Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.93

version 1.41.2.1, 2003/06/12 10:43:20 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Version 0.96b
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.92  2003/06/25 16:30:45  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): On windows (cygwin) function asctime_r doesn't
   second wave of interviews ("longitudinal") which measure each change    exist so I changed back to asctime which exists.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.91  2003/06/25 15:30:29  brouard
   model. More health states you consider, more time is necessary to reach the    * imach.c (Repository): Duplicated warning errors corrected.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Elapsed time after each iteration is now output. It
   simplest model is the multinomial logistic model where pij is the    helps to forecast when convergence will be reached. Elapsed time
   probability to be observed in state j at the second wave    is stamped in powell.  We created a new html file for the graphs
   conditional to be observed in state i at the first wave. Therefore    concerning matrix of covariance. It has extension -cov.htm.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.90  2003/06/24 12:34:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some bugs corrected for windows. Also, when
   multinomial logistic model, is clear when the delay between waves is not    mle=-1 a template is output in file "or"mypar.txt with the design
   identical for each individual. Also, if a individual missed an    of the covariance matrix to be input.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.87  2003/06/18 12:26:01  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.96
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.86  2003/06/17 20:04:08  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Change position of html and gnuplot routines and added
   and the contribution of each individual to the likelihood is simply    routine fileappend.
   hPijx.  
     Revision 1.85  2003/06/17 13:12:43  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository): Check when date of death was earlier that
   of the life expectancies. It also computes the prevalence limits.    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    was wrong (infinity). We still send an "Error" but patch by
            Institut national d'études démographiques, Paris.    assuming that the date of death was just one stepm after the
   This software have been partly granted by Euro-REVES, a concerted action    interview.
   from the European Union.    (Repository): Because some people have very long ID (first column)
   It is copyrighted identically to a GNU software product, ie programme and    we changed int to long in num[] and we added a new lvector for
   software can be distributed freely for non commercial use. Latest version    memory allocation. But we also truncated to 8 characters (left
   can be accessed at http://euroreves.ined.fr/imach .    truncation)
   **********************************************************************/    (Repository): No more line truncation errors.
    
 #include <math.h>    Revision 1.84  2003/06/13 21:44:43  brouard
 #include <stdio.h>    * imach.c (Repository): Replace "freqsummary" at a correct
 #include <stdlib.h>    place. It differs from routine "prevalence" which may be called
 #include <unistd.h>    many times. Probs is memory consuming and must be used with
     parcimony.
 #define MAXLINE 256    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FILENAMELENGTH 80    *** empty log message ***
 /*#define DEBUG*/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /*#define windows*/    Add log in  imach.c and  fullversion number is now printed.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  */
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */     Interpolated Markov Chain
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Short summary of the programme:
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This program computes Healthy Life Expectancies from
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NCOVMAX 8 /* Maximum number of covariates */    first survey ("cross") where individuals from different ages are
 #define MAXN 20000    interviewed on their health status or degree of disability (in the
 #define YEARM 12. /* Number of months per year */    case of a health survey which is our main interest) -2- at least a
 #define AGESUP 130    second wave of interviews ("longitudinal") which measure each change
 #define AGEBASE 40    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int erreur; /* Error number */    Maximum Likelihood of the parameters involved in the model.  The
 int nvar;    simplest model is the multinomial logistic model where pij is the
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    probability to be observed in state j at the second wave
 int npar=NPARMAX;    conditional to be observed in state i at the first wave. Therefore
 int nlstate=2; /* Number of live states */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int ndeath=1; /* Number of dead states */    'age' is age and 'sex' is a covariate. If you want to have a more
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    complex model than "constant and age", you should modify the program
 int popbased=0;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int *wav; /* Number of waves for this individuual 0 is possible */    convergence.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    The advantage of this computer programme, compared to a simple
 int mle, weightopt;    multinomial logistic model, is clear when the delay between waves is not
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    identical for each individual. Also, if a individual missed an
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    intermediate interview, the information is lost, but taken into
 double jmean; /* Mean space between 2 waves */    account using an interpolation or extrapolation.  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    hPijx is the probability to be observed in state i at age x+h
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    conditional to the observed state i at age x. The delay 'h' can be
 FILE *ficgp,*ficresprob,*ficpop;    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *ficreseij;    states. This elementary transition (by month, quarter,
   char filerese[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
  FILE  *ficresvij;    matrix is simply the matrix product of nh*stepm elementary matrices
   char fileresv[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
  FILE  *ficresvpl;    hPijx.
   char fileresvpl[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
 #define NR_END 1    of the life expectancies. It also computes the stable prevalence. 
 #define FREE_ARG char*    
 #define FTOL 1.0e-10    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define NRANSI    This software have been partly granted by Euro-REVES, a concerted action
 #define ITMAX 200    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define TOL 2.0e-4    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define GOLD 1.618034    **********************************************************************/
 #define GLIMIT 100.0  /*
 #define TINY 1.0e-20    main
     read parameterfile
 static double maxarg1,maxarg2;    read datafile
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    concatwav
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    freqsummary
      if (mle >= 1)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))      mlikeli
 #define rint(a) floor(a+0.5)    print results files
     if mle==1 
 static double sqrarg;       computes hessian
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}        begin-prev-date,...
     open gnuplot file
 int imx;    open html file
 int stepm;    stable prevalence
 /* Stepm, step in month: minimum step interpolation*/     for age prevalim()
     h Pij x
 int estepm;    variance of p varprob
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int m,nb;    Variance-covariance of DFLE
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    prevalence()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     movingaverage()
 double **pmmij, ***probs, ***mobaverage;    varevsij() 
 double dateintmean=0;    if popbased==1 varevsij(,popbased)
     total life expectancies
 double *weight;    Variance of stable prevalence
 int **s; /* Status */   end
 double *agedc, **covar, idx;  */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */   
   #include <math.h>
 /**************** split *************************/  #include <stdio.h>
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include <stdlib.h>
 {  #include <unistd.h>
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #include <sys/time.h>
   #include <time.h>
    l1 = strlen( path );                 /* length of path */  #include "timeval.h"
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  #define MAXLINE 256
    s = strrchr( path, '\\' );           /* find last / */  #define GNUPLOTPROGRAM "gnuplot"
 #else  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    s = strrchr( path, '/' );            /* find last / */  #define FILENAMELENGTH 132
 #endif  /*#define DEBUG*/
    if ( s == NULL ) {                   /* no directory, so use current */  /*#define windows*/
 #if     defined(__bsd__)                /* get current working directory */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       extern char       *getwd( );  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
       if ( getwd( dirc ) == NULL ) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #else  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       extern char       *getcwd( );  
   #define NINTERVMAX 8
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
          return( GLOCK_ERROR_GETCWD );  #define NCOVMAX 8 /* Maximum number of covariates */
       }  #define MAXN 20000
       strcpy( name, path );             /* we've got it */  #define YEARM 12. /* Number of months per year */
    } else {                             /* strip direcotry from path */  #define AGESUP 130
       s++;                              /* after this, the filename */  #define AGEBASE 40
       l2 = strlen( s );                 /* length of filename */  #ifdef unix
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '/'
       strcpy( name, s );                /* save file name */  #define ODIRSEPARATOR '\\'
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #else
       dirc[l1-l2] = 0;                  /* add zero */  #define DIRSEPARATOR '\\'
    }  #define ODIRSEPARATOR '/'
    l1 = strlen( dirc );                 /* length of directory */  #endif
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* $Id$ */
 #else  /* $State$ */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
    s = strrchr( name, '.' );            /* find last / */  char fullversion[]="$Revision$ $Date$"; 
    s++;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    strcpy(ext,s);                       /* save extension */  int nvar;
    l1= strlen( name);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    l2= strlen( s)+1;  int npar=NPARMAX;
    strncpy( finame, name, l1-l2);  int nlstate=2; /* Number of live states */
    finame[l1-l2]= 0;  int ndeath=1; /* Number of dead states */
    return( 0 );                         /* we're done */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
   int *wav; /* Number of waves for this individuual 0 is possible */
 /******************************************/  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void replace(char *s, char*t)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int i;  int mle, weightopt;
   int lg=20;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(t);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=0; i<= lg; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     (s[i] = t[i]);  double jmean; /* Mean space between 2 waves */
     if (t[i]== '\\') s[i]='/';  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 int nbocc(char *s, char occ)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int i,j=0;  long ipmx; /* Number of contributions */
   int lg=20;  double sw; /* Sum of weights */
   i=0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   lg=strlen(s);  FILE *ficresilk;
   for(i=0; i<= lg; i++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if  (s[i] == occ ) j++;  FILE *ficresprobmorprev;
   }  FILE *fichtm, *fichtmcov; /* Html File */
   return j;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 void cutv(char *u,char *v, char*t, char occ)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int i,lg,j,p=0;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   for(j=0; j<=strlen(t)-1; j++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   lg=strlen(t);  int  outcmd=0;
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  char lfileres[FILENAMELENGTH];
      u[p]='\0';  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char fileregp[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  char popfile[FILENAMELENGTH];
   }  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /********************** nrerror ********************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 void nrerror(char error_text[])  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   fprintf(stderr,"ERREUR ...\n");  long time_value;
   fprintf(stderr,"%s\n",error_text);  extern long time();
   exit(1);  char strcurr[80], strfor[80];
 }  
 /*********************** vector *******************/  #define NR_END 1
 double *vector(int nl, int nh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NRANSI 
   if (!v) nrerror("allocation failure in vector");  #define ITMAX 200 
   return v-nl+NR_END;  
 }  #define TOL 2.0e-4 
   
 /************************ free vector ******************/  #define CGOLD 0.3819660 
 void free_vector(double*v, int nl, int nh)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /************************ivector *******************************/  #define TINY 1.0e-20 
 int *ivector(long nl,long nh)  
 {  static double maxarg1,maxarg2;
   int *v;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!v) nrerror("allocation failure in ivector");    
   return v-nl+NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /******************free ivector **************************/  static double sqrarg;
 void free_ivector(int *v, long nl, long nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(v+nl-NR_END));  
 }  int imx; 
   int stepm;
 /******************* imatrix *******************************/  /* Stepm, step in month: minimum step interpolation*/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  int m,nb;
    long *num;
   /* allocate pointers to rows */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   if (!m) nrerror("allocation failure 1 in matrix()");  double **pmmij, ***probs;
   m += NR_END;  double dateintmean=0;
   m -= nrl;  
    double *weight;
    int **s; /* Status */
   /* allocate rows and set pointers to them */  double *agedc, **covar, idx;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] -= ncl;  double ftolhess; /* Tolerance for computing hessian */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* return pointer to array of pointers to rows */  {
   return m;    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /****************** free_imatrix *************************/    l1 = strlen(path );                   /* length of path */
 void free_imatrix(m,nrl,nrh,ncl,nch)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       int **m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       long nch,ncl,nrh,nrl;    if ( ss == NULL ) {                   /* no directory, so use current */
      /* free an int matrix allocated by imatrix() */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      /* get current working directory */
   free((FREE_ARG) (m+nrl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************* matrix *******************************/      }
 double **matrix(long nrl, long nrh, long ncl, long nch)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      ss++;                               /* after this, the filename */
   double **m;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strcpy( name, ss );         /* save file name */
   if (!m) nrerror("allocation failure 1 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m -= nrl;    }
     l1 = strlen( dirc );                  /* length of directory */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /*#ifdef windows
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m[nrl] += NR_END;  #else
   m[nrl] -= ncl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    */
   return m;    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /*************************free matrix ************************/    l1= strlen( name);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    finame[l1-l2]= 0;
   free((FREE_ARG)(m+nrl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /******************************************/
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void replace_back_to_slash(char *s, char*t)
   double ***m;  {
     int i;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int lg=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    lg=strlen(t);
   m -= nrl;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if (t[i]== '\\') s[i]='/';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   int nbocc(char *s, char occ)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     int i,j=0;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    int lg=20;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    i=0;
   m[nrl][ncl] += NR_END;    lg=strlen(s);
   m[nrl][ncl] -= nll;    for(i=0; i<= lg; i++) {
   for (j=ncl+1; j<=nch; j++)    if  (s[i] == occ ) j++;
     m[nrl][j]=m[nrl][j-1]+nlay;    }
      return j;
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void cutv(char *u,char *v, char*t, char occ)
       m[i][j]=m[i][j-1]+nlay;  {
   }    /* cuts string t into u and v where u is ended by char occ excluding it
   return m;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /*************************free ma3x ************************/    i=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /***************** f1dim *************************/    }
 extern int ncom;       u[p]='\0';
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
 double f1dim(double x)    }
 {  }
   int j;  
   double f;  /********************** nrerror ********************/
   double *xt;  
    void nrerror(char error_text[])
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    fprintf(stderr,"ERREUR ...\n");
   f=(*nrfunc)(xt);    fprintf(stderr,"%s\n",error_text);
   free_vector(xt,1,ncom);    exit(EXIT_FAILURE);
   return f;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int iter;    if (!v) nrerror("allocation failure in vector");
   double a,b,d,etemp;    return v-nl+NR_END;
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /************************ free vector ******************/
   double e=0.0;  void free_vector(double*v, int nl, int nh)
    {
   a=(ax < cx ? ax : cx);    free((FREE_ARG)(v+nl-NR_END));
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /************************ivector *******************************/
   for (iter=1;iter<=ITMAX;iter++) {  int *ivector(long nl,long nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    int *v;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf(".");fflush(stdout);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************free ivector **************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  void free_ivector(int *v, long nl, long nh)
       *xmin=x;  {
       return fx;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     ftemp=fu;  
     if (fabs(e) > tol1) {  /************************lvector *******************************/
       r=(x-w)*(fx-fv);  long *lvector(long nl,long nh)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    long *v;
       q=2.0*(q-r);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if (q > 0.0) p = -p;    if (!v) nrerror("allocation failure in ivector");
       q=fabs(q);    return v-nl+NR_END;
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************free lvector **************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_lvector(long *v, long nl, long nh)
       else {  {
         d=p/q;    free((FREE_ARG)(v+nl-NR_END));
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     } else {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int **m; 
     fu=(*f)(u);    
     if (fu <= fx) {    /* allocate pointers to rows */ 
       if (u >= x) a=x; else b=x;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       SHFT(v,w,x,u)    if (!m) nrerror("allocation failure 1 in matrix()"); 
         SHFT(fv,fw,fx,fu)    m += NR_END; 
         } else {    m -= nrl; 
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    
             v=w;    /* allocate rows and set pointers to them */ 
             w=u;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             fv=fw;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             fw=fu;    m[nrl] += NR_END; 
           } else if (fu <= fv || v == x || v == w) {    m[nrl] -= ncl; 
             v=u;    
             fv=fu;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           }    
         }    /* return pointer to array of pointers to rows */ 
   }    return m; 
   nrerror("Too many iterations in brent");  } 
   *xmin=x;  
   return fx;  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /****************** mnbrak ***********************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  { 
             double (*func)(double))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   double ulim,u,r,q, dum;  } 
   double fu;  
    /******************* matrix *******************************/
   *fa=(*func)(*ax);  double **matrix(long nrl, long nrh, long ncl, long nch)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     SHFT(dum,*ax,*bx,dum)    double **m;
       SHFT(dum,*fb,*fa,dum)  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m) nrerror("allocation failure 1 in matrix()");
   *fc=(*func)(*cx);    m += NR_END;
   while (*fb > *fc) {    m -= nrl;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] -= ncl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return m;
       fu=(*func)(u);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       if (fu < *fc) {     */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /*************************free matrix ************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       u=ulim;  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else {    free((FREE_ARG)(m+nrl-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /******************* ma3x *******************************/
     SHFT(*ax,*bx,*cx,u)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       SHFT(*fa,*fb,*fc,fu)  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
 /*************** linmin ************************/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 int ncom;    m += NR_END;
 double *pcom,*xicom;    m -= nrl;
 double (*nrfunc)(double []);  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   double brent(double ax, double bx, double cx,    m[nrl] -= ncl;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double xx,xmin,bx,ax;    m[nrl][ncl] += NR_END;
   double fx,fb,fa;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
   ncom=n;      m[nrl][j]=m[nrl][j-1]+nlay;
   pcom=vector(1,n);    
   xicom=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   nrfunc=func;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
     pcom[j]=p[j];        m[i][j]=m[i][j-1]+nlay;
     xicom[j]=xi[j];    }
   }    return m; 
   ax=0.0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   xx=1.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*************************free ma3x ************************/
 #endif  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     p[j] += xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /*************** powell ************************/  extern double *pcom,*xicom;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  extern double (*nrfunc)(double []); 
             double (*func)(double []))   
 {  double f1dim(double x) 
   void linmin(double p[], double xi[], int n, double *fret,  { 
               double (*func)(double []));    int j; 
   int i,ibig,j;    double f;
   double del,t,*pt,*ptt,*xit;    double *xt; 
   double fp,fptt;   
   double *xits;    xt=vector(1,ncom); 
   pt=vector(1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   ptt=vector(1,n);    f=(*nrfunc)(xt); 
   xit=vector(1,n);    free_vector(xt,1,ncom); 
   xits=vector(1,n);    return f; 
   *fret=(*func)(p);  } 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /*****************brent *************************/
     fp=(*fret);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     ibig=0;  { 
     del=0.0;    int iter; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double a,b,d,etemp;
     for (i=1;i<=n;i++)    double fu,fv,fw,fx;
       printf(" %d %.12f",i, p[i]);    double ftemp;
     printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (i=1;i<=n;i++) {    double e=0.0; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   
       fptt=(*fret);    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       printf("fret=%lf \n",*fret);    x=w=v=bx; 
 #endif    fw=fv=fx=(*f)(x); 
       printf("%d",i);fflush(stdout);    for (iter=1;iter<=ITMAX;iter++) { 
       linmin(p,xit,n,fret,func);      xm=0.5*(a+b); 
       if (fabs(fptt-(*fret)) > del) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         del=fabs(fptt-(*fret));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         ibig=i;      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         printf(" x(%d)=%.12e",j,xit[j]);  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(j=1;j<=n;j++)        *xmin=x; 
         printf(" p=%.12e",p[j]);        return fx; 
       printf("\n");      } 
 #endif      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       int k[2],l;        p=(x-v)*q-(x-w)*r; 
       k[0]=1;        q=2.0*(q-r); 
       k[1]=-1;        if (q > 0.0) p = -p; 
       printf("Max: %.12e",(*func)(p));        q=fabs(q); 
       for (j=1;j<=n;j++)        etemp=e; 
         printf(" %.12e",p[j]);        e=d; 
       printf("\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(l=0;l<=1;l++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {        else { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          d=p/q; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          u=x+d; 
         }          if (u-a < tol2 || b-u < tol2) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            d=SIGN(tol1,xm-x); 
       }        } 
 #endif      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       free_vector(xit,1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       free_vector(xits,1,n);      fu=(*f)(u); 
       free_vector(ptt,1,n);      if (fu <= fx) { 
       free_vector(pt,1,n);        if (u >= x) a=x; else b=x; 
       return;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          } else { 
     for (j=1;j<=n;j++) {            if (u < x) a=u; else b=u; 
       ptt[j]=2.0*p[j]-pt[j];            if (fu <= fw || w == x) { 
       xit[j]=p[j]-pt[j];              v=w; 
       pt[j]=p[j];              w=u; 
     }              fv=fw; 
     fptt=(*func)(ptt);              fw=fu; 
     if (fptt < fp) {            } else if (fu <= fv || v == x || v == w) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);              v=u; 
       if (t < 0.0) {              fv=fu; 
         linmin(p,xit,n,fret,func);            } 
         for (j=1;j<=n;j++) {          } 
           xi[j][ibig]=xi[j][n];    } 
           xi[j][n]=xit[j];    nrerror("Too many iterations in brent"); 
         }    *xmin=x; 
 #ifdef DEBUG    return fx; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /****************** mnbrak ***********************/
         printf("\n");  
 #endif  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
     }  { 
   }    double ulim,u,r,q, dum;
 }    double fu; 
    
 /**** Prevalence limit ****************/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        SHFT(dum,*fb,*fa,dum) 
      matrix by transitions matrix until convergence is reached */        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, ii,j,k;    *fc=(*func)(*cx); 
   double min, max, maxmin, maxmax,sumnew=0.;    while (*fb > *fc) { 
   double **matprod2();      r=(*bx-*ax)*(*fb-*fc); 
   double **out, cov[NCOVMAX], **pmij();      q=(*bx-*cx)*(*fb-*fa); 
   double **newm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double agefin, delaymax=50 ; /* Max number of years to converge */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
         if (fu < *fc) { 
    cov[1]=1.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
              SHFT(*fb,*fc,fu,(*func)(u)) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     newm=savm;        u=ulim; 
     /* Covariates have to be included here again */        fu=(*func)(u); 
      cov[2]=agefin;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1; k<=cptcovn;k++) {        fu=(*func)(u); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** linmin ************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int ncom; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double *pcom,*xicom;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double (*nrfunc)(double []); 
    
     savm=oldm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     oldm=newm;  { 
     maxmax=0.;    double brent(double ax, double bx, double cx, 
     for(j=1;j<=nlstate;j++){                 double (*f)(double), double tol, double *xmin); 
       min=1.;    double f1dim(double x); 
       max=0.;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(i=1; i<=nlstate; i++) {                double *fc, double (*func)(double)); 
         sumnew=0;    int j; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double xx,xmin,bx,ax; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double fx,fb,fa;
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);    ncom=n; 
       }    pcom=vector(1,n); 
       maxmin=max-min;    xicom=vector(1,n); 
       maxmax=FMAX(maxmax,maxmin);    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     if(maxmax < ftolpl){      pcom[j]=p[j]; 
       return prlim;      xicom[j]=xi[j]; 
     }    } 
   }    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /*************** transition probabilities ***************/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double s1, s2;  #endif
   /*double t34;*/    for (j=1;j<=n;j++) { 
   int i,j,j1, nc, ii, jj;      xi[j] *= xmin; 
       p[j] += xi[j]; 
     for(i=1; i<= nlstate; i++){    } 
     for(j=1; j<i;j++){    free_vector(xicom,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(pcom,1,n); 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
       ps[i][j]=s2;    long sec_left, days, hours, minutes;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
     for(j=i+1; j<=nlstate+ndeath;j++){    hours = (sec_left) / (60*60) ;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sec_left = (sec_left) %(60*60);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    minutes = (sec_left) /60;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       ps[i][j]=s2;    return ascdiff;
     }  }
   }  
     /*ps[3][2]=1;*/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for(i=1; i<= nlstate; i++){              double (*func)(double [])) 
      s1=0;  { 
     for(j=1; j<i; j++)    void linmin(double p[], double xi[], int n, double *fret, 
       s1+=exp(ps[i][j]);                double (*func)(double [])); 
     for(j=i+1; j<=nlstate+ndeath; j++)    int i,ibig,j; 
       s1+=exp(ps[i][j]);    double del,t,*pt,*ptt,*xit;
     ps[i][i]=1./(s1+1.);    double fp,fptt;
     for(j=1; j<i; j++)    double *xits;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int niterf, itmp;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    pt=vector(1,n); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    ptt=vector(1,n); 
   } /* end i */    xit=vector(1,n); 
     xits=vector(1,n); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *fret=(*func)(p); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ps[ii][jj]=0;    for (*iter=1;;++(*iter)) { 
       ps[ii][ii]=1;      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      printf("%lf ",ps[ii][jj]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
    }      for (i=1;i<=n;i++) {
     printf("\n ");        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficrespow," %.12lf", p[i]);
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      printf("\n");
   goto end;*/      fprintf(ficlog,"\n");
     return ps;      fprintf(ficrespow,"\n");fflush(ficrespow);
 }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
 /**************** Product of 2 matrices ******************/        strcpy(strcurr,asctime(&tmf));
   /*       asctime_r(&tm,strcurr); */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        forecast_time=curr_time;
 {        itmp = strlen(strcurr);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        if(strcurr[itmp-1]=='\n')
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          strcurr[itmp-1]='\0';
   /* in, b, out are matrice of pointers which should have been initialized        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      before: only the contents of out is modified. The function returns        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      a pointer to pointers identical to out */        for(niterf=10;niterf<=30;niterf+=10){
   long i, j, k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for(i=nrl; i<= nrh; i++)          tmf = *localtime(&forecast_time.tv_sec);
     for(k=ncolol; k<=ncoloh; k++)  /*      asctime_r(&tmf,strfor); */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          strcpy(strfor,asctime(&tmf));
         out[i][k] +=in[i][j]*b[j][k];          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   return out;          strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 /************* Higher Matrix Product ***************/      }
       for (i=1;i<=n;i++) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 {        fptt=(*fret); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #ifdef DEBUG
      duration (i.e. until        printf("fret=%lf \n",*fret);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fprintf(ficlog,"fret=%lf \n",*fret);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).        printf("%d",i);fflush(stdout);
      Model is determined by parameters x and covariates have to be        fprintf(ficlog,"%d",i);fflush(ficlog);
      included manually here.        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
      */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   int i, j, d, h, k;        } 
   double **out, cov[NCOVMAX];  #ifdef DEBUG
   double **newm;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   /* Hstepm could be zero and should return the unit matrix */        for (j=1;j<=n;j++) {
   for (i=1;i<=nlstate+ndeath;i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=nlstate+ndeath;j++){          printf(" x(%d)=%.12e",j,xit[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        for(j=1;j<=n;j++) {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf(" p=%.12e",p[j]);
   for(h=1; h <=nhstepm; h++){          fprintf(ficlog," p=%.12e",p[j]);
     for(d=1; d <=hstepm; d++){        }
       newm=savm;        printf("\n");
       /* Covariates have to be included here again */        fprintf(ficlog,"\n");
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1; k<=cptcovage;k++)  #ifdef DEBUG
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        int k[2],l;
       for (k=1; k<=cptcovprod;k++)        k[0]=1;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (j=1;j<=n;j++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          printf(" %.12e",p[j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog," %.12e",p[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        printf("\n");
       oldm=newm;        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     for(i=1; i<=nlstate+ndeath; i++)          for (j=1;j<=n;j++) {
       for(j=1;j<=nlstate+ndeath;j++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         po[i][j][h]=newm[i][j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          */          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* end h */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return po;        }
 }  #endif
   
   
 /*************** log-likelihood *************/        free_vector(xit,1,n); 
 double func( double *x)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i, ii, j, k, mi, d, kk;        free_vector(pt,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        return; 
   double **out;      } 
   double sw; /* Sum of weights */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double lli; /* Individual log likelihood */      for (j=1;j<=n;j++) { 
   long ipmx;        ptt[j]=2.0*p[j]-pt[j]; 
   /*extern weight */        xit[j]=p[j]-pt[j]; 
   /* We are differentiating ll according to initial status */        pt[j]=p[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } 
   /*for(i=1;i<imx;i++)      fptt=(*func)(ptt); 
     printf(" %d\n",s[4][i]);      if (fptt < fp) { 
   */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   cov[1]=1.;        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          for (j=1;j<=n;j++) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            xi[j][ibig]=xi[j][n]; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            xi[j][n]=xit[j]; 
     for(mi=1; mi<= wav[i]-1; mi++){          }
       for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         newm=savm;          for(j=1;j<=n;j++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            printf(" %.12e",xit[j]);
         for (kk=1; kk<=cptcovage;kk++) {            fprintf(ficlog," %.12e",xit[j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
         }          printf("\n");
                  fprintf(ficlog,"\n");
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;      } 
         oldm=newm;    } 
          } 
          
       } /* end mult */  /**** Prevalence limit (stable prevalence)  ****************/
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       sw += weight[i];       matrix by transitions matrix until convergence is reached */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    int i, ii,j,k;
   } /* end of individual */    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double **out, cov[NCOVMAX], **pmij();
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double **newm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double agefin, delaymax=50 ; /* Max number of years to converge */
   return -l;  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Maximum Likelihood Estimation ***************/      }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))     cov[1]=1.;
 {   
   int i,j, iter;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double **xi,*delti;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double fret;      newm=savm;
   xi=matrix(1,npar,1,npar);      /* Covariates have to be included here again */
   for (i=1;i<=npar;i++)       cov[2]=agefin;
     for (j=1;j<=npar;j++)    
       xi[i][j]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) {
   printf("Powell\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   powell(p,xi,npar,ftol,&iter,&fret,func);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /**** Computes Hessian and covariance matrix ***/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double  **a,**y,*x,pd;  
   double **hess;      savm=oldm;
   int i, j,jk;      oldm=newm;
   int *indx;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   double hessii(double p[], double delta, int theta, double delti[]);        min=1.;
   double hessij(double p[], double delti[], int i, int j);        max=0.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for(i=1; i<=nlstate; i++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   hess=matrix(1,npar,1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);        maxmin=max-min;
     hess[i][i]=hessii(p,ftolhess,i,delti);        maxmax=FMAX(maxmax,maxmin);
     /*printf(" %f ",p[i]);*/      }
     /*printf(" %lf ",hess[i][i]);*/      if(maxmax < ftolpl){
   }        return prlim;
        }
   for (i=1;i<=npar;i++) {    }
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** transition probabilities ***************/ 
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         /*printf(" %lf ",hess[i][j]);*/  {
       }    double s1, s2;
     }    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   printf("\n");  
       for(i=1; i<= nlstate; i++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for(j=1; j<i;j++){
          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   a=matrix(1,npar,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   y=matrix(1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   x=vector(1,npar);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)        ps[i][j]=s2;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   ludcmp(a,npar,indx,&pd);      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=1;i<=npar;i++) x[i]=0;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     x[j]=1;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        ps[i][j]=s2;
       matcov[i][j]=x[i];      }
     }    }
   }      /*ps[3][2]=1;*/
   
   printf("\n#Hessian matrix#\n");    for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++) {       s1=0;
     for (j=1;j<=npar;j++) {      for(j=1; j<i; j++)
       printf("%.3e ",hess[i][j]);        s1+=exp(ps[i][j]);
     }      for(j=i+1; j<=nlstate+ndeath; j++)
     printf("\n");        s1+=exp(ps[i][j]);
   }      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
   /* Recompute Inverse */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   ludcmp(a,npar,indx,&pd);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   /*  printf("\n#Hessian matrix recomputed#\n");  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (j=1;j<=npar;j++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<=npar;i++) x[i]=0;        ps[ii][jj]=0;
     x[j]=1;        ps[ii][ii]=1;
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){    }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
     }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     printf("\n");      for(jj=1; jj<= nlstate+ndeath; jj++){
   }       printf("%lf ",ps[ii][jj]);
   */     }
       printf("\n ");
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      printf("\n ");printf("%lf ",cov[2]);*/
   free_vector(x,1,npar);  /*
   free_ivector(indx,1,npar);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_matrix(hess,1,npar,1,npar);    goto end;*/
       return ps;
   }
 }  
   /**************** Product of 2 matrices ******************/
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   int i;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int l=1, lmax=20;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double k1,k2;    /* in, b, out are matrice of pointers which should have been initialized 
   double p2[NPARMAX+1];       before: only the contents of out is modified. The function returns
   double res;       a pointer to pointers identical to out */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    long i, j, k;
   double fx;    for(i=nrl; i<= nrh; i++)
   int k=0,kmax=10;      for(k=ncolol; k<=ncoloh; k++)
   double l1;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    return out;
   for(l=0 ; l <=lmax; l++){  }
     l1=pow(10,l);  
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /************* Higher Matrix Product ***************/
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    /* Computes the transition matrix starting at age 'age' over 
       k2=func(p2)-fx;       'nhstepm*hstepm*stepm' months (i.e. until
       /*res= (k1-2.0*fx+k2)/delt/delt; */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       nhstepm*hstepm matrices. 
             Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 #ifdef DEBUG       (typically every 2 years instead of every month which is too big 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       for the memory).
 #endif       Model is determined by parameters x and covariates have to be 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       included manually here. 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;       */
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int i, j, d, h, k;
         k=kmax; l=lmax*10.;    double **out, cov[NCOVMAX];
       }    double **newm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   delti[theta]=delts;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   return res;      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        newm=savm;
 {        /* Covariates have to be included here again */
   int i;        cov[1]=1.;
   int l=1, l1, lmax=20;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double k1,k2,k3,k4,res,fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double p2[NPARMAX+1];        for (k=1; k<=cptcovage;k++)
   int k;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   fx=func(x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     k1=func(p2)-fx;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;        savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        oldm=newm;
     k2=func(p2)-fx;      }
        for(i=1; i<=nlstate+ndeath; i++)
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(j=1;j<=nlstate+ndeath;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          po[i][j][h]=newm[i][j];
     k3=func(p2)-fx;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    } /* end h */
     k4=func(p2)-fx;    return po;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*************** log-likelihood *************/
   }  double func( double *x)
   return res;  {
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /************** Inverse of matrix **************/    double **out;
 void ludcmp(double **a, int n, int *indx, double *d)    double sw; /* Sum of weights */
 {    double lli; /* Individual log likelihood */
   int i,imax,j,k;    int s1, s2;
   double big,dum,sum,temp;    double bbh, survp;
   double *vv;    long ipmx;
      /*extern weight */
   vv=vector(1,n);    /* We are differentiating ll according to initial status */
   *d=1.0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (i=1;i<=n;i++) {    /*for(i=1;i<imx;i++) 
     big=0.0;      printf(" %d\n",s[4][i]);
     for (j=1;j<=n;j++)    */
       if ((temp=fabs(a[i][j])) > big) big=temp;    cov[1]=1.;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   for (j=1;j<=n;j++) {    if(mle==1){
     for (i=1;i<j;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       sum=a[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(mi=1; mi<= wav[i]-1; mi++){
       a[i][j]=sum;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     big=0.0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=j;i<=n;i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];            }
       for (k=1;k<j;k++)          for(d=0; d<dh[mi][i]; d++){
         sum -= a[i][k]*a[k][j];            newm=savm;
       a[i][j]=sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if ( (dum=vv[i]*fabs(sum)) >= big) {            for (kk=1; kk<=cptcovage;kk++) {
         big=dum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         imax=i;            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (j != imax) {            savm=oldm;
       for (k=1;k<=n;k++) {            oldm=newm;
         dum=a[imax][k];          } /* end mult */
         a[imax][k]=a[j][k];        
         a[j][k]=dum;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
       *d = -(*d);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       vv[imax]=vv[j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     indx[j]=imax;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if (a[j][j] == 0.0) a[j][j]=TINY;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if (j != n) {           * probability in order to take into account the bias as a fraction of the way
       dum=1.0/(a[j][j]);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
   free_vector(vv,1,n);  /* Doesn't work */           */
 ;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 void lubksb(double **a, int n, int *indx, double b[])          /* bias is positive if real duration
 {           * is higher than the multiple of stepm and negative otherwise.
   int i,ii=0,ip,j;           */
   double sum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   for (i=1;i<=n;i++) {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     ip=indx[i];               to the likelihood is the probability to die between last step unit time and current 
     sum=b[ip];               step unit time, which is also the differences between probability to die before dh 
     b[ip]=b[i];               and probability to die before dh-stepm . 
     if (ii)               In version up to 0.92 likelihood was computed
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          as if date of death was unknown. Death was treated as any other
     else if (sum) ii=i;          health state: the date of the interview describes the actual state
     b[i]=sum;          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
   for (i=n;i>=1;i--) {          (healthy, disable or death) and IMaCh was corrected; but when we
     sum=b[i];          introduced the exact date of death then we should have modified
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          the contribution of an exact death to the likelihood. This new
     b[i]=sum/a[i][i];          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
 }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /************ Frequencies ********************/          probability to die within a month. Thanks to Chris
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          Jackson for correcting this bug.  Former versions increased
 {  /* Some frequencies */          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          lower mortality.
   double ***freq; /* Frequencies */            */
   double *pp;            lli=log(out[s1][s2] - savm[s1][s2]);
   double pos, k2, dateintsum=0,k2cpt=0;          }else{
   FILE *ficresp;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char fileresp[FILENAMELENGTH];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
   pp=vector(1,nlstate);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*if(lli ==000.0)*/
   strcpy(fileresp,"p");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   strcat(fileresp,fileres);          ipmx +=1;
   if((ficresp=fopen(fileresp,"w"))==NULL) {          sw += weight[i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     exit(0);        } /* end of wave */
   }      } /* end of individual */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    }  else if(mle==2){
   j1=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j=cptcoveff;        for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;            }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for(d=0; d<=dh[mi][i]; d++){
         scanf("%d", i);*/            newm=savm;
       for (i=-1; i<=nlstate+ndeath; i++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (kk=1; kk<=cptcovage;kk++) {
           for(m=agemin; m <= agemax+3; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             freq[i][jk][m]=0;            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       dateintsum=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2cpt=0;            savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /* But now since version 0.9 we anticipate for bias and large stepm.
               bool=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if (bool==1) {           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=firstpass; m<=lastpass; m++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             k2=anint[m][i]+(mint[m][i]/12.);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * probability in order to take into account the bias as a fraction of the way
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * -stepm/2 to stepm/2 .
               if (m<lastpass) {           * For stepm=1 the results are the same as for previous versions of Imach.
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * For stepm > 1 the results are less biased than in previous versions. 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           */
               }          s1=s[mw[mi][i]][i];
                        s2=s[mw[mi+1][i]][i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          bbh=(double)bh[mi][i]/(double)stepm; 
                 dateintsum=dateintsum+k2;          /* bias is positive if real duration
                 k2cpt++;           * is higher than the multiple of stepm and negative otherwise.
               }           */
             }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                  /*if(lli ==000.0)*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
       if  (cptcovn>0) {          sw += weight[i];
         fprintf(ficresp, "\n#********** Variable ");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } /* end of wave */
         fprintf(ficresp, "**********\n#");      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresp, "\n");        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){            for (j=1;j<=nlstate+ndeath;j++){
         if(i==(int)agemax+3)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           printf("Total");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else            }
           printf("Age %d", i);          for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pos += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(pp[jk]>=1.e-10)            savm=oldm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            oldm=newm;
           else          } /* end mult */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             pp[jk] += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * probability in order to take into account the bias as a fraction of the way
           pos += pp[jk];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         for(jk=1; jk <=nlstate ; jk++){           * -stepm/2 to stepm/2 .
           if(pos>=1.e-5)           * For stepm=1 the results are the same as for previous versions of Imach.
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * For stepm > 1 the results are less biased than in previous versions. 
           else           */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
           if( i <= (int) agemax){          s2=s[mw[mi+1][i]][i];
             if(pos>=1.e-5){          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /* bias is positive if real duration
               probs[i][jk][j1]= pp[jk]/pos;           * is higher than the multiple of stepm and negative otherwise.
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           */
             }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
             else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                  ipmx +=1;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          sw += weight[i];
           for(m=-1; m <=nlstate+ndeath; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        } /* end of wave */
         if(i <= (int) agemax)      } /* end of individual */
           fprintf(ficresp,"\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         printf("\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   dateintmean=dateintsum/k2cpt;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos, k2;        
           s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }else{
   j1=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for(k1=1; k1<=j;k1++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
       j1++;      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=agemin; m <= agemax+3; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             freq[i][jk][m]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
               if (m<lastpass)            oldm=newm;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          } /* end mult */
               else        
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          s1=s[mw[mi][i]][i];
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          s2=s[mw[mi+1][i]][i];
             }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=(int)agemin; i <= (int)agemax+3; i++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      } /* end of individual */
               pp[jk] += freq[jk][m][i];    } /* End of if */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for(jk=1; jk <=nlstate ; jk++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             for(m=-1, pos=0; m <=0 ; m++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             pos += freq[jk][m][i];    return -l;
         }  }
          
          for(jk=1; jk <=nlstate ; jk++){  /*************** log-likelihood *************/
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  double funcone( double *x)
              pp[jk] += freq[jk][m][i];  {
          }    /* Same as likeli but slower because of a lot of printf and if */
              int i, ii, j, k, mi, d, kk;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
          for(jk=1; jk <=nlstate ; jk++){              double lli; /* Individual log likelihood */
            if( i <= (int) agemax){    double llt;
              if(pos>=1.e-5){    int s1, s2;
                probs[i][jk][j1]= pp[jk]/pos;    double bbh, survp;
              }    /*extern weight */
            }    /* We are differentiating ll according to initial status */
          }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
              /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
     }    */
   }    cov[1]=1.;
   
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }  /* End of Freq */      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 /************* Waves Concatenation ***************/          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(d=0; d<dh[mi][i]; d++){
      Death is a valid wave (if date is known).          newm=savm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for (kk=1; kk<=cptcovage;kk++) {
      and mw[mi+1][i]. dh depends on stepm.            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      */          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, mi, m;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          savm=oldm;
      double sum=0., jmean=0.;*/          oldm=newm;
         } /* end mult */
   int j, k=0,jk, ju, jl;        
   double sum=0.;        s1=s[mw[mi][i]][i];
   jmin=1e+5;        s2=s[mw[mi+1][i]][i];
   jmax=-1;        bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=0.;        /* bias is positive if real duration
   for(i=1; i<=imx; i++){         * is higher than the multiple of stepm and negative otherwise.
     mi=0;         */
     m=firstpass;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     while(s[m][i] <= nlstate){          lli=log(out[s1][s2] - savm[s1][s2]);
       if(s[m][i]>=1)        } else if (mle==1){
         mw[++mi][i]=m;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(m >=lastpass)        } else if(mle==2){
         break;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       else        } else if(mle==3){  /* exponential inter-extrapolation */
         m++;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }/* end while */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     if (s[m][i] > nlstate){          lli=log(out[s1][s2]); /* Original formula */
       mi++;     /* Death is another wave */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       /* if(mi==0)  never been interviewed correctly before death */          lli=log(out[s1][s2]); /* Original formula */
          /* Only death is a correct wave */        } /* End of if */
       mw[mi][i]=m;        ipmx +=1;
     }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     wav[i]=mi;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     if(mi==0)        if(globpr){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   }   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   for(i=1; i<=imx; i++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(mi=1; mi<wav[i];mi++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if (stepm <=0)            llt +=ll[k]*gipmx/gsw;
         dh[mi][i]=1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) {          fprintf(ficresilk," %10.6f\n", -llt);
           if (agedc[i] < 2*AGESUP) {        }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } /* end of wave */
           if(j==0) j=1;  /* Survives at least one month after exam */    } /* end of individual */
           k=k+1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           if (j >= jmax) jmax=j;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           if (j <= jmin) jmin=j;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           sum=sum+j;    if(globpr==0){ /* First time we count the contributions and weights */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      gipmx=ipmx;
           }      gsw=sw;
         }    }
         else{    return -l;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  }
           k=k+1;  
           if (j >= jmax) jmax=j;  char *subdirf(char fileres[])
           else if (j <= jmin)jmin=j;  {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* Caution optionfilefiname is hidden */
           sum=sum+j;    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
         jk= j/stepm;    strcat(tmpout,fileres);
         jl= j -jk*stepm;    return tmpout;
         ju= j -(jk+1)*stepm;  }
         if(jl <= -ju)  
           dh[mi][i]=jk;  char *subdirf2(char fileres[], char *preop)
         else  {
           dh[mi][i]=jk+1;    
         if(dh[mi][i]==0)    strcpy(tmpout,optionfilefiname);
           dh[mi][i]=1; /* At least one step */    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   }    return tmpout;
   jmean=sum/k;  }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  char *subdirf3(char fileres[], char *preop, char *preop2)
  }  {
 /*********** Tricode ****************************/    
 void tricode(int *Tvar, int **nbcode, int imx)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   int Ndum[20],ij=1, k, j, i;    strcat(tmpout,preop);
   int cptcode=0;    strcat(tmpout,preop2);
   cptcoveff=0;    strcat(tmpout,fileres);
      return tmpout;
   for (k=0; k<19; k++) Ndum[k]=0;  }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  {
     for (i=1; i<=imx; i++) {    /* This routine should help understanding what is done with 
       ij=(int)(covar[Tvar[j]][i]);       the selection of individuals/waves and
       Ndum[ij]++;       to check the exact contribution to the likelihood.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/       Plotting could be done.
       if (ij > cptcode) cptcode=ij;     */
     }    int k;
   
     for (i=0; i<=cptcode; i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
       if(Ndum[i]!=0) ncodemax[j]++;      strcpy(fileresilk,"ilk"); 
     }      strcat(fileresilk,fileres);
     ij=1;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for (i=1; i<=ncodemax[j]; i++) {      }
       for (k=0; k<=19; k++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         if (Ndum[k] != 0) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           nbcode[Tvar[j]][ij]=k;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                for(k=1; k<=nlstate; k++) 
           ij++;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         if (ij > ncodemax[j]) break;    }
       }    
     }    *fretone=(*funcone)(p);
   }      if(*globpri !=0){
       fclose(ficresilk);
  for (k=0; k<19; k++) Ndum[k]=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
  for (i=1; i<=ncovmodel-2; i++) {    } 
       ij=Tvar[i];    return;
       Ndum[ij]++;  }
     }  
   
  ij=1;  /*********** Maximum Likelihood Estimation ***************/
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      Tvaraff[ij]=i;  {
      ij++;    int i,j, iter;
    }    double **xi;
  }    double fret;
      double fretone; /* Only one call to likelihood */
     cptcoveff=ij-1;    char filerespow[FILENAMELENGTH];
 }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
 /*********** Health Expectancies ****************/      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
 {    strcat(filerespow,fileres);
   /* Health expectancies */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      printf("Problem with resultfile: %s\n", filerespow);
   double age, agelim, hf;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double ***p3mat,***varhe;    }
   double **dnewm,**doldm;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double *xp;    for (i=1;i<=nlstate;i++)
   double **gp, **gm;      for(j=1;j<=nlstate+ndeath;j++)
   double ***gradg, ***trgradg;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int theta;    fprintf(ficrespow,"\n");
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    powell(p,xi,npar,ftol,&iter,&fret,func);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);    fclose(ficrespow);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  /**** Computes Hessian and covariance matrix ***/
   fprintf(ficreseij,"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   if(estepm < stepm){    double  **a,**y,*x,pd;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **hess;
   }    int i, j,jk;
   else  hstepm=estepm;      int *indx;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    double hessii(double p[], double delta, int theta, double delti[]);
    * if stepm=24 months pijx are given only every 2 years and by summing them    double hessij(double p[], double delti[], int i, int j);
    * we are calculating an estimate of the Life Expectancy assuming a linear    void lubksb(double **a, int npar, int *indx, double b[]) ;
    * progression inbetween and thus overestimating or underestimating according    void ludcmp(double **a, int npar, int *indx, double *d) ;
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    hess=matrix(1,npar,1,npar);
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    printf("\nCalculation of the hessian matrix. Wait...\n");
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   /* For example we decided to compute the life expectancy with the smallest unit */      printf("%d",i);fflush(stdout);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficlog,"%d",i);fflush(ficlog);
      nhstepm is the number of hstepm from age to agelim      hess[i][i]=hessii(p,ftolhess,i,delti);
      nstepm is the number of stepm from age to agelin.      /*printf(" %f ",p[i]);*/
      Look at hpijx to understand the reason of that which relies in memory size      /*printf(" %lf ",hess[i][i]);*/
      and note for a fixed period like estepm months */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=npar;i++) {
      means that if the survival funtion is printed only each two years of age and if      for (j=1;j<=npar;j++)  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        if (j>i) { 
      results. So we changed our mind and took the option of the best precision.          printf(".%d%d",i,j);fflush(stdout);
   */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
   agelim=AGESUP;          /*printf(" %lf ",hess[i][j]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     /* nhstepm age range expressed in number of stepm */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    printf("\n");
     /* if (stepm >= YEARM) hstepm=1;*/    fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate*2);    
     gm=matrix(0,nhstepm,1,nlstate*2);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    x=vector(1,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    indx=ivector(1,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for (j=1;j<=npar;j++) {
     /* Computing Variances of health expectancies */      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
      for(theta=1; theta <=npar; theta++){      lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++){      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       }      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
    
       cptj=0;    printf("\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(i=1; i<=nlstate; i++){    for (i=1;i<=npar;i++) { 
           cptj=cptj+1;      for (j=1;j<=npar;j++) { 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        printf("%.3e ",hess[i][j]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        fprintf(ficlog,"%.3e ",hess[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
          }
        
       for(i=1; i<=npar; i++)    /* Recompute Inverse */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
          ludcmp(a,npar,indx,&pd);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    /*  printf("\n#Hessian matrix recomputed#\n");
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    for (j=1;j<=npar;j++) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++) x[i]=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        y[i][j]=x[i];
              printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
       }
       for(j=1; j<= nlstate*2; j++)      printf("\n");
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficlog,"\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    */
   
      }    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
 /* End theta */    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    free_matrix(hess,1,npar,1,npar);
   
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)  }
         for(theta=1; theta <=npar; theta++)  
         trgradg[h][j][theta]=gradg[h][theta][j];  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
   {
      for(i=1;i<=nlstate*2;i++)    int i;
       for(j=1;j<=nlstate*2;j++)    int l=1, lmax=20;
         varhe[i][j][(int)age] =0.;    double k1,k2;
     double p2[NPARMAX+1];
     for(h=0;h<=nhstepm-1;h++){    double res;
       for(k=0;k<=nhstepm-1;k++){    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double fx;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int k=0,kmax=10;
         for(i=1;i<=nlstate*2;i++)    double l1;
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
            delts=delt;
     /* Computing expectancies */      for(k=1 ; k <kmax; k=k+1){
     for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
       for(j=1; j<=nlstate;j++)        p2[theta]=x[theta] +delt;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        k1=func(p2)-fx;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        p2[theta]=x[theta]-delt;
                  k2=func(p2)-fx;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
   #ifdef DEBUG
     fprintf(ficreseij,"%3.0f",age );        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     cptj=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         cptj++;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          k=kmax;
       }        }
     fprintf(ficreseij,"\n");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10.;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        }
     free_matrix(gp,0,nhstepm,1,nlstate*2);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          delts=delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   }    }
   free_vector(xp,1,npar);    delti[theta]=delts;
   free_matrix(dnewm,1,nlstate*2,1,npar);    return res; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  }
 }  
   double hessij( double x[], double delti[], int thetai,int thetaj)
 /************ Variance ******************/  {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    int i;
 {    int l=1, l1, lmax=20;
   /* Variance of health expectancies */    double k1,k2,k3,k4,res,fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double p2[NPARMAX+1];
   double **newm;    int k;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    fx=func(x);
   int k, cptcode;    for (k=1; k<=2; k++) {
   double *xp;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **gp, **gm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***gradg, ***trgradg;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***p3mat;      k1=func(p2)-fx;
   double age,agelim, hf;    
   int theta;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    fprintf(ficresvij,"# Covariances of life expectancies\n");      k2=func(p2)-fx;
   fprintf(ficresvij,"# Age");    
   for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      k3=func(p2)-fx;
   fprintf(ficresvij,"\n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   dnewm=matrix(1,nlstate,1,npar);      k4=func(p2)-fx;
   doldm=matrix(1,nlstate,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   if(estepm < stepm){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   else  hstepm=estepm;      }
   /* For example we decided to compute the life expectancy with the smallest unit */    return res;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /************** Inverse of matrix **************/
      Look at hpijx to understand the reason of that which relies in memory size  void ludcmp(double **a, int n, int *indx, double *d) 
      and note for a fixed period like k years */  { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i,imax,j,k; 
      survival function given by stepm (the optimization length). Unfortunately it    double big,dum,sum,temp; 
      means that if the survival funtion is printed only each two years of age and if    double *vv; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.    vv=vector(1,n); 
   */    *d=1.0; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=n;i++) { 
   agelim = AGESUP;      big=0.0; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=n;j++) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      vv[i]=1.0/big; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    } 
     gp=matrix(0,nhstepm,1,nlstate);    for (j=1;j<=n;j++) { 
     gm=matrix(0,nhstepm,1,nlstate);      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     for(theta=1; theta <=npar; theta++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }      big=0.0; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=j;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
       if (popbased==1) {          sum -= a[i][k]*a[k][j]; 
         for(i=1; i<=nlstate;i++)        a[i][j]=sum; 
           prlim[i][i]=probs[(int)age][i][ij];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
            imax=i; 
       for(j=1; j<= nlstate; j++){        } 
         for(h=0; h<=nhstepm; h++){      } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      if (j != imax) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for (k=1;k<=n;k++) { 
         }          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
       for(i=1; i<=npar; i++) /* Computes gradient */        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        *d = -(*d); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          vv[imax]=vv[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } 
        indx[j]=imax; 
       if (popbased==1) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(i=1; i<=nlstate;i++)      if (j != n) { 
           prlim[i][i]=probs[(int)age][i][ij];        dum=1.0/(a[j][j]); 
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    free_vector(vv,1,n);  /* Doesn't work */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  ;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  } 
         }  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
       for(j=1; j<= nlstate; j++)    int i,ii=0,ip,j; 
         for(h=0; h<=nhstepm; h++){    double sum; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];   
         }    for (i=1;i<=n;i++) { 
     } /* End theta */      ip=indx[i]; 
       sum=b[ip]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      b[ip]=b[i]; 
       if (ii) 
     for(h=0; h<=nhstepm; h++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<=nlstate;j++)      else if (sum) ii=i; 
         for(theta=1; theta <=npar; theta++)      b[i]=sum; 
           trgradg[h][j][theta]=gradg[h][theta][j];    } 
     for (i=n;i>=1;i--) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      sum=b[i]; 
     for(i=1;i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1;j<=nlstate;j++)      b[i]=sum/a[i][i]; 
         vareij[i][j][(int)age] =0.;    } 
   } 
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /************ Frequencies ********************/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {  /* Some frequencies */
         for(i=1;i<=nlstate;i++)    
           for(j=1;j<=nlstate;j++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int first;
       }    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficresvij,"%.0f ",age );    FILE *ficresp;
     for(i=1; i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficresvij,"\n");    strcpy(fileresp,"p");
     free_matrix(gp,0,nhstepm,1,nlstate);    strcat(fileresp,fileres);
     free_matrix(gm,0,nhstepm,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      exit(0);
   } /* End age */    }
      freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   free_vector(xp,1,npar);    j1=0;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }  
     first=1;
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   /* Variance of prevalence limit */        j1++;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **newm;          scanf("%d", i);*/
   double **dnewm,**doldm;        for (i=-1; i<=nlstate+ndeath; i++)  
   int i, j, nhstepm, hstepm;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   int k, cptcode;            for(m=iagemin; m <= iagemax+3; m++)
   double *xp;              freq[i][jk][m]=0;
   double *gp, *gm;  
   double **gradg, **trgradg;      for (i=1; i<=nlstate; i++)  
   double age,agelim;        for(m=iagemin; m <= iagemax+3; m++)
   int theta;          prop[i][m]=0;
            
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        dateintsum=0;
   fprintf(ficresvpl,"# Age");        k2cpt=0;
   for(i=1; i<=nlstate;i++)        for (i=1; i<=imx; i++) {
       fprintf(ficresvpl," %1d-%1d",i,i);          bool=1;
   fprintf(ficresvpl,"\n");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   xp=vector(1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   dnewm=matrix(1,nlstate,1,npar);                bool=0;
   doldm=matrix(1,nlstate,1,nlstate);          }
            if (bool==1){
   hstepm=1*YEARM; /* Every year of age */            for(m=firstpass; m<=lastpass; m++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              k2=anint[m][i]+(mint[m][i]/12.);
   agelim = AGESUP;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if (stepm >= YEARM) hstepm=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if (m<lastpass) {
     gradg=matrix(1,npar,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gp=vector(1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     gm=vector(1,nlstate);                }
                 
     for(theta=1; theta <=npar; theta++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(i=1; i<=npar; i++){ /* Computes gradient */                  dateintsum=dateintsum+k2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  k2cpt++;
       }                }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                /*}*/
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];          }
            }
       for(i=1; i<=npar; i++) /* Computes gradient */         
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)        if  (cptcovn>0) {
         gm[i] = prlim[i][i];          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     trgradg =matrix(1,nlstate,1,npar);        fprintf(ficresp, "\n");
         
     for(j=1; j<=nlstate;j++)        for(i=iagemin; i <= iagemax+3; i++){
       for(theta=1; theta <=npar; theta++)          if(i==iagemax+3){
         trgradg[j][theta]=gradg[theta][j];            fprintf(ficlog,"Total");
           }else{
     for(i=1;i<=nlstate;i++)            if(first==1){
       varpl[i][(int)age] =0.;              first=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              printf("See log file for details...\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"%.0f ",age );            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          }
     fprintf(ficresvpl,"\n");          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gp,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     free_vector(gm,1,nlstate);              pos += freq[jk][m][i];
     free_matrix(gradg,1,npar,1,nlstate);            if(pp[jk]>=1.e-10){
     free_matrix(trgradg,1,nlstate,1,npar);              if(first==1){
   } /* End age */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(doldm,1,nlstate,1,npar);            }else{
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {          for(jk=1; jk <=nlstate ; jk++){
   int i, j, i1, k1, j1, z1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int k=0, cptcode;              pp[jk] += freq[jk][m][i];
   double **dnewm,**doldm;          }       
   double *xp;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double *gp, *gm;            pos += pp[jk];
   double **gradg, **trgradg;            posprop += prop[jk][i];
   double age,agelim, cov[NCOVMAX];          }
   int theta;          for(jk=1; jk <=nlstate ; jk++){
   char fileresprob[FILENAMELENGTH];            if(pos>=1.e-5){
               if(first==1)
   strcpy(fileresprob,"prob");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprob,fileres);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }else{
     printf("Problem with resultfile: %s\n", fileresprob);              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");            if( i <= iagemax){
   fprintf(ficresprob,"# Age");              if(pos>=1.e-5){
   for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(j=1; j<=(nlstate+ndeath);j++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
   fprintf(ficresprob,"\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
           }
   xp=vector(1,npar);          
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
   cov[1]=1;              if(first==1)
   j=cptcoveff;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   j1=0;              }
   for(k1=1; k1<=1;k1++){          if(i <= iagemax)
     for(i1=1; i1<=ncodemax[k1];i1++){            fprintf(ficresp,"\n");
     j1++;          if(first==1)
             printf("Others in log...\n");
     if  (cptcovn>0) {          fprintf(ficlog,"\n");
       fprintf(ficresprob, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
       fprintf(ficresprob, "**********\n#");    }
     }    dateintmean=dateintsum/k2cpt; 
       
       for (age=bage; age<=fage; age ++){    fclose(ficresp);
         cov[2]=age;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         for (k=1; k<=cptcovn;k++) {    free_vector(pp,1,nlstate);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              /* End of Freq */
         }  }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  /************ Prevalence ********************/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
          {  
         gradg=matrix(1,npar,1,9);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         trgradg=matrix(1,9,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       We still use firstpass and lastpass as another selection.
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    */
       
         for(theta=1; theta <=npar; theta++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           for(i=1; i<=npar; i++)    double ***freq; /* Frequencies */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *pp, **prop;
              double pos,posprop; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double  y2; /* in fractional years */
              int iagemin, iagemax;
           k=0;  
           for(i=1; i<= (nlstate+ndeath); i++){    iagemin= (int) agemin;
             for(j=1; j<=(nlstate+ndeath);j++){    iagemax= (int) agemax;
               k=k+1;    /*pp=vector(1,nlstate);*/
               gp[k]=pmmij[i][j];    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           }    j1=0;
              
           for(i=1; i<=npar; i++)    j=cptcoveff;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(k1=1; k1<=j;k1++){
           k=0;      for(i1=1; i1<=ncodemax[k1];i1++){
           for(i=1; i<=(nlstate+ndeath); i++){        j1++;
             for(j=1; j<=(nlstate+ndeath);j++){        
               k=k+1;        for (i=1; i<=nlstate; i++)  
               gm[k]=pmmij[i][j];          for(m=iagemin; m <= iagemax+3; m++)
             }            prop[i][m]=0.0;
           }       
              for (i=1; i<=imx; i++) { /* Each individual */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          bool=1;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                bool=0;
           for(theta=1; theta <=npar; theta++)          } 
             trgradg[j][theta]=gradg[theta][j];          if (bool==1) { 
                    for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         pmij(pmmij,cov,ncovmodel,x,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         k=0;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for(i=1; i<=(nlstate+ndeath); i++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           for(j=1; j<=(nlstate+ndeath);j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             k=k+1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
             gm[k]=pmmij[i][j];                } 
           }              }
         }            } /* end selection of waves */
                }
      /*printf("\n%d ",(int)age);        }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for(i=iagemin; i <= iagemax+3; i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          
      }*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
         fprintf(ficresprob,"\n%d ",(int)age);          } 
   
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          for(jk=1; jk <=nlstate ; jk++){     
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }/* end jk */ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }/* end i */ 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } /* end i1 */
   }    } /* end k1 */
   free_vector(xp,1,npar);    
   fclose(ficresprob);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
 }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  /************* Waves Concatenation ***************/
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  {
  char version[], int popforecast, int estepm ){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int jj1, k1, i1, cpt;       Death is a valid wave (if date is known).
   FILE *fichtm;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /*char optionfilehtm[FILENAMELENGTH];*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   strcpy(optionfilehtm,optionfile);       */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    int i, mi, m;
     printf("Problem with %s \n",optionfilehtm), exit(0);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
     int first;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int j, k=0,jk, ju, jl;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double sum=0.;
 \n    first=0;
 Total number of observations=%d <br>\n    jmin=1e+5;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    jmax=-1;
 <hr  size=\"2\" color=\"#EC5E5E\">    jmean=0.;
  <ul><li>Outputs files<br>\n    for(i=1; i<=imx; i++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      mi=0;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      m=firstpass;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      while(s[m][i] <= nlstate){
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        if(s[m][i]>=1)
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          mw[++mi][i]=m;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        if(m >=lastpass)
           break;
  fprintf(fichtm,"\n        else
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          m++;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      }/* end while */
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      if (s[m][i] > nlstate){
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        mi++;     /* Death is another wave */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  if(popforecast==1) fprintf(fichtm,"\n        mw[mi][i]=m;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);      wav[i]=mi;
  else      if(mi==0){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        nbwarn++;
 fprintf(fichtm," <li>Graphs</li><p>");        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  m=cptcoveff;          first=1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         if(first==1){
  jj1=0;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      } /* end mi==0 */
        jj1++;    } /* End individuals */
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for(i=1; i<=imx; i++){
          for (cpt=1; cpt<=cptcoveff;cpt++)      for(mi=1; mi<wav[i];mi++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        if (stepm <=0)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          dh[mi][i]=1;
        }        else{
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if (agedc[i] < 2*AGESUP) {
        for(cpt=1; cpt<nlstate;cpt++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if(j==0) j=1;  /* Survives at least one month after exam */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              else if(j<0){
        }                nberr++;
     for(cpt=1; cpt<=nlstate;cpt++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                j=1; /* Temporary Dangerous patch */
 interval) in state (%d): v%s%d%d.gif <br>                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      for(cpt=1; cpt<=nlstate;cpt++) {              }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              k=k+1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if (j >= jmax) jmax=j;
      }              if (j <= jmin) jmin=j;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              sum=sum+j;
 health expectancies in states (1) and (2): e%s%d.gif<br>              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(fichtm,"\n</body>");            }
    }          }
    }          else{
 fclose(fichtm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
 /******************* Gnuplot file **************/            if (j >= jmax) jmax=j;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   strcpy(optionfilegnuplot,optionfilefiname);              nberr++;
   strcat(optionfilegnuplot,".gp.txt");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("Problem with file %s",optionfilegnuplot);            }
   }            sum=sum+j;
           }
 #ifdef windows          jk= j/stepm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          jl= j -jk*stepm;
 #endif          ju= j -(jk+1)*stepm;
 m=pow(2,cptcoveff);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
  /* 1eme*/              dh[mi][i]=jk;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=0;
    for (k1=1; k1<= m ; k1 ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl <= -ju){
 }              dh[mi][i]=jk;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=jl;       /* bias is positive if real duration
     for (i=1; i<= nlstate ; i ++) {                                   * is higher than the multiple of stepm and negative otherwise.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                   */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            else{
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
      for (i=1; i<= nlstate ; i ++) {              bh[mi][i]=ju;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(dh[mi][i]==0){
 }                dh[mi][i]=1; /* At least one step */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
    }          } /* end if mle */
   }        }
   /*2 eme*/      } /* end wave */
     }
   for (k1=1; k1<= m ; k1 ++) {    jmean=sum/k;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (i=1; i<= nlstate+1 ; i ++) {   }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /*********** Tricode ****************************/
       for (j=1; j<= nlstate+1 ; j ++) {  void tricode(int *Tvar, int **nbcode, int imx)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      int Ndum[20],ij=1, k, j, i, maxncov=19;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int cptcode=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    cptcoveff=0; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficgp,"\" t\"\" w l 0,");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                                 modality*/ 
       for (j=1; j<= nlstate+1 ; j ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        Ndum[ij]++; /*store the modality */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 }          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                                         Tvar[j]. If V=sex and male is 0 and 
       else fprintf(ficgp,"\" t\"\" w l 0,");                                         female is 1, then  cptcode=1.*/
     }      }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }      for (i=0; i<=cptcode; i++) {
          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   /*3eme*/      }
   
   for (k1=1; k1<= m ; k1 ++) {      ij=1; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for (i=1; i<=ncodemax[j]; i++) {
       k=2+nlstate*(2*cpt-2);        for (k=0; k<= maxncov; k++) {
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          if (Ndum[k] != 0) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            nbcode[Tvar[j]][ij]=k; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            ij++;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          if (ij > ncodemax[j]) break; 
         }  
 */      } 
       for (i=1; i< nlstate ; i ++) {    }  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   for (i=1; i<=ncovmodel-2; i++) { 
     }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
       Ndum[ij]++;
   /* CV preval stat */   }
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {   ij=1;
       k=3;   for (i=1; i<= maxncov; i++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
       for (i=1; i< nlstate ; i ++)       ij++;
         fprintf(ficgp,"+$%d",k+i+1);     }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   }
         
       l=3+(nlstate+ndeath)*cpt;   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  }
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;  /*********** Health Expectancies ****************/
         fprintf(ficgp,"+$%d",l+i+1);  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  {
     }    /* Health expectancies */
   }      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      double age, agelim, hf;
   /* proba elementaires */    double ***p3mat,***varhe;
    for(i=1,jk=1; i <=nlstate; i++){    double **dnewm,**doldm;
     for(k=1; k <=(nlstate+ndeath); k++){    double *xp;
       if (k != i) {    double **gp, **gm;
         for(j=1; j <=ncovmodel; j++){    double ***gradg, ***trgradg;
            int theta;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           fprintf(ficgp,"\n");    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
     }    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
     for(jk=1; jk <=m; jk++) {    for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      for(j=1; j<=nlstate;j++)
    i=1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
    for(k2=1; k2<=nlstate; k2++) {    fprintf(ficreseij,"\n");
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {    if(estepm < stepm){
        if (k != k2){      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
 ij=1;    else  hstepm=estepm;   
         for(j=3; j <=ncovmodel; j++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * This is mainly to measure the difference between two models: for example
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * if stepm=24 months pijx are given only every 2 years and by summing them
             ij++;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           }     * progression in between and thus overestimating or underestimating according
           else     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficgp,")/(1");     * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /* For example we decided to compute the life expectancy with the smallest unit */
 ij=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           for(j=3; j <=ncovmodel; j++){       nhstepm is the number of hstepm from age to agelim 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       nstepm is the number of stepm from age to agelin. 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Look at hpijx to understand the reason of that which relies in memory size
             ij++;       and note for a fixed period like estepm months */
           }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           else       survival function given by stepm (the optimization length). Unfortunately it
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       means that if the survival funtion is printed only each two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficgp,")");       results. So we changed our mind and took the option of the best precision.
         }    */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    agelim=AGESUP;
        }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      }      /* nhstepm age range expressed in number of stepm */
    }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    }      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficgp);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }  /* end gnuplot */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int i, cpt, cptcod;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          /* Computing Variances of health expectancies */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){       for(theta=1; theta <=npar; theta++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1; i<=npar; i++){ 
           for (cpt=0;cpt<=4;cpt++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        }
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    
         }        cptj=0;
       }        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
 }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
 /************** Forecasting ******************/          }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
         
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       
   int *popage;        for(i=1; i<=npar; i++) 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***p3mat;        
   char fileresf[FILENAMELENGTH];        cptj=0;
         for(j=1; j<= nlstate; j++){
  agelim=AGESUP;          for(i=1;i<=nlstate;i++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   strcpy(fileresf,"f");          }
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(j=1; j<= nlstate*nlstate; j++)
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   printf("Computing forecasting: result on file '%s' \n", fileresf);          }
        } 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     
   /* End theta */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(theta=1; theta <=npar; theta++)
   if (stepm<=12) stepsize=1;            trgradg[h][j][theta]=gradg[h][theta][j];
         
   agelim=AGESUP;  
         for(i=1;i<=nlstate*nlstate;i++)
   hstepm=1;        for(j=1;j<=nlstate*nlstate;j++)
   hstepm=hstepm/stepm;          varhe[i][j][(int)age] =0.;
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;       printf("%d|",(int)age);fflush(stdout);
   yp2=modf((yp1*12),&yp);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   mprojmean=yp;       for(h=0;h<=nhstepm-1;h++){
   yp1=modf((yp2*30.5),&yp);        for(k=0;k<=nhstepm-1;k++){
   jprojmean=yp;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if(jprojmean==0) jprojmean=1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if(mprojmean==0) jprojmean=1;          for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   for(cptcov=1;cptcov<=i2;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Computing expectancies */
       k=k+1;      for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"\n#******");        for(j=1; j<=nlstate;j++)
       for(j=1;j<=cptcoveff;j++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
       fprintf(ficresf,"******\n");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
        
            fprintf(ficreseij,"%3.0f",age );
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      cptj=0;
         fprintf(ficresf,"\n");      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=1; j<=nlstate;j++){
           cptj++;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;      fprintf(ficreseij,"\n");
               
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           oldm=oldms;savm=savms;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
              free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    printf("\n");
             }    fprintf(ficlog,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    free_vector(xp,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                 if (mobilav==1)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                 else {  }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  /************ Variance ******************/
                  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
               }  {
               if (h==(int)(calagedate+12*cpt)){    /* Variance of health expectancies */
                 fprintf(ficresf," %.3f", kk1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                            /* double **newm;*/
               }    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
           }    int i, j, nhstepm, hstepm, h, nstepm ;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k, cptcode;
         }    double *xp;
       }    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
            double *gpp, *gmp; /* for var p point j */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   fclose(ficresf);    double age,agelim, hf;
 }    double ***mobaverage;
 /************** Forecasting ******************/    int theta;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    char digit[4];
      char digitp[25];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    char fileresprobmorprev[FILENAMELENGTH];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    if(popbased==1){
   double ***p3mat,***tabpop,***tabpopprev;      if(mobilav!=0)
   char filerespop[FILENAMELENGTH];        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else 
   agelim=AGESUP;      strcpy(digitp,"-stablbased-");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      if (mobilav!=0) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(filerespop,"pop");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(filerespop,fileres);      }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
   printf("Computing forecasting: result on file '%s' \n", filerespop);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (mobilav==1) {    strcat(fileresprobmorprev,fileres);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     movingaverage(agedeb, fage, ageminpar, mobaverage);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   agelim=AGESUP;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   hstepm=1;      fprintf(ficresprobmorprev," p.%-d SE",j);
   hstepm=hstepm/stepm;      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (popforecast==1) {    }  
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficresprobmorprev,"\n");
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficgp,"\n# Routine varevsij");
     }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     popage=ivector(0,AGESUP);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     popeffectif=vector(0,AGESUP);  /*   } */
     popcount=vector(0,AGESUP);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      
     i=1;      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficresvij,"# Age");
        for(i=1; i<=nlstate;i++)
     imx=i;      for(j=1; j<=nlstate;j++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   }    fprintf(ficresvij,"\n");
   
   for(cptcov=1;cptcov<=i2;cptcov++){    xp=vector(1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    dnewm=matrix(1,nlstate,1,npar);
       k=k+1;    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficrespop,"\n#******");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for(j=1;j<=cptcoveff;j++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"******\n");    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"# Age");    gmp=vector(nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (popforecast==1)  fprintf(ficrespop," [Population]");    
          if(estepm < stepm){
       for (cpt=0; cpt<=0;cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
            else  hstepm=estepm;   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* For example we decided to compute the life expectancy with the smallest unit */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm = nhstepm/hstepm;       nhstepm is the number of hstepm from age to agelim 
                 nstepm is the number of stepm from age to agelin. 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
           oldm=oldms;savm=savms;       and note for a fixed period like k years */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
           for (h=0; h<=nhstepm; h++){       means that if the survival funtion is printed every two years of age and if
             if (h==(int) (calagedate+YEARM*cpt)) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       results. So we changed our mind and took the option of the best precision.
             }    */
             for(j=1; j<=nlstate+ndeath;j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               kk1=0.;kk2=0;    agelim = AGESUP;
               for(i=1; i<=nlstate;i++) {                  for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                 if (mobilav==1)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 else {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                 }      gp=matrix(0,nhstepm,1,nlstate);
               }      gm=matrix(0,nhstepm,1,nlstate);
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);      for(theta=1; theta <=npar; theta++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
             for(i=1; i<=nlstate;i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               kk1=0.;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        if (popbased==1) {
                 }          if(mobilav ==0){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            for(i=1; i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }    
       }        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   /******/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /* This for computing probability of death (h=1 means
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           computed over hstepm matrices product = hstepm*stepm months) 
           nhstepm = nhstepm/hstepm;           as a weighted average of prlim.
                  */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           oldm=oldms;savm=savms;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gpp[j] += prlim[i][i]*p3mat[i][j][1];
           for (h=0; h<=nhstepm; h++){        }    
             if (h==(int) (calagedate+YEARM*cpt)) {        /* end probability of death */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             for(j=1; j<=nlstate+ndeath;j++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               kk1=0.;kk2=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               for(i=1; i<=nlstate;i++) {                      prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }        if (popbased==1) {
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=probs[(int)age][i][ij];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
    }          }
   }        }
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   if (popforecast==1) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_ivector(popage,0,AGESUP);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);        }
   }        /* This for computing probability of death (h=1 means
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           computed over hstepm matrices product = hstepm*stepm months) 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           as a weighted average of prlim.
   fclose(ficrespop);        */
 }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
 /***********************************************/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
 /**************** Main Program *****************/        }    
 /***********************************************/        /* end probability of death */
   
 int main(int argc, char *argv[])        for(j=1; j<= nlstate; j++) /* vareij */
 {          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   double fret;        }
   double **xi,tmp,delta;  
       } /* End theta */
   double dum; /* Dummy variable */  
   double ***p3mat;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      for(h=0; h<=nhstepm; h++) /* veij */
   char title[MAXLINE];        for(j=1; j<=nlstate;j++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            trgradg[h][j][theta]=gradg[h][theta][j];
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   char filerest[FILENAMELENGTH];          trgradgp[j][theta]=gradgp[theta][j];
   char fileregp[FILENAMELENGTH];    
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int firstobs=1, lastobs=10;      for(i=1;i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */        for(j=1;j<=nlstate;j++)
   int c,  h , cpt,l;          vareij[i][j][(int)age] =0.;
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(h=0;h<=nhstepm;h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(k=0;k<=nhstepm;k++){
   int mobilav=0,popforecast=0;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int hstepm, nhstepm;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   double bage, fage, age, agelim, agebase;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   double ftolpl=FTOL;        }
   double **prlim;      }
   double *severity;    
   double ***param; /* Matrix of parameters */      /* pptj */
   double  *p;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double **matcov; /* Matrix of covariance */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double ***delti3; /* Scale */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double *delti; /* Scale */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double ***eij, ***vareij;          varppt[j][i]=doldmp[j][i];
   double **varpl; /* Variances of prevalence limits by age */      /* end ppptj */
   double *epj, vepp;      /*  x centered again */
   double kk1, kk2;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
       if (popbased==1) {
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";        if(mobilav ==0){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   char z[1]="c", occ;          for(i=1; i<=nlstate;i++)
 #include <sys/time.h>            prlim[i][i]=mobaverage[(int)age][i][ij];
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      }
                 
   /* long total_usecs;      /* This for computing probability of death (h=1 means
   struct timeval start_time, end_time;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      */
   getcwd(pathcd, size);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   printf("\n%s",version);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   if(argc <=1){      }    
     printf("\nEnter the parameter file name: ");      /* end probability of death */
     scanf("%s",pathtot);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   else{      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     strcpy(pathtot,argv[1]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /*cygwin_split_path(pathtot,path,optionfile);        }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      } 
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficresprobmorprev,"\n");
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficresvij,"%.0f ",age );
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      for(i=1; i<=nlstate;i++)
   chdir(path);        for(j=1; j<=nlstate;j++){
   replace(pathc,path);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
 /*-------- arguments in the command line --------*/      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   strcpy(fileres,"r");      free_matrix(gm,0,nhstepm,1,nlstate);
   strcat(fileres, optionfilefiname);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------arguments file --------*/    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("Problem with optionfile %s\n",optionfile);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     goto end;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   strcpy(filereso,"o");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   strcat(filereso,fileres);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fgets(line, MAXLINE, ficpar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     puts(line);  */
     fputs(line,ficparo);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   ungetc(c,ficpar);  
     free_vector(xp,1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_matrix(doldm,1,nlstate,1,nlstate);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_matrix(dnewm,1,nlstate,1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     ungetc(c,ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);    fclose(ficresprobmorprev);
     fputs(line,ficparo);    fflush(ficgp);
   }    fflush(fichtm); 
   ungetc(c,ficpar);  }  /* end varevsij */
    
      /************ Variance of prevlim ******************/
   covar=matrix(0,NCOVMAX,1,n);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   cptcovn=0;  {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   ncovmodel=2+cptcovn;    double **newm;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   /* Read guess parameters */    int k, cptcode;
   /* Reads comments: lines beginning with '#' */    double *xp;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
     ungetc(c,ficpar);    double **gradg, **trgradg;
     fgets(line, MAXLINE, ficpar);    double age,agelim;
     puts(line);    int theta;
     fputs(line,ficparo);     
   }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresvpl," %1d-%1d",i,i);
     for(i=1; i <=nlstate; i++)    fprintf(ficresvpl,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    xp=vector(1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    dnewm=matrix(1,nlstate,1,npar);
       printf("%1d%1d",i,j);    doldm=matrix(1,nlstate,1,nlstate);
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    hstepm=1*YEARM; /* Every year of age */
         printf(" %lf",param[i][j][k]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         fprintf(ficparo," %lf",param[i][j][k]);    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fscanf(ficpar,"\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       printf("\n");      if (stepm >= YEARM) hstepm=1;
       fprintf(ficparo,"\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      gm=vector(1,nlstate);
   
   p=param[1][1];      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
     puts(line);          gp[i] = prlim[i][i];
     fputs(line,ficparo);      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
   ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=1;i<=nlstate;i++)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          gm[i] = prlim[i][i];
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){        for(i=1;i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       printf("%1d%1d",i,j);      } /* End theta */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      trgradg =matrix(1,nlstate,1,npar);
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      for(j=1; j<=nlstate;j++)
         fprintf(ficparo," %le",delti3[i][j][k]);        for(theta=1; theta <=npar; theta++)
       }          trgradg[j][theta]=gradg[theta][j];
       fscanf(ficpar,"\n");  
       printf("\n");      for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"\n");        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   delti=delti3[1][1];      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"%.0f ",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     puts(line);      fprintf(ficresvpl,"\n");
     fputs(line,ficparo);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   ungetc(c,ficpar);      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   matcov=matrix(1,npar,1,npar);    } /* End age */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    free_vector(xp,1,npar);
     printf("%s",str);    free_matrix(doldm,1,nlstate,1,npar);
     fprintf(ficparo,"%s",str);    free_matrix(dnewm,1,nlstate,1,nlstate);
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);  }
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  /************ Variance of one-step probabilities  ******************/
     }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fscanf(ficpar,"\n");  {
     printf("\n");    int i, j=0,  i1, k1, l1, t, tj;
     fprintf(ficparo,"\n");    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   for(i=1; i <=npar; i++)    int first=1, first1;
     for(j=i+1;j<=npar;j++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       matcov[i][j]=matcov[j][i];    double **dnewm,**doldm;
        double *xp;
   printf("\n");    double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     /*-------- Rewriting paramater file ----------*/    double age,agelim, cov[NCOVMAX];
      strcpy(rfileres,"r");    /* "Rparameterfile */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int theta;
      strcat(rfileres,".");    /* */    char fileresprob[FILENAMELENGTH];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    char fileresprobcov[FILENAMELENGTH];
     if((ficres =fopen(rfileres,"w"))==NULL) {    char fileresprobcor[FILENAMELENGTH];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }    double ***varpij;
     fprintf(ficres,"#%s\n",version);  
        strcpy(fileresprob,"prob"); 
     /*-------- data file ----------*/    strcat(fileresprob,fileres);
     if((fic=fopen(datafile,"r"))==NULL)    {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with datafile: %s\n", datafile);goto end;      printf("Problem with resultfile: %s\n", fileresprob);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     n= lastobs;    strcpy(fileresprobcov,"probcov"); 
     severity = vector(1,maxwav);    strcat(fileresprobcov,fileres);
     outcome=imatrix(1,maxwav+1,1,n);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     num=ivector(1,n);      printf("Problem with resultfile: %s\n", fileresprobcov);
     moisnais=vector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     annais=vector(1,n);    }
     moisdc=vector(1,n);    strcpy(fileresprobcor,"probcor"); 
     andc=vector(1,n);    strcat(fileresprobcor,fileres);
     agedc=vector(1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     cod=ivector(1,n);      printf("Problem with resultfile: %s\n", fileresprobcor);
     weight=vector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     anint=matrix(1,maxwav,1,n);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     s=imatrix(1,maxwav+1,1,n);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     tab=ivector(1,NCOVMAX);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ncodemax=ivector(1,8);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     i=1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficresprob,"# Age");
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficresprobcov,"# Age");
         for (j=maxwav;j>=1;j--){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficresprobcov,"# Age");
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
                fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   /* fprintf(ficresprob,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   */
         for (j=ncovcol;j>=1;j--){   xp=vector(1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         num[i]=atol(stra);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    first=1;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         i=i+1;    fprintf(fichtm,"\n");
       }  
     }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     /* printf("ii=%d", ij);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
        scanf("%d",i);*/    file %s<br>\n",optionfilehtmcov);
   imx=i-1; /* Number of individuals */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
   /* for (i=1; i<=imx; i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }*/  standard deviations wide on each axis. <br>\
    /*  for (i=1; i<=imx; i++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      if (s[4][i]==9)  s[4][i]=-1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
      cov[1]=1;
   /* Calculation of the number of parameter from char model*/    tj=cptcoveff;
   Tvar=ivector(1,15);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   Tprod=ivector(1,15);    j1=0;
   Tvaraff=ivector(1,15);    for(t=1; t<=tj;t++){
   Tvard=imatrix(1,15,1,2);      for(i1=1; i1<=ncodemax[t];i1++){ 
   Tage=ivector(1,15);              j1++;
            if  (cptcovn>0) {
   if (strlen(model) >1){          fprintf(ficresprob, "\n#********** Variable "); 
     j=0, j1=0, k1=1, k2=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j=nbocc(model,'+');          fprintf(ficresprob, "**********\n#\n");
     j1=nbocc(model,'*');          fprintf(ficresprobcov, "\n#********** Variable "); 
     cptcovn=j+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cptcovprod=j1;          fprintf(ficresprobcov, "**********\n#\n");
              
     strcpy(modelsav,model);          fprintf(ficgp, "\n#********** Variable "); 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Error. Non available option model=%s ",model);          fprintf(ficgp, "**********\n#\n");
       goto end;          
     }          
              fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     for(i=(j+1); i>=1;i--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       cutv(stra,strb,modelsav,'+');          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresprobcor, "\n#********** Variable ");    
       /*scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (strchr(strb,'*')) {          fprintf(ficresprobcor, "**********\n#");    
         cutv(strd,strc,strb,'*');        }
         if (strcmp(strc,"age")==0) {        
           cptcovprod--;        for (age=bage; age<=fage; age ++){ 
           cutv(strb,stre,strd,'V');          cov[2]=age;
           Tvar[i]=atoi(stre);          for (k=1; k<=cptcovn;k++) {
           cptcovage++;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }          for (k=1; k<=cptcovprod;k++)
         else if (strcmp(strd,"age")==0) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           cptcovprod--;          
           cutv(strb,stre,strc,'V');          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           Tvar[i]=atoi(stre);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           cptcovage++;          gp=vector(1,(nlstate)*(nlstate+ndeath));
           Tage[cptcovage]=i;          gm=vector(1,(nlstate)*(nlstate+ndeath));
         }      
         else {          for(theta=1; theta <=npar; theta++){
           cutv(strb,stre,strc,'V');            for(i=1; i<=npar; i++)
           Tvar[i]=ncovcol+k1;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           cutv(strb,strc,strd,'V');            
           Tprod[k1]=i;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tvard[k1][1]=atoi(strc);            
           Tvard[k1][2]=atoi(stre);            k=0;
           Tvar[cptcovn+k2]=Tvard[k1][1];            for(i=1; i<= (nlstate); i++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              for(j=1; j<=(nlstate+ndeath);j++){
           for (k=1; k<=lastobs;k++)                k=k+1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                gp[k]=pmmij[i][j];
           k1++;              }
           k2=k2+2;            }
         }            
       }            for(i=1; i<=npar; i++)
       else {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      
        /*  scanf("%d",i);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       cutv(strd,strc,strb,'V');            k=0;
       Tvar[i]=atoi(strc);            for(i=1; i<=(nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
       strcpy(modelsav,stra);                  k=k+1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                gm[k]=pmmij[i][j];
         scanf("%d",i);*/              }
     }            }
 }       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   printf("cptcovprod=%d ", cptcovprod);          }
   scanf("%d ",i);*/  
     fclose(fic);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
     /*  if(mle==1){*/              trgradg[j][theta]=gradg[theta][j];
     if (weightopt != 1) { /* Maximisation without weights*/          
       for(i=1;i<=n;i++) weight[i]=1.0;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     /*-calculation of age at interview from date of interview and age at death -*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     agev=matrix(1,maxwav,1,imx);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for (i=1; i<=imx; i++) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          pmij(pmmij,cov,ncovmodel,x,nlstate);
          anint[m][i]=9999;          
          s[m][i]=-1;          k=0;
        }          for(i=1; i<=(nlstate); i++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
     }              mu[k][(int) age]=pmmij[i][j];
             }
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       for(m=1; (m<= maxwav); m++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         if(s[m][i] >0){              varpij[i][j][(int)age] = doldm[i][j];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)          /*printf("\n%d ",(int)age);
               if(moisdc[i]!=99 && andc[i]!=9999)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                 agev[m][i]=agedc[i];            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            else {            }*/
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficresprob,"\n%d ",(int)age);
               agev[m][i]=-1;          fprintf(ficresprobcov,"\n%d ",(int)age);
               }          fprintf(ficresprobcor,"\n%d ",(int)age);
             }  
           }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           else if(s[m][i] !=9){ /* Should no more exist */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             if(mint[m][i]==99 || anint[m][i]==9999)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
               agev[m][i]=1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             else if(agev[m][i] <agemin){          }
               agemin=agev[m][i];          i=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for (k=1; k<=(nlstate);k++){
             }            for (l=1; l<=(nlstate+ndeath);l++){ 
             else if(agev[m][i] >agemax){              i=i++;
               agemax=agev[m][i];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             }              for (j=1; j<=i;j++){
             /*agev[m][i]=anint[m][i]-annais[i];*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             /*   agev[m][i] = age[i]+2*m;*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           }              }
           else { /* =9 */            }
             agev[m][i]=1;          }/* end of loop for state */
             s[m][i]=-1;        } /* end of loop for age */
           }  
         }        /* Confidence intervalle of pij  */
         else /*= 0 Unknown */        /*
           agev[m][i]=1;          fprintf(ficgp,"\nset noparametric;unset label");
       }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for (i=1; i<=imx; i++)  {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       for(m=1; (m<= maxwav); m++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         if (s[m][i] > (nlstate+ndeath)) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           printf("Error: Wrong value in nlstate or ndeath\n");          */
           goto end;  
         }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
     }        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
     free_vector(severity,1,maxwav);            for (k1=1; k1<=(nlstate);k1++){
     free_imatrix(outcome,1,maxwav+1,1,n);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     free_vector(moisnais,1,n);                if(l1==k1) continue;
     free_vector(annais,1,n);                i=(k1-1)*(nlstate+ndeath)+l1;
     /* free_matrix(mint,1,maxwav,1,n);                if(i<=j) continue;
        free_matrix(anint,1,maxwav,1,n);*/                for (age=bage; age<=fage; age ++){ 
     free_vector(moisdc,1,n);                  if ((int)age %5==0){
     free_vector(andc,1,n);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     wav=ivector(1,imx);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    mu2=mu[j][(int) age]/stepm*YEARM;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    c12=cv12/sqrt(v1*v2);
                        /* Computing eigen value of matrix of covariance */
     /* Concatenates waves */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       Tcode=ivector(1,100);                    /*v21=sqrt(1.-v11*v11); *//* error */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    v21=(lc1-v1)/cv12*v11;
       ncodemax[1]=1;                    v12=-v21;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    v22=v11;
                          tnalp=v21/v11;
    codtab=imatrix(1,100,1,10);                    if(first1==1){
    h=0;                      first1=0;
    m=pow(2,cptcoveff);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
    for(k=1;k<=cptcoveff; k++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      for(i=1; i <=(m/pow(2,k));i++){                    /*printf(fignu*/
        for(j=1; j <= ncodemax[k]; j++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
            h++;                    if(first==1){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                      first=0;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                      fprintf(ficgp,"\nset parametric;unset label");
          }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
        }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       codtab[1][2]=1;codtab[2][2]=2; */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    /* for(i=1; i <=m ;i++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(k=1; k <=cptcovn; k++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       scanf("%d",i);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    /* Calculates basic frequencies. Computes observed prevalence at single age                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        and prints on file fileres'p'. */                    }else{
                       first=0;
                          fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    }/* if first */
                        } /* age mod 5 */
     /* For Powell, parameters are in a vector p[] starting at p[1]                } /* end loop age */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                first=1;
               } /*l12 */
     if(mle==1){            } /* k12 */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          } /*l1 */
     }        }/* k1 */
          } /* loop covariates */
     /*--------- results files --------------*/    }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
    jk=1;    fclose(ficresprob);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fclose(ficresprobcov);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fclose(ficresprobcor);
    for(i=1,jk=1; i <=nlstate; i++){    fflush(ficgp);
      for(k=1; k <=(nlstate+ndeath); k++){    fflush(fichtmcov);
        if (k != i)  }
          {  
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  /******************* Printing html file ***********/
            for(j=1; j <=ncovmodel; j++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
              printf("%f ",p[jk]);                    int lastpass, int stepm, int weightopt, char model[],\
              fprintf(ficres,"%f ",p[jk]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
              jk++;                    int popforecast, int estepm ,\
            }                    double jprev1, double mprev1,double anprev1, \
            printf("\n");                    double jprev2, double mprev2,double anprev2){
            fprintf(ficres,"\n");    int jj1, k1, i1, cpt;
          }    /*char optionfilehtm[FILENAMELENGTH];*/
      }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
    }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
  if(mle==1){  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
     /* Computing hessian and covariance matrix */  /*   } */
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
  }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     printf("# Scales (for hessian or gradient estimation)\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
      for(i=1,jk=1; i <=nlstate; i++){   - Life expectancies by age and initial health status (estepm=%2d months): \
       for(j=1; j <=nlstate+ndeath; j++){     <a href=\"%s\">%s</a> <br>\n</li>", \
         if (j!=i) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
           fprintf(ficres,"%1d%1d",i,j);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
           printf("%1d%1d",i,j);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
           for(k=1; k<=ncovmodel;k++){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             jk++;  
           }   m=cptcoveff;
           printf("\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficres,"\n");  
         }   jj1=0;
       }   for(k1=1; k1<=m;k1++){
      }     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     k=1;       if (cptcovn > 0) {
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(i=1;i<=npar;i++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       /*  if (k>nlstate) k=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       i1=(i-1)/(ncovmodel*nlstate)+1;       }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       /* Pij */
       printf("%s%d%d",alph[k],i1,tab[i]);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       fprintf(ficres,"%3d",i);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       printf("%3d",i);       /* Quasi-incidences */
       for(j=1; j<=i;j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficres," %.5e",matcov[i][j]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         printf(" %.5e",matcov[i][j]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       }         /* Stable prevalence in each health state */
       fprintf(ficres,"\n");         for(cpt=1; cpt<nlstate;cpt++){
       printf("\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       k++;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     }         }
           for(cpt=1; cpt<=nlstate;cpt++) {
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fgets(line, MAXLINE, ficpar);       }
       puts(line);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fputs(line,ficparo);  health expectancies in states (1) and (2): %s%d.png<br>\
     }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     ungetc(c,ficpar);     } /* end i1 */
     estepm=0;   }/* End k1 */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   fprintf(fichtm,"</ul>");
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {  
       bage = ageminpar;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       fage = agemaxpar;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     while((c=getc(ficpar))=='#' && c!= EOF){           rfileres,rfileres,\
     ungetc(c,ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     fgets(line, MAXLINE, ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
     puts(line);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     fputs(line,ficparo);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   }           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   ungetc(c,ficpar);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
        /*      <br>",fileres,fileres,fileres,fileres); */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  else  */
     ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fgets(line, MAXLINE, ficpar);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     puts(line);  
     fputs(line,ficparo);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   ungetc(c,ficpar);  
     jj1=0;
    for(k1=1; k1<=m;k1++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     for(i1=1; i1<=ncodemax[k1];i1++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       jj1++;
        if (cptcovn > 0) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fprintf(ficparo,"pop_based=%d\n",popbased);           for (cpt=1; cpt<=cptcoveff;cpt++) 
   fprintf(ficres,"pop_based=%d\n",popbased);             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     puts(line);  interval) in state (%d): %s%d%d.png <br>\
     fputs(line,ficparo);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }       }
   ungetc(c,ficpar);     } /* end i1 */
    }/* End k1 */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   fprintf(fichtm,"</ul>");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   fflush(fichtm);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  }
   
   /******************* Gnuplot file **************/
 while((c=getc(ficpar))=='#' && c!= EOF){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    char dirfileres[132],optfileres[132];
     puts(line);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fputs(line,ficparo);    int ng;
   }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   ungetc(c,ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /*   } */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /*#endif */
     m=pow(2,cptcoveff);
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
 /*------------ free_vector  -------------*/   /* 1eme*/
  chdir(path);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
  free_ivector(wav,1,imx);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         fprintf(ficgp,"set xlabel \"Age\" \n\
  free_ivector(num,1,n);  set ylabel \"Probability\" \n\
  free_vector(agedc,1,n);  set ter png small\n\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  set size 0.65,0.65\n\
  fclose(ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  fclose(ficres);  
        for (i=1; i<= nlstate ; i ++) {
 /*--------- index.htm --------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   /*--------------- Prevalence limit --------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerespl,"pl");       } 
   strcat(filerespl,fileres);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       for (i=1; i<= nlstate ; i ++) {
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       }  
   fprintf(ficrespl,"#Prevalence limit\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficrespl,"#Age ");     }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    }
   fprintf(ficrespl,"\n");    /*2 eme*/
      
   prlim=matrix(1,nlstate,1,nlstate);    for (k1=1; k1<= m ; k1 ++) { 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<= nlstate+1 ; i ++) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        k=2*i;
   k=0;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agebase=ageminpar;        for (j=1; j<= nlstate+1 ; j ++) {
   agelim=agemaxpar;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   ftolpl=1.e-10;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   i1=cptcoveff;        }   
   if (cptcovn < 1){i1=1;}        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (j=1; j<= nlstate+1 ; j ++) {
         k=k+1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespl,"\n#******");        }   
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrespl,"******\n");        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for (age=agebase; age<=agelim; age++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }   
           fprintf(ficrespl,"%.0f",age );        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           for(i=1; i<=nlstate;i++)        else fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficrespl," %.5f", prlim[i][i]);      }
           fprintf(ficrespl,"\n");    }
         }    
       }    /*3eme*/
     }    
   fclose(ficrespl);    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
   /*------------- h Pij x at various ages ------------*/        k=2+nlstate*(2*cpt-2);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficgp,"set ter png small\n\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  set size 0.65,0.65\n\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("Computing pij: result on file '%s' \n", filerespij);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*if (stepm<=24) stepsize=2;*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   agelim=AGESUP;          
   hstepm=stepsize*YEARM; /* Every year of age */        */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   k=0;          
   for(cptcov=1;cptcov<=i1;cptcov++){        } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    /* CV preval stable (period) */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrespij,"******\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
                k=3;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  set ter png small\nset size 0.65,0.65\n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  unset log y\n\
           oldm=oldms;savm=savms;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
           fprintf(ficrespij,"# Age");        for (i=1; i< nlstate ; i ++)
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"+$%d",k+i+1);
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               fprintf(ficrespij," %1d-%1d",i,j);        
           fprintf(ficrespij,"\n");        l=3+(nlstate+ndeath)*cpt;
            for (h=0; h<=nhstepm; h++){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for (i=1; i< nlstate ; i ++) {
             for(i=1; i<=nlstate;i++)          l=3+(nlstate+ndeath)*cpt;
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp,"+$%d",l+i+1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        }
             fprintf(ficrespij,"\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
              }      } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  
           fprintf(ficrespij,"\n");    
         }    /* proba elementaires */
     }    for(i=1,jk=1; i <=nlstate; i++){
   }      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   fclose(ficrespij);            jk++; 
             fprintf(ficgp,"\n");
           }
   /*---------- Forecasting ------------------*/        }
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   else{       for(jk=1; jk <=m; jk++) {
     erreur=108;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   /*---------- Health expectancies and variances ------------*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   strcpy(filerest,"t");         for(k2=1; k2<=nlstate; k2++) {
   strcat(filerest,fileres);           k3=i;
   if((ficrest=fopen(filerest,"w"))==NULL) {           for(k=1; k<=(nlstate+ndeath); k++) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;             if (k != k2){
   }               if(ng==2)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   strcpy(filerese,"e");               ij=1;
   strcat(filerese,fileres);               for(j=3; j <=ncovmodel; j++) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                   ij++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                 }
                  else
  strcpy(fileresv,"v");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcat(fileresv,fileres);               }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               fprintf(ficgp,")/(1");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);               
   }               for(k1=1; k1 <=nlstate; k1++){   
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   calagedate=-1;                 ij=1;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   k=0;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   for(cptcov=1;cptcov<=i1;cptcov++){                     ij++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   }
       k=k+1;                   else
       fprintf(ficrest,"\n#****** ");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for(j=1;j<=cptcoveff;j++)                 }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp,")");
       fprintf(ficrest,"******\n");               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficreseij,"\n#****** ");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       for(j=1;j<=cptcoveff;j++)               i=i+ncovmodel;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             }
       fprintf(ficreseij,"******\n");           } /* end k */
          } /* end k2 */
       fprintf(ficresvij,"\n#****** ");       } /* end jk */
       for(j=1;j<=cptcoveff;j++)     } /* end ng */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fflush(ficgp); 
       fprintf(ficresvij,"******\n");  }  /* end gnuplot */
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /*************** Moving average **************/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int i, cpt, cptcod;
       oldm=oldms;savm=savms;    int modcovmax =1;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    int mobilavrange, mob;
        double age;
   
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                             a covariate has 2 modalities */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       fprintf(ficrest,"\n");  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       epj=vector(1,nlstate+1);      if(mobilav==1) mobilavrange=5; /* default */
       for(age=bage; age <=fage ;age++){      else mobilavrange=mobilav;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (age=bage; age<=fage; age++)
         if (popbased==1) {        for (i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             prlim[i][i]=probs[(int)age][i][k];            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         }      /* We keep the original values on the extreme ages bage, fage and for 
                 fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         fprintf(ficrest," %4.0f",age);         we use a 5 terms etc. until the borders are no more concerned. 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      */ 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for (mob=3;mob <=mobilavrange;mob=mob+2){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          for (i=1; i<=nlstate;i++){
           }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           epj[nlstate+1] +=epj[j];              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         for(i=1, vepp=0.;i <=nlstate;i++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           for(j=1;j <=nlstate;j++)                }
             vepp += vareij[i][j][(int)age];              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            }
         for(j=1;j <=nlstate;j++){          }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }/* end age */
         }      }/* end mob */
         fprintf(ficrest,"\n");    }else return -1;
       }    return 0;
     }  }/* End movingaverage */
   }  
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  /************** Forecasting ******************/
     free_vector(weight,1,n);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fclose(ficreseij);    /* proj1, year, month, day of starting projection 
   fclose(ficresvij);       agemin, agemax range of age
   fclose(ficrest);       dateprev1 dateprev2 range of dates during which prevalence is computed
   fclose(ficpar);       anproj2 year of en of projection (same day and month as proj1).
   free_vector(epj,1,nlstate+1);    */
      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   /*------- Variance limit prevalence------*/      int *popage;
     double agec; /* generic age */
   strcpy(fileresvpl,"vpl");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   strcat(fileresvpl,fileres);    double *popeffectif,*popcount;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***p3mat;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double ***mobaverage;
     exit(0);    char fileresf[FILENAMELENGTH];
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   k=0;   
   for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(fileresf,"f"); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcat(fileresf,fileres);
       k=k+1;    if((ficresf=fopen(fileresf,"w"))==NULL) {
       fprintf(ficresvpl,"\n#****** ");      printf("Problem with forecast resultfile: %s\n", fileresf);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvpl,"******\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
          fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    if (mobilav!=0) {
  }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   fclose(ficresvpl);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*---------- End : free ----------------*/      }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (stepm<=12) stepsize=1;
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    else  hstepm=estepm;   
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    hstepm=hstepm/stepm; 
      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   free_matrix(matcov,1,npar,1,npar);                                 fractional in yp1 */
   free_vector(delti,1,npar);    anprojmean=yp;
   free_matrix(agev,1,maxwav,1,imx);    yp2=modf((yp1*12),&yp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   if(erreur >0)    jprojmean=yp;
     printf("End of Imach with error or warning %d\n",erreur);    if(jprojmean==0) jprojmean=1;
   else   printf("End of Imach\n");    if(mprojmean==0) jprojmean=1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      i1=cptcoveff;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    if (cptcovn < 1){i1=1;}
   /*printf("Total time was %d uSec.\n", total_usecs);*/    
   /*------ End -----------*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
  end:  
   /* chdir(pathcd);*/  /*            if (h==(int)(YEARM*yearp)){ */
  /*system("wgnuplot graph.plt");*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  /*system("cd ../gp37mgw");*/        k=k+1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        fprintf(ficresf,"\n#******");
  strcpy(plotcmd,GNUPLOTPROGRAM);        for(j=1;j<=cptcoveff;j++) {
  strcat(plotcmd," ");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  strcat(plotcmd,optionfilegnuplot);        }
  system(plotcmd);        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
  /*#ifdef windows*/        for(j=1; j<=nlstate+ndeath;j++){ 
   while (z[0] != 'q') {          for(i=1; i<=nlstate;i++)              
     /* chdir(path); */            fprintf(ficresf," p%d%d",i,j);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          fprintf(ficresf," p.%d",j);
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficresf,"\n");
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     else if (z[0] == 'q') exit(0);  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   /*#endif */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 }            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>