (ii=1;ii<=nlstate+ndeath;ii++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
       for(d=0; d<dh[mi][i]; d++){  #endif
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {        free_vector(xit,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        free_vector(xits,1,n); 
         }        free_vector(ptt,1,n); 
                free_vector(pt,1,n); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        return; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
         savm=oldm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         oldm=newm;      for (j=1;j<=n;j++) { 
                ptt[j]=2.0*p[j]-pt[j]; 
                xit[j]=p[j]-pt[j]; 
       } /* end mult */        pt[j]=p[j]; 
            } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      fptt=(*func)(ptt); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      if (fptt < fp) { 
       ipmx +=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       sw += weight[i];        if (t < 0.0) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          linmin(p,xit,n,fret,func); 
     } /* end of wave */          for (j=1;j<=n;j++) { 
   } /* end of individual */            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   return -l;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 /*********** Maximum Likelihood Estimation ***************/          }
           printf("\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          fprintf(ficlog,"\n");
 {  #endif
   int i,j, iter;        }
   double **xi,*delti;      } 
   double fret;    } 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /**** Prevalence limit (stable prevalence)  ****************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   powell(p,xi,npar,ftol,&iter,&fret,func);  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       matrix by transitions matrix until convergence is reached */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  
     int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /**** Computes Hessian and covariance matrix ***/    double **out, cov[NCOVMAX], **pmij();
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   double  **a,**y,*x,pd;  
   double **hess;    for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j,jk;      for (j=1;j<=nlstate+ndeath;j++){
   int *indx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);     cov[1]=1.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;   
   void ludcmp(double **a, int npar, int *indx, double *d) ;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   hess=matrix(1,npar,1,npar);      newm=savm;
       /* Covariates have to be included here again */
   printf("\nCalculation of the hessian matrix. Wait...\n");       cov[2]=agefin;
   for (i=1;i<=npar;i++){    
     printf("%d",i);fflush(stdout);        for (k=1; k<=cptcovn;k++) {
     hess[i][i]=hessii(p,ftolhess,i,delti);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     /*printf(" %f ",p[i]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     /*printf(" %lf ",hess[i][i]);*/        }
   }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++)  {  
       if (j>i) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         printf(".%d%d",i,j);fflush(stdout);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         hess[i][j]=hessij(p,delti,i,j);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         hess[j][i]=hess[i][j];          out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /*printf(" %lf ",hess[i][j]);*/  
       }      savm=oldm;
     }      oldm=newm;
   }      maxmax=0.;
   printf("\n");      for(j=1;j<=nlstate;j++){
         min=1.;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        max=0.;
          for(i=1; i<=nlstate; i++) {
   a=matrix(1,npar,1,npar);          sumnew=0;
   y=matrix(1,npar,1,npar);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   x=vector(1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
   indx=ivector(1,npar);          max=FMAX(max,prlim[i][j]);
   for (i=1;i<=npar;i++)          min=FMIN(min,prlim[i][j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      if(maxmax < ftolpl){
     x[j]=1;        return prlim;
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){    }
       matcov[i][j]=x[i];  }
     }  
   }  /*************** transition probabilities ***************/ 
   
   printf("\n#Hessian matrix#\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    double s1, s2;
       printf("%.3e ",hess[i][j]);    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
     printf("\n");  
   }      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
   /* Recompute Inverse */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++)          /*s2 += param[i][j][nc]*cov[nc];*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   ludcmp(a,npar,indx,&pd);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   /*  printf("\n#Hessian matrix recomputed#\n");        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      for(j=i+1; j<=nlstate+ndeath;j++){
     x[j]=1;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     lubksb(a,npar,indx,x);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=1;i<=npar;i++){          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        ps[i][j]=s2;
     }      }
     printf("\n");    }
   }      /*ps[3][2]=1;*/
   */  
     for(i=1; i<= nlstate; i++){
   free_matrix(a,1,npar,1,npar);       s1=0;
   free_matrix(y,1,npar,1,npar);      for(j=1; j<i; j++)
   free_vector(x,1,npar);        s1+=exp(ps[i][j]);
   free_ivector(indx,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
   free_matrix(hess,1,npar,1,npar);        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
 /*************** hessian matrix ****************/        ps[i][j]= exp(ps[i][j])*ps[i][i];
 double hessii( double x[], double delta, int theta, double delti[])      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {    } /* end i */
   int i;  
   int l=1, lmax=20;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double k1,k2;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double p2[NPARMAX+1];        ps[ii][jj]=0;
   double res;        ps[ii][ii]=1;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      }
   double fx;    }
   int k=0,kmax=10;  
   double l1;  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   fx=func(x);      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++) p2[i]=x[i];       printf("%lf ",ps[ii][jj]);
   for(l=0 ; l <=lmax; l++){     }
     l1=pow(10,l);      printf("\n ");
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){      printf("\n ");printf("%lf ",cov[2]);*/
       delt = delta*(l1*k);  /*
       p2[theta]=x[theta] +delt;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       k1=func(p2)-fx;    goto end;*/
       p2[theta]=x[theta]-delt;      return ps;
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /**************** Product of 2 matrices ******************/
        
 #ifdef DEBUG  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* in, b, out are matrice of pointers which should have been initialized 
         k=kmax;       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    long i, j, k;
         k=kmax; l=lmax*10.;    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         delts=delt;          out[i][k] +=in[i][j]*b[j][k];
       }  
     }    return out;
   }  }
   delti[theta]=delts;  
   return res;  
    /************* Higher Matrix Product ***************/
 }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 double hessij( double x[], double delti[], int thetai,int thetaj)  {
 {    /* Computes the transition matrix starting at age 'age' over 
   int i;       'nhstepm*hstepm*stepm' months (i.e. until
   int l=1, l1, lmax=20;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double k1,k2,k3,k4,res,fx;       nhstepm*hstepm matrices. 
   double p2[NPARMAX+1];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int k;       (typically every 2 years instead of every month which is too big 
        for the memory).
   fx=func(x);       Model is determined by parameters x and covariates have to be 
   for (k=1; k<=2; k++) {       included manually here. 
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;       */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     k3=func(p2)-fx;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(h=1; h <=nhstepm; h++){
     k4=func(p2)-fx;      for(d=1; d <=hstepm; d++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        newm=savm;
 #ifdef DEBUG        /* Covariates have to be included here again */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        cov[1]=1.;
 #endif        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return res;        for (k=1; k<=cptcovage;k++)
 }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /************** Inverse of matrix **************/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  
   int i,imax,j,k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double big,dum,sum,temp;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double *vv;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   vv=vector(1,n);        savm=oldm;
   *d=1.0;        oldm=newm;
   for (i=1;i<=n;i++) {      }
     big=0.0;      for(i=1; i<=nlstate+ndeath; i++)
     for (j=1;j<=n;j++)        for(j=1;j<=nlstate+ndeath;j++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;          po[i][j][h]=newm[i][j];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     vv[i]=1.0/big;           */
   }        }
   for (j=1;j<=n;j++) {    } /* end h */
     for (i=1;i<j;i++) {    return po;
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  
     }  /*************** log-likelihood *************/
     big=0.0;  double func( double *x)
     for (i=j;i<=n;i++) {  {
       sum=a[i][j];    int i, ii, j, k, mi, d, kk;
       for (k=1;k<j;k++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         sum -= a[i][k]*a[k][j];    double **out;
       a[i][j]=sum;    double sw; /* Sum of weights */
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double lli; /* Individual log likelihood */
         big=dum;    int s1, s2;
         imax=i;    double bbh, survp;
       }    long ipmx;
     }    /*extern weight */
     if (j != imax) {    /* We are differentiating ll according to initial status */
       for (k=1;k<=n;k++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         dum=a[imax][k];    /*for(i=1;i<imx;i++) 
         a[imax][k]=a[j][k];      printf(" %d\n",s[4][i]);
         a[j][k]=dum;    */
       }    cov[1]=1.;
       *d = -(*d);  
       vv[imax]=vv[j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     indx[j]=imax;    if(mle==1){
     if (a[j][j] == 0.0) a[j][j]=TINY;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (j != n) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       dum=1.0/(a[j][j]);        for(mi=1; mi<= wav[i]-1; mi++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 ;            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 void lubksb(double **a, int n, int *indx, double b[])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i,ii=0,ip,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double sum;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ip=indx[i];            savm=oldm;
     sum=b[ip];            oldm=newm;
     b[ip]=b[i];          } /* end mult */
     if (ii)        
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     else if (sum) ii=i;          /* But now since version 0.9 we anticipate for bias and large stepm.
     b[i]=sum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (i=n;i>=1;i--) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     sum=b[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     b[i]=sum/a[i][i];           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 /************ Frequencies ********************/           * For stepm > 1 the results are less biased than in previous versions. 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)           */
 {  /* Some frequencies */          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          bbh=(double)bh[mi][i]/(double)stepm; 
   double ***freq; /* Frequencies */          /* bias is positive if real duration
   double *pp;           * is higher than the multiple of stepm and negative otherwise.
   double pos;           */
   FILE *ficresp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   char fileresp[FILENAMELENGTH];          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
   pp=vector(1,nlstate);               to the likelihood is the probability to die between last step unit time and current 
  probs= ma3x(1,130 ,1,8, 1,8);               step unit time, which is also the differences between probability to die before dh 
   strcpy(fileresp,"p");               and probability to die before dh-stepm . 
   strcat(fileresp,fileres);               In version up to 0.92 likelihood was computed
   if((ficresp=fopen(fileresp,"w"))==NULL) {          as if date of death was unknown. Death was treated as any other
     printf("Problem with prevalence resultfile: %s\n", fileresp);          health state: the date of the interview describes the actual state
     exit(0);          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          (healthy, disable or death) and IMaCh was corrected; but when we
   j1=0;          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
   j=cptcoveff;          contribution is smaller and very dependent of the step unit
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   for(k1=1; k1<=j;k1++){          interview up to one month before death multiplied by the
    for(i1=1; i1<=ncodemax[k1];i1++){          probability to die within a month. Thanks to Chris
        j1++;          Jackson for correcting this bug.  Former versions increased
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          mortality artificially. The bad side is that we add another loop
          scanf("%d", i);*/          which slows down the processing. The difference can be up to 10%
         for (i=-1; i<=nlstate+ndeath; i++)            lower mortality.
          for (jk=-1; jk<=nlstate+ndeath; jk++)              */
            for(m=agemin; m <= agemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
              freq[i][jk][m]=0;          }else{
                    lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for (i=1; i<=imx; i++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          bool=1;          } 
          if  (cptcovn>0) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            for (z1=1; z1<=cptcoveff; z1++)          /*if(lli ==000.0)*/
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                bool=0;          ipmx +=1;
          }          sw += weight[i];
           if (bool==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            for(m=firstpass; m<=lastpass-1; m++){        } /* end of wave */
              if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
              if(agev[m][i]==1) agev[m][i]=agemax+2;    }  else if(mle==2){
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            }        for(mi=1; mi<= wav[i]-1; mi++){
          }          for (ii=1;ii<=nlstate+ndeath;ii++)
        }            for (j=1;j<=nlstate+ndeath;j++){
         if  (cptcovn>0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          fprintf(ficresp, "\n#********** Variable ");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
        fprintf(ficresp, "**********\n#");          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
        for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            for (kk=1; kk<=cptcovage;kk++) {
        fprintf(ficresp, "\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
   for(i=(int)agemin; i <= (int)agemax+3; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if(i==(int)agemax+3)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Total");            savm=oldm;
     else            oldm=newm;
       printf("Age %d", i);          } /* end mult */
     for(jk=1; jk <=nlstate ; jk++){        
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         pp[jk] += freq[jk][m][i];          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(jk=1; jk <=nlstate ; jk++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(m=-1, pos=0; m <=0 ; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         pos += freq[jk][m][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if(pp[jk]>=1.e-10)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * probability in order to take into account the bias as a fraction of the way
       else           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)           */
         pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     for(jk=1,pos=0; jk <=nlstate ; jk++)          bbh=(double)bh[mi][i]/(double)stepm; 
       pos += pp[jk];          /* bias is positive if real duration
     for(jk=1; jk <=nlstate ; jk++){           * is higher than the multiple of stepm and negative otherwise.
       if(pos>=1.e-5)           */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       else          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       if( i <= (int) agemax){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if(pos>=1.e-5){          /*if(lli ==000.0)*/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else        } /* end of wave */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(m=-1; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for (ii=1;ii<=nlstate+ndeath;ii++)
     if(i <= (int) agemax)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresp,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     }          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fclose(ficresp);            for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(pp,1,nlstate);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }  /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************* Waves Concatenation ***************/            oldm=newm;
           } /* end mult */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /* But now since version 0.9 we anticipate for bias and large stepm.
      Death is a valid wave (if date is known).           * If stepm is larger than one month (smallest stepm) and if the exact delay 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * (in months) between two waves is not a multiple of stepm, we rounded to 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * the nearest (and in case of equal distance, to the lowest) interval but now
      and mw[mi+1][i]. dh depends on stepm.           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   int i, mi, m;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * -stepm/2 to stepm/2 .
      double sum=0., jmean=0.;*/           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
   int j, k=0,jk, ju, jl;           */
   double sum=0.;          s1=s[mw[mi][i]][i];
   jmin=1e+5;          s2=s[mw[mi+1][i]][i];
   jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=0.;          /* bias is positive if real duration
   for(i=1; i<=imx; i++){           * is higher than the multiple of stepm and negative otherwise.
     mi=0;           */
     m=firstpass;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     while(s[m][i] <= nlstate){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if(s[m][i]>=1)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         mw[++mi][i]=m;          /*if(lli ==000.0)*/
       if(m >=lastpass)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         break;          ipmx +=1;
       else          sw += weight[i];
         m++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }/* end while */        } /* end of wave */
     if (s[m][i] > nlstate){      } /* end of individual */
       mi++;     /* Death is another wave */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       /* if(mi==0)  never been interviewed correctly before death */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Only death is a correct wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mw[mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            }
   }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for(i=1; i<=imx; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(mi=1; mi<wav[i];mi++){            for (kk=1; kk<=cptcovage;kk++) {
       if (stepm <=0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dh[mi][i]=1;            }
       else{          
         if (s[mw[mi+1][i]][i] > nlstate) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (agedc[i] < 2*AGESUP) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            savm=oldm;
           if(j==0) j=1;  /* Survives at least one month after exam */            oldm=newm;
           k=k+1;          } /* end mult */
           if (j >= jmax) jmax=j;        
           if (j <= jmin) jmin=j;          s1=s[mw[mi][i]][i];
           sum=sum+j;          s2=s[mw[mi+1][i]][i];
           /* if (j<10) printf("j=%d num=%d ",j,i); */          if( s2 > nlstate){ 
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
         else{            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          }
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           else if (j <= jmin)jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           sum=sum+j;        } /* end of wave */
         }      } /* end of individual */
         jk= j/stepm;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         jl= j -jk*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         ju= j -(jk+1)*stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(jl <= -ju)        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk;          for (ii=1;ii<=nlstate+ndeath;ii++)
         else            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(dh[mi][i]==0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmean=sum/k;            for (kk=1; kk<=cptcovage;kk++) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }            }
 /*********** Tricode ****************************/          
 void tricode(int *Tvar, int **nbcode, int imx)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int Ndum[20],ij=1, k, j, i;            savm=oldm;
   int cptcode=0;            oldm=newm;
   cptcoveff=0;          } /* end mult */
          
   for (k=0; k<19; k++) Ndum[k]=0;          s1=s[mw[mi][i]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          ipmx +=1;
     for (i=1; i<=imx; i++) {          sw += weight[i];
       ij=(int)(covar[Tvar[j]][i]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       Ndum[ij]++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } /* end of wave */
       if (ij > cptcode) cptcode=ij;      } /* end of individual */
     }    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for (i=0; i<=cptcode; i++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if(Ndum[i]!=0) ncodemax[j]++;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
     ij=1;  }
   
   /*************** log-likelihood *************/
     for (i=1; i<=ncodemax[j]; i++) {  double funcone( double *x)
       for (k=0; k<=19; k++) {  {
         if (Ndum[k] != 0) {    /* Same as likeli but slower because of a lot of printf and if */
           nbcode[Tvar[j]][ij]=k;    int i, ii, j, k, mi, d, kk;
           ij++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         if (ij > ncodemax[j]) break;    double lli; /* Individual log likelihood */
       }      double llt;
     }    int s1, s2;
   }      double bbh, survp;
     /*extern weight */
  for (k=0; k<19; k++) Ndum[k]=0;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for (i=1; i<=ncovmodel-2; i++) {    /*for(i=1;i<imx;i++) 
       ij=Tvar[i];      printf(" %d\n",s[4][i]);
       Ndum[ij]++;    */
     }    cov[1]=1.;
   
  ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Tvaraff[ij]=i;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      ij++;      for(mi=1; mi<= wav[i]-1; mi++){
    }        for (ii=1;ii<=nlstate+ndeath;ii++)
  }          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcoveff=ij-1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
 /*********** Health Expectancies ****************/          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          for (kk=1; kk<=cptcovage;kk++) {
 {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double age, agelim,hf;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat;          savm=oldm;
            oldm=newm;
   fprintf(ficreseij,"# Health expectancies\n");        } /* end mult */
   fprintf(ficreseij,"# Age");        
   for(i=1; i<=nlstate;i++)        s1=s[mw[mi][i]][i];
     for(j=1; j<=nlstate;j++)        s2=s[mw[mi+1][i]][i];
       fprintf(ficreseij," %1d-%1d",i,j);        bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficreseij,"\n");        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   hstepm=1*YEARM; /*  Every j years of age (in month) */         */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   agelim=AGESUP;        } else if (mle==1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* nhstepm age range expressed in number of stepm */        } else if(mle==2){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* Typically if 20 years = 20*12/6=40 stepm */        } else if(mle==3){  /* exponential inter-extrapolation */
     if (stepm >= YEARM) hstepm=1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli=log(out[s1][s2]); /* Original formula */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli=log(out[s1][s2]); /* Original formula */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } /* End of if */
         ipmx +=1;
         sw += weight[i];
     for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        if(globpr){
           eij[i][j][(int)age] +=p3mat[i][j][h];          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         }   %10.6f %10.6f %10.6f ", \
                      num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     hf=1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     if (stepm >= YEARM) hf=stepm/YEARM;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fprintf(ficreseij,"%.0f",age );            llt +=ll[k]*gipmx/gsw;
     for(i=1; i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     fprintf(ficreseij,"\n");      } /* end of wave */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /************ Variance ******************/    if(globpr==0){ /* First time we count the contributions and weights */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      gipmx=ipmx;
 {      gsw=sw;
   /* Variance of health expectancies */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return -l;
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h;  char *subdirf(char fileres[])
   int k, cptcode;  {
   double *xp;    /* Caution optionfilefiname is hidden */
   double **gp, **gm;    strcpy(tmpout,optionfilefiname);
   double ***gradg, ***trgradg;    strcat(tmpout,"/"); /* Add to the right */
   double ***p3mat;    strcat(tmpout,fileres);
   double age,agelim;    return tmpout;
   int theta;  }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  char *subdirf2(char fileres[], char *preop)
   fprintf(ficresvij,"# Age");  {
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)    strcpy(tmpout,optionfilefiname);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    strcat(tmpout,"/");
   fprintf(ficresvij,"\n");    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   xp=vector(1,npar);    return tmpout;
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    strcpy(tmpout,optionfilefiname);
   agelim = AGESUP;    strcat(tmpout,"/");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(tmpout,preop);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(tmpout,preop2);
     if (stepm >= YEARM) hstepm=1;    strcat(tmpout,fileres);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    return tmpout;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     gm=matrix(0,nhstepm,1,nlstate);  {
     /* This routine should help understanding what is done with 
     for(theta=1; theta <=npar; theta++){       the selection of individuals/waves and
       for(i=1; i<=npar; i++){ /* Computes gradient */       to check the exact contribution to the likelihood.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Plotting could be done.
       }     */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(j=1; j<= nlstate; j++){    if(*globpri !=0){ /* Just counts and sums, no printings */
         for(h=0; h<=nhstepm; h++){      strcpy(fileresilk,"ilk"); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      strcat(fileresilk,fileres);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         }        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(k=1; k<=nlstate; k++) 
       for(j=1; j<= nlstate; j++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
       for(j=1; j<= nlstate; j++)      fclose(ficresilk);
         for(h=0; h<=nhstepm; h++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fflush(fichtm); 
         }    } 
     } /* End theta */    return;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   
     for(h=0; h<=nhstepm; h++)  /*********** Maximum Likelihood Estimation ***************/
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           trgradg[h][j][theta]=gradg[h][theta][j];  {
     int i,j, iter;
     for(i=1;i<=nlstate;i++)    double **xi;
       for(j=1;j<=nlstate;j++)    double fret;
         vareij[i][j][(int)age] =0.;    double fretone; /* Only one call to likelihood */
     for(h=0;h<=nhstepm;h++){    char filerespow[FILENAMELENGTH];
       for(k=0;k<=nhstepm;k++){    xi=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (j=1;j<=npar;j++)
         for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             vareij[i][j][(int)age] += doldm[i][j];    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     h=1;      printf("Problem with resultfile: %s\n", filerespow);
     if (stepm >= YEARM) h=stepm/YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(j=1; j<=nlstate;j++){    for (i=1;i<=nlstate;i++)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficresvij,"\n");    fprintf(ficrespow,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    powell(p,xi,npar,ftol,&iter,&fret,func);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fclose(ficrespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   } /* End age */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /**** Computes Hessian and covariance matrix ***/
 }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
 /************ Variance of prevlim ******************/    double  **a,**y,*x,pd;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double **hess;
 {    int i, j,jk;
   /* Variance of prevalence limit */    int *indx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    double hessii(double p[], double delta, int theta, double delti[]);
   double **dnewm,**doldm;    double hessij(double p[], double delti[], int i, int j);
   int i, j, nhstepm, hstepm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int k, cptcode;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double *xp;  
   double *gp, *gm;    hess=matrix(1,npar,1,npar);
   double **gradg, **trgradg;  
   double age,agelim;    printf("\nCalculation of the hessian matrix. Wait...\n");
   int theta;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      printf("%d",i);fflush(stdout);
   fprintf(ficresvpl,"# Age");      fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i<=nlstate;i++)      hess[i][i]=hessii(p,ftolhess,i,delti);
       fprintf(ficresvpl," %1d-%1d",i,i);      /*printf(" %f ",p[i]);*/
   fprintf(ficresvpl,"\n");      /*printf(" %lf ",hess[i][i]);*/
     }
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++)  {
          if (j>i) { 
   hstepm=1*YEARM; /* Every year of age */          printf(".%d%d",i,j);fflush(stdout);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   agelim = AGESUP;          hess[i][j]=hessij(p,delti,i,j);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          hess[j][i]=hess[i][j];    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          /*printf(" %lf ",hess[i][j]);*/
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    printf("\n");
     gm=vector(1,nlstate);    fprintf(ficlog,"\n");
   
     for(theta=1; theta <=npar; theta++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    a=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    y=matrix(1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    x=vector(1,npar);
         gp[i] = prlim[i][i];    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
         gm[i] = prlim[i][i];      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (i=1;i<=npar;i++){ 
     } /* End theta */        matcov[i][j]=x[i];
       }
     trgradg =matrix(1,nlstate,1,npar);    }
   
     for(j=1; j<=nlstate;j++)    printf("\n#Hessian matrix#\n");
       for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(i=1;i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
       varpl[i][(int)age] =0.;        fprintf(ficlog,"%.3e ",hess[i][j]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      printf("\n");
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
   
     fprintf(ficresvpl,"%.0f ",age );    /* Recompute Inverse */
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     fprintf(ficresvpl,"\n");    ludcmp(a,npar,indx,&pd);
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    /*  printf("\n#Hessian matrix recomputed#\n");
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
   } /* End age */      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   free_matrix(dnewm,1,nlstate,1,nlstate);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
 }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 /************ Variance of one-step probabilities  ******************/      printf("\n");
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      fprintf(ficlog,"\n");
 {    }
   int i, j;    */
   int k=0, cptcode;  
   double **dnewm,**doldm;    free_matrix(a,1,npar,1,npar);
   double *xp;    free_matrix(y,1,npar,1,npar);
   double *gp, *gm;    free_vector(x,1,npar);
   double **gradg, **trgradg;    free_ivector(indx,1,npar);
   double age,agelim, cov[NCOVMAX];    free_matrix(hess,1,npar,1,npar);
   int theta;  
   char fileresprob[FILENAMELENGTH];  
   }
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  /*************** hessian matrix ****************/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  double hessii( double x[], double delta, int theta, double delti[])
     printf("Problem with resultfile: %s\n", fileresprob);  {
   }    int i;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    int l=1, lmax=20;
      double k1,k2;
     double p2[NPARMAX+1];
   xp=vector(1,npar);    double res;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double fx;
      int k=0,kmax=10;
   cov[1]=1;    double l1;
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;    fx=func(x);
     gradg=matrix(1,npar,1,9);    for (i=1;i<=npar;i++) p2[i]=x[i];
     trgradg=matrix(1,9,1,npar);    for(l=0 ; l <=lmax; l++){
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      l1=pow(10,l);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
     for(theta=1; theta <=npar; theta++){        delt = delta*(l1*k);
       for(i=1; i<=npar; i++)        p2[theta]=x[theta] +delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k1=func(p2)-fx;
              p2[theta]=x[theta]-delt;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        k2=func(p2)-fx;
            /*res= (k1-2.0*fx+k2)/delt/delt; */
       k=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(i=1; i<= (nlstate+ndeath); i++){        
         for(j=1; j<=(nlstate+ndeath);j++){  #ifdef DEBUG
            k=k+1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           gp[k]=pmmij[i][j];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
       }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(i=1; i<=npar; i++)          k=kmax;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
       k=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(i=1; i<=(nlstate+ndeath); i++){          delts=delt;
         for(j=1; j<=(nlstate+ndeath);j++){        }
           k=k+1;      }
           gm[k]=pmmij[i][j];    }
         }    delti[theta]=delts;
       }    return res; 
          
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    int i;
       for(theta=1; theta <=npar; theta++)    int l=1, l1, lmax=20;
       trgradg[j][theta]=gradg[theta][j];    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int k;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
     fx=func(x);
      pmij(pmmij,cov,ncovmodel,x,nlstate);    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
      k=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
      for(i=1; i<=(nlstate+ndeath); i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        for(j=1; j<=(nlstate+ndeath);j++){      k1=func(p2)-fx;
          k=k+1;    
          gm[k]=pmmij[i][j];      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      }      k2=func(p2)-fx;
          
      /*printf("\n%d ",(int)age);      p2[thetai]=x[thetai]-delti[thetai]/k;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
              k3=func(p2)-fx;
     
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      p2[thetai]=x[thetai]-delti[thetai]/k;
      }*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   fprintf(ficresprob,"\n%d ",(int)age);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  #endif
   }    }
     return res;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************** Inverse of matrix **************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
 }  { 
  free_vector(xp,1,npar);    int i,imax,j,k; 
 fclose(ficresprob);    double big,dum,sum,temp; 
  exit(0);    double *vv; 
 }   
     vv=vector(1,n); 
 /***********************************************/    *d=1.0; 
 /**************** Main Program *****************/    for (i=1;i<=n;i++) { 
 /***********************************************/      big=0.0; 
       for (j=1;j<=n;j++) 
 /*int main(int argc, char *argv[])*/        if ((temp=fabs(a[i][j])) > big) big=temp; 
 int main()      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 {      vv[i]=1.0/big; 
     } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (j=1;j<=n;j++) { 
   double agedeb, agefin,hf;      for (i=1;i<j;i++) { 
   double agemin=1.e20, agemax=-1.e20;        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double fret;        a[i][j]=sum; 
   double **xi,tmp,delta;      } 
       big=0.0; 
   double dum; /* Dummy variable */      for (i=j;i<=n;i++) { 
   double ***p3mat;        sum=a[i][j]; 
   int *indx;        for (k=1;k<j;k++) 
   char line[MAXLINE], linepar[MAXLINE];          sum -= a[i][k]*a[k][j]; 
   char title[MAXLINE];        a[i][j]=sum; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];          big=dum; 
   char filerest[FILENAMELENGTH];          imax=i; 
   char fileregp[FILENAMELENGTH];        } 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      } 
   int firstobs=1, lastobs=10;      if (j != imax) { 
   int sdeb, sfin; /* Status at beginning and end */        for (k=1;k<=n;k++) { 
   int c,  h , cpt,l;          dum=a[imax][k]; 
   int ju,jl, mi;          a[imax][k]=a[j][k]; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          a[j][k]=dum; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        } 
          *d = -(*d); 
   int hstepm, nhstepm;        vv[imax]=vv[j]; 
   double bage, fage, age, agelim, agebase;      } 
   double ftolpl=FTOL;      indx[j]=imax; 
   double **prlim;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double *severity;      if (j != n) { 
   double ***param; /* Matrix of parameters */        dum=1.0/(a[j][j]); 
   double  *p;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **matcov; /* Matrix of covariance */      } 
   double ***delti3; /* Scale */    } 
   double *delti; /* Scale */    free_vector(vv,1,n);  /* Doesn't work */
   double ***eij, ***vareij;  ;
   double **varpl; /* Variances of prevalence limits by age */  } 
   double *epj, vepp;  
   double kk1;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    int i,ii=0,ip,j; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double sum; 
    
     for (i=1;i<=n;i++) { 
   char z[1]="c", occ;      ip=indx[i]; 
 #include <sys/time.h>      sum=b[ip]; 
 #include <time.h>      b[ip]=b[i]; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      if (ii) 
   /* long total_usecs;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   struct timeval start_time, end_time;      else if (sum) ii=i; 
        b[i]=sum; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    } 
     for (i=n;i>=1;i--) { 
       sum=b[i]; 
   printf("\nIMACH, Version 0.64b");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   printf("\nEnter the parameter file name: ");      b[i]=sum/a[i][i]; 
     } 
 #ifdef windows  } 
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  /************ Frequencies ********************/
   /*cygwin_split_path(pathtot,path,optionfile);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  {  /* Some frequencies */
   /* cutv(path,optionfile,pathtot,'\\');*/    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 split(pathtot, path,optionfile);    int first;
   chdir(path);    double ***freq; /* Frequencies */
   replace(pathc,path);    double *pp, **prop;
 #endif    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 #ifdef unix    FILE *ficresp;
   scanf("%s",optionfile);    char fileresp[FILENAMELENGTH];
 #endif    
     pp=vector(1,nlstate);
 /*-------- arguments in the command line --------*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   strcpy(fileres,"r");    strcat(fileresp,fileres);
   strcat(fileres, optionfile);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   /*---------arguments file --------*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     goto end;    j1=0;
   }    
     j=cptcoveff;
   strcpy(filereso,"o");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    first=1;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   /* Reads comments: lines beginning with '#' */        j1++;
   while((c=getc(ficpar))=='#' && c!= EOF){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     ungetc(c,ficpar);          scanf("%d", i);*/
     fgets(line, MAXLINE, ficpar);        for (i=-1; i<=nlstate+ndeath; i++)  
     puts(line);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     fputs(line,ficparo);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   ungetc(c,ficpar);  
       for (i=1; i<=nlstate; i++)  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(m=iagemin; m <= iagemax+3; m++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          prop[i][m]=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        
         dateintsum=0;
   covar=matrix(0,NCOVMAX,1,n);        k2cpt=0;
   cptcovn=0;        for (i=1; i<=imx; i++) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          bool=1;
           if  (cptcovn>0) {
   ncovmodel=2+cptcovn;            for (z1=1; z1<=cptcoveff; z1++) 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */          if (bool==1){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(m=firstpass; m<=lastpass; m++){
     ungetc(c,ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
     fgets(line, MAXLINE, ficpar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     puts(line);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fputs(line,ficparo);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   ungetc(c,ficpar);                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(i=1; i <=nlstate; i++)                }
     for(j=1; j <=nlstate+ndeath-1; j++){                
       fscanf(ficpar,"%1d%1d",&i1,&j1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficparo,"%1d%1d",i1,j1);                  dateintsum=dateintsum+k2;
       printf("%1d%1d",i,j);                  k2cpt++;
       for(k=1; k<=ncovmodel;k++){                }
         fscanf(ficpar," %lf",&param[i][j][k]);                /*}*/
         printf(" %lf",param[i][j][k]);            }
         fprintf(ficparo," %lf",param[i][j][k]);          }
       }        }
       fscanf(ficpar,"\n");         
       printf("\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficparo,"\n");  
     }        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   p=param[1][1];        }
          for(i=1; i<=nlstate;i++) 
   /* Reads comments: lines beginning with '#' */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresp, "\n");
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        for(i=iagemin; i <= iagemax+3; i++){
     puts(line);          if(i==iagemax+3){
     fputs(line,ficparo);            fprintf(ficlog,"Total");
   }          }else{
   ungetc(c,ficpar);            if(first==1){
               first=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              printf("See log file for details...\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            }
   for(i=1; i <=nlstate; i++){            fprintf(ficlog,"Age %d", i);
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(jk=1; jk <=nlstate ; jk++){
       printf("%1d%1d",i,j);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficparo,"%1d%1d",i1,j1);              pp[jk] += freq[jk][m][i]; 
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
         printf(" %le",delti3[i][j][k]);            for(m=-1, pos=0; m <=0 ; m++)
         fprintf(ficparo," %le",delti3[i][j][k]);              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
       fscanf(ficpar,"\n");              if(first==1){
       printf("\n");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficparo,"\n");              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
   delti=delti3[1][1];              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Reads comments: lines beginning with '#' */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);          for(jk=1; jk <=nlstate ; jk++){
     fputs(line,ficparo);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   }              pp[jk] += freq[jk][m][i];
   ungetc(c,ficpar);          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   matcov=matrix(1,npar,1,npar);            pos += pp[jk];
   for(i=1; i <=npar; i++){            posprop += prop[jk][i];
     fscanf(ficpar,"%s",&str);          }
     printf("%s",str);          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficparo,"%s",str);            if(pos>=1.e-5){
     for(j=1; j <=i; j++){              if(first==1)
       fscanf(ficpar," %le",&matcov[i][j]);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       printf(" %.5le",matcov[i][j]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficparo," %.5le",matcov[i][j]);            }else{
     }              if(first==1)
     fscanf(ficpar,"\n");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficparo,"\n");            }
   }            if( i <= iagemax){
   for(i=1; i <=npar; i++)              if(pos>=1.e-5){
     for(j=i+1;j<=npar;j++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       matcov[i][j]=matcov[j][i];                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   printf("\n");              }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     /*-------- data file ----------*/            }
     if((ficres =fopen(fileres,"w"))==NULL) {          }
       printf("Problem with resultfile: %s\n", fileres);goto end;          
     }          for(jk=-1; jk <=nlstate+ndeath; jk++)
     fprintf(ficres,"#%s\n",version);            for(m=-1; m <=nlstate+ndeath; m++)
                  if(freq[jk][m][i] !=0 ) {
     if((fic=fopen(datafile,"r"))==NULL)    {              if(first==1)
       printf("Problem with datafile: %s\n", datafile);goto end;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
     n= lastobs;          if(i <= iagemax)
     severity = vector(1,maxwav);            fprintf(ficresp,"\n");
     outcome=imatrix(1,maxwav+1,1,n);          if(first==1)
     num=ivector(1,n);            printf("Others in log...\n");
     moisnais=vector(1,n);          fprintf(ficlog,"\n");
     annais=vector(1,n);        }
     moisdc=vector(1,n);      }
     andc=vector(1,n);    }
     agedc=vector(1,n);    dateintmean=dateintsum/k2cpt; 
     cod=ivector(1,n);   
     weight=vector(1,n);    fclose(ficresp);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     mint=matrix(1,maxwav,1,n);    free_vector(pp,1,nlstate);
     anint=matrix(1,maxwav,1,n);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     s=imatrix(1,maxwav+1,1,n);    /* End of Freq */
     adl=imatrix(1,maxwav+1,1,n);      }
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     i=1;  {  
     while (fgets(line, MAXLINE, fic) != NULL)    {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       if ((i >= firstobs) && (i <=lastobs)) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
               We still use firstpass and lastpass as another selection.
         for (j=maxwav;j>=1;j--){    */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   
           strcpy(line,stra);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***freq; /* Frequencies */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *pp, **prop;
         }    double pos,posprop; 
            double  y2; /* in fractional years */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int iagemin, iagemax;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     iagemin= (int) agemin;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    iagemax= (int) agemax;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         for (j=ncov;j>=1;j--){    j1=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    j=cptcoveff;
         num[i]=atol(stra);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    for(k1=1; k1<=j;k1++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         i=i+1;        
       }        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     /* printf("ii=%d", ij);            prop[i][m]=0.0;
        scanf("%d",i);*/       
   imx=i-1; /* Number of individuals */        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   /* for (i=1; i<=imx; i++){          if  (cptcovn>0) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for (z1=1; z1<=cptcoveff; z1++) 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                bool=0;
   }          } 
   for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /* Calculation of the number of parameter from char model*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   Tvar=ivector(1,15);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   Tprod=ivector(1,15);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   Tvaraff=ivector(1,15);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   Tvard=imatrix(1,15,1,2);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   Tage=ivector(1,15);                      if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (strlen(model) >1){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     j=0, j1=0, k1=1, k2=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
     j=nbocc(model,'+');                } 
     j1=nbocc(model,'*');              }
     cptcovn=j+1;            } /* end selection of waves */
     cptcovprod=j1;          }
            }
            for(i=iagemin; i <= iagemax+3; i++){  
     strcpy(modelsav,model);          
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       printf("Error. Non available option model=%s ",model);            posprop += prop[jk][i]; 
       goto end;          } 
     }  
              for(jk=1; jk <=nlstate ; jk++){     
     for(i=(j+1); i>=1;i--){            if( i <=  iagemax){ 
       cutv(stra,strb,modelsav,'+');              if(posprop>=1.e-5){ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                probs[i][jk][j1]= prop[jk][i]/posprop;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              } 
       /*scanf("%d",i);*/            } 
       if (strchr(strb,'*')) {          }/* end jk */ 
         cutv(strd,strc,strb,'*');        }/* end i */ 
         if (strcmp(strc,"age")==0) {      } /* end i1 */
           cptcovprod--;    } /* end k1 */
           cutv(strb,stre,strd,'V');    
           Tvar[i]=atoi(stre);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           cptcovage++;    /*free_vector(pp,1,nlstate);*/
             Tage[cptcovage]=i;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             /*printf("stre=%s ", stre);*/  }  /* End of prevalence */
         }  
         else if (strcmp(strd,"age")==0) {  /************* Waves Concatenation ***************/
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           Tvar[i]=atoi(stre);  {
           cptcovage++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Tage[cptcovage]=i;       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         else {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           cutv(strb,stre,strc,'V');       and mw[mi+1][i]. dh depends on stepm.
           Tvar[i]=ncov+k1;       */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    int i, mi, m;
           Tvard[k1][1]=atoi(strc);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           Tvard[k1][2]=atoi(stre);       double sum=0., jmean=0.;*/
           Tvar[cptcovn+k2]=Tvard[k1][1];    int first;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int j, k=0,jk, ju, jl;
           for (k=1; k<=lastobs;k++)    double sum=0.;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    first=0;
           k1++;    jmin=1e+5;
           k2=k2+2;    jmax=-1;
         }    jmean=0.;
       }    for(i=1; i<=imx; i++){
       else {      mi=0;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      m=firstpass;
        /*  scanf("%d",i);*/      while(s[m][i] <= nlstate){
       cutv(strd,strc,strb,'V');        if(s[m][i]>=1)
       Tvar[i]=atoi(strc);          mw[++mi][i]=m;
       }        if(m >=lastpass)
       strcpy(modelsav,stra);            break;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        else
         scanf("%d",i);*/          m++;
     }      }/* end while */
 }      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        /* if(mi==0)  never been interviewed correctly before death */
   printf("cptcovprod=%d ", cptcovprod);           /* Only death is a correct wave */
   scanf("%d ",i);*/        mw[mi][i]=m;
     fclose(fic);      }
   
     /*  if(mle==1){*/      wav[i]=mi;
     if (weightopt != 1) { /* Maximisation without weights*/      if(mi==0){
       for(i=1;i<=n;i++) weight[i]=1.0;        nbwarn++;
     }        if(first==0){
     /*-calculation of age at interview from date of interview and age at death -*/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     agev=matrix(1,maxwav,1,imx);          first=1;
         }
    for (i=1; i<=imx; i++)        if(first==1){
      for(m=2; (m<= maxwav); m++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;      } /* end mi==0 */
          s[m][i]=-1;    } /* End individuals */
        }  
        for(i=1; i<=imx; i++){
     for (i=1; i<=imx; i++)  {      for(mi=1; mi<wav[i];mi++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        if (stepm <=0)
       for(m=1; (m<= maxwav); m++){          dh[mi][i]=1;
         if(s[m][i] >0){        else{
           if (s[m][i] == nlstate+1) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if(agedc[i]>0)            if (agedc[i] < 2*AGESUP) {
               if(moisdc[i]!=99 && andc[i]!=9999)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               agev[m][i]=agedc[i];              if(j==0) j=1;  /* Survives at least one month after exam */
             else {              else if(j<0){
               if (andc[i]!=9999){                nberr++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               agev[m][i]=-1;                j=1; /* Temporary Dangerous patch */
               }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           else if(s[m][i] !=9){ /* Should no more exist */              }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              k=k+1;
             if(mint[m][i]==99 || anint[m][i]==9999)              if (j >= jmax) jmax=j;
               agev[m][i]=1;              if (j <= jmin) jmin=j;
             else if(agev[m][i] <agemin){              sum=sum+j;
               agemin=agev[m][i];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }            }
             else if(agev[m][i] >agemax){          }
               agemax=agev[m][i];          else{
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             /*agev[m][i]=anint[m][i]-annais[i];*/            k=k+1;
             /*   agev[m][i] = age[i]+2*m;*/            if (j >= jmax) jmax=j;
           }            else if (j <= jmin)jmin=j;
           else { /* =9 */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             agev[m][i]=1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             s[m][i]=-1;            if(j<0){
           }              nberr++;
         }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else /*= 0 Unknown */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           agev[m][i]=1;            }
       }            sum=sum+j;
              }
     }          jk= j/stepm;
     for (i=1; i<=imx; i++)  {          jl= j -jk*stepm;
       for(m=1; (m<= maxwav); m++){          ju= j -(jk+1)*stepm;
         if (s[m][i] > (nlstate+ndeath)) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           printf("Error: Wrong value in nlstate or ndeath\n");              if(jl==0){
           goto end;              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              bh[mi][i]=ju;
             }
     free_vector(severity,1,maxwav);          }else{
     free_imatrix(outcome,1,maxwav+1,1,n);            if(jl <= -ju){
     free_vector(moisnais,1,n);              dh[mi][i]=jk;
     free_vector(annais,1,n);              bh[mi][i]=jl;       /* bias is positive if real duration
     free_matrix(mint,1,maxwav,1,n);                                   * is higher than the multiple of stepm and negative otherwise.
     free_matrix(anint,1,maxwav,1,n);                                   */
     free_vector(moisdc,1,n);            }
     free_vector(andc,1,n);            else{
               dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     wav=ivector(1,imx);            }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if(dh[mi][i]==0){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
     /* Concatenates waves */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            }
           } /* end if mle */
         }
       Tcode=ivector(1,100);      } /* end wave */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;    jmean=sum/k;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    codtab=imatrix(1,100,1,10);   }
    h=0;  
    m=pow(2,cptcoveff);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
    for(k=1;k<=cptcoveff; k++){  {
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    int cptcode=0;
            h++;    cptcoveff=0; 
            if (h>m) h=1;codtab[h][k]=j;   
          }    for (k=0; k<maxncov; k++) Ndum[k]=0;
        }    for (k=1; k<=7; k++) ncodemax[k]=0;
      }  
    }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
    /*for(i=1; i <=m ;i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for(k=1; k <=cptcovn; k++){        Ndum[ij]++; /*store the modality */
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      printf("\n");                                         Tvar[j]. If V=sex and male is 0 and 
    }                                         female is 1, then  cptcode=1.*/
    scanf("%d",i);*/      }
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      for (i=0; i<=cptcode; i++) {
        and prints on file fileres'p'. */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      }
   
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      ij=1; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<=ncodemax[j]; i++) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k=0; k<= maxncov; k++) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (Ndum[k] != 0) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            nbcode[Tvar[j]][ij]=k; 
                  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     /* For Powell, parameters are in a vector p[] starting at p[1]            
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            ij++;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          }
           if (ij > ncodemax[j]) break; 
     if(mle==1){        }  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      } 
     }    }  
      
     /*--------- results files --------------*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
       for (i=1; i<=ncovmodel-2; i++) { 
    jk=1;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    fprintf(ficres,"# Parameters\n");     ij=Tvar[i];
    printf("# Parameters\n");     Ndum[ij]++;
    for(i=1,jk=1; i <=nlstate; i++){   }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)   ij=1;
          {   for (i=1; i<= maxncov; i++) {
            printf("%d%d ",i,k);     if((Ndum[i]!=0) && (i<=ncovcol)){
            fprintf(ficres,"%1d%1d ",i,k);       Tvaraff[ij]=i; /*For printing */
            for(j=1; j <=ncovmodel; j++){       ij++;
              printf("%f ",p[jk]);     }
              fprintf(ficres,"%f ",p[jk]);   }
              jk++;   
            }   cptcoveff=ij-1; /*Number of simple covariates*/
            printf("\n");  }
            fprintf(ficres,"\n");  
          }  /*********** Health Expectancies ****************/
      }  
    }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  if(mle==1){  
     /* Computing hessian and covariance matrix */  {
     ftolhess=ftol; /* Usually correct */    /* Health expectancies */
     hesscov(matcov, p, npar, delti, ftolhess, func);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  }    double age, agelim, hf;
     fprintf(ficres,"# Scales\n");    double ***p3mat,***varhe;
     printf("# Scales\n");    double **dnewm,**doldm;
      for(i=1,jk=1; i <=nlstate; i++){    double *xp;
       for(j=1; j <=nlstate+ndeath; j++){    double **gp, **gm;
         if (j!=i) {    double ***gradg, ***trgradg;
           fprintf(ficres,"%1d%1d",i,j);    int theta;
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             printf(" %.5e",delti[jk]);    xp=vector(1,npar);
             fprintf(ficres," %.5e",delti[jk]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
             jk++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           }    
           printf("\n");    fprintf(ficreseij,"# Health expectancies\n");
           fprintf(ficres,"\n");    fprintf(ficreseij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
       }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
        fprintf(ficreseij,"\n");
     k=1;  
     fprintf(ficres,"# Covariance\n");    if(estepm < stepm){
     printf("# Covariance\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(i=1;i<=npar;i++){    }
       /*  if (k>nlstate) k=1;    else  hstepm=estepm;   
       i1=(i-1)/(ncovmodel*nlstate)+1;    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     * This is mainly to measure the difference between two models: for example
       printf("%s%d%d",alph[k],i1,tab[i]);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficres,"%3d",i);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       printf("%3d",i);     * progression in between and thus overestimating or underestimating according
       for(j=1; j<=i;j++){     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficres," %.5e",matcov[i][j]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         printf(" %.5e",matcov[i][j]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficres,"\n");     * curvature will be obtained if estepm is as small as stepm. */
       printf("\n");  
       k++;    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     while((c=getc(ficpar))=='#' && c!= EOF){       nstepm is the number of stepm from age to agelin. 
       ungetc(c,ficpar);       Look at hpijx to understand the reason of that which relies in memory size
       fgets(line, MAXLINE, ficpar);       and note for a fixed period like estepm months */
       puts(line);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fputs(line,ficparo);       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
     ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if (fage <= 2) {  
       bage = agemin;    agelim=AGESUP;
       fage = agemax;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*------------ gnuplot -------------*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 chdir(pathcd);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if((ficgp=fopen("graph.plt","w"))==NULL) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     printf("Problem with file graph.gp");goto end;  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 #ifdef windows         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficgp,"cd \"%s\" \n",pathc);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 #endif   
 m=pow(2,cptcoveff);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* Computing Variances of health expectancies */
    for (k1=1; k1<= m ; k1 ++) {  
        for(theta=1; theta <=npar; theta++){
 #ifdef windows        for(i=1; i<=npar; i++){ 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 #endif        }
 #ifdef unix        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    
 #endif        cptj=0;
         for(j=1; j<= nlstate; j++){
 for (i=1; i<= nlstate ; i ++) {          for(i=1; i<=nlstate; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            cptj=cptj+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }       
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++) 
      for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        
 }          cptj=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(j=1; j<= nlstate; j++){
 #ifdef unix          for(i=1;i<=nlstate;i++){
 fprintf(ficgp,"\nset ter gif small size 400,300");            cptj=cptj+1;
 #endif            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   /*2 eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate*nlstate; j++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          for(h=0; h<=nhstepm-1; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;       } 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     
       for (j=1; j<= nlstate+1 ; j ++) {  /* End theta */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       for(h=0; h<=nhstepm-1; h++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(j=1; j<=nlstate*nlstate;j++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(theta=1; theta <=npar; theta++)
       for (j=1; j<= nlstate+1 ; j ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1;j<=nlstate*nlstate;j++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          varhe[i][j][(int)age] =0.;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       printf("%d|",(int)age);fflush(stdout);
   else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 }         for(h=0;h<=nhstepm-1;h++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(k=0;k<=nhstepm-1;k++){
       else fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*3eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {      /* Computing expectancies */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(i=1; i<=nlstate;i++)
       k=2+nlstate*(cpt-1);        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for (i=1; i< nlstate ; i ++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }          }
   }  
        fprintf(ficreseij,"%3.0f",age );
   /* CV preval stat */      cptj=0;
   for (k1=1; k1<= m ; k1 ++) {      for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(j=1; j<=nlstate;j++){
       k=3;          cptj++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficreseij,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     
            free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       l=3+(nlstate+ndeath)*cpt;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for (i=1; i< nlstate ; i ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         l=3+(nlstate+ndeath)*cpt;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,"+$%d",l+i+1);    }
       }    printf("\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficlog,"\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    free_vector(xp,1,npar);
   }      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* proba elementaires */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    for(i=1,jk=1; i <=nlstate; i++){  }
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {  /************ Variance ******************/
         for(j=1; j <=ncovmodel; j++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  {
           /*fprintf(ficgp,"%s",alph[1]);*/    /* Variance of health expectancies */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           jk++;    /* double **newm;*/
           fprintf(ficgp,"\n");    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
       }    int i, j, nhstepm, hstepm, h, nstepm ;
     }    int k, cptcode;
     }    double *xp;
     double **gp, **gm;  /* for var eij */
   for(jk=1; jk <=m; jk++) {    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    double **gradgp, **trgradgp; /* for var p point j */
    i=1;    double *gpp, *gmp; /* for var p point j */
    for(k2=1; k2<=nlstate; k2++) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      k3=i;    double ***p3mat;
      for(k=1; k<=(nlstate+ndeath); k++) {    double age,agelim, hf;
        if (k != k2){    double ***mobaverage;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int theta;
 ij=1;    char digit[4];
         for(j=3; j <=ncovmodel; j++) {    char digitp[25];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    char fileresprobmorprev[FILENAMELENGTH];
             ij++;  
           }    if(popbased==1){
           else      if(mobilav!=0)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        strcpy(digitp,"-populbased-mobilav-");
         }      else strcpy(digitp,"-populbased-nomobil-");
           fprintf(ficgp,")/(1");    }
            else 
         for(k1=1; k1 <=nlstate; k1++){        strcpy(digitp,"-stablbased-");
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;    if (mobilav!=0) {
           for(j=3; j <=ncovmodel; j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             ij++;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }      }
           else    }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }    strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficgp,")");    sprintf(digit,"%-d",ij);
         }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         i=i+ncovmodel;    strcat(fileresprobmorprev,fileres);
        }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(ficgp);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 chdir(path);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_matrix(agev,1,maxwav,1,imx);      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_ivector(wav,1,imx);      for(i=1; i<=nlstate;i++)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    }  
        fprintf(ficresprobmorprev,"\n");
     free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficgp,"\n# Routine varevsij");
        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     free_ivector(num,1,n);  /*   } */
     free_vector(agedc,1,n);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(weight,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fclose(ficparo);    fprintf(ficresvij,"# Age");
     fclose(ficres);    for(i=1; i<=nlstate;i++)
     /*  }*/      for(j=1; j<=nlstate;j++)
            fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    /*________fin mle=1_________*/    fprintf(ficresvij,"\n");
      
     xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
     /* No more information from the sample is required now */    doldm=matrix(1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    gpp=vector(nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    
      if(estepm < stepm){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      printf ("Problem %d lower than %d\n",estepm, stepm);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    else  hstepm=estepm;   
 /*--------- index.htm --------*/    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(optionfilehtm,optionfile);       nhstepm is the number of hstepm from age to agelim 
   strcat(optionfilehtm,".htm");       nstepm is the number of stepm from age to agelin. 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with %s \n",optionfilehtm);goto end;       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">       means that if the survival funtion is printed every two years of age and if
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 Total number of observations=%d <br>       results. So we changed our mind and took the option of the best precision.
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    */
 <hr  size=\"2\" color=\"#EC5E5E\">    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 <li>Outputs files<br><br>\n    agelim = AGESUP;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      gp=matrix(0,nhstepm,1,nlstate);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      gm=matrix(0,nhstepm,1,nlstate);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
       for(theta=1; theta <=npar; theta++){
  fprintf(fichtm," <li>Graphs</li><p>");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  j1=0;  
  for(k1=1; k1<=m;k1++){        if (popbased==1) {
    for(i1=1; i1<=ncodemax[k1];i1++){          if(mobilav ==0){
        j1++;            for(i=1; i<=nlstate;i++)
        if (cptcovn > 0) {              prlim[i][i]=probs[(int)age][i][ij];
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }else{ /* mobilav */ 
          for (cpt=1; cpt<=cptcoveff;cpt++)            for(i=1; i<=nlstate;i++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
        }        }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for(j=1; j<= nlstate; j++){
        for(cpt=1; cpt<nlstate;cpt++){          for(h=0; h<=nhstepm; h++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
        }          }
     for(cpt=1; cpt<=nlstate;cpt++) {        }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        /* This for computing probability of death (h=1 means
 interval) in state (%d): v%s%d%d.gif <br>           computed over hstepm matrices product = hstepm*stepm months) 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);             as a weighted average of prlim.
      }        */
      for(cpt=1; cpt<=nlstate;cpt++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
      }        }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        /* end probability of death */
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 fprintf(fichtm,"\n</body>");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 fclose(fichtm);   
         if (popbased==1) {
   /*--------------- Prevalence limit --------------*/          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");              prlim[i][i]=probs[(int)age][i][ij];
   strcat(filerespl,fileres);          }else{ /* mobilav */ 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");        for(j=1; j<= nlstate; j++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(h=0; h<=nhstepm; h++){
   fprintf(ficrespl,"\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   prlim=matrix(1,nlstate,1,nlstate);          }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* This for computing probability of death (h=1 means
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           computed over hstepm matrices product = hstepm*stepm months) 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           as a weighted average of prlim.
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        */
   k=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   agebase=agemin;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   agelim=agemax;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   ftolpl=1.e-10;        }    
   i1=cptcoveff;        /* end probability of death */
   if (cptcovn < 1){i1=1;}  
         for(j=1; j<= nlstate; j++) /* vareij */
   for(cptcov=1;cptcov<=i1;cptcov++){          for(h=0; h<=nhstepm; h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         k=k+1;          }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for(j=1;j<=cptcoveff;j++)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");  
              } /* End theta */
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      for(h=0; h<=nhstepm; h++) /* veij */
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(j=1; j<=nlstate;j++)
           fprintf(ficrespl,"\n");          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fclose(ficrespl);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   /*------------- h Pij x at various ages ------------*/    
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1;i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
   printf("Computing pij: result on file '%s' \n", filerespij);  
        for(h=0;h<=nhstepm;h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(k=0;k<=nhstepm;k++){
   /*if (stepm<=24) stepsize=2;*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   agelim=AGESUP;          for(i=1;i<=nlstate;i++)
   hstepm=stepsize*YEARM; /* Every year of age */            for(j=1;j<=nlstate;j++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* pptj */
       k=k+1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficrespij,"\n#****** ");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(j=1;j<=cptcoveff;j++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(ficrespij,"******\n");          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      /*  x centered again */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;      if (popbased==1) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if(mobilav ==0){
           fprintf(ficrespij,"# Age");          for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)            prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++)        }else{ /* mobilav */ 
               fprintf(ficrespij," %1d-%1d",i,j);          for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){        }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      }
             for(i=1; i<=nlstate;i++)               
               for(j=1; j<=nlstate+ndeath;j++)      /* This for computing probability of death (h=1 means
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             fprintf(ficrespij,"\n");         as a weighted average of prlim.
           }      */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficrespij,"\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
   }      /* end probability of death */
   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficrespij);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   exit(0);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /*---------- Forecasting ------------------*/        }
       } 
   strcpy(fileresf,"f");      fprintf(ficresprobmorprev,"\n");
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresvij,"%.0f ",age );
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   /* Mobile average */      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   /* for (agedeb=bage; agedeb<=fage; agedeb++)      free_matrix(gm,0,nhstepm,1,nlstate);
     for (i=1; i<=nlstate;i++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   mobaverage= ma3x(1,130 ,1,8, 1,8);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (i=1; i<=nlstate;i++)    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   for (agedeb=bage+4; agedeb<=fage; agedeb++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for (i=1; i<=nlstate;i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         for (cpt=0;cpt<=4;cpt++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     }  */
   }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /* if (cptcod==2) printf("m=%f p=%f %d age=%d ",mobaverage[(int)agedeb-2][i][cptcod],probs[(int)agedeb-cpt][i][cptcod],cpt,(int)agedeb-2);*/  
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(dnewm,1,nlstate,1,npar);
   if (stepm<=24) stepsize=2;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   agelim=AGESUP;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=stepsize*YEARM; /* Every year of age */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fclose(ficresprobmorprev);
   hstepm=12;    fflush(ficgp);
    k=0;    fflush(fichtm); 
   for(cptcov=1;cptcov<=i1;cptcov++){  }  /* end varevsij */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;  /************ Variance of prevlim ******************/
       fprintf(ficresf,"\n#****** ");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       for(j=1;j<=cptcoveff;j++) {  {
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Variance of prevalence limit */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          double **newm;
       fprintf(ficresf,"******\n");    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    int k, cptcode;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double *xp;
     double *gp, *gm;
       for (agedeb=fage; agedeb>=bage; agedeb--){    double **gradg, **trgradg;
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);    double age,agelim;
         for(j=1; j<=nlstate;j++)    int theta;
           fprintf(ficresf,"%.3f ",mobaverage[(int)agedeb][j][cptcod]);     
       }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
       for (cpt=1; cpt<=8;cpt++)          fprintf(ficresvpl," %1d-%1d",i,i);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresvpl,"\n");
          
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    xp=vector(1,npar);
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    dnewm=matrix(1,nlstate,1,npar);
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/    doldm=matrix(1,nlstate,1,nlstate);
     
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=1*YEARM; /* Every year of age */
         oldm=oldms;savm=savms;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      agelim = AGESUP;
                    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (h=0; h<=nhstepm; h++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              if (stepm >= YEARM) hstepm=1;
           if (h*hstepm/YEARM*stepm==cpt)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);      gradg=matrix(1,npar,1,nlstate);
                gp=vector(1,nlstate);
           for(j=1; j<=nlstate+ndeath;j++) {      gm=vector(1,nlstate);
             kk1=0.;  
             for(i=1; i<=nlstate;i++) {              for(theta=1; theta <=npar; theta++){
               /*   kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];*/        for(i=1; i<=npar; i++){ /* Computes gradient */
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
                    prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             if (h*hstepm/YEARM*stepm==cpt)        for(i=1;i<=nlstate;i++)
               fprintf(ficresf," %.5f ", kk1);          gp[i] = prlim[i][i];
           }      
           }        for(i=1; i<=npar; i++) /* Computes gradient */
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }          gm[i] = prlim[i][i];
   fclose(ficresf);  
         for(i=1;i<=nlstate;i++)
   /*---------- Health expectancies and variances ------------*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   strcpy(filerest,"t");  
   strcat(filerest,fileres);      trgradg =matrix(1,nlstate,1,npar);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
   strcpy(filerese,"e");        varpl[i][(int)age] =0.;
   strcat(filerese,fileres);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
       fprintf(ficresvpl,"%.0f ",age );
  strcpy(fileresv,"v");      for(i=1; i<=nlstate;i++)
   strcat(fileresv,fileres);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficresvpl,"\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   k=0;    } /* End age */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_vector(xp,1,npar);
       k=k+1;    free_matrix(doldm,1,nlstate,1,npar);
       fprintf(ficrest,"\n#****** ");    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       fprintf(ficrest,"******\n");  
   /************ Variance of one-step probabilities  ******************/
       fprintf(ficreseij,"\n#****** ");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       for(j=1;j<=cptcoveff;j++)  {
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficreseij,"******\n");    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
       fprintf(ficresvij,"\n#****** ");    int first=1, first1;
       for(j=1;j<=cptcoveff;j++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    double **dnewm,**doldm;
       fprintf(ficresvij,"******\n");    double *xp;
     double *gp, *gm;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double **gradg, **trgradg;
       oldm=oldms;savm=savms;    double **mu;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      double age,agelim, cov[NCOVMAX];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       oldm=oldms;savm=savms;    int theta;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    char fileresprob[FILENAMELENGTH];
          char fileresprobcov[FILENAMELENGTH];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    char fileresprobcor[FILENAMELENGTH];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    double ***varpij;
          
       hf=1;    strcpy(fileresprob,"prob"); 
       if (stepm >= YEARM) hf=stepm/YEARM;    strcat(fileresprob,fileres);
       epj=vector(1,nlstate+1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for(age=bage; age <=fage ;age++){      printf("Problem with resultfile: %s\n", fileresprob);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         fprintf(ficrest," %.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcpy(fileresprobcov,"probcov"); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    strcat(fileresprobcov,fileres);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcov);
           epj[nlstate+1] +=epj[j];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         }    }
         for(i=1, vepp=0.;i <=nlstate;i++)    strcpy(fileresprobcor,"probcor"); 
           for(j=1;j <=nlstate;j++)    strcat(fileresprobcor,fileres);
             vepp += vareij[i][j][(int)age];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      printf("Problem with resultfile: %s\n", fileresprobcor);
         for(j=1;j <=nlstate;j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficrest,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
  fclose(ficreseij);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  fclose(ficresvij);    fprintf(ficresprobcov,"# Age");
   fclose(ficrest);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fclose(ficpar);    fprintf(ficresprobcov,"# Age");
   free_vector(epj,1,nlstate+1);  
   /*  scanf("%d ",i); */  
     for(i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/        for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 strcpy(fileresvpl,"vpl");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   strcat(fileresvpl,fileres);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      }  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   /* fprintf(ficresprob,"\n");
     exit(0);    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   */
    xp=vector(1,npar);
  k=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  for(cptcov=1;cptcov<=i1;cptcov++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      k=k+1;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      fprintf(ficresvpl,"\n#****** ");    first=1;
      for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\n# Routine varprob");
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(ficresvpl,"******\n");    fprintf(fichtm,"\n");
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
      oldm=oldms;savm=savms;    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    file %s<br>\n",optionfilehtmcov);
    }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
  }  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fclose(ficresvpl);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   /*---------- End : free ----------------*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
      cov[1]=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    tj=cptcoveff;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    j1=0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   free_matrix(matcov,1,npar,1,npar);        j1++;
   free_vector(delti,1,npar);        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   printf("End of Imach\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficgp, "\n#********** Variable "); 
   /*------ End -----------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
  end:          
 #ifdef windows          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  chdir(pathcd);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 #endif          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
  system("..\\gp37mgw\\wgnuplot graph.plt");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 #ifdef windows          fprintf(ficresprobcor, "**********\n#");    
   while (z[0] != 'q') {        }
     chdir(pathcd);        
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        for (age=bage; age<=fage; age ++){ 
     scanf("%s",z);          cov[2]=age;
     if (z[0] == 'c') system("./imach");          for (k=1; k<=cptcovn;k++) {
     else if (z[0] == 'e') {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       chdir(path);          }
       system(optionfilehtm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }          for (k=1; k<=cptcovprod;k++)
     else if (z[0] == 'q') exit(0);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
 #endif          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.13  
changed lines
  Added in v.1.92


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>