Diff for /imach/src/imach.c between versions 1.42 and 1.92

version 1.42, 2002/05/21 18:44:41 version 1.92, 2003/06/25 16:30:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.91  2003/06/25 15:30:29  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Duplicated warning errors corrected.
   case of a health survey which is our main interest) -2- at least a    (Repository): Elapsed time after each iteration is now output. It
   second wave of interviews ("longitudinal") which measure each change    helps to forecast when convergence will be reached. Elapsed time
   (if any) in individual health status.  Health expectancies are    is stamped in powell.  We created a new html file for the graphs
   computed from the time spent in each health state according to a    concerning matrix of covariance. It has extension -cov.htm.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.90  2003/06/24 12:34:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Some bugs corrected for windows. Also, when
   probability to be observed in state j at the second wave    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to be observed in state i at the first wave. Therefore    of the covariance matrix to be input.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.89  2003/06/24 12:30:52  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.87  2003/06/18 12:26:01  brouard
   intermediate interview, the information is lost, but taken into    Version 0.96
   account using an interpolation or extrapolation.    
     Revision 1.86  2003/06/17 20:04:08  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Change position of html and gnuplot routines and added
   conditional to the observed state i at age x. The delay 'h' can be    routine fileappend.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.85  2003/06/17 13:12:43  brouard
   semester or year) is model as a multinomial logistic.  The hPx    * imach.c (Repository): Check when date of death was earlier that
   matrix is simply the matrix product of nh*stepm elementary matrices    current date of interview. It may happen when the death was just
   and the contribution of each individual to the likelihood is simply    prior to the death. In this case, dh was negative and likelihood
   hPijx.    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   Also this programme outputs the covariance matrix of the parameters but also    interview.
   of the life expectancies. It also computes the prevalence limits.    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    memory allocation. But we also truncated to 8 characters (left
            Institut national d'études démographiques, Paris.    truncation)
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): No more line truncation errors.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.84  2003/06/13 21:44:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Replace "freqsummary" at a correct
   can be accessed at http://euroreves.ined.fr/imach .    place. It differs from routine "prevalence" which may be called
   **********************************************************************/    many times. Probs is memory consuming and must be used with
      parcimony.
 #include <math.h>    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.83  2003/06/10 13:39:11  lievre
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Add log in  imach.c and  fullversion number is now printed.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80  */
 /*#define DEBUG*/  /*
 #define windows     Interpolated Markov Chain
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Short summary of the programme:
     
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    This program computes Healthy Life Expectancies from
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define NINTERVMAX 8    interviewed on their health status or degree of disability (in the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    case of a health survey which is our main interest) -2- at least a
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NCOVMAX 8 /* Maximum number of covariates */    (if any) in individual health status.  Health expectancies are
 #define MAXN 20000    computed from the time spent in each health state according to a
 #define YEARM 12. /* Number of months per year */    model. More health states you consider, more time is necessary to reach the
 #define AGESUP 130    Maximum Likelihood of the parameters involved in the model.  The
 #define AGEBASE 40    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int erreur; /* Error number */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int nvar;    'age' is age and 'sex' is a covariate. If you want to have a more
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    complex model than "constant and age", you should modify the program
 int npar=NPARMAX;    where the markup *Covariates have to be included here again* invites
 int nlstate=2; /* Number of live states */    you to do it.  More covariates you add, slower the
 int ndeath=1; /* Number of dead states */    convergence.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int *wav; /* Number of waves for this individuual 0 is possible */    identical for each individual. Also, if a individual missed an
 int maxwav; /* Maxim number of waves */    intermediate interview, the information is lost, but taken into
 int jmin, jmax; /* min, max spacing between 2 waves */    account using an interpolation or extrapolation.  
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    hPijx is the probability to be observed in state i at age x+h
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    conditional to the observed state i at age x. The delay 'h' can be
 double jmean; /* Mean space between 2 waves */    split into an exact number (nh*stepm) of unobserved intermediate
 double **oldm, **newm, **savm; /* Working pointers to matrices */    states. This elementary transition (by month, quarter,
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    semester or year) is modelled as a multinomial logistic.  The hPx
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE *ficgp,*ficresprob,*ficpop;    and the contribution of each individual to the likelihood is simply
 FILE *ficreseij;    hPijx.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Also this programme outputs the covariance matrix of the parameters but also
   char fileresv[FILENAMELENGTH];    of the life expectancies. It also computes the stable prevalence. 
  FILE  *ficresvpl;    
   char fileresvpl[FILENAMELENGTH];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define NR_END 1    This software have been partly granted by Euro-REVES, a concerted action
 #define FREE_ARG char*    from the European Union.
 #define FTOL 1.0e-10    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define NRANSI    can be accessed at http://euroreves.ined.fr/imach .
 #define ITMAX 200  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define TOL 2.0e-4    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define CGOLD 0.3819660    **********************************************************************/
 #define ZEPS 1.0e-10  /*
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    main
     read parameterfile
 #define GOLD 1.618034    read datafile
 #define GLIMIT 100.0    concatwav
 #define TINY 1.0e-20    freqsummary
     if (mle >= 1)
 static double maxarg1,maxarg2;      mlikeli
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    print results files
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    if mle==1 
         computes hessian
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define rint(a) floor(a+0.5)        begin-prev-date,...
     open gnuplot file
 static double sqrarg;    open html file
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    stable prevalence
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     for age prevalim()
     h Pij x
 int imx;    variance of p varprob
 int stepm;    forecasting if prevfcast==1 prevforecast call prevalence()
 /* Stepm, step in month: minimum step interpolation*/    health expectancies
     Variance-covariance of DFLE
 int estepm;    prevalence()
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/     movingaverage()
     varevsij() 
 int m,nb;    if popbased==1 varevsij(,popbased)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    total life expectancies
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Variance of stable prevalence
 double **pmmij, ***probs, ***mobaverage;   end
 double dateintmean=0;  */
   
 double *weight;  
 int **s; /* Status */  
 double *agedc, **covar, idx;   
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include <math.h>
   #include <stdio.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <stdlib.h>
 double ftolhess; /* Tolerance for computing hessian */  #include <unistd.h>
   
 /**************** split *************************/  #include <sys/time.h>
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include <time.h>
 {  #include "timeval.h"
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
    l1 = strlen( path );                 /* length of path */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FILENAMELENGTH 132
 #ifdef windows  /*#define DEBUG*/
    s = strrchr( path, '\\' );           /* find last / */  /*#define windows*/
 #else  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    s = strrchr( path, '/' );            /* find last / */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #if     defined(__bsd__)                /* get current working directory */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       extern char       *getwd( );  
   #define NINTERVMAX 8
       if ( getwd( dirc ) == NULL ) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #else  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       extern char       *getcwd( );  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define YEARM 12. /* Number of months per year */
 #endif  #define AGESUP 130
          return( GLOCK_ERROR_GETCWD );  #define AGEBASE 40
       }  #ifdef unix
       strcpy( name, path );             /* we've got it */  #define DIRSEPARATOR '/'
    } else {                             /* strip direcotry from path */  #define ODIRSEPARATOR '\\'
       s++;                              /* after this, the filename */  #else
       l2 = strlen( s );                 /* length of filename */  #define DIRSEPARATOR '\\'
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ODIRSEPARATOR '/'
       strcpy( name, s );                /* save file name */  #endif
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  /* $Id$ */
    }  /* $State$ */
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char fullversion[]="$Revision$ $Date$"; 
 #else  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int nvar;
 #endif  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    s = strrchr( name, '.' );            /* find last / */  int npar=NPARMAX;
    s++;  int nlstate=2; /* Number of live states */
    strcpy(ext,s);                       /* save extension */  int ndeath=1; /* Number of dead states */
    l1= strlen( name);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    l2= strlen( s)+1;  int popbased=0;
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  int *wav; /* Number of waves for this individuual 0 is possible */
    return( 0 );                         /* we're done */  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /******************************************/  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void replace(char *s, char*t)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   int i;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int lg=20;  double jmean; /* Mean space between 2 waves */
   i=0;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   lg=strlen(t);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(i=0; i<= lg; i++) {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     (s[i] = t[i]);  FILE *ficlog, *ficrespow;
     if (t[i]== '\\') s[i]='/';  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 int nbocc(char *s, char occ)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   int i,j=0;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int lg=20;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm, *fichtmcov; /* Html File */
   lg=strlen(s);  FILE *ficreseij;
   for(i=0; i<= lg; i++) {  char filerese[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  FILE  *ficresvij;
   }  char fileresv[FILENAMELENGTH];
   return j;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void cutv(char *u,char *v, char*t, char occ)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i,lg,j,p=0;  char tmpout[FILENAMELENGTH]; 
   i=0;  char command[FILENAMELENGTH];
   for(j=0; j<=strlen(t)-1; j++) {  int  outcmd=0;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char lfileres[FILENAMELENGTH];
   lg=strlen(t);  char filelog[FILENAMELENGTH]; /* Log file */
   for(j=0; j<p; j++) {  char filerest[FILENAMELENGTH];
     (u[j] = t[j]);  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
      u[p]='\0';  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   }  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /********************** nrerror ********************/  long time_value;
   extern long time();
 void nrerror(char error_text[])  char strcurr[80], strfor[80];
 {  
   fprintf(stderr,"ERREUR ...\n");  #define NR_END 1
   fprintf(stderr,"%s\n",error_text);  #define FREE_ARG char*
   exit(1);  #define FTOL 1.0e-10
 }  
 /*********************** vector *******************/  #define NRANSI 
 double *vector(int nl, int nh)  #define ITMAX 200 
 {  
   double *v;  #define TOL 2.0e-4 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define CGOLD 0.3819660 
   return v-nl+NR_END;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /************************ free vector ******************/  #define GOLD 1.618034 
 void free_vector(double*v, int nl, int nh)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG)(v+nl-NR_END));  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /************************ivector *******************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 int *ivector(long nl,long nh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int *v;  #define rint(a) floor(a+0.5)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  static double sqrarg;
   return v-nl+NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 /******************free ivector **************************/  int imx; 
 void free_ivector(int *v, long nl, long nh)  int stepm;
 {  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(v+nl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int m,nb;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int **m;  double **pmmij, ***probs;
    double dateintmean=0;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double *weight;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **s; /* Status */
   m += NR_END;  double *agedc, **covar, idx;
   m -= nrl;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   /* allocate rows and set pointers to them */  double ftolhess; /* Tolerance for computing hessian */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /**************** split *************************/
   m[nrl] += NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl] -= ncl;  {
      char  *ss;                            /* pointer */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int   l1, l2;                         /* length counters */
    
   /* return pointer to array of pointers to rows */    l1 = strlen(path );                   /* length of path */
   return m;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /****************** free_imatrix *************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void free_imatrix(m,nrl,nrh,ncl,nch)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       int **m;      /* get current working directory */
       long nch,ncl,nrh,nrl;      /*    extern  char* getcwd ( char *buf , int len);*/
      /* free an int matrix allocated by imatrix() */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      }
   free((FREE_ARG) (m+nrl-NR_END));      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /******************* matrix *******************************/      l2 = strlen( ss );                  /* length of filename */
 double **matrix(long nrl, long nrh, long ncl, long nch)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double **m;      dirc[l1-l2] = 0;                    /* add zero */
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    l1 = strlen( dirc );                  /* length of directory */
   if (!m) nrerror("allocation failure 1 in matrix()");    /*#ifdef windows
   m += NR_END;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m -= nrl;  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #endif
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    */
   m[nrl] += NR_END;    ss = strrchr( name, '.' );            /* find last / */
   m[nrl] -= ncl;    ss++;
     strcpy(ext,ss);                       /* save extension */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l1= strlen( name);
   return m;    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /*************************free matrix ************************/    return( 0 );                          /* we're done */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  }
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    int i;
 {    int lg=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    i=0;
   double ***m;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      (s[i] = t[i]);
   if (!m) nrerror("allocation failure 1 in matrix()");      if (t[i]== '\\') s[i]='/';
   m += NR_END;    }
   m -= nrl;  }
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nbocc(char *s, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int i,j=0;
   m[nrl] -= ncl;    int lg=20;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    lg=strlen(s);
     for(i=0; i<= lg; i++) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if  (s[i] == occ ) j++;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    }
   m[nrl][ncl] += NR_END;    return j;
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  void cutv(char *u,char *v, char*t, char occ)
    {
   for (i=nrl+1; i<=nrh; i++) {    /* cuts string t into u and v where u is ended by char occ excluding it
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     for (j=ncl+1; j<=nch; j++)       gives u="abcedf" and v="ghi2j" */
       m[i][j]=m[i][j-1]+nlay;    int i,lg,j,p=0;
   }    i=0;
   return m;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      (u[j] = t[j]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /***************** f1dim *************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 extern int ncom;    }
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    /********************** nrerror ********************/
 double f1dim(double x)  
 {  void nrerror(char error_text[])
   int j;  {
   double f;    fprintf(stderr,"ERREUR ...\n");
   double *xt;    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /*********************** vector *******************/
   f=(*nrfunc)(xt);  double *vector(int nl, int nh)
   free_vector(xt,1,ncom);  {
   return f;    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*****************brent *************************/    return v-nl+NR_END;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  /************************ free vector ******************/
   double a,b,d,etemp;  void free_vector(double*v, int nl, int nh)
   double fu,fv,fw,fx;  {
   double ftemp;    free((FREE_ARG)(v+nl-NR_END));
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    /************************ivector *******************************/
   a=(ax < cx ? ax : cx);  int *ivector(long nl,long nh)
   b=(ax > cx ? ax : cx);  {
   x=w=v=bx;    int *v;
   fw=fv=fx=(*f)(x);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (iter=1;iter<=ITMAX;iter++) {    if (!v) nrerror("allocation failure in ivector");
     xm=0.5*(a+b);    return v-nl+NR_END;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /******************free ivector **************************/
 #ifdef DEBUG  void free_ivector(int *v, long nl, long nh)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /************************lvector *******************************/
       return fx;  long *lvector(long nl,long nh)
     }  {
     ftemp=fu;    long *v;
     if (fabs(e) > tol1) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       r=(x-w)*(fx-fv);    if (!v) nrerror("allocation failure in ivector");
       q=(x-v)*(fx-fw);    return v-nl+NR_END;
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /******************free lvector **************************/
       q=fabs(q);  void free_lvector(long *v, long nl, long nh)
       etemp=e;  {
       e=d;    free((FREE_ARG)(v+nl-NR_END));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /******************* imatrix *******************************/
         d=p/q;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         u=x+d;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         if (u-a < tol2 || b-u < tol2)  { 
           d=SIGN(tol1,xm-x);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (!m) nrerror("allocation failure 1 in matrix()"); 
     fu=(*f)(u);    m += NR_END; 
     if (fu <= fx) {    m -= nrl; 
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)    /* allocate rows and set pointers to them */ 
         } else {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           if (u < x) a=u; else b=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           if (fu <= fw || w == x) {    m[nrl] += NR_END; 
             v=w;    m[nrl] -= ncl; 
             w=u;    
             fv=fw;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             fw=fu;    
           } else if (fu <= fv || v == x || v == w) {    /* return pointer to array of pointers to rows */ 
             v=u;    return m; 
             fv=fu;  } 
           }  
         }  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
   nrerror("Too many iterations in brent");        int **m;
   *xmin=x;        long nch,ncl,nrh,nrl; 
   return fx;       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /****************** mnbrak ***********************/    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************* matrix *******************************/
 {  double **matrix(long nrl, long nrh, long ncl, long nch)
   double ulim,u,r,q, dum;  {
   double fu;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (*fb > *fa) {    if (!m) nrerror("allocation failure 1 in matrix()");
     SHFT(dum,*ax,*bx,dum)    m += NR_END;
       SHFT(dum,*fb,*fa,dum)    m -= nrl;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fc=(*func)(*cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   while (*fb > *fc) {    m[nrl] += NR_END;
     r=(*bx-*ax)*(*fb-*fc);    m[nrl] -= ncl;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return m;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     if ((*bx-u)*(u-*cx) > 0.0) {     */
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /*************************free matrix ************************/
       if (fu < *fc) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           }    free((FREE_ARG)(m+nrl-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /******************* ma3x *******************************/
     } else {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************** linmin ************************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 int ncom;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double *pcom,*xicom;    m[nrl] += NR_END;
 double (*nrfunc)(double []);    m[nrl] -= ncl;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   double brent(double ax, double bx, double cx,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                double (*f)(double), double tol, double *xmin);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double f1dim(double x);    m[nrl][ncl] += NR_END;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl][ncl] -= nll;
               double *fc, double (*func)(double));    for (j=ncl+1; j<=nch; j++) 
   int j;      m[nrl][j]=m[nrl][j-1]+nlay;
   double xx,xmin,bx,ax;    
   double fx,fb,fa;    for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   ncom=n;      for (j=ncl+1; j<=nch; j++) 
   pcom=vector(1,n);        m[i][j]=m[i][j-1]+nlay;
   xicom=vector(1,n);    }
   nrfunc=func;    return m; 
   for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     pcom[j]=p[j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     xicom[j]=xi[j];    */
   }  }
   ax=0.0;  
   xx=1.0;  /*************************free ma3x ************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /***************** f1dim *************************/
   }  extern int ncom; 
   free_vector(xicom,1,n);  extern double *pcom,*xicom;
   free_vector(pcom,1,n);  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
 /*************** powell ************************/  { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int j; 
             double (*func)(double []))    double f;
 {    double *xt; 
   void linmin(double p[], double xi[], int n, double *fret,   
               double (*func)(double []));    xt=vector(1,ncom); 
   int i,ibig,j;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double del,t,*pt,*ptt,*xit;    f=(*nrfunc)(xt); 
   double fp,fptt;    free_vector(xt,1,ncom); 
   double *xits;    return f; 
   pt=vector(1,n);  } 
   ptt=vector(1,n);  
   xit=vector(1,n);  /*****************brent *************************/
   xits=vector(1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   *fret=(*func)(p);  { 
   for (j=1;j<=n;j++) pt[j]=p[j];    int iter; 
   for (*iter=1;;++(*iter)) {    double a,b,d,etemp;
     fp=(*fret);    double fu,fv,fw,fx;
     ibig=0;    double ftemp;
     del=0.0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double e=0.0; 
     for (i=1;i<=n;i++)   
       printf(" %d %.12f",i, p[i]);    a=(ax < cx ? ax : cx); 
     printf("\n");    b=(ax > cx ? ax : cx); 
     for (i=1;i<=n;i++) {    x=w=v=bx; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    fw=fv=fx=(*f)(x); 
       fptt=(*fret);    for (iter=1;iter<=ITMAX;iter++) { 
 #ifdef DEBUG      xm=0.5*(a+b); 
       printf("fret=%lf \n",*fret);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #endif      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf("%d",i);fflush(stdout);      printf(".");fflush(stdout);
       linmin(p,xit,n,fret,func);      fprintf(ficlog,".");fflush(ficlog);
       if (fabs(fptt-(*fret)) > del) {  #ifdef DEBUG
         del=fabs(fptt-(*fret));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         ibig=i;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #ifdef DEBUG  #endif
       printf("%d %.12e",i,(*fret));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (j=1;j<=n;j++) {        *xmin=x; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        return fx; 
         printf(" x(%d)=%.12e",j,xit[j]);      } 
       }      ftemp=fu;
       for(j=1;j<=n;j++)      if (fabs(e) > tol1) { 
         printf(" p=%.12e",p[j]);        r=(x-w)*(fx-fv); 
       printf("\n");        q=(x-v)*(fx-fw); 
 #endif        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        if (q > 0.0) p = -p; 
 #ifdef DEBUG        q=fabs(q); 
       int k[2],l;        etemp=e; 
       k[0]=1;        e=d; 
       k[1]=-1;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("Max: %.12e",(*func)(p));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (j=1;j<=n;j++)        else { 
         printf(" %.12e",p[j]);          d=p/q; 
       printf("\n");          u=x+d; 
       for(l=0;l<=1;l++) {          if (u-a < tol2 || b-u < tol2) 
         for (j=1;j<=n;j++) {            d=SIGN(tol1,xm-x); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        } 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 #endif      fu=(*f)(u); 
       if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
       free_vector(xit,1,n);        SHFT(v,w,x,u) 
       free_vector(xits,1,n);          SHFT(fv,fw,fx,fu) 
       free_vector(ptt,1,n);          } else { 
       free_vector(pt,1,n);            if (u < x) a=u; else b=u; 
       return;            if (fu <= fw || w == x) { 
     }              v=w; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              w=u; 
     for (j=1;j<=n;j++) {              fv=fw; 
       ptt[j]=2.0*p[j]-pt[j];              fw=fu; 
       xit[j]=p[j]-pt[j];            } else if (fu <= fv || v == x || v == w) { 
       pt[j]=p[j];              v=u; 
     }              fv=fu; 
     fptt=(*func)(ptt);            } 
     if (fptt < fp) {          } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    } 
       if (t < 0.0) {    nrerror("Too many iterations in brent"); 
         linmin(p,xit,n,fret,func);    *xmin=x; 
         for (j=1;j<=n;j++) {    return fx; 
           xi[j][ibig]=xi[j][n];  } 
           xi[j][n]=xit[j];  
         }  /****************** mnbrak ***********************/
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         for(j=1;j<=n;j++)              double (*func)(double)) 
           printf(" %.12e",xit[j]);  { 
         printf("\n");    double ulim,u,r,q, dum;
 #endif    double fu; 
       }   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 /**** Prevalence limit ****************/        SHFT(dum,*fb,*fa,dum) 
         } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *cx=(*bx)+GOLD*(*bx-*ax); 
 {    *fc=(*func)(*cx); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    while (*fb > *fc) { 
      matrix by transitions matrix until convergence is reached */      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   int i, ii,j,k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double min, max, maxmin, maxmax,sumnew=0.;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double **matprod2();      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **out, cov[NCOVMAX], **pmij();      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **newm;        fu=(*func)(u); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   for (ii=1;ii<=nlstate+ndeath;ii++)        if (fu < *fc) { 
     for (j=1;j<=nlstate+ndeath;j++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
    cov[1]=1.;        u=ulim; 
          fu=(*func)(u); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        u=(*cx)+GOLD*(*cx-*bx); 
     newm=savm;        fu=(*func)(u); 
     /* Covariates have to be included here again */      } 
      cov[2]=agefin;      SHFT(*ax,*bx,*cx,u) 
          SHFT(*fa,*fb,*fc,fu) 
       for (k=1; k<=cptcovn;k++) {        } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /*************** linmin ************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  int ncom; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double *pcom,*xicom;
   double (*nrfunc)(double []); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/   
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
     savm=oldm;    double f1dim(double x); 
     oldm=newm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     maxmax=0.;                double *fc, double (*func)(double)); 
     for(j=1;j<=nlstate;j++){    int j; 
       min=1.;    double xx,xmin,bx,ax; 
       max=0.;    double fx,fb,fa;
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;    ncom=n; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    pcom=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    xicom=vector(1,n); 
         max=FMAX(max,prlim[i][j]);    nrfunc=func; 
         min=FMIN(min,prlim[i][j]);    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
       maxmin=max-min;      xicom[j]=xi[j]; 
       maxmax=FMAX(maxmax,maxmin);    } 
     }    ax=0.0; 
     if(maxmax < ftolpl){    xx=1.0; 
       return prlim;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*************** transition probabilities ***************/  #endif
     for (j=1;j<=n;j++) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      xi[j] *= xmin; 
 {      p[j] += xi[j]; 
   double s1, s2;    } 
   /*double t34;*/    free_vector(xicom,1,n); 
   int i,j,j1, nc, ii, jj;    free_vector(pcom,1,n); 
   } 
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  char *asc_diff_time(long time_sec, char ascdiff[])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    long sec_left, days, hours, minutes;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    days = (time_sec) / (60*60*24);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
       ps[i][j]=s2;    sec_left = (sec_left) %(60*60);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     for(j=i+1; j<=nlstate+ndeath;j++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return ascdiff;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /*************** powell ************************/
       ps[i][j]=s2;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
   }  { 
     /*ps[3][2]=1;*/    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   for(i=1; i<= nlstate; i++){    int i,ibig,j; 
      s1=0;    double del,t,*pt,*ptt,*xit;
     for(j=1; j<i; j++)    double fp,fptt;
       s1+=exp(ps[i][j]);    double *xits;
     for(j=i+1; j<=nlstate+ndeath; j++)    int niterf, itmp;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    pt=vector(1,n); 
     for(j=1; j<i; j++)    ptt=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xit=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)    xits=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fret=(*func)(p); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   } /* end i */    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      ibig=0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      del=0.0; 
       ps[ii][jj]=0;      last_time=curr_time;
       ps[ii][ii]=1;      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        printf(" %d %.12f",i, p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog," %d %.12lf",i, p[i]);
      printf("%lf ",ps[ii][jj]);        fprintf(ficrespow," %.12lf", p[i]);
    }      }
     printf("\n ");      printf("\n");
     }      fprintf(ficlog,"\n");
     printf("\n ");printf("%lf ",cov[2]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
 /*      if(*iter <=3){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        tm = *localtime(&curr_time.tv_sec);
   goto end;*/        strcpy(strcurr,asctime(&tmf));
     return ps;  /*       asctime_r(&tm,strcurr); */
 }        forecast_time=curr_time;
         itmp = strlen(strcurr);
 /**************** Product of 2 matrices ******************/        if(strcurr[itmp-1]=='\n')
           strcurr[itmp-1]='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        for(niterf=10;niterf<=30;niterf+=10){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /* in, b, out are matrice of pointers which should have been initialized          tmf = *localtime(&forecast_time.tv_sec);
      before: only the contents of out is modified. The function returns  /*      asctime_r(&tmf,strfor); */
      a pointer to pointers identical to out */          strcpy(strfor,asctime(&tmf));
   long i, j, k;          itmp = strlen(strfor);
   for(i=nrl; i<= nrh; i++)          if(strfor[itmp-1]=='\n')
     for(k=ncolol; k<=ncoloh; k++)          strfor[itmp-1]='\0';
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         out[i][k] +=in[i][j]*b[j][k];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   return out;      }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 /************* Higher Matrix Product ***************/  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fprintf(ficlog,"fret=%lf \n",*fret);
 {  #endif
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        printf("%d",i);fflush(stdout);
      duration (i.e. until        fprintf(ficlog,"%d",i);fflush(ficlog);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        linmin(p,xit,n,fret,func); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        if (fabs(fptt-(*fret)) > del) { 
      (typically every 2 years instead of every month which is too big).          del=fabs(fptt-(*fret)); 
      Model is determined by parameters x and covariates have to be          ibig=i; 
      included manually here.        } 
   #ifdef DEBUG
      */        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   int i, j, d, h, k;        for (j=1;j<=n;j++) {
   double **out, cov[NCOVMAX];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **newm;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* Hstepm could be zero and should return the unit matrix */        }
   for (i=1;i<=nlstate+ndeath;i++)        for(j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){          printf(" p=%.12e",p[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog," p=%.12e",p[j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        printf("\n");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"\n");
   for(h=1; h <=nhstepm; h++){  #endif
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       /* Covariates have to be included here again */  #ifdef DEBUG
       cov[1]=1.;        int k[2],l;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        k[0]=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        k[1]=-1;
       for (k=1; k<=cptcovage;k++)        printf("Max: %.12e",(*func)(p));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovprod;k++)        for (j=1;j<=n;j++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
         }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf("\n");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog,"\n");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        for(l=0;l<=1;l++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          for (j=1;j<=n;j++) {
       savm=oldm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       oldm=newm;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<=nlstate+ndeath; i++)          }
       for(j=1;j<=nlstate+ndeath;j++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         po[i][j][h]=newm[i][j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */  #endif
       }  
   } /* end h */  
   return po;        free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 /*************** log-likelihood *************/        return; 
 double func( double *x)      } 
 {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int i, ii, j, k, mi, d, kk;      for (j=1;j<=n;j++) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        ptt[j]=2.0*p[j]-pt[j]; 
   double **out;        xit[j]=p[j]-pt[j]; 
   double sw; /* Sum of weights */        pt[j]=p[j]; 
   double lli; /* Individual log likelihood */      } 
   long ipmx;      fptt=(*func)(ptt); 
   /*extern weight */      if (fptt < fp) { 
   /* We are differentiating ll according to initial status */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        if (t < 0.0) { 
   /*for(i=1;i<imx;i++)          linmin(p,xit,n,fret,func); 
     printf(" %d\n",s[4][i]);          for (j=1;j<=n;j++) { 
   */            xi[j][ibig]=xi[j][n]; 
   cov[1]=1.;            xi[j][n]=xit[j]; 
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #ifdef DEBUG
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(mi=1; mi<= wav[i]-1; mi++){          for(j=1;j<=n;j++){
       for (ii=1;ii<=nlstate+ndeath;ii++)            printf(" %.12e",xit[j]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);            fprintf(ficlog," %.12e",xit[j]);
       for(d=0; d<dh[mi][i]; d++){          }
         newm=savm;          printf("\n");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          fprintf(ficlog,"\n");
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
         }      } 
            } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /**** Prevalence limit (stable prevalence)  ****************/
         oldm=newm;  
          double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          {
       } /* end mult */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             matrix by transitions matrix until convergence is reached */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    int i, ii,j,k;
       ipmx +=1;    double min, max, maxmin, maxmax,sumnew=0.;
       sw += weight[i];    double **matprod2();
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out, cov[NCOVMAX], **pmij();
     } /* end of wave */    double **newm;
   } /* end of individual */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (j=1;j<=nlstate+ndeath;j++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return -l;      }
 }  
      cov[1]=1.;
    
 /*********** Maximum Likelihood Estimation ***************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      newm=savm;
 {      /* Covariates have to be included here again */
   int i,j, iter;       cov[2]=agefin;
   double **xi,*delti;    
   double fret;        for (k=1; k<=cptcovn;k++) {
   xi=matrix(1,npar,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("Powell\n");        for (k=1; k<=cptcovprod;k++)
   powell(p,xi,npar,ftol,&iter,&fret,func);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 /**** Computes Hessian and covariance matrix ***/      savm=oldm;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      oldm=newm;
 {      maxmax=0.;
   double  **a,**y,*x,pd;      for(j=1;j<=nlstate;j++){
   double **hess;        min=1.;
   int i, j,jk;        max=0.;
   int *indx;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   double hessii(double p[], double delta, int theta, double delti[]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double hessij(double p[], double delti[], int i, int j);          prlim[i][j]= newm[i][j]/(1-sumnew);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          max=FMAX(max,prlim[i][j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          min=FMIN(min,prlim[i][j]);
         }
   hess=matrix(1,npar,1,npar);        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){      if(maxmax < ftolpl){
     printf("%d",i);fflush(stdout);        return prlim;
     hess[i][i]=hessii(p,ftolhess,i,delti);      }
     /*printf(" %f ",p[i]);*/    }
     /*printf(" %lf ",hess[i][i]);*/  }
   }  
    /*************** transition probabilities ***************/ 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if (j>i) {  {
         printf(".%d%d",i,j);fflush(stdout);    double s1, s2;
         hess[i][j]=hessij(p,delti,i,j);    /*double t34;*/
         hess[j][i]=hess[i][j];        int i,j,j1, nc, ii, jj;
         /*printf(" %lf ",hess[i][j]);*/  
       }      for(i=1; i<= nlstate; i++){
     }      for(j=1; j<i;j++){
   }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   printf("\n");          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
          }
   a=matrix(1,npar,1,npar);        ps[i][j]=s2;
   y=matrix(1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   x=vector(1,npar);      }
   indx=ivector(1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++)        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   ludcmp(a,npar,indx,&pd);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   for (j=1;j<=npar;j++) {        ps[i][j]=s2;
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;    }
     lubksb(a,npar,indx,x);      /*ps[3][2]=1;*/
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];    for(i=1; i<= nlstate; i++){
     }       s1=0;
   }      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   printf("\n#Hessian matrix#\n");      for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1;i<=npar;i++) {        s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++) {      ps[i][i]=1./(s1+1.);
       printf("%.3e ",hess[i][j]);      for(j=1; j<i; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf("\n");      for(j=i+1; j<=nlstate+ndeath; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /* Recompute Inverse */    } /* end i */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   ludcmp(a,npar,indx,&pd);      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   /*  printf("\n#Hessian matrix recomputed#\n");        ps[ii][ii]=1;
       }
   for (j=1;j<=npar;j++) {    }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for (i=1;i<=npar;i++){      for(jj=1; jj<= nlstate+ndeath; jj++){
       y[i][j]=x[i];       printf("%lf ",ps[ii][jj]);
       printf("%.3e ",y[i][j]);     }
     }      printf("\n ");
     printf("\n");      }
   }      printf("\n ");printf("%lf ",cov[2]);*/
   */  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_matrix(a,1,npar,1,npar);    goto end;*/
   free_matrix(y,1,npar,1,npar);      return ps;
   free_vector(x,1,npar);  }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /**************** Product of 2 matrices ******************/
   
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /*************** hessian matrix ****************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 double hessii( double x[], double delta, int theta, double delti[])    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   int i;       a pointer to pointers identical to out */
   int l=1, lmax=20;    long i, j, k;
   double k1,k2;    for(i=nrl; i<= nrh; i++)
   double p2[NPARMAX+1];      for(k=ncolol; k<=ncoloh; k++)
   double res;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          out[i][k] +=in[i][j]*b[j][k];
   double fx;  
   int k=0,kmax=10;    return out;
   double l1;  }
   
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /************* Higher Matrix Product ***************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    /* Computes the transition matrix starting at age 'age' over 
       delt = delta*(l1*k);       'nhstepm*hstepm*stepm' months (i.e. until
       p2[theta]=x[theta] +delt;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       k1=func(p2)-fx;       nhstepm*hstepm matrices. 
       p2[theta]=x[theta]-delt;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       k2=func(p2)-fx;       (typically every 2 years instead of every month which is too big 
       /*res= (k1-2.0*fx+k2)/delt/delt; */       for the memory).
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       Model is determined by parameters x and covariates have to be 
             included manually here. 
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       */
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    int i, j, d, h, k;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double **out, cov[NCOVMAX];
         k=kmax;    double **newm;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /* Hstepm could be zero and should return the unit matrix */
         k=kmax; l=lmax*10.;    for (i=1;i<=nlstate+ndeath;i++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        oldm[i][j]=(i==j ? 1.0 : 0.0);
         delts=delt;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   delti[theta]=delts;      for(d=1; d <=hstepm; d++){
   return res;        newm=savm;
          /* Covariates have to be included here again */
 }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {        for (k=1; k<=cptcovage;k++)
   int i;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int l=1, l1, lmax=20;        for (k=1; k<=cptcovprod;k++)
   double k1,k2,k3,k4,res,fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double p2[NPARMAX+1];  
   int k;  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   fx=func(x);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (k=1; k<=2; k++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (i=1;i<=npar;i++) p2[i]=x[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;        savm=oldm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        oldm=newm;
     k1=func(p2)-fx;      }
        for(i=1; i<=nlstate+ndeath; i++)
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1;j<=nlstate+ndeath;j++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          po[i][j][h]=newm[i][j];
     k2=func(p2)-fx;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } /* end h */
     k3=func(p2)-fx;    return po;
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /*************** log-likelihood *************/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  double func( double *x)
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i, ii, j, k, mi, d, kk;
 #endif    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
   return res;    double sw; /* Sum of weights */
 }    double lli; /* Individual log likelihood */
     int s1, s2;
 /************** Inverse of matrix **************/    double bbh, survp;
 void ludcmp(double **a, int n, int *indx, double *d)    long ipmx;
 {    /*extern weight */
   int i,imax,j,k;    /* We are differentiating ll according to initial status */
   double big,dum,sum,temp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double *vv;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   vv=vector(1,n);    */
   *d=1.0;    cov[1]=1.;
   for (i=1;i<=n;i++) {  
     big=0.0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;    if(mle==1){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     vv[i]=1.0/big;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   for (j=1;j<=n;j++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<j;i++) {            for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       a[i][j]=sum;            }
     }          for(d=0; d<dh[mi][i]; d++){
     big=0.0;            newm=savm;
     for (i=j;i<=n;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sum=a[i][j];            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<j;k++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ( (dum=vv[i]*fabs(sum)) >= big) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         big=dum;            savm=oldm;
         imax=i;            oldm=newm;
       }          } /* end mult */
     }        
     if (j != imax) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (k=1;k<=n;k++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
         dum=a[imax][k];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         a[imax][k]=a[j][k];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         a[j][k]=dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       *d = -(*d);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       vv[imax]=vv[j];           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     indx[j]=imax;           * -stepm/2 to stepm/2 .
     if (a[j][j] == 0.0) a[j][j]=TINY;           * For stepm=1 the results are the same as for previous versions of Imach.
     if (j != n) {           * For stepm > 1 the results are less biased than in previous versions. 
       dum=1.0/(a[j][j]);           */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(vv,1,n);  /* Doesn't work */          /* bias is positive if real duration
 ;           * is higher than the multiple of stepm and negative otherwise.
 }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void lubksb(double **a, int n, int *indx, double b[])          if( s2 > nlstate){ 
 {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   int i,ii=0,ip,j;               to the likelihood is the probability to die between last step unit time and current 
   double sum;               step unit time, which is also the differences between probability to die before dh 
                 and probability to die before dh-stepm . 
   for (i=1;i<=n;i++) {               In version up to 0.92 likelihood was computed
     ip=indx[i];          as if date of death was unknown. Death was treated as any other
     sum=b[ip];          health state: the date of the interview describes the actual state
     b[ip]=b[i];          and not the date of a change in health state. The former idea was
     if (ii)          to consider that at each interview the state was recorded
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          (healthy, disable or death) and IMaCh was corrected; but when we
     else if (sum) ii=i;          introduced the exact date of death then we should have modified
     b[i]=sum;          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   for (i=n;i>=1;i--) {          stepm. It is no more the probability to die between last interview
     sum=b[i];          and month of death but the probability to survive from last
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          interview up to one month before death multiplied by the
     b[i]=sum/a[i][i];          probability to die within a month. Thanks to Chris
   }          Jackson for correcting this bug.  Former versions increased
 }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 /************ Frequencies ********************/          lower mortality.
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            */
 {  /* Some frequencies */            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***freq; /* Frequencies */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double *pp;          } 
   double pos, k2, dateintsum=0,k2cpt=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   FILE *ficresp;          /*if(lli ==000.0)*/
   char fileresp[FILENAMELENGTH];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   pp=vector(1,nlstate);          sw += weight[i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileresp,"p");        } /* end of wave */
   strcat(fileresp,fileres);      } /* end of individual */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    }  else if(mle==2){
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     exit(0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   j1=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
            for(d=0; d<=dh[mi][i]; d++){
   for(k1=1; k1<=j;k1++){            newm=savm;
     for(i1=1; i1<=ncodemax[k1];i1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       j1++;            for (kk=1; kk<=cptcovage;kk++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         scanf("%d", i);*/            }
       for (i=-1; i<=nlstate+ndeath; i++)              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (jk=-1; jk<=nlstate+ndeath; jk++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=agemin; m <= agemax+3; m++)            savm=oldm;
             freq[i][jk][m]=0;            oldm=newm;
                } /* end mult */
       dateintsum=0;        
       k2cpt=0;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (i=1; i<=imx; i++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
         bool=1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         if  (cptcovn>0) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for (z1=1; z1<=cptcoveff; z1++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               bool=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
         if (bool==1) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
           for(m=firstpass; m<=lastpass; m++){           * -stepm/2 to stepm/2 .
             k2=anint[m][i]+(mint[m][i]/12.);           * For stepm=1 the results are the same as for previous versions of Imach.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * For stepm > 1 the results are less biased than in previous versions. 
               if(agev[m][i]==0) agev[m][i]=agemax+1;           */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          s1=s[mw[mi][i]][i];
               if (m<lastpass) {          s2=s[mw[mi+1][i]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /* bias is positive if real duration
               }           * is higher than the multiple of stepm and negative otherwise.
                         */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 dateintsum=dateintsum+k2;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                 k2cpt++;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
               }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             }          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
       }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        } /* end of wave */
       } /* end of individual */
       if  (cptcovn>0) {    }  else if(mle==3){  /* exponential inter-extrapolation */
         fprintf(ficresp, "\n#********** Variable ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "**********\n#");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<dh[mi][i]; d++){
         if(i==(int)agemax+3)            newm=savm;
           printf("Total");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           printf("Age %d", i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
           if(pp[jk]>=1.e-10)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* But now since version 0.9 we anticipate for bias and large stepm.
           else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * probability in order to take into account the bias as a fraction of the way
             pp[jk] += freq[jk][m][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * For stepm > 1 the results are less biased than in previous versions. 
           pos += pp[jk];           */
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           if(pos>=1.e-5)          s2=s[mw[mi+1][i]][i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          bbh=(double)bh[mi][i]/(double)stepm; 
           else          /* bias is positive if real duration
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * is higher than the multiple of stepm and negative otherwise.
           if( i <= (int) agemax){           */
             if(pos>=1.e-5){          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          /*if(lli ==000.0)*/
             }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             else          ipmx +=1;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(m=-1; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i <= (int) agemax)        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   dateintmean=dateintsum/k2cpt;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   /* End of Freq */          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Prevalence ********************/            savm=oldm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp;          if( s2 > nlstate){ 
   double pos, k2;            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   pp=vector(1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
            ipmx +=1;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   j=cptcoveff;        } /* end of wave */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for(k1=1; k1<=j;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       j1++;        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=-1; i<=nlstate+ndeath; i++)              for (j=1;j<=nlstate+ndeath;j++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;            }
                for(d=0; d<dh[mi][i]; d++){
       for (i=1; i<=imx; i++) {            newm=savm;
         bool=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
           for (z1=1; z1<=cptcoveff; z1++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
               bool=0;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        
               if(agev[m][i]==1) agev[m][i]=agemax+2;          s1=s[mw[mi][i]][i];
               if (m<lastpass) {          s2=s[mw[mi+1][i]][i];
                 if (calagedate>0)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ipmx +=1;
                 else          sw += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               }        } /* end of wave */
             }      } /* end of individual */
           }    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=1; jk <=nlstate ; jk++){    return -l;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  /*************** log-likelihood *************/
         for(jk=1; jk <=nlstate ; jk++){  double funcone( double *x)
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    /* Same as likeli but slower because of a lot of printf and if */
         }    int i, ii, j, k, mi, d, kk;
            double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for(jk=1; jk <=nlstate ; jk++){    double **out;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double lli; /* Individual log likelihood */
             pp[jk] += freq[jk][m][i];    double llt;
         }    int s1, s2;
            double bbh, survp;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /*extern weight */
            /* We are differentiating ll according to initial status */
         for(jk=1; jk <=nlstate ; jk++){        /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if( i <= (int) agemax){    /*for(i=1;i<imx;i++) 
             if(pos>=1.e-5){      printf(" %d\n",s[4][i]);
               probs[i][jk][j1]= pp[jk]/pos;    */
             }    cov[1]=1.;
           }  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
          
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
 }  /* End of Freq */        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 /************* Waves Concatenation ***************/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Death is a valid wave (if date is known).                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          savm=oldm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          oldm=newm;
      and mw[mi+1][i]. dh depends on stepm.        } /* end mult */
      */        
         s1=s[mw[mi][i]][i];
   int i, mi, m;        s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        bbh=(double)bh[mi][i]/(double)stepm; 
      double sum=0., jmean=0.;*/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   int j, k=0,jk, ju, jl;         */
   double sum=0.;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   jmin=1e+5;          lli=log(out[s1][s2] - savm[s1][s2]);
   jmax=-1;        } else if (mle==1){
   jmean=0.;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(i=1; i<=imx; i++){        } else if(mle==2){
     mi=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     m=firstpass;        } else if(mle==3){  /* exponential inter-extrapolation */
     while(s[m][i] <= nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if(s[m][i]>=1)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         mw[++mi][i]=m;          lli=log(out[s1][s2]); /* Original formula */
       if(m >=lastpass)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         break;          lli=log(out[s1][s2]); /* Original formula */
       else        } /* End of if */
         m++;        ipmx +=1;
     }/* end while */        sw += weight[i];
     if (s[m][i] > nlstate){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       /* if(mi==0)  never been interviewed correctly before death */        if(globpr){
          /* Only death is a correct wave */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       mw[mi][i]=m;   %10.6f %10.6f %10.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     wav[i]=mi;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     if(mi==0)            llt +=ll[k]*gipmx/gsw;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   }          }
           fprintf(ficresilk," %10.6f\n", -llt);
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){      } /* end of wave */
       if (stepm <=0)    } /* end of individual */
         dh[mi][i]=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if (s[mw[mi+1][i]][i] > nlstate) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if (agedc[i] < 2*AGESUP) {    if(globpr==0){ /* First time we count the contributions and weights */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      gipmx=ipmx;
           if(j==0) j=1;  /* Survives at least one month after exam */      gsw=sw;
           k=k+1;    }
           if (j >= jmax) jmax=j;    return -l;
           if (j <= jmin) jmin=j;  }
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  char *subdirf(char fileres[])
           }  {
         }    /* Caution optionfilefiname is hidden */
         else{    strcpy(tmpout,optionfilefiname);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcat(tmpout,"/"); /* Add to the right */
           k=k+1;    strcat(tmpout,fileres);
           if (j >= jmax) jmax=j;    return tmpout;
           else if (j <= jmin)jmin=j;  }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;  char *subdirf2(char fileres[], char *preop)
         }  {
         jk= j/stepm;    
         jl= j -jk*stepm;    strcpy(tmpout,optionfilefiname);
         ju= j -(jk+1)*stepm;    strcat(tmpout,"/");
         if(jl <= -ju)    strcat(tmpout,preop);
           dh[mi][i]=jk;    strcat(tmpout,fileres);
         else    return tmpout;
           dh[mi][i]=jk+1;  }
         if(dh[mi][i]==0)  char *subdirf3(char fileres[], char *preop, char *preop2)
           dh[mi][i]=1; /* At least one step */  {
       }    
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
   jmean=sum/k;    strcat(tmpout,preop);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    strcat(tmpout,preop2);
  }    strcat(tmpout,fileres);
 /*********** Tricode ****************************/    return tmpout;
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
   int Ndum[20],ij=1, k, j, i;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int cptcode=0;  {
   cptcoveff=0;    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
   for (k=0; k<19; k++) Ndum[k]=0;       to check the exact contribution to the likelihood.
   for (k=1; k<=7; k++) ncodemax[k]=0;       Plotting could be done.
      */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int k;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    if(*globpri !=0){ /* Just counts and sums, no printings */
       Ndum[ij]++;      strcpy(fileresilk,"ilk"); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      strcat(fileresilk,fileres);
       if (ij > cptcode) cptcode=ij;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for (i=0; i<=cptcode; i++) {      }
       if(Ndum[i]!=0) ncodemax[j]++;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     ij=1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for (k=0; k<=19; k++) {    }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    *fretone=(*funcone)(p);
              if(*globpri !=0){
           ij++;      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         if (ij > ncodemax[j]) break;      fflush(fichtm); 
       }      } 
     }    return;
   }    }
   
  for (k=0; k<19; k++) Ndum[k]=0;  
   /*********** Maximum Likelihood Estimation ***************/
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       Ndum[ij]++;  {
     }    int i,j, iter;
     double **xi;
  ij=1;    double fret;
  for (i=1; i<=10; i++) {    double fretone; /* Only one call to likelihood */
    if((Ndum[i]!=0) && (i<=ncovcol)){    char filerespow[FILENAMELENGTH];
      Tvaraff[ij]=i;    xi=matrix(1,npar,1,npar);
      ij++;    for (i=1;i<=npar;i++)
    }      for (j=1;j<=npar;j++)
  }        xi[i][j]=(i==j ? 1.0 : 0.0);
      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     cptcoveff=ij-1;    strcpy(filerespow,"pow"); 
 }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 /*********** Health Expectancies ****************/      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 {    for (i=1;i<=nlstate;i++)
   /* Health expectancies */      for(j=1;j<=nlstate+ndeath;j++)
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double age, agelim, hf;    fprintf(ficrespow,"\n");
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double *xp;  
   double **gp, **gm;    fclose(ficrespow);
   double ***gradg, ***trgradg;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int theta;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficreseij,"# Health expectancies\n");  {
   fprintf(ficreseij,"# Age");    double  **a,**y,*x,pd;
   for(i=1; i<=nlstate;i++)    double **hess;
     for(j=1; j<=nlstate;j++)    int i, j,jk;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int *indx;
   fprintf(ficreseij,"\n");  
     double hessii(double p[], double delta, int theta, double delti[]);
   if(estepm < stepm){    double hessij(double p[], double delti[], int i, int j);
     printf ("Problem %d lower than %d\n",estepm, stepm);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    hess=matrix(1,npar,1,npar);
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    printf("\nCalculation of the hessian matrix. Wait...\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    * progression inbetween and thus overestimating or underestimating according    for (i=1;i<=npar;i++){
    * to the curvature of the survival function. If, for the same date, we      printf("%d",i);fflush(stdout);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      fprintf(ficlog,"%d",i);fflush(ficlog);
    * to compare the new estimate of Life expectancy with the same linear      hess[i][i]=hessii(p,ftolhess,i,delti);
    * hypothesis. A more precise result, taking into account a more precise      /*printf(" %f ",p[i]);*/
    * curvature will be obtained if estepm is as small as stepm. */      /*printf(" %lf ",hess[i][i]);*/
     }
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++) {
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++)  {
      nstepm is the number of stepm from age to agelin.        if (j>i) { 
      Look at hpijx to understand the reason of that which relies in memory size          printf(".%d%d",i,j);fflush(stdout);
      and note for a fixed period like estepm months */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          hess[i][j]=hessij(p,delti,i,j);
      survival function given by stepm (the optimization length). Unfortunately it          hess[j][i]=hess[i][j];    
      means that if the survival funtion is printed only each two years of age and if          /*printf(" %lf ",hess[i][j]);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }
      results. So we changed our mind and took the option of the best precision.      }
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("\n");
     fprintf(ficlog,"\n");
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     /* nhstepm age range expressed in number of stepm */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    a=matrix(1,npar,1,npar);
     /* if (stepm >= YEARM) hstepm=1;*/    y=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    x=vector(1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    indx=ivector(1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++)
     gp=matrix(0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gm=matrix(0,nhstepm,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for (j=1;j<=npar;j++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for (i=1;i<=npar;i++) x[i]=0;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        x[j]=1;
        lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        matcov[i][j]=x[i];
       }
     /* Computing Variances of health expectancies */    }
   
      for(theta=1; theta <=npar; theta++){    printf("\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
       cptj=0;      }
       for(j=1; j<= nlstate; j++){      printf("\n");
         for(i=1; i<=nlstate; i++){      fprintf(ficlog,"\n");
           cptj=cptj+1;    }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* Recompute Inverse */
           }    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
        
          /*  printf("\n#Hessian matrix recomputed#\n");
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
            x[j]=1;
       cptj=0;      lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++){ 
         for(i=1;i<=nlstate;i++){        y[i][j]=x[i];
           cptj=cptj+1;        printf("%.3e ",y[i][j]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        fprintf(ficlog,"%.3e ",y[i][j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      }
           }      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
          */
      
     free_matrix(a,1,npar,1,npar);
       for(j=1; j<= nlstate*2; j++)    free_matrix(y,1,npar,1,npar);
         for(h=0; h<=nhstepm-1; h++){    free_vector(x,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
   
      }  
      }
 /* End theta */  
   /*************** hessian matrix ****************/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  double hessii( double x[], double delta, int theta, double delti[])
   {
      for(h=0; h<=nhstepm-1; h++)    int i;
       for(j=1; j<=nlstate*2;j++)    int l=1, lmax=20;
         for(theta=1; theta <=npar; theta++)    double k1,k2;
         trgradg[h][j][theta]=gradg[h][theta][j];    double p2[NPARMAX+1];
     double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      for(i=1;i<=nlstate*2;i++)    double fx;
       for(j=1;j<=nlstate*2;j++)    int k=0,kmax=10;
         varhe[i][j][(int)age] =0.;    double l1;
   
      printf("%d||",(int)age);fflush(stdout);    fx=func(x);
     for(h=0;h<=nhstepm-1;h++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(k=0;k<=nhstepm-1;k++){    for(l=0 ; l <=lmax; l++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      l1=pow(10,l);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      delts=delt;
         for(i=1;i<=nlstate*2;i++)      for(k=1 ; k <kmax; k=k+1){
           for(j=1;j<=nlstate*2;j++)        delt = delta*(l1*k);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
     }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
              /*res= (k1-2.0*fx+k2)/delt/delt; */
     /* Computing expectancies */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++)  #ifdef DEBUG
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            #endif
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
         }
     fprintf(ficreseij,"%3.0f",age );        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     cptj=0;          k=kmax; l=lmax*10.;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         cptj++;          delts=delt;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }      }
     fprintf(ficreseij,"\n");    }
        delti[theta]=delts;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    return res; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessij( double x[], double delti[], int thetai,int thetaj)
   }  {
   free_vector(xp,1,npar);    int i;
   free_matrix(dnewm,1,nlstate*2,1,npar);    int l=1, l1, lmax=20;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double p2[NPARMAX+1];
 }    int k;
   
 /************ Variance ******************/    fx=func(x);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for (k=1; k<=2; k++) {
 {      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* Variance of health expectancies */      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **newm;      k1=func(p2)-fx;
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm, h, nstepm ;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int k, cptcode;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *xp;      k2=func(p2)-fx;
   double **gp, **gm;    
   double ***gradg, ***trgradg;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double age,agelim, hf;      k3=func(p2)-fx;
   int theta;    
       p2[thetai]=x[thetai]-delti[thetai]/k;
    fprintf(ficresvij,"# Covariances of life expectancies\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvij,"# Age");      k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j<=nlstate;j++)  #ifdef DEBUG
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresvij,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    return res;
   doldm=matrix(1,nlstate,1,nlstate);  }
    
   if(estepm < stepm){  /************** Inverse of matrix **************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   else  hstepm=estepm;      int i,imax,j,k; 
   /* For example we decided to compute the life expectancy with the smallest unit */    double big,dum,sum,temp; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double *vv; 
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.    vv=vector(1,n); 
      Look at hpijx to understand the reason of that which relies in memory size    *d=1.0; 
      and note for a fixed period like k years */    for (i=1;i<=n;i++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      big=0.0; 
      survival function given by stepm (the optimization length). Unfortunately it      for (j=1;j<=n;j++) 
      means that if the survival funtion is printed only each two years of age and if        if ((temp=fabs(a[i][j])) > big) big=temp; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      results. So we changed our mind and took the option of the best precision.      vv[i]=1.0/big; 
   */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (j=1;j<=n;j++) { 
   agelim = AGESUP;      for (i=1;i<j;i++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        sum=a[i][j]; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        a[i][j]=sum; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      big=0.0; 
     gp=matrix(0,nhstepm,1,nlstate);      for (i=j;i<=n;i++) { 
     gm=matrix(0,nhstepm,1,nlstate);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     for(theta=1; theta <=npar; theta++){          sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            imax=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
       } 
       if (popbased==1) {      if (j != imax) { 
         for(i=1; i<=nlstate;i++)        for (k=1;k<=n;k++) { 
           prlim[i][i]=probs[(int)age][i][ij];          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
       for(j=1; j<= nlstate; j++){        } 
         for(h=0; h<=nhstepm; h++){        *d = -(*d); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        vv[imax]=vv[j]; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      } 
         }      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        dum=1.0/(a[j][j]); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
      free_vector(vv,1,n);  /* Doesn't work */
       if (popbased==1) {  ;
         for(i=1; i<=nlstate;i++)  } 
           prlim[i][i]=probs[(int)age][i][ij];  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
       for(j=1; j<= nlstate; j++){    int i,ii=0,ip,j; 
         for(h=0; h<=nhstepm; h++){    double sum; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)   
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
       }      sum=b[ip]; 
       b[ip]=b[i]; 
       for(j=1; j<= nlstate; j++)      if (ii) 
         for(h=0; h<=nhstepm; h++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      else if (sum) ii=i; 
         }      b[i]=sum; 
     } /* End theta */    } 
     for (i=n;i>=1;i--) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(h=0; h<=nhstepm; h++)      b[i]=sum/a[i][i]; 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)  } 
           trgradg[h][j][theta]=gradg[h][theta][j];  
   /************ Frequencies ********************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     for(i=1;i<=nlstate;i++)  {  /* Some frequencies */
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     for(h=0;h<=nhstepm;h++){    double ***freq; /* Frequencies */
       for(k=0;k<=nhstepm;k++){    double *pp, **prop;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    FILE *ficresp;
         for(i=1;i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
           for(j=1;j<=nlstate;j++)    
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     fprintf(ficresvij,"%.0f ",age );    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1; i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      exit(0);
       }    }
     fprintf(ficresvij,"\n");    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     free_matrix(gp,0,nhstepm,1,nlstate);    j1=0;
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    j=cptcoveff;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    first=1;
    
   free_vector(xp,1,npar);    for(k1=1; k1<=j;k1++){
   free_matrix(doldm,1,nlstate,1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 }          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
 /************ Variance of prevlim ******************/          for (jk=-1; jk<=nlstate+ndeath; jk++)  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for(m=iagemin; m <= iagemax+3; m++)
 {              freq[i][jk][m]=0;
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1; i<=nlstate; i++)  
   double **newm;        for(m=iagemin; m <= iagemax+3; m++)
   double **dnewm,**doldm;          prop[i][m]=0;
   int i, j, nhstepm, hstepm;        
   int k, cptcode;        dateintsum=0;
   double *xp;        k2cpt=0;
   double *gp, *gm;        for (i=1; i<=imx; i++) {
   double **gradg, **trgradg;          bool=1;
   double age,agelim;          if  (cptcovn>0) {
   int theta;            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                bool=0;
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)          if (bool==1){
       fprintf(ficresvpl," %1d-%1d",i,i);            for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresvpl,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   xp=vector(1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   dnewm=matrix(1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   doldm=matrix(1,nlstate,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
   hstepm=1*YEARM; /* Every year of age */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   agelim = AGESUP;                }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     if (stepm >= YEARM) hstepm=1;                  dateintsum=dateintsum+k2;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  k2cpt++;
     gradg=matrix(1,npar,1,nlstate);                }
     gp=vector(1,nlstate);                /*}*/
     gm=vector(1,nlstate);            }
           }
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */         
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
         gp[i] = prlim[i][i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=1; i<=nlstate;i++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(i=1;i<=nlstate;i++)        fprintf(ficresp, "\n");
         gm[i] = prlim[i][i];        
         for(i=iagemin; i <= iagemax+3; i++){
       for(i=1;i<=nlstate;i++)          if(i==iagemax+3){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            fprintf(ficlog,"Total");
     } /* End theta */          }else{
             if(first==1){
     trgradg =matrix(1,nlstate,1,npar);              first=0;
               printf("See log file for details...\n");
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)            fprintf(ficlog,"Age %d", i);
         trgradg[j][theta]=gradg[theta][j];          }
           for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       varpl[i][(int)age] =0.;              pp[jk] += freq[jk][m][i]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     fprintf(ficresvpl,"%.0f ",age );              if(first==1){
     for(i=1; i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              }
     fprintf(ficresvpl,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_vector(gp,1,nlstate);            }else{
     free_vector(gm,1,nlstate);              if(first==1)
     free_matrix(gradg,1,npar,1,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(trgradg,1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   } /* End age */            }
           }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            pos += pp[jk];
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            posprop += prop[jk][i];
 {          }
   int i, j, i1, k1, j1, z1;          for(jk=1; jk <=nlstate ; jk++){
   int k=0, cptcode;            if(pos>=1.e-5){
   double **dnewm,**doldm;              if(first==1)
   double *xp;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double *gp, *gm;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **gradg, **trgradg;            }else{
   double age,agelim, cov[NCOVMAX];              if(first==1)
   int theta;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char fileresprob[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   strcpy(fileresprob,"prob");            if( i <= iagemax){
   strcat(fileresprob,fileres);              if(pos>=1.e-5){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf("Problem with resultfile: %s\n", fileresprob);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              }
                else
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprob,"# Age");            }
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=(nlstate+ndeath);j++)          
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   fprintf(ficresprob,"\n");              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   xp=vector(1,npar);              }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if(i <= iagemax)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            fprintf(ficresp,"\n");
            if(first==1)
   cov[1]=1;            printf("Others in log...\n");
   j=cptcoveff;          fprintf(ficlog,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
   j1=0;      }
   for(k1=1; k1<=1;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){    dateintmean=dateintsum/k2cpt; 
     j1++;   
     fclose(ficresp);
     if  (cptcovn>0) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficresprob, "\n#********** Variable ");    free_vector(pp,1,nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficresprob, "**********\n#");    /* End of Freq */
     }  }
      
       for (age=bage; age<=fage; age ++){  /************ Prevalence ********************/
         cov[2]=age;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for (k=1; k<=cptcovn;k++) {  {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                 in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    */
         for (k=1; k<=cptcovprod;k++)   
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
            double ***freq; /* Frequencies */
         gradg=matrix(1,npar,1,9);    double *pp, **prop;
         trgradg=matrix(1,9,1,npar);    double pos,posprop; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double  y2; /* in fractional years */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int iagemin, iagemax;
      
         for(theta=1; theta <=npar; theta++){    iagemin= (int) agemin;
           for(i=1; i<=npar; i++)    iagemax= (int) agemax;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*pp=vector(1,nlstate);*/
              prop=matrix(1,nlstate,iagemin,iagemax+3); 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
              j1=0;
           k=0;    
           for(i=1; i<= (nlstate+ndeath); i++){    j=cptcoveff;
             for(j=1; j<=(nlstate+ndeath);j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               k=k+1;    
               gp[k]=pmmij[i][j];    for(k1=1; k1<=j;k1++){
             }      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
                  
           for(i=1; i<=npar; i++)        for (i=1; i<=nlstate; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       
           k=0;        for (i=1; i<=imx; i++) { /* Each individual */
           for(i=1; i<=(nlstate+ndeath); i++){          bool=1;
             for(j=1; j<=(nlstate+ndeath);j++){          if  (cptcovn>0) {
               k=k+1;            for (z1=1; z1<=cptcoveff; z1++) 
               gm[k]=pmmij[i][j];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             }                bool=0;
           }          } 
                if (bool==1) { 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(theta=1; theta <=npar; theta++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             trgradg[j][theta]=gradg[theta][j];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                          /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                        } 
         pmij(pmmij,cov,ncovmodel,x,nlstate);              }
                    } /* end selection of waves */
         k=0;          }
         for(i=1; i<=(nlstate+ndeath); i++){        }
           for(j=1; j<=(nlstate+ndeath);j++){        for(i=iagemin; i <= iagemax+3; i++){  
             k=k+1;          
             gm[k]=pmmij[i][j];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
         }          } 
        
      /*printf("\n%d ",(int)age);          for(jk=1; jk <=nlstate ; jk++){     
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            if( i <=  iagemax){ 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              if(posprop>=1.e-5){ 
      }*/                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
         fprintf(ficresprob,"\n%d ",(int)age);            } 
           }/* end jk */ 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        }/* end i */ 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      } /* end i1 */
      } /* end k1 */
       }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }  /* End of prevalence */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }  /************* Waves Concatenation ***************/
   free_vector(xp,1,npar);  
   fclose(ficresprob);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
 /******************* Printing html file ***********/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  int lastpass, int stepm, int weightopt, char model[],\       and mw[mi+1][i]. dh depends on stepm.
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \       */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){    int i, mi, m;
   int jj1, k1, i1, cpt;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   FILE *fichtm;       double sum=0., jmean=0.;*/
   /*char optionfilehtm[FILENAMELENGTH];*/    int first;
     int j, k=0,jk, ju, jl;
   strcpy(optionfilehtm,optionfile);    double sum=0.;
   strcat(optionfilehtm,".htm");    first=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    jmin=1e+5;
     printf("Problem with %s \n",optionfilehtm), exit(0);    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      mi=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      m=firstpass;
 \n      while(s[m][i] <= nlstate){
 Total number of observations=%d <br>\n        if(s[m][i]>=1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          mw[++mi][i]=m;
 <hr  size=\"2\" color=\"#EC5E5E\">        if(m >=lastpass)
  <ul><li>Outputs files<br>\n          break;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        else
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          m++;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      }/* end while */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      if (s[m][i] > nlstate){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        mi++;     /* Death is another wave */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  fprintf(fichtm,"\n        mw[mi][i]=m;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      wav[i]=mi;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      if(mi==0){
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        nbwarn++;
         if(first==0){
  if(popforecast==1) fprintf(fichtm,"\n          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          first=1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);        if(first==1){
  else          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        }
 fprintf(fichtm," <li>Graphs</li><p>");      } /* end mi==0 */
     } /* End individuals */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  jj1=0;        if (stepm <=0)
  for(k1=1; k1<=m;k1++){          dh[mi][i]=1;
    for(i1=1; i1<=ncodemax[k1];i1++){        else{
        jj1++;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        if (cptcovn > 0) {            if (agedc[i] < 2*AGESUP) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
          for (cpt=1; cpt<=cptcoveff;cpt++)              if(j==0) j=1;  /* Survives at least one month after exam */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              else if(j<0){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                nberr++;
        }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>                j=1; /* Temporary Dangerous patch */
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
        for(cpt=1; cpt<nlstate;cpt++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
        }              k=k+1;
     for(cpt=1; cpt<=nlstate;cpt++) {              if (j >= jmax) jmax=j;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              if (j <= jmin) jmin=j;
 interval) in state (%d): v%s%d%d.png <br>              sum=sum+j;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          else{
      }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 health expectancies in states (1) and (2): e%s%d.png<br>            k=k+1;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if (j >= jmax) jmax=j;
 fprintf(fichtm,"\n</body>");            else if (j <= jmin)jmin=j;
    }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fclose(fichtm);            if(j<0){
 }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /******************* Gnuplot file **************/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
             sum=sum+j;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }
           jk= j/stepm;
   strcpy(optionfilegnuplot,optionfilefiname);          jl= j -jk*stepm;
   strcat(optionfilegnuplot,".gp.txt");          ju= j -(jk+1)*stepm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     printf("Problem with file %s",optionfilegnuplot);            if(jl==0){
   }              dh[mi][i]=jk;
               bh[mi][i]=0;
 #ifdef windows            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficgp,"cd \"%s\" \n",pathc);                    * at the price of an extra matrix product in likelihood */
 #endif              dh[mi][i]=jk+1;
 m=pow(2,cptcoveff);              bh[mi][i]=ju;
              }
  /* 1eme*/          }else{
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(jl <= -ju){
    for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
 #ifdef windows                                   * is higher than the multiple of stepm and negative otherwise.
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);                                   */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
 #endif            else{
 #ifdef unix              dh[mi][i]=jk+1;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=ju;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            }
 #endif            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 for (i=1; i<= nlstate ; i ++) {              bh[mi][i]=ju; /* At least one step */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }          } /* end if mle */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {      } /* end wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=sum/k;
 }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      for (i=1; i<= nlstate ; i ++) {   }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*********** Tricode ****************************/
 }    void tricode(int *Tvar, int **nbcode, int imx)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  {
 #ifdef unix    
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    int Ndum[20],ij=1, k, j, i, maxncov=19;
 #endif    int cptcode=0;
    }    cptcoveff=0; 
   }   
   /*2 eme*/    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                     modality*/ 
     for (i=1; i<= nlstate+1 ; i ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       k=2*i;        Ndum[ij]++; /*store the modality */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for (j=1; j<= nlstate+1 ; j ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                         Tvar[j]. If V=sex and male is 0 and 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                         female is 1, then  cptcode=1.*/
 }        }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=0; i<=cptcode; i++) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for (j=1; j<= nlstate+1 ; j ++) {      }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      ij=1; 
 }        for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficgp,"\" t\"\" w l 0,");        for (k=0; k<= maxncov; k++) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          if (Ndum[k] != 0) {
       for (j=1; j<= nlstate+1 ; j ++) {            nbcode[Tvar[j]][ij]=k; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }              ij++;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");          if (ij > ncodemax[j]) break; 
     }        }  
   }      } 
      }  
   /*3eme*/  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {   for (i=1; i<=ncovmodel-2; i++) { 
       k=2+nlstate*(2*cpt-2);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);     ij=Tvar[i];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);     Ndum[ij]++;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   ij=1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   for (i=1; i<= maxncov; i++) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     if((Ndum[i]!=0) && (i<=ncovcol)){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       Tvaraff[ij]=i; /*For printing */
        ij++;
 */     }
       for (i=1; i< nlstate ; i ++) {   }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);   
    cptcoveff=ij-1; /*Number of simple covariates*/
       }  }
     }  
   }  /*********** Health Expectancies ****************/
    
   /* CV preval stat */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    /* Health expectancies */
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    double age, agelim, hf;
     double ***p3mat,***varhe;
       for (i=1; i< nlstate ; i ++)    double **dnewm,**doldm;
         fprintf(ficgp,"+$%d",k+i+1);    double *xp;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double **gp, **gm;
          double ***gradg, ***trgradg;
       l=3+(nlstate+ndeath)*cpt;    int theta;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         l=3+(nlstate+ndeath)*cpt;    xp=vector(1,npar);
         fprintf(ficgp,"+$%d",l+i+1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      
     }    fprintf(ficreseij,"# Health expectancies\n");
   }      fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++)
   /* proba elementaires */      for(j=1; j<=nlstate;j++)
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficreseij,"\n");
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){    if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    else  hstepm=estepm;   
           fprintf(ficgp,"\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
         }     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
     }     * we are calculating an estimate of the Life Expectancy assuming a linear 
    }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
    for(jk=1; jk <=m; jk++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);     * to compare the new estimate of Life expectancy with the same linear 
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     * hypothesis. A more precise result, taking into account a more precise
      i=1;     * curvature will be obtained if estepm is as small as stepm. */
      for(k2=1; k2<=nlstate; k2++) {  
        k3=i;    /* For example we decided to compute the life expectancy with the smallest unit */
        for(k=1; k<=(nlstate+ndeath); k++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          if (k != k2){       nhstepm is the number of hstepm from age to agelim 
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       nstepm is the number of stepm from age to agelin. 
            ij=1;       Look at hpijx to understand the reason of that which relies in memory size
            for(j=3; j <=ncovmodel; j++) {       and note for a fixed period like estepm months */
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       survival function given by stepm (the optimization length). Unfortunately it
                ij++;       means that if the survival funtion is printed only each two years of age and if
              }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
              else       results. So we changed our mind and took the option of the best precision.
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    */
            }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            fprintf(ficgp,")/(1");  
                agelim=AGESUP;
            for(k1=1; k1 <=nlstate; k1++){      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      /* nhstepm age range expressed in number of stepm */
              ij=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              for(j=3; j <=ncovmodel; j++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* if (stepm >= YEARM) hstepm=1;*/
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                  ij++;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                else      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
              }  
              fprintf(ficgp,")");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
            }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
            i=i+ncovmodel;  
          }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        }  
      }      /* Computing Variances of health expectancies */
    }  
           for(theta=1; theta <=npar; theta++){
    fclose(ficgp);        for(i=1; i<=npar; i++){ 
 }  /* end gnuplot */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /*************** Moving average **************/    
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        cptj=0;
         for(j=1; j<= nlstate; j++){
   int i, cpt, cptcod;          for(i=1; i<=nlstate; i++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            cptj=cptj+1;
       for (i=1; i<=nlstate;i++)            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           mobaverage[(int)agedeb][i][cptcod]=0.;            }
              }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){       
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       
           for (cpt=0;cpt<=4;cpt++){        for(i=1; i<=npar; i++) 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        
         }        cptj=0;
       }        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
                cptj=cptj+1;
 }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 /************** Forecasting ******************/            }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          }
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1; j<= nlstate*nlstate; j++)
   int *popage;          for(h=0; h<=nhstepm-1; h++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   double *popeffectif,*popcount;          }
   double ***p3mat;       } 
   char fileresf[FILENAMELENGTH];     
   /* End theta */
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   strcpy(fileresf,"f");            trgradg[h][j][theta]=gradg[h][theta][j];
   strcat(fileresf,fileres);       
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          varhe[i][j][(int)age] =0.;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if (mobilav==1) {       for(h=0;h<=nhstepm-1;h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(k=0;k<=nhstepm-1;k++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(j=1;j<=nlstate*nlstate;j++)
   if (stepm<=12) stepsize=1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   agelim=AGESUP;      }
        /* Computing expectancies */
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        for(j=1; j<=nlstate;j++)
   yp1=modf(dateintmean,&yp);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   anprojmean=yp;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   yp2=modf((yp1*12),&yp);            
   mprojmean=yp;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;          }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i2;cptcov++){          cptj++;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       k=k+1;        }
       fprintf(ficresf,"\n#******");      fprintf(ficreseij,"\n");
       for(j=1;j<=cptcoveff;j++) {     
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresf,"******\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficresf,"# StartingAge FinalAge");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          }
          printf("\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficlog,"\n");
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           nhstepm = nhstepm/hstepm;  }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************ Variance ******************/
           oldm=oldms;savm=savms;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    {
            /* Variance of health expectancies */
           for (h=0; h<=nhstepm; h++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             if (h==(int) (calagedate+YEARM*cpt)) {    /* double **newm;*/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
             for(j=1; j<=nlstate+ndeath;j++) {    int i, j, nhstepm, hstepm, h, nstepm ;
               kk1=0.;kk2=0;    int k, cptcode;
               for(i=1; i<=nlstate;i++) {                  double *xp;
                 if (mobilav==1)    double **gp, **gm;  /* for var eij */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double ***gradg, ***trgradg; /*for var eij */
                 else {    double **gradgp, **trgradgp; /* for var p point j */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double *gpp, *gmp; /* for var p point j */
                 }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                    double ***p3mat;
               }    double age,agelim, hf;
               if (h==(int)(calagedate+12*cpt)){    double ***mobaverage;
                 fprintf(ficresf," %.3f", kk1);    int theta;
                            char digit[4];
               }    char digitp[25];
             }  
           }    char fileresprobmorprev[FILENAMELENGTH];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    if(popbased==1){
       }      if(mobilav!=0)
     }        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else 
       strcpy(digitp,"-stablbased-");
   fclose(ficresf);  
 }    if (mobilav!=0) {
 /************** Forecasting ******************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    strcpy(fileresprobmorprev,"prmorprev"); 
   char filerespop[FILENAMELENGTH];    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   agelim=AGESUP;    strcat(fileresprobmorprev,fileres);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcpy(filerespop,"pop");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(filerespop,fileres);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     printf("Problem with forecast resultfile: %s\n", filerespop);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }  
     fprintf(ficresprobmorprev,"\n");
   if (mobilav==1) {    fprintf(ficgp,"\n# Routine varevsij");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      fprintf(ficresvij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   hstepm=1;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   hstepm=hstepm/stepm;    fprintf(ficresvij,"\n");
    
   if (popforecast==1) {    xp=vector(1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     popage=ivector(0,AGESUP);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
     i=1;      gmp=vector(nlstate+1,nlstate+ndeath);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     imx=i;    if(estepm < stepm){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i2;cptcov++){    /* For example we decided to compute the life expectancy with the smallest unit */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       k=k+1;       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficrespop,"\n#******");       nstepm is the number of stepm from age to agelin. 
       for(j=1;j<=cptcoveff;j++) {       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       and note for a fixed period like k years */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficrespop,"******\n");       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficrespop,"# Age");       means that if the survival funtion is printed every two years of age and if
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if (popforecast==1)  fprintf(ficrespop," [Population]");       results. So we changed our mind and took the option of the best precision.
          */
       for (cpt=0; cpt<=0;cpt++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate);
           oldm=oldms;savm=savms;      gm=matrix(0,nhstepm,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          
           for (h=0; h<=nhstepm; h++){      for(theta=1; theta <=npar; theta++){
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               kk1=0.;kk2=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)        if (popbased==1) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          if(mobilav ==0){
                 else {            for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              prlim[i][i]=probs[(int)age][i][ij];
                 }          }else{ /* mobilav */ 
               }            for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              prlim[i][i]=mobaverage[(int)age][i][ij];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          }
                   /*fprintf(ficrespop," %.3f", kk1);        }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }        for(j=1; j<= nlstate; j++){
             }          for(h=0; h<=nhstepm; h++){
             for(i=1; i<=nlstate;i++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               kk1=0.;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                 for(j=1; j<=nlstate;j++){          }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        }
                 }        /* This for computing probability of death (h=1 means
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];           computed over hstepm matrices product = hstepm*stepm months) 
             }           as a weighted average of prlim.
         */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }    
         }        /* end probability of death */
       }  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /******/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if (popbased==1) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if(mobilav ==0){
           nhstepm = nhstepm/hstepm;            for(i=1; i<=nlstate;i++)
                        prlim[i][i]=probs[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }        for(j=1; j<= nlstate; j++){
             for(j=1; j<=nlstate+ndeath;j++) {          for(h=0; h<=nhstepm; h++){
               kk1=0.;kk2=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }        }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
          /* end probability of death */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         for(j=1; j<= nlstate; j++) /* vareij */
   if (popforecast==1) {          for(h=0; h<=nhstepm; h++){
     free_ivector(popage,0,AGESUP);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   fclose(ficrespop);  
 }      } /* End theta */
   
 /***********************************************/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 /**************** Main Program *****************/  
 /***********************************************/      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
 int main(int argc, char *argv[])          for(theta=1; theta <=npar; theta++)
 {            trgradg[h][j][theta]=gradg[h][theta][j];
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double agedeb, agefin,hf;        for(theta=1; theta <=npar; theta++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          trgradgp[j][theta]=gradgp[theta][j];
     
   double fret;  
   double **xi,tmp,delta;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   double dum; /* Dummy variable */        for(j=1;j<=nlstate;j++)
   double ***p3mat;          vareij[i][j][(int)age] =0.;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      for(h=0;h<=nhstepm;h++){
   char title[MAXLINE];        for(k=0;k<=nhstepm;k++){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   char filerest[FILENAMELENGTH];        }
   char fileregp[FILENAMELENGTH];      }
   char popfile[FILENAMELENGTH];    
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      /* pptj */
   int firstobs=1, lastobs=10;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   int sdeb, sfin; /* Status at beginning and end */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int c,  h , cpt,l;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int ju,jl, mi;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          varppt[j][i]=doldmp[j][i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      /* end ppptj */
   int mobilav=0,popforecast=0;      /*  x centered again */
   int hstepm, nhstepm;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   double bage, fage, age, agelim, agebase;      if (popbased==1) {
   double ftolpl=FTOL;        if(mobilav ==0){
   double **prlim;          for(i=1; i<=nlstate;i++)
   double *severity;            prlim[i][i]=probs[(int)age][i][ij];
   double ***param; /* Matrix of parameters */        }else{ /* mobilav */ 
   double  *p;          for(i=1; i<=nlstate;i++)
   double **matcov; /* Matrix of covariance */            prlim[i][i]=mobaverage[(int)age][i][ij];
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */      }
   double ***eij, ***vareij;               
   double **varpl; /* Variances of prevalence limits by age */      /* This for computing probability of death (h=1 means
   double *epj, vepp;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double kk1, kk2;         as a weighted average of prlim.
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      }    
       /* end probability of death */
   
   char z[1]="c", occ;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 #include <sys/time.h>      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 #include <time.h>        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /* long total_usecs;        }
   struct timeval start_time, end_time;      } 
        fprintf(ficresprobmorprev,"\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   printf("\n%s",version);        for(j=1; j<=nlstate;j++){
   if(argc <=1){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     printf("\nEnter the parameter file name: ");        }
     scanf("%s",pathtot);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   else{      free_matrix(gm,0,nhstepm,1,nlstate);
     strcpy(pathtot,argv[1]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*cygwin_split_path(pathtot,path,optionfile);    } /* End age */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   chdir(path);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   replace(pathc,path);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 /*-------- arguments in the command line --------*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   strcpy(fileres,"r");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   strcat(fileres, optionfilefiname);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /*---------arguments file --------*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  */
     printf("Problem with optionfile %s\n",optionfile);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     goto end;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }  
     free_vector(xp,1,npar);
   strcpy(filereso,"o");    free_matrix(doldm,1,nlstate,1,nlstate);
   strcat(filereso,fileres);    free_matrix(dnewm,1,nlstate,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */    fclose(ficresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(ficgp);
     ungetc(c,ficpar);    fflush(fichtm); 
     fgets(line, MAXLINE, ficpar);  }  /* end varevsij */
     puts(line);  
     fputs(line,ficparo);  /************ Variance of prevlim ******************/
   }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   ungetc(c,ficpar);  {
     /* Variance of prevalence limit */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **newm;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **dnewm,**doldm;
 while((c=getc(ficpar))=='#' && c!= EOF){    int i, j, nhstepm, hstepm;
     ungetc(c,ficpar);    int k, cptcode;
     fgets(line, MAXLINE, ficpar);    double *xp;
     puts(line);    double *gp, *gm;
     fputs(line,ficparo);    double **gradg, **trgradg;
   }    double age,agelim;
   ungetc(c,ficpar);    int theta;
       
        fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresvpl,"# Age");
   cptcovn=0;    for(i=1; i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   /* Read guess parameters */    doldm=matrix(1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=1*YEARM; /* Every year of age */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);    agelim = AGESUP;
     puts(line);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fputs(line,ficparo);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      if (stepm >= YEARM) hstepm=1;
   ungetc(c,ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      gp=vector(1,nlstate);
     for(i=1; i <=nlstate; i++)      gm=vector(1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo,"%1d%1d",i1,j1);        for(i=1; i<=npar; i++){ /* Computes gradient */
       printf("%1d%1d",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         printf(" %lf",param[i][j][k]);        for(i=1;i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);          gp[i] = prlim[i][i];
       }      
       fscanf(ficpar,"\n");        for(i=1; i<=npar; i++) /* Computes gradient */
       printf("\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
         for(i=1;i<=nlstate;i++)
   p=param[1][1];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      trgradg =matrix(1,nlstate,1,npar);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);          trgradg[j][theta]=gradg[theta][j];
   }  
   ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   for(i=1; i <=nlstate; i++){      for(i=1;i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);      fprintf(ficresvpl,"%.0f ",age );
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficresvpl,"\n");
         printf(" %le",delti3[i][j][k]);      free_vector(gp,1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
       fscanf(ficpar,"\n");      free_matrix(trgradg,1,nlstate,1,npar);
       printf("\n");    } /* End age */
       fprintf(ficparo,"\n");  
     }    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   delti=delti3[1][1];    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of one-step probabilities  ******************/
     fgets(line, MAXLINE, ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     puts(line);  {
     fputs(line,ficparo);    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
   ungetc(c,ficpar);    int k=0,l, cptcode;
      int first=1, first1;
   matcov=matrix(1,npar,1,npar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   for(i=1; i <=npar; i++){    double **dnewm,**doldm;
     fscanf(ficpar,"%s",&str);    double *xp;
     printf("%s",str);    double *gp, *gm;
     fprintf(ficparo,"%s",str);    double **gradg, **trgradg;
     for(j=1; j <=i; j++){    double **mu;
       fscanf(ficpar," %le",&matcov[i][j]);    double age,agelim, cov[NCOVMAX];
       printf(" %.5le",matcov[i][j]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficparo," %.5le",matcov[i][j]);    int theta;
     }    char fileresprob[FILENAMELENGTH];
     fscanf(ficpar,"\n");    char fileresprobcov[FILENAMELENGTH];
     printf("\n");    char fileresprobcor[FILENAMELENGTH];
     fprintf(ficparo,"\n");  
   }    double ***varpij;
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    strcpy(fileresprob,"prob"); 
       matcov[i][j]=matcov[j][i];    strcat(fileresprob,fileres);
        if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   printf("\n");      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     /*-------- Rewriting paramater file ----------*/    strcpy(fileresprobcov,"probcov"); 
      strcpy(rfileres,"r");    /* "Rparameterfile */    strcat(fileresprobcov,fileres);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      strcat(rfileres,".");    /* */      printf("Problem with resultfile: %s\n", fileresprobcov);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     if((ficres =fopen(rfileres,"w"))==NULL) {    }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
     fprintf(ficres,"#%s\n",version);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
     /*-------- data file ----------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     if((fic=fopen(datafile,"r"))==NULL)    {    }
       printf("Problem with datafile: %s\n", datafile);goto end;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     n= lastobs;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     severity = vector(1,maxwav);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     num=ivector(1,n);    
     moisnais=vector(1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     annais=vector(1,n);    fprintf(ficresprob,"# Age");
     moisdc=vector(1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     andc=vector(1,n);    fprintf(ficresprobcov,"# Age");
     agedc=vector(1,n);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     cod=ivector(1,n);    fprintf(ficresprobcov,"# Age");
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    for(i=1; i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficresprobcov," p%1d-%1d ",i,j);
     tab=ivector(1,NCOVMAX);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     ncodemax=ivector(1,8);      }  
    /* fprintf(ficresprob,"\n");
     i=1;    fprintf(ficresprobcov,"\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficresprobcor,"\n");
       if ((i >= firstobs) && (i <=lastobs)) {   */
           xp=vector(1,npar);
         for (j=maxwav;j>=1;j--){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           strcpy(line,stra);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    first=1;
         }    fprintf(ficgp,"\n# Routine varprob");
            fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  and drawn. It helps understanding how is the covariance between two incidences.\
         for (j=ncovcol;j>=1;j--){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         num[i]=atol(stra);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          standard deviations wide on each axis. <br>\
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         i=i+1;  
       }    cov[1]=1;
     }    tj=cptcoveff;
     /* printf("ii=%d", ij);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        scanf("%d",i);*/    j1=0;
   imx=i-1; /* Number of individuals */    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   /* for (i=1; i<=imx; i++){        j1++;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        if  (cptcovn>0) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprob, "\n#********** Variable "); 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }*/          fprintf(ficresprob, "**********\n#\n");
    /*  for (i=1; i<=imx; i++){          fprintf(ficresprobcov, "\n#********** Variable "); 
      if (s[4][i]==9)  s[4][i]=-1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficresprobcov, "**********\n#\n");
            
            fprintf(ficgp, "\n#********** Variable "); 
   /* Calculation of the number of parameter from char model*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tvar=ivector(1,15);          fprintf(ficgp, "**********\n#\n");
   Tprod=ivector(1,15);          
   Tvaraff=ivector(1,15);          
   Tvard=imatrix(1,15,1,2);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   Tage=ivector(1,15);                for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   if (strlen(model) >1){          
     j=0, j1=0, k1=1, k2=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
     j=nbocc(model,'+');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j1=nbocc(model,'*');          fprintf(ficresprobcor, "**********\n#");    
     cptcovn=j+1;        }
     cptcovprod=j1;        
            for (age=bage; age<=fage; age ++){ 
     strcpy(modelsav,model);          cov[2]=age;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (k=1; k<=cptcovn;k++) {
       printf("Error. Non available option model=%s ",model);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       goto end;          }
     }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
     for(i=(j+1); i>=1;i--){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       cutv(stra,strb,modelsav,'+');          
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*scanf("%d",i);*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
       if (strchr(strb,'*')) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
         cutv(strd,strc,strb,'*');      
         if (strcmp(strc,"age")==0) {          for(theta=1; theta <=npar; theta++){
           cptcovprod--;            for(i=1; i<=npar; i++)
           cutv(strb,stre,strd,'V');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           Tvar[i]=atoi(stre);            
           cptcovage++;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             Tage[cptcovage]=i;            
             /*printf("stre=%s ", stre);*/            k=0;
         }            for(i=1; i<= (nlstate); i++){
         else if (strcmp(strd,"age")==0) {              for(j=1; j<=(nlstate+ndeath);j++){
           cptcovprod--;                k=k+1;
           cutv(strb,stre,strc,'V');                gp[k]=pmmij[i][j];
           Tvar[i]=atoi(stre);              }
           cptcovage++;            }
           Tage[cptcovage]=i;            
         }            for(i=1; i<=npar; i++)
         else {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           cutv(strb,stre,strc,'V');      
           Tvar[i]=ncovcol+k1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           cutv(strb,strc,strd,'V');            k=0;
           Tprod[k1]=i;            for(i=1; i<=(nlstate); i++){
           Tvard[k1][1]=atoi(strc);              for(j=1; j<=(nlstate+ndeath);j++){
           Tvard[k1][2]=atoi(stre);                k=k+1;
           Tvar[cptcovn+k2]=Tvard[k1][1];                gm[k]=pmmij[i][j];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              }
           for (k=1; k<=lastobs;k++)            }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       
           k1++;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           k2=k2+2;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         }          }
       }  
       else {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for(theta=1; theta <=npar; theta++)
        /*  scanf("%d",i);*/              trgradg[j][theta]=gradg[theta][j];
       cutv(strd,strc,strb,'V');          
       Tvar[i]=atoi(strc);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       strcpy(modelsav,stra);            free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         scanf("%d",i);*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 }  
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          
   printf("cptcovprod=%d ", cptcovprod);          k=0;
   scanf("%d ",i);*/          for(i=1; i<=(nlstate); i++){
     fclose(fic);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
     /*  if(mle==1){*/              mu[k][(int) age]=pmmij[i][j];
     if (weightopt != 1) { /* Maximisation without weights*/            }
       for(i=1;i<=n;i++) weight[i]=1.0;          }
     }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     /*-calculation of age at interview from date of interview and age at death -*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     agev=matrix(1,maxwav,1,imx);              varpij[i][j][(int)age] = doldm[i][j];
   
     for (i=1; i<=imx; i++) {          /*printf("\n%d ",(int)age);
       for(m=2; (m<= maxwav); m++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          anint[m][i]=9999;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          s[m][i]=-1;            }*/
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficresprob,"\n%d ",(int)age);
       }          fprintf(ficresprobcov,"\n%d ",(int)age);
     }          fprintf(ficresprobcor,"\n%d ",(int)age);
   
     for (i=1; i<=imx; i++)  {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for(m=1; (m<= maxwav); m++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         if(s[m][i] >0){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           if (s[m][i] >= nlstate+1) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)          i=0;
                 agev[m][i]=agedc[i];          for (k=1; k<=(nlstate);k++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            for (l=1; l<=(nlstate+ndeath);l++){ 
            else {              i=i++;
               if (andc[i]!=9999){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               agev[m][i]=-1;              for (j=1; j<=i;j++){
               }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           }              }
           else if(s[m][i] !=9){ /* Should no more exist */            }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          }/* end of loop for state */
             if(mint[m][i]==99 || anint[m][i]==9999)        } /* end of loop for age */
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){        /* Confidence intervalle of pij  */
               agemin=agev[m][i];        /*
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(ficgp,"\nset noparametric;unset label");
             }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             else if(agev[m][i] >agemax){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               agemax=agev[m][i];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
             }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             /*   agev[m][i] = age[i]+2*m;*/        */
           }  
           else { /* =9 */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             agev[m][i]=1;        first1=1;
             s[m][i]=-1;        for (k2=1; k2<=(nlstate);k2++){
           }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         }            if(l2==k2) continue;
         else /*= 0 Unknown */            j=(k2-1)*(nlstate+ndeath)+l2;
           agev[m][i]=1;            for (k1=1; k1<=(nlstate);k1++){
       }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                    if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
     for (i=1; i<=imx; i++)  {                if(i<=j) continue;
       for(m=1; (m<= maxwav); m++){                for (age=bage; age<=fage; age ++){ 
         if (s[m][i] > (nlstate+ndeath)) {                  if ((int)age %5==0){
           printf("Error: Wrong value in nlstate or ndeath\n");                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           goto end;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    mu1=mu[i][(int) age]/stepm*YEARM ;
     }                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_vector(severity,1,maxwav);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_imatrix(outcome,1,maxwav+1,1,n);                    /* Eigen vectors */
     free_vector(moisnais,1,n);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     free_vector(annais,1,n);                    /*v21=sqrt(1.-v11*v11); *//* error */
     /* free_matrix(mint,1,maxwav,1,n);                    v21=(lc1-v1)/cv12*v11;
        free_matrix(anint,1,maxwav,1,n);*/                    v12=-v21;
     free_vector(moisdc,1,n);                    v22=v11;
     free_vector(andc,1,n);                    tnalp=v21/v11;
                     if(first1==1){
                          first1=0;
     wav=ivector(1,imx);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        /*printf(fignu*/
     /* Concatenates waves */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
       Tcode=ivector(1,100);                      fprintf(ficgp,"\nset parametric;unset label");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       ncodemax[1]=1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    codtab=imatrix(1,100,1,10);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    h=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    m=pow(2,cptcoveff);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    for(k=1;k<=cptcoveff; k++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        for(j=1; j <= ncodemax[k]; j++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
            h++;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          }                    }else{
        }                      first=0;
      }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       codtab[1][2]=1;codtab[2][2]=2; */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    /* for(i=1; i <=m ;i++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(k=1; k <=cptcovn; k++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    }/* if first */
       }                  } /* age mod 5 */
       printf("\n");                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       scanf("%d",i);*/                first=1;
                  } /*l12 */
    /* Calculates basic frequencies. Computes observed prevalence at single age            } /* k12 */
        and prints on file fileres'p'. */          } /*l1 */
         }/* k1 */
          } /* loop covariates */
        }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprob);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fclose(ficresprobcov);
          fclose(ficresprobcor);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fflush(ficgp);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fflush(fichtmcov);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  }
   
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  /******************* Printing html file ***********/
     }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
     /*--------- results files --------------*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
    jk=1;    int jj1, k1, i1, cpt;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /*char optionfilehtm[FILENAMELENGTH];*/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
    for(i=1,jk=1; i <=nlstate; i++){  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
      for(k=1; k <=(nlstate+ndeath); k++){  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
        if (k != i)  /*   } */
          {  
            printf("%d%d ",i,k);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
            fprintf(ficres,"%1d%1d ",i,k);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
            for(j=1; j <=ncovmodel; j++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
              printf("%f ",p[jk]);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
              fprintf(ficres,"%f ",p[jk]);   - Life expectancies by age and initial health status (estepm=%2d months): \
              jk++;     <a href=\"%s\">%s</a> <br>\n</li>", \
            }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
            printf("\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
            fprintf(ficres,"\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
          }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      }  
    }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  if(mle==1){  
     /* Computing hessian and covariance matrix */   m=cptcoveff;
     ftolhess=ftol; /* Usually correct */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }   jj1=0;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   for(k1=1; k1<=m;k1++){
     printf("# Scales (for hessian or gradient estimation)\n");     for(i1=1; i1<=ncodemax[k1];i1++){
      for(i=1,jk=1; i <=nlstate; i++){       jj1++;
       for(j=1; j <=nlstate+ndeath; j++){       if (cptcovn > 0) {
         if (j!=i) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           fprintf(ficres,"%1d%1d",i,j);         for (cpt=1; cpt<=cptcoveff;cpt++) 
           printf("%1d%1d",i,j);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           for(k=1; k<=ncovmodel;k++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             printf(" %.5e",delti[jk]);       }
             fprintf(ficres," %.5e",delti[jk]);       /* Pij */
             jk++;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           printf("\n");       /* Quasi-incidences */
           fprintf(ficres,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
      }         /* Stable prevalence in each health state */
             for(cpt=1; cpt<nlstate;cpt++){
     k=1;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         }
     for(i=1;i<=npar;i++){       for(cpt=1; cpt<=nlstate;cpt++) {
       /*  if (k>nlstate) k=1;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       i1=(i-1)/(ncovmodel*nlstate)+1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       }
       printf("%s%d%d",alph[k],i1,tab[i]);*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fprintf(ficres,"%3d",i);  health expectancies in states (1) and (2): %s%d.png<br>\
       printf("%3d",i);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       for(j=1; j<=i;j++){     } /* end i1 */
         fprintf(ficres," %.5e",matcov[i][j]);   }/* End k1 */
         printf(" %.5e",matcov[i][j]);   fprintf(fichtm,"</ul>");
       }  
       fprintf(ficres,"\n");  
       printf("\n");   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       k++;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     while((c=getc(ficpar))=='#' && c!= EOF){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       ungetc(c,ficpar);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       fgets(line, MAXLINE, ficpar);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
       puts(line);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fputs(line,ficparo);           rfileres,rfileres,\
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     ungetc(c,ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
     estepm=0;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     if (estepm==0 || estepm < stepm) estepm=stepm;           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
     if (fage <= 2) {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       bage = ageminpar;  
       fage = agemaxpar;  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  /*      <br>",fileres,fileres,fileres,fileres); */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*  else  */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       if (cptcovn > 0) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         for (cpt=1; cpt<=cptcoveff;cpt++) 
                 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     puts(line);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     fputs(line,ficparo);  interval) in state (%d): %s%d%d.png <br>\
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   ungetc(c,ficpar);       }
       } /* end i1 */
    }/* End k1 */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   fprintf(fichtm,"</ul>");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   fflush(fichtm);
   }
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);    /******************* Gnuplot file **************/
   fprintf(ficres,"pop_based=%d\n",popbased);    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   while((c=getc(ficpar))=='#' && c!= EOF){    char dirfileres[132],optfileres[132];
     ungetc(c,ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fgets(line, MAXLINE, ficpar);    int ng;
     puts(line);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     fputs(line,ficparo);  /*     printf("Problem with file %s",optionfilegnuplot); */
   }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   ungetc(c,ficpar);  /*   } */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /*#ifdef windows */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficgp,"cd \"%s\" \n",pathc);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      /*#endif */
     m=pow(2,cptcoveff);
   
 while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(dirfileres,optionfilefiname);
     ungetc(c,ficpar);    strcpy(optfileres,"vpl");
     fgets(line, MAXLINE, ficpar);   /* 1eme*/
     puts(line);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fputs(line,ficparo);     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   ungetc(c,ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  set ylabel \"Probability\" \n\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  set ter png small\n\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        for (i=1; i<= nlstate ; i ++) {
 /*------------ gnuplot -------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
 /*------------ free_vector  -------------*/       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
  chdir(path);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  free_ivector(wav,1,imx);         else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       } 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
  free_ivector(num,1,n);       for (i=1; i<= nlstate ; i ++) {
  free_vector(agedc,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
  fclose(ficparo);       }  
  fclose(ficres);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
 /*--------- index.htm --------*/    }
     /*2 eme*/
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    
     for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /*--------------- Prevalence limit --------------*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
   strcpy(filerespl,"pl");      for (i=1; i<= nlstate+1 ; i ++) {
   strcat(filerespl,fileres);        k=2*i;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficrespl,"#Prevalence limit\n");        }   
   fprintf(ficrespl,"#Age ");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   fprintf(ficrespl,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   prlim=matrix(1,nlstate,1,nlstate);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }   
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"\" t\"\" w l 0,");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   agebase=ageminpar;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   agelim=agemaxpar;        }   
   ftolpl=1.e-10;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   i1=cptcoveff;        else fprintf(ficgp,"\" t\"\" w l 0,");
   if (cptcovn < 1){i1=1;}      }
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*3eme*/
         k=k+1;    
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrespl,"\n#******");      for (cpt=1; cpt<= nlstate ; cpt ++) {
         for(j=1;j<=cptcoveff;j++)        k=2+nlstate*(2*cpt-2);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficrespl,"******\n");        fprintf(ficgp,"set ter png small\n\
          set size 0.65,0.65\n\
         for (age=agebase; age<=agelim; age++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficrespl,"%.0f",age );          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficrespl,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }          
     }        */
   fclose(ficrespl);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   /*------------- h Pij x at various ages ------------*/          
          } 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }    /* CV preval stable (period) */
   printf("Computing pij: result on file '%s' \n", filerespij);    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;        k=3;
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   agelim=AGESUP;  set ter png small\nset size 0.65,0.65\n\
   hstepm=stepsize*YEARM; /* Every year of age */  unset log y\n\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   k=0;        for (i=1; i< nlstate ; i ++)
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"+$%d",k+i+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       k=k+1;        
         fprintf(ficrespij,"\n#****** ");        l=3+(nlstate+ndeath)*cpt;
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++) {
         fprintf(ficrespij,"******\n");          l=3+(nlstate+ndeath)*cpt;
                  fprintf(ficgp,"+$%d",l+i+1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* proba elementaires */
           fprintf(ficrespij,"# Age");    for(i=1,jk=1; i <=nlstate; i++){
           for(i=1; i<=nlstate;i++)      for(k=1; k <=(nlstate+ndeath); k++){
             for(j=1; j<=nlstate+ndeath;j++)        if (k != i) {
               fprintf(ficrespij," %1d-%1d",i,j);          for(j=1; j <=ncovmodel; j++){
           fprintf(ficrespij,"\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
            for (h=0; h<=nhstepm; h++){            jk++; 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            fprintf(ficgp,"\n");
             for(i=1; i<=nlstate;i++)          }
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      }
             fprintf(ficrespij,"\n");     }
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           fprintf(ficrespij,"\n");       for(jk=1; jk <=m; jk++) {
         }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     }         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fclose(ficrespij);         i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   /*---------- Forecasting ------------------*/           for(k=1; k<=(nlstate+ndeath); k++) {
   if((stepm == 1) && (strcmp(model,".")==0)){             if (k != k2){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);               if(ng==2)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   }               else
   else{                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     erreur=108;               ij=1;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   /*---------- Health expectancies and variances ------------*/                 }
                  else
   strcpy(filerest,"t");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcat(filerest,fileres);               }
   if((ficrest=fopen(filerest,"w"))==NULL) {               fprintf(ficgp,")/(1");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;               
   }               for(k1=1; k1 <=nlstate; k1++){   
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
   strcpy(filerese,"e");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(filerese,fileres);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {                     ij++;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                   }
   }                   else
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
  strcpy(fileresv,"v");                 fprintf(ficgp,")");
   strcat(fileresv,fileres);               }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);             }
   calagedate=-1;           } /* end k */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         } /* end k2 */
        } /* end jk */
   k=0;     } /* end ng */
   for(cptcov=1;cptcov<=i1;cptcov++){     fflush(ficgp); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }  /* end gnuplot */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*************** Moving average **************/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       fprintf(ficrest,"******\n");  
     int i, cpt, cptcod;
       fprintf(ficreseij,"\n#****** ");    int modcovmax =1;
       for(j=1;j<=cptcoveff;j++)    int mobilavrange, mob;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double age;
       fprintf(ficreseij,"******\n");  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       fprintf(ficresvij,"\n#****** ");                             a covariate has 2 modalities */
       for(j=1;j<=cptcoveff;j++)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      else mobilavrange=mobilav;
       oldm=oldms;savm=savms;      for (age=bage; age<=fage; age++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=modcovmax;cptcod++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       oldm=oldms;savm=savms;      /* We keep the original values on the extreme ages bage, fage and for 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             we use a 5 terms etc. until the borders are no more concerned. 
       */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for (i=1; i<=nlstate;i++){
       fprintf(ficrest,"\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       epj=vector(1,nlstate+1);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(age=bage; age <=fage ;age++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         if (popbased==1) {                }
           for(i=1; i<=nlstate;i++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             prlim[i][i]=probs[(int)age][i][k];            }
         }          }
                }/* end age */
         fprintf(ficrest," %4.0f",age);      }/* end mob */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }else return -1;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    return 0;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  }/* End movingaverage */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }  
           epj[nlstate+1] +=epj[j];  /************** Forecasting ******************/
         }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
         for(i=1, vepp=0.;i <=nlstate;i++)       agemin, agemax range of age
           for(j=1;j <=nlstate;j++)       dateprev1 dateprev2 range of dates during which prevalence is computed
             vepp += vareij[i][j][(int)age];       anproj2 year of en of projection (same day and month as proj1).
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    */
         for(j=1;j <=nlstate;j++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int *popage;
         }    double agec; /* generic age */
         fprintf(ficrest,"\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       }    double *popeffectif,*popcount;
     }    double ***p3mat;
   }    double ***mobaverage;
 free_matrix(mint,1,maxwav,1,n);    char fileresf[FILENAMELENGTH];
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    agelim=AGESUP;
   fclose(ficreseij);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fclose(ficresvij);   
   fclose(ficrest);    strcpy(fileresf,"f"); 
   fclose(ficpar);    strcat(fileresf,fileres);
   free_vector(epj,1,nlstate+1);    if((ficresf=fopen(fileresf,"w"))==NULL) {
        printf("Problem with forecast resultfile: %s\n", fileresf);
   /*------- Variance limit prevalence------*/        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   strcpy(fileresvpl,"vpl");    printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcat(fileresvpl,fileres);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     exit(0);  
   }    if (mobilav!=0) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   k=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for(cptcov=1;cptcov<=i1;cptcov++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (stepm<=12) stepsize=1;
       fprintf(ficresvpl,"******\n");    if(estepm < stepm){
            printf ("Problem %d lower than %d\n",estepm, stepm);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    else  hstepm=estepm;   
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    hstepm=hstepm/stepm; 
  }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   fclose(ficresvpl);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   /*---------- End : free ----------------*/    mprojmean=yp;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if(jprojmean==0) jprojmean=1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if(mprojmean==0) jprojmean=1;
    
      i1=cptcoveff;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcovn < 1){i1=1;}
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      fprintf(ficresf,"#****** Routine prevforecast **\n");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  /*            if (h==(int)(YEARM*yearp)){ */
   free_matrix(agev,1,maxwav,1,imx);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   if(erreur >0)        fprintf(ficresf,"\n#******");
     printf("End of Imach with error or warning %d\n",erreur);        for(j=1;j<=cptcoveff;j++) {
   else   printf("End of Imach\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
          fprintf(ficresf,"******\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(j=1; j<=nlstate+ndeath;j++){ 
   /*------ End -----------*/          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
  end:        }
 #ifdef windows        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   /* chdir(pathcd);*/          fprintf(ficresf,"\n");
 #endif          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for (agec=fage; agec>=(ageminpar-1); agec--){ 
  /*system("cd ../gp37mgw");*/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            nhstepm = nhstepm/hstepm; 
  strcpy(plotcmd,GNUPLOTPROGRAM);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcat(plotcmd," ");            oldm=oldms;savm=savms;
  strcat(plotcmd,optionfilegnuplot);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
  system(plotcmd);          
             for (h=0; h<=nhstepm; h++){
 #ifdef windows              if (h*hstepm/YEARM*stepm ==yearp) {
   while (z[0] != 'q') {                fprintf(ficresf,"\n");
     /* chdir(path); */                for(j=1;j<=cptcoveff;j++) 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     scanf("%s",z);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     if (z[0] == 'c') system("./imach");              } 
     else if (z[0] == 'e') system(optionfilehtm);              for(j=1; j<=nlstate+ndeath;j++) {
     else if (z[0] == 'g') system(plotcmd);                ppij=0.;
     else if (z[0] == 'q') exit(0);                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1) 
 #endif                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 }                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.92


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>