Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.93

version 1.41.2.2, 2003/06/13 07:45:28 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Version 0.96b
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.92  2003/06/25 16:30:45  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): On windows (cygwin) function asctime_r doesn't
   second wave of interviews ("longitudinal") which measure each change    exist so I changed back to asctime which exists.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.91  2003/06/25 15:30:29  brouard
   model. More health states you consider, more time is necessary to reach the    * imach.c (Repository): Duplicated warning errors corrected.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Elapsed time after each iteration is now output. It
   simplest model is the multinomial logistic model where pij is the    helps to forecast when convergence will be reached. Elapsed time
   probability to be observed in state j at the second wave    is stamped in powell.  We created a new html file for the graphs
   conditional to be observed in state i at the first wave. Therefore    concerning matrix of covariance. It has extension -cov.htm.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.90  2003/06/24 12:34:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some bugs corrected for windows. Also, when
   multinomial logistic model, is clear when the delay between waves is not    mle=-1 a template is output in file "or"mypar.txt with the design
   identical for each individual. Also, if a individual missed an    of the covariance matrix to be input.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.87  2003/06/18 12:26:01  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.96
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.86  2003/06/17 20:04:08  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Change position of html and gnuplot routines and added
   and the contribution of each individual to the likelihood is simply    routine fileappend.
   hPijx.  
     Revision 1.85  2003/06/17 13:12:43  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository): Check when date of death was earlier that
   of the life expectancies. It also computes the prevalence limits.    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    was wrong (infinity). We still send an "Error" but patch by
            Institut national d'études démographiques, Paris.    assuming that the date of death was just one stepm after the
   This software have been partly granted by Euro-REVES, a concerted action    interview.
   from the European Union.    (Repository): Because some people have very long ID (first column)
   It is copyrighted identically to a GNU software product, ie programme and    we changed int to long in num[] and we added a new lvector for
   software can be distributed freely for non commercial use. Latest version    memory allocation. But we also truncated to 8 characters (left
   can be accessed at http://euroreves.ined.fr/imach .    truncation)
   **********************************************************************/    (Repository): No more line truncation errors.
    
 #include <math.h>    Revision 1.84  2003/06/13 21:44:43  brouard
 #include <stdio.h>    * imach.c (Repository): Replace "freqsummary" at a correct
 #include <stdlib.h>    place. It differs from routine "prevalence" which may be called
 #include <unistd.h>    many times. Probs is memory consuming and must be used with
     parcimony.
 #define MAXLINE 256    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FILENAMELENGTH 80    *** empty log message ***
 /*#define DEBUG*/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /*#define windows*/    Add log in  imach.c and  fullversion number is now printed.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  */
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */     Interpolated Markov Chain
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Short summary of the programme:
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This program computes Healthy Life Expectancies from
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NCOVMAX 8 /* Maximum number of covariates */    first survey ("cross") where individuals from different ages are
 #define MAXN 20000    interviewed on their health status or degree of disability (in the
 #define YEARM 12. /* Number of months per year */    case of a health survey which is our main interest) -2- at least a
 #define AGESUP 130    second wave of interviews ("longitudinal") which measure each change
 #define AGEBASE 40    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int erreur; /* Error number */    Maximum Likelihood of the parameters involved in the model.  The
 int nvar;    simplest model is the multinomial logistic model where pij is the
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    probability to be observed in state j at the second wave
 int npar=NPARMAX;    conditional to be observed in state i at the first wave. Therefore
 int nlstate=2; /* Number of live states */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int ndeath=1; /* Number of dead states */    'age' is age and 'sex' is a covariate. If you want to have a more
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    complex model than "constant and age", you should modify the program
 int popbased=0;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int *wav; /* Number of waves for this individuual 0 is possible */    convergence.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    The advantage of this computer programme, compared to a simple
 int mle, weightopt;    multinomial logistic model, is clear when the delay between waves is not
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    identical for each individual. Also, if a individual missed an
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    intermediate interview, the information is lost, but taken into
 double jmean; /* Mean space between 2 waves */    account using an interpolation or extrapolation.  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    hPijx is the probability to be observed in state i at age x+h
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    conditional to the observed state i at age x. The delay 'h' can be
 FILE *ficgp,*ficresprob,*ficpop;    split into an exact number (nh*stepm) of unobserved intermediate
 FILE *ficreseij;    states. This elementary transition (by month, quarter,
   char filerese[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
  FILE  *ficresvij;    matrix is simply the matrix product of nh*stepm elementary matrices
   char fileresv[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
  FILE  *ficresvpl;    hPijx.
   char fileresvpl[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
 #define NR_END 1    of the life expectancies. It also computes the stable prevalence. 
 #define FREE_ARG char*    
 #define FTOL 1.0e-10    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define NRANSI    This software have been partly granted by Euro-REVES, a concerted action
 #define ITMAX 200    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define TOL 2.0e-4    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define GOLD 1.618034    **********************************************************************/
 #define GLIMIT 100.0  /*
 #define TINY 1.0e-20    main
     read parameterfile
 static double maxarg1,maxarg2;    read datafile
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    concatwav
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    freqsummary
      if (mle >= 1)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))      mlikeli
 #define rint(a) floor(a+0.5)    print results files
     if mle==1 
 static double sqrarg;       computes hessian
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}        begin-prev-date,...
     open gnuplot file
 int imx;    open html file
 int stepm;    stable prevalence
 /* Stepm, step in month: minimum step interpolation*/     for age prevalim()
     h Pij x
 int estepm;    variance of p varprob
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int m,nb;    Variance-covariance of DFLE
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    prevalence()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     movingaverage()
 double **pmmij, ***probs, ***mobaverage;    varevsij() 
 double dateintmean=0;    if popbased==1 varevsij(,popbased)
     total life expectancies
 double *weight;    Variance of stable prevalence
 int **s; /* Status */   end
 double *agedc, **covar, idx;  */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */   
   #include <math.h>
 /**************** split *************************/  #include <stdio.h>
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include <stdlib.h>
 {  #include <unistd.h>
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #include <sys/time.h>
   #include <time.h>
    l1 = strlen( path );                 /* length of path */  #include "timeval.h"
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  #define MAXLINE 256
    s = strrchr( path, '\\' );           /* find last / */  #define GNUPLOTPROGRAM "gnuplot"
 #else  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    s = strrchr( path, '/' );            /* find last / */  #define FILENAMELENGTH 132
 #endif  /*#define DEBUG*/
    if ( s == NULL ) {                   /* no directory, so use current */  /*#define windows*/
 #if     defined(__bsd__)                /* get current working directory */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       extern char       *getwd( );  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
       if ( getwd( dirc ) == NULL ) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #else  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       extern char       *getcwd( );  
   #define NINTERVMAX 8
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
          return( GLOCK_ERROR_GETCWD );  #define NCOVMAX 8 /* Maximum number of covariates */
       }  #define MAXN 20000
       strcpy( name, path );             /* we've got it */  #define YEARM 12. /* Number of months per year */
    } else {                             /* strip direcotry from path */  #define AGESUP 130
       s++;                              /* after this, the filename */  #define AGEBASE 40
       l2 = strlen( s );                 /* length of filename */  #ifdef unix
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '/'
       strcpy( name, s );                /* save file name */  #define ODIRSEPARATOR '\\'
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #else
       dirc[l1-l2] = 0;                  /* add zero */  #define DIRSEPARATOR '\\'
    }  #define ODIRSEPARATOR '/'
    l1 = strlen( dirc );                 /* length of directory */  #endif
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* $Id$ */
 #else  /* $State$ */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
    s = strrchr( name, '.' );            /* find last / */  char fullversion[]="$Revision$ $Date$"; 
    s++;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    strcpy(ext,s);                       /* save extension */  int nvar;
    l1= strlen( name);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    l2= strlen( s)+1;  int npar=NPARMAX;
    strncpy( finame, name, l1-l2);  int nlstate=2; /* Number of live states */
    finame[l1-l2]= 0;  int ndeath=1; /* Number of dead states */
    return( 0 );                         /* we're done */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
   int *wav; /* Number of waves for this individuual 0 is possible */
 /******************************************/  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void replace(char *s, char*t)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int i;  int mle, weightopt;
   int lg=20;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(t);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=0; i<= lg; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     (s[i] = t[i]);  double jmean; /* Mean space between 2 waves */
     if (t[i]== '\\') s[i]='/';  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 int nbocc(char *s, char occ)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int i,j=0;  long ipmx; /* Number of contributions */
   int lg=20;  double sw; /* Sum of weights */
   i=0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   lg=strlen(s);  FILE *ficresilk;
   for(i=0; i<= lg; i++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if  (s[i] == occ ) j++;  FILE *ficresprobmorprev;
   }  FILE *fichtm, *fichtmcov; /* Html File */
   return j;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 void cutv(char *u,char *v, char*t, char occ)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int i,lg,j,p=0;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   for(j=0; j<=strlen(t)-1; j++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   lg=strlen(t);  int  outcmd=0;
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  char lfileres[FILENAMELENGTH];
      u[p]='\0';  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char fileregp[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  char popfile[FILENAMELENGTH];
   }  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /********************** nrerror ********************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 void nrerror(char error_text[])  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   fprintf(stderr,"ERREUR ...\n");  long time_value;
   fprintf(stderr,"%s\n",error_text);  extern long time();
   exit(1);  char strcurr[80], strfor[80];
 }  
 /*********************** vector *******************/  #define NR_END 1
 double *vector(int nl, int nh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NRANSI 
   if (!v) nrerror("allocation failure in vector");  #define ITMAX 200 
   return v-nl+NR_END;  
 }  #define TOL 2.0e-4 
   
 /************************ free vector ******************/  #define CGOLD 0.3819660 
 void free_vector(double*v, int nl, int nh)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /************************ivector *******************************/  #define TINY 1.0e-20 
 int *ivector(long nl,long nh)  
 {  static double maxarg1,maxarg2;
   int *v;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!v) nrerror("allocation failure in ivector");    
   return v-nl+NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /******************free ivector **************************/  static double sqrarg;
 void free_ivector(int *v, long nl, long nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(v+nl-NR_END));  
 }  int imx; 
   int stepm;
 /******************* imatrix *******************************/  /* Stepm, step in month: minimum step interpolation*/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  int m,nb;
    long *num;
   /* allocate pointers to rows */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   if (!m) nrerror("allocation failure 1 in matrix()");  double **pmmij, ***probs;
   m += NR_END;  double dateintmean=0;
   m -= nrl;  
    double *weight;
    int **s; /* Status */
   /* allocate rows and set pointers to them */  double *agedc, **covar, idx;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] -= ncl;  double ftolhess; /* Tolerance for computing hessian */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* return pointer to array of pointers to rows */  {
   return m;    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /****************** free_imatrix *************************/    l1 = strlen(path );                   /* length of path */
 void free_imatrix(m,nrl,nrh,ncl,nch)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       int **m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       long nch,ncl,nrh,nrl;    if ( ss == NULL ) {                   /* no directory, so use current */
      /* free an int matrix allocated by imatrix() */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      /* get current working directory */
   free((FREE_ARG) (m+nrl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************* matrix *******************************/      }
 double **matrix(long nrl, long nrh, long ncl, long nch)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      ss++;                               /* after this, the filename */
   double **m;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strcpy( name, ss );         /* save file name */
   if (!m) nrerror("allocation failure 1 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m -= nrl;    }
     l1 = strlen( dirc );                  /* length of directory */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /*#ifdef windows
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m[nrl] += NR_END;  #else
   m[nrl] -= ncl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    */
   return m;    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /*************************free matrix ************************/    l1= strlen( name);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    finame[l1-l2]= 0;
   free((FREE_ARG)(m+nrl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /******************************************/
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void replace_back_to_slash(char *s, char*t)
   double ***m;  {
     int i;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int lg=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    lg=strlen(t);
   m -= nrl;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if (t[i]== '\\') s[i]='/';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   int nbocc(char *s, char occ)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     int i,j=0;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    int lg=20;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    i=0;
   m[nrl][ncl] += NR_END;    lg=strlen(s);
   m[nrl][ncl] -= nll;    for(i=0; i<= lg; i++) {
   for (j=ncl+1; j<=nch; j++)    if  (s[i] == occ ) j++;
     m[nrl][j]=m[nrl][j-1]+nlay;    }
      return j;
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void cutv(char *u,char *v, char*t, char occ)
       m[i][j]=m[i][j-1]+nlay;  {
   }    /* cuts string t into u and v where u is ended by char occ excluding it
   return m;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /*************************free ma3x ************************/    i=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /***************** f1dim *************************/    }
 extern int ncom;       u[p]='\0';
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
 double f1dim(double x)    }
 {  }
   int j;  
   double f;  /********************** nrerror ********************/
   double *xt;  
    void nrerror(char error_text[])
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    fprintf(stderr,"ERREUR ...\n");
   f=(*nrfunc)(xt);    fprintf(stderr,"%s\n",error_text);
   free_vector(xt,1,ncom);    exit(EXIT_FAILURE);
   return f;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int iter;    if (!v) nrerror("allocation failure in vector");
   double a,b,d,etemp;    return v-nl+NR_END;
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /************************ free vector ******************/
   double e=0.0;  void free_vector(double*v, int nl, int nh)
    {
   a=(ax < cx ? ax : cx);    free((FREE_ARG)(v+nl-NR_END));
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /************************ivector *******************************/
   for (iter=1;iter<=ITMAX;iter++) {  int *ivector(long nl,long nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    int *v;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf(".");fflush(stdout);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************free ivector **************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  void free_ivector(int *v, long nl, long nh)
       *xmin=x;  {
       return fx;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     ftemp=fu;  
     if (fabs(e) > tol1) {  /************************lvector *******************************/
       r=(x-w)*(fx-fv);  long *lvector(long nl,long nh)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    long *v;
       q=2.0*(q-r);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if (q > 0.0) p = -p;    if (!v) nrerror("allocation failure in ivector");
       q=fabs(q);    return v-nl+NR_END;
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************free lvector **************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_lvector(long *v, long nl, long nh)
       else {  {
         d=p/q;    free((FREE_ARG)(v+nl-NR_END));
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     } else {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int **m; 
     fu=(*f)(u);    
     if (fu <= fx) {    /* allocate pointers to rows */ 
       if (u >= x) a=x; else b=x;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       SHFT(v,w,x,u)    if (!m) nrerror("allocation failure 1 in matrix()"); 
         SHFT(fv,fw,fx,fu)    m += NR_END; 
         } else {    m -= nrl; 
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    
             v=w;    /* allocate rows and set pointers to them */ 
             w=u;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             fv=fw;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             fw=fu;    m[nrl] += NR_END; 
           } else if (fu <= fv || v == x || v == w) {    m[nrl] -= ncl; 
             v=u;    
             fv=fu;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           }    
         }    /* return pointer to array of pointers to rows */ 
   }    return m; 
   nrerror("Too many iterations in brent");  } 
   *xmin=x;  
   return fx;  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /****************** mnbrak ***********************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  { 
             double (*func)(double))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   double ulim,u,r,q, dum;  } 
   double fu;  
    /******************* matrix *******************************/
   *fa=(*func)(*ax);  double **matrix(long nrl, long nrh, long ncl, long nch)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     SHFT(dum,*ax,*bx,dum)    double **m;
       SHFT(dum,*fb,*fa,dum)  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m) nrerror("allocation failure 1 in matrix()");
   *fc=(*func)(*cx);    m += NR_END;
   while (*fb > *fc) {    m -= nrl;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] -= ncl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return m;
       fu=(*func)(u);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       if (fu < *fc) {     */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /*************************free matrix ************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       u=ulim;  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else {    free((FREE_ARG)(m+nrl-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /******************* ma3x *******************************/
     SHFT(*ax,*bx,*cx,u)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       SHFT(*fa,*fb,*fc,fu)  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
 /*************** linmin ************************/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 int ncom;    m += NR_END;
 double *pcom,*xicom;    m -= nrl;
 double (*nrfunc)(double []);  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   double brent(double ax, double bx, double cx,    m[nrl] -= ncl;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double xx,xmin,bx,ax;    m[nrl][ncl] += NR_END;
   double fx,fb,fa;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
   ncom=n;      m[nrl][j]=m[nrl][j-1]+nlay;
   pcom=vector(1,n);    
   xicom=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   nrfunc=func;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
     pcom[j]=p[j];        m[i][j]=m[i][j-1]+nlay;
     xicom[j]=xi[j];    }
   }    return m; 
   ax=0.0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   xx=1.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*************************free ma3x ************************/
 #endif  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     p[j] += xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /*************** powell ************************/  extern double *pcom,*xicom;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  extern double (*nrfunc)(double []); 
             double (*func)(double []))   
 {  double f1dim(double x) 
   void linmin(double p[], double xi[], int n, double *fret,  { 
               double (*func)(double []));    int j; 
   int i,ibig,j;    double f;
   double del,t,*pt,*ptt,*xit;    double *xt; 
   double fp,fptt;   
   double *xits;    xt=vector(1,ncom); 
   pt=vector(1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   ptt=vector(1,n);    f=(*nrfunc)(xt); 
   xit=vector(1,n);    free_vector(xt,1,ncom); 
   xits=vector(1,n);    return f; 
   *fret=(*func)(p);  } 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /*****************brent *************************/
     fp=(*fret);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     ibig=0;  { 
     del=0.0;    int iter; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double a,b,d,etemp;
     for (i=1;i<=n;i++)    double fu,fv,fw,fx;
       printf(" %d %.12f",i, p[i]);    double ftemp;
     printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (i=1;i<=n;i++) {    double e=0.0; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   
       fptt=(*fret);    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       printf("fret=%lf \n",*fret);    x=w=v=bx; 
 #endif    fw=fv=fx=(*f)(x); 
       printf("%d",i);fflush(stdout);    for (iter=1;iter<=ITMAX;iter++) { 
       linmin(p,xit,n,fret,func);      xm=0.5*(a+b); 
       if (fabs(fptt-(*fret)) > del) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         del=fabs(fptt-(*fret));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         ibig=i;      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         printf(" x(%d)=%.12e",j,xit[j]);  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(j=1;j<=n;j++)        *xmin=x; 
         printf(" p=%.12e",p[j]);        return fx; 
       printf("\n");      } 
 #endif      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       int k[2],l;        p=(x-v)*q-(x-w)*r; 
       k[0]=1;        q=2.0*(q-r); 
       k[1]=-1;        if (q > 0.0) p = -p; 
       printf("Max: %.12e",(*func)(p));        q=fabs(q); 
       for (j=1;j<=n;j++)        etemp=e; 
         printf(" %.12e",p[j]);        e=d; 
       printf("\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(l=0;l<=1;l++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {        else { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          d=p/q; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          u=x+d; 
         }          if (u-a < tol2 || b-u < tol2) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            d=SIGN(tol1,xm-x); 
       }        } 
 #endif      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       free_vector(xit,1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       free_vector(xits,1,n);      fu=(*f)(u); 
       free_vector(ptt,1,n);      if (fu <= fx) { 
       free_vector(pt,1,n);        if (u >= x) a=x; else b=x; 
       return;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          } else { 
     for (j=1;j<=n;j++) {            if (u < x) a=u; else b=u; 
       ptt[j]=2.0*p[j]-pt[j];            if (fu <= fw || w == x) { 
       xit[j]=p[j]-pt[j];              v=w; 
       pt[j]=p[j];              w=u; 
     }              fv=fw; 
     fptt=(*func)(ptt);              fw=fu; 
     if (fptt < fp) {            } else if (fu <= fv || v == x || v == w) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);              v=u; 
       if (t < 0.0) {              fv=fu; 
         linmin(p,xit,n,fret,func);            } 
         for (j=1;j<=n;j++) {          } 
           xi[j][ibig]=xi[j][n];    } 
           xi[j][n]=xit[j];    nrerror("Too many iterations in brent"); 
         }    *xmin=x; 
 #ifdef DEBUG    return fx; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /****************** mnbrak ***********************/
         printf("\n");  
 #endif  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
     }  { 
   }    double ulim,u,r,q, dum;
 }    double fu; 
    
 /**** Prevalence limit ****************/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        SHFT(dum,*fb,*fa,dum) 
      matrix by transitions matrix until convergence is reached */        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, ii,j,k;    *fc=(*func)(*cx); 
   double min, max, maxmin, maxmax,sumnew=0.;    while (*fb > *fc) { 
   double **matprod2();      r=(*bx-*ax)*(*fb-*fc); 
   double **out, cov[NCOVMAX], **pmij();      q=(*bx-*cx)*(*fb-*fa); 
   double **newm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double agefin, delaymax=50 ; /* Max number of years to converge */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
         if (fu < *fc) { 
    cov[1]=1.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
              SHFT(*fb,*fc,fu,(*func)(u)) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     newm=savm;        u=ulim; 
     /* Covariates have to be included here again */        fu=(*func)(u); 
      cov[2]=agefin;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1; k<=cptcovn;k++) {        fu=(*func)(u); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** linmin ************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int ncom; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double *pcom,*xicom;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double (*nrfunc)(double []); 
    
     savm=oldm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     oldm=newm;  { 
     maxmax=0.;    double brent(double ax, double bx, double cx, 
     for(j=1;j<=nlstate;j++){                 double (*f)(double), double tol, double *xmin); 
       min=1.;    double f1dim(double x); 
       max=0.;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(i=1; i<=nlstate; i++) {                double *fc, double (*func)(double)); 
         sumnew=0;    int j; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double xx,xmin,bx,ax; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double fx,fb,fa;
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);    ncom=n; 
       }    pcom=vector(1,n); 
       maxmin=max-min;    xicom=vector(1,n); 
       maxmax=FMAX(maxmax,maxmin);    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     if(maxmax < ftolpl){      pcom[j]=p[j]; 
       return prlim;      xicom[j]=xi[j]; 
     }    } 
   }    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /*************** transition probabilities ***************/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double s1, s2;  #endif
   /*double t34;*/    for (j=1;j<=n;j++) { 
   int i,j,j1, nc, ii, jj;      xi[j] *= xmin; 
       p[j] += xi[j]; 
     for(i=1; i<= nlstate; i++){    } 
     for(j=1; j<i;j++){    free_vector(xicom,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(pcom,1,n); 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
       ps[i][j]=s2;    long sec_left, days, hours, minutes;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
     for(j=i+1; j<=nlstate+ndeath;j++){    hours = (sec_left) / (60*60) ;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sec_left = (sec_left) %(60*60);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    minutes = (sec_left) /60;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       ps[i][j]=s2;    return ascdiff;
     }  }
   }  
     /*ps[3][2]=1;*/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for(i=1; i<= nlstate; i++){              double (*func)(double [])) 
      s1=0;  { 
     for(j=1; j<i; j++)    void linmin(double p[], double xi[], int n, double *fret, 
       s1+=exp(ps[i][j]);                double (*func)(double [])); 
     for(j=i+1; j<=nlstate+ndeath; j++)    int i,ibig,j; 
       s1+=exp(ps[i][j]);    double del,t,*pt,*ptt,*xit;
     ps[i][i]=1./(s1+1.);    double fp,fptt;
     for(j=1; j<i; j++)    double *xits;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int niterf, itmp;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    pt=vector(1,n); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    ptt=vector(1,n); 
   } /* end i */    xit=vector(1,n); 
     xits=vector(1,n); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *fret=(*func)(p); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ps[ii][jj]=0;    for (*iter=1;;++(*iter)) { 
       ps[ii][ii]=1;      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      printf("%lf ",ps[ii][jj]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
    }      for (i=1;i<=n;i++) {
     printf("\n ");        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficrespow," %.12lf", p[i]);
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      printf("\n");
   goto end;*/      fprintf(ficlog,"\n");
     return ps;      fprintf(ficrespow,"\n");fflush(ficrespow);
 }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
 /**************** Product of 2 matrices ******************/        strcpy(strcurr,asctime(&tmf));
   /*       asctime_r(&tm,strcurr); */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        forecast_time=curr_time;
 {        itmp = strlen(strcurr);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        if(strcurr[itmp-1]=='\n')
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          strcurr[itmp-1]='\0';
   /* in, b, out are matrice of pointers which should have been initialized        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      before: only the contents of out is modified. The function returns        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
      a pointer to pointers identical to out */        for(niterf=10;niterf<=30;niterf+=10){
   long i, j, k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for(i=nrl; i<= nrh; i++)          tmf = *localtime(&forecast_time.tv_sec);
     for(k=ncolol; k<=ncoloh; k++)  /*      asctime_r(&tmf,strfor); */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          strcpy(strfor,asctime(&tmf));
         out[i][k] +=in[i][j]*b[j][k];          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   return out;          strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 /************* Higher Matrix Product ***************/      }
       for (i=1;i<=n;i++) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 {        fptt=(*fret); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #ifdef DEBUG
      duration (i.e. until        printf("fret=%lf \n",*fret);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fprintf(ficlog,"fret=%lf \n",*fret);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).        printf("%d",i);fflush(stdout);
      Model is determined by parameters x and covariates have to be        fprintf(ficlog,"%d",i);fflush(ficlog);
      included manually here.        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
      */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   int i, j, d, h, k;        } 
   double **out, cov[NCOVMAX];  #ifdef DEBUG
   double **newm;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   /* Hstepm could be zero and should return the unit matrix */        for (j=1;j<=n;j++) {
   for (i=1;i<=nlstate+ndeath;i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=nlstate+ndeath;j++){          printf(" x(%d)=%.12e",j,xit[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        for(j=1;j<=n;j++) {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf(" p=%.12e",p[j]);
   for(h=1; h <=nhstepm; h++){          fprintf(ficlog," p=%.12e",p[j]);
     for(d=1; d <=hstepm; d++){        }
       newm=savm;        printf("\n");
       /* Covariates have to be included here again */        fprintf(ficlog,"\n");
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1; k<=cptcovage;k++)  #ifdef DEBUG
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        int k[2],l;
       for (k=1; k<=cptcovprod;k++)        k[0]=1;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (j=1;j<=n;j++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          printf(" %.12e",p[j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog," %.12e",p[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        printf("\n");
       oldm=newm;        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     for(i=1; i<=nlstate+ndeath; i++)          for (j=1;j<=n;j++) {
       for(j=1;j<=nlstate+ndeath;j++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         po[i][j][h]=newm[i][j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          */          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* end h */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return po;        }
 }  #endif
   
   
 /*************** log-likelihood *************/        free_vector(xit,1,n); 
 double func( double *x)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i, ii, j, k, mi, d, kk;        free_vector(pt,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        return; 
   double **out;      } 
   double sw; /* Sum of weights */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double lli; /* Individual log likelihood */      for (j=1;j<=n;j++) { 
   int s1, s2;        ptt[j]=2.0*p[j]-pt[j]; 
   long ipmx;        xit[j]=p[j]-pt[j]; 
   /*extern weight */        pt[j]=p[j]; 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fptt=(*func)(ptt); 
   /*for(i=1;i<imx;i++)      if (fptt < fp) { 
     printf(" %d\n",s[4][i]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   */        if (t < 0.0) { 
   cov[1]=1.;          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;            xi[j][ibig]=xi[j][n]; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            xi[j][n]=xit[j]; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
     for(mi=1; mi<= wav[i]-1; mi++){  #ifdef DEBUG
       for (ii=1;ii<=nlstate+ndeath;ii++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for(j=1;j<=n;j++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            printf(" %.12e",xit[j]);
         }            fprintf(ficlog," %.12e",xit[j]);
       for(d=0; d<dh[mi][i]; d++){          }
         newm=savm;          printf("\n");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          fprintf(ficlog,"\n");
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
         }      } 
            } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /**** Prevalence limit (stable prevalence)  ****************/
         oldm=newm;  
          double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          {
       } /* end mult */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             matrix by transitions matrix until convergence is reached */
       s1=s[mw[mi][i]][i];  
       s2=s[mw[mi+1][i]][i];    int i, ii,j,k;
       if( s2 > nlstate){    double min, max, maxmin, maxmax,sumnew=0.;
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    double **matprod2();
            to the likelihood is the probability to die between last step unit time and current    double **out, cov[NCOVMAX], **pmij();
            step unit time, which is also the differences between probability to die before dh    double **newm;
            and probability to die before dh-stepm .    double agefin, delaymax=50 ; /* Max number of years to converge */
            In version up to 0.92 likelihood was computed  
            as if date of death was unknown. Death was treated as any other    for (ii=1;ii<=nlstate+ndeath;ii++)
            health state: the date of the interview describes the actual state      for (j=1;j<=nlstate+ndeath;j++){
            and not the date of a change in health state. The former idea was        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            to consider that at each interview the state was recorded      }
            (healthy, disable or death) and IMaCh was corrected; but when we  
            introduced the exact date of death then we should have modified     cov[1]=1.;
            the contribution of an exact death to the likelihood. This new   
            contribution is smaller and very dependent of the step unit   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            stepm. It is no more the probability to die between last interview    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            and month of death but the probability to survive from last      newm=savm;
            interview up to one month before death multiplied by the      /* Covariates have to be included here again */
            probability to die within a month. Thanks to Chris       cov[2]=agefin;
            Jackson for correcting this bug.  Former versions increased    
            mortality artificially. The bad side is that we add another loop        for (k=1; k<=cptcovn;k++) {
            which slows down the processing. The difference can be up to 10%          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            lower mortality.          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         */        }
         lli=log(out[s1][s2] - savm[s1][s2]);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }else{        for (k=1; k<=cptcovprod;k++)
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       ipmx +=1;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       sw += weight[i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  
     } /* end of wave */      savm=oldm;
   } /* end of individual */      oldm=newm;
       maxmax=0.;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(j=1;j<=nlstate;j++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        min=1.;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        max=0.;
   /*exit(0);*/        for(i=1; i<=nlstate; i++) {
   return -l;          sumnew=0;
 }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 /*********** Maximum Likelihood Estimation ***************/          min=FMIN(min,prlim[i][j]);
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        maxmin=max-min;
 {        maxmax=FMAX(maxmax,maxmin);
   int i,j, iter;      }
   double **xi,*delti;      if(maxmax < ftolpl){
   double fret;        return prlim;
   xi=matrix(1,npar,1,npar);      }
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /*************** transition probabilities ***************/ 
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double s1, s2;
     /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
 /**** Computes Hessian and covariance matrix ***/      for(i=1; i<= nlstate; i++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(j=1; j<i;j++){
 {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double  **a,**y,*x,pd;          /*s2 += param[i][j][nc]*cov[nc];*/
   double **hess;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i, j,jk;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   int *indx;        }
         ps[i][j]=s2;
   double hessii(double p[], double delta, int theta, double delti[]);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double hessij(double p[], double delti[], int i, int j);      }
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(j=i+1; j<=nlstate+ndeath;j++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   hess=matrix(1,npar,1,npar);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   printf("\nCalculation of the hessian matrix. Wait...\n");        ps[i][j]=s2;
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);    }
     hess[i][i]=hessii(p,ftolhess,i,delti);      /*ps[3][2]=1;*/
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    for(i=1; i<= nlstate; i++){
   }       s1=0;
        for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) {        s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++)  {      for(j=i+1; j<=nlstate+ndeath; j++)
       if (j>i) {        s1+=exp(ps[i][j]);
         printf(".%d%d",i,j);fflush(stdout);      ps[i][i]=1./(s1+1.);
         hess[i][j]=hessij(p,delti,i,j);      for(j=1; j<i; j++)
         hess[j][i]=hess[i][j];            ps[i][j]= exp(ps[i][j])*ps[i][i];
         /*printf(" %lf ",hess[i][j]);*/      for(j=i+1; j<=nlstate+ndeath; j++)
       }        ps[i][j]= exp(ps[i][j])*ps[i][i];
     }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }    } /* end i */
   printf("\n");  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for(jj=1; jj<= nlstate+ndeath; jj++){
          ps[ii][jj]=0;
   a=matrix(1,npar,1,npar);        ps[ii][ii]=1;
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);    }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   ludcmp(a,npar,indx,&pd);      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   for (j=1;j<=npar;j++) {     }
     for (i=1;i<=npar;i++) x[i]=0;      printf("\n ");
     x[j]=1;      }
     lubksb(a,npar,indx,x);      printf("\n ");printf("%lf ",cov[2]);*/
     for (i=1;i<=npar;i++){  /*
       matcov[i][j]=x[i];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }    goto end;*/
   }      return ps;
   }
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /**************** Product of 2 matrices ******************/
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     }  {
     printf("\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   /* Recompute Inverse */       before: only the contents of out is modified. The function returns
   for (i=1;i<=npar;i++)       a pointer to pointers identical to out */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    long i, j, k;
   ludcmp(a,npar,indx,&pd);    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   /*  printf("\n#Hessian matrix recomputed#\n");        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    return out;
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /************* Higher Matrix Product ***************/
       printf("%.3e ",y[i][j]);  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf("\n");  {
   }    /* Computes the transition matrix starting at age 'age' over 
   */       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_matrix(a,1,npar,1,npar);       nhstepm*hstepm matrices. 
   free_matrix(y,1,npar,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_vector(x,1,npar);       (typically every 2 years instead of every month which is too big 
   free_ivector(indx,1,npar);       for the memory).
   free_matrix(hess,1,npar,1,npar);       Model is determined by parameters x and covariates have to be 
        included manually here. 
   
 }       */
   
 /*************** hessian matrix ****************/    int i, j, d, h, k;
 double hessii( double x[], double delta, int theta, double delti[])    double **out, cov[NCOVMAX];
 {    double **newm;
   int i;  
   int l=1, lmax=20;    /* Hstepm could be zero and should return the unit matrix */
   double k1,k2;    for (i=1;i<=nlstate+ndeath;i++)
   double p2[NPARMAX+1];      for (j=1;j<=nlstate+ndeath;j++){
   double res;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double fx;      }
   int k=0,kmax=10;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double l1;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   fx=func(x);        newm=savm;
   for (i=1;i<=npar;i++) p2[i]=x[i];        /* Covariates have to be included here again */
   for(l=0 ; l <=lmax; l++){        cov[1]=1.;
     l1=pow(10,l);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     delts=delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(k=1 ; k <kmax; k=k+1){        for (k=1; k<=cptcovage;k++)
       delt = delta*(l1*k);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovprod;k++)
       k1=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 #ifdef DEBUG                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        savm=oldm;
 #endif        oldm=newm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(i=1; i<=nlstate+ndeath; i++)
         k=kmax;        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         k=kmax; l=lmax*10.;           */
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    } /* end h */
         delts=delt;    return po;
       }  }
     }  
   }  
   delti[theta]=delts;  /*************** log-likelihood *************/
   return res;  double func( double *x)
    {
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 double hessij( double x[], double delti[], int thetai,int thetaj)    double **out;
 {    double sw; /* Sum of weights */
   int i;    double lli; /* Individual log likelihood */
   int l=1, l1, lmax=20;    int s1, s2;
   double k1,k2,k3,k4,res,fx;    double bbh, survp;
   double p2[NPARMAX+1];    long ipmx;
   int k;    /*extern weight */
     /* We are differentiating ll according to initial status */
   fx=func(x);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (k=1; k<=2; k++) {    /*for(i=1;i<imx;i++) 
     for (i=1;i<=npar;i++) p2[i]=x[i];      printf(" %d\n",s[4][i]);
     p2[thetai]=x[thetai]+delti[thetai]/k;    */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    cov[1]=1.;
     k1=func(p2)-fx;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if(mle==1){
     k2=func(p2)-fx;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     k3=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            }
     k4=func(p2)-fx;          for(d=0; d<dh[mi][i]; d++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            newm=savm;
 #ifdef DEBUG            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   return res;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************** Inverse of matrix **************/            oldm=newm;
 void ludcmp(double **a, int n, int *indx, double *d)          } /* end mult */
 {        
   int i,imax,j,k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double big,dum,sum,temp;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double *vv;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   vv=vector(1,n);           * the nearest (and in case of equal distance, to the lowest) interval but now
   *d=1.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     big=0.0;           * probability in order to take into account the bias as a fraction of the way
     for (j=1;j<=n;j++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if ((temp=fabs(a[i][j])) > big) big=temp;           * -stepm/2 to stepm/2 .
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * For stepm=1 the results are the same as for previous versions of Imach.
     vv[i]=1.0/big;           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   for (j=1;j<=n;j++) {          s1=s[mw[mi][i]][i];
     for (i=1;i<j;i++) {          s2=s[mw[mi+1][i]][i];
       sum=a[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /* bias is positive if real duration
       a[i][j]=sum;           * is higher than the multiple of stepm and negative otherwise.
     }           */
     big=0.0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for (i=j;i<=n;i++) {          if( s2 > nlstate){ 
       sum=a[i][j];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       for (k=1;k<j;k++)               to the likelihood is the probability to die between last step unit time and current 
         sum -= a[i][k]*a[k][j];               step unit time, which is also the differences between probability to die before dh 
       a[i][j]=sum;               and probability to die before dh-stepm . 
       if ( (dum=vv[i]*fabs(sum)) >= big) {               In version up to 0.92 likelihood was computed
         big=dum;          as if date of death was unknown. Death was treated as any other
         imax=i;          health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
     if (j != imax) {          (healthy, disable or death) and IMaCh was corrected; but when we
       for (k=1;k<=n;k++) {          introduced the exact date of death then we should have modified
         dum=a[imax][k];          the contribution of an exact death to the likelihood. This new
         a[imax][k]=a[j][k];          contribution is smaller and very dependent of the step unit
         a[j][k]=dum;          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
       *d = -(*d);          interview up to one month before death multiplied by the
       vv[imax]=vv[j];          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
     indx[j]=imax;          mortality artificially. The bad side is that we add another loop
     if (a[j][j] == 0.0) a[j][j]=TINY;          which slows down the processing. The difference can be up to 10%
     if (j != n) {          lower mortality.
       dum=1.0/(a[j][j]);            */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_vector(vv,1,n);  /* Doesn't work */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 ;          } 
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 void lubksb(double **a, int n, int *indx, double b[])          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {          ipmx +=1;
   int i,ii=0,ip,j;          sw += weight[i];
   double sum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for (i=1;i<=n;i++) {      } /* end of individual */
     ip=indx[i];    }  else if(mle==2){
     sum=b[ip];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     b[ip]=b[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (ii)        for(mi=1; mi<= wav[i]-1; mi++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for (ii=1;ii<=nlstate+ndeath;ii++)
     else if (sum) ii=i;            for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=n;i>=1;i--) {            }
     sum=b[i];          for(d=0; d<=dh[mi][i]; d++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            newm=savm;
     b[i]=sum/a[i][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************ Frequencies ********************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {  /* Some frequencies */            savm=oldm;
              oldm=newm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          } /* end mult */
   double ***freq; /* Frequencies */        
   double *pp;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double pos, k2, dateintsum=0,k2cpt=0;          /* But now since version 0.9 we anticipate for bias and large stepm.
   FILE *ficresp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   char fileresp[FILENAMELENGTH];           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   pp=vector(1,nlstate);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   strcpy(fileresp,"p");           * probability in order to take into account the bias as a fraction of the way
   strcat(fileresp,fileres);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * -stepm/2 to stepm/2 .
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * For stepm=1 the results are the same as for previous versions of Imach.
     exit(0);           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s1=s[mw[mi][i]][i];
   j1=0;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   j=cptcoveff;          /* bias is positive if real duration
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * is higher than the multiple of stepm and negative otherwise.
             */
   for(k1=1; k1<=j;k1++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i1=1; i1<=ncodemax[k1];i1++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       j1++;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         scanf("%d", i);*/          /*if(lli ==000.0)*/
       for (i=-1; i<=nlstate+ndeath; i++)            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ipmx +=1;
           for(m=agemin; m <= agemax+3; m++)          sw += weight[i];
             freq[i][jk][m]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              } /* end of wave */
       dateintsum=0;      } /* end of individual */
       k2cpt=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass) {            }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
                          oldm=newm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          } /* end mult */
                 dateintsum=dateintsum+k2;        
                 k2cpt++;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               }          /* But now since version 0.9 we anticipate for bias and large stepm.
             }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if  (cptcovn>0) {           * -stepm/2 to stepm/2 .
         fprintf(ficresp, "\n#********** Variable ");           * For stepm=1 the results are the same as for previous versions of Imach.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * For stepm > 1 the results are less biased than in previous versions. 
         fprintf(ficresp, "**********\n#");           */
       }          s1=s[mw[mi][i]][i];
       for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresp, "\n");          /* bias is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
       for(i=(int)agemin; i <= (int)agemax+3; i++){           */
         if(i==(int)agemax+3)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           printf("Total");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           printf("Age %d", i);          /*if(lli ==000.0)*/
         for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pos=0; m <=0 ; m++)      } /* end of individual */
             pos += freq[jk][m][i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           if(pp[jk]>=1.e-10)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else        for(mi=1; mi<= wav[i]-1; mi++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1,pos=0; jk <=nlstate ; jk++)            for (kk=1; kk<=cptcovage;kk++) {
           pos += pp[jk];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           if(pos>=1.e-5)          
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            savm=oldm;
           if( i <= (int) agemax){            oldm=newm;
             if(pos>=1.e-5){          } /* end mult */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        
               probs[i][jk][j1]= pp[jk]/pos;          s1=s[mw[mi][i]][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s2=s[mw[mi+1][i]][i];
             }          if( s2 > nlstate){ 
             else            lli=log(out[s1][s2] - savm[s1][s2]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          }else{
           }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
                  ipmx +=1;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          sw += weight[i];
           for(m=-1; m <=nlstate+ndeath; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(i <= (int) agemax)        } /* end of wave */
           fprintf(ficresp,"\n");      } /* end of individual */
         printf("\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   dateintmean=dateintsum/k2cpt;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
   /* End of Freq */            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Prevalence ********************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            }
 {  /* Some frequencies */          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */            savm=oldm;
   double *pp;            oldm=newm;
   double pos, k2;          } /* end mult */
         
   pp=vector(1,nlstate);          s1=s[mw[mi][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ipmx +=1;
   j1=0;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j=cptcoveff;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* end of wave */
        } /* end of individual */
  for(k1=1; k1<=j;k1++){    } /* End of if */
     for(i1=1; i1<=ncodemax[k1];i1++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       j1++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (i=-1; i<=nlstate+ndeath; i++)      return -l;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /*************** log-likelihood *************/
        double funcone( double *x)
       for (i=1; i<=imx; i++) {  {
         bool=1;    /* Same as likeli but slower because of a lot of printf and if */
         if  (cptcovn>0) {    int i, ii, j, k, mi, d, kk;
           for (z1=1; z1<=cptcoveff; z1++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **out;
               bool=0;    double lli; /* Individual log likelihood */
         }    double llt;
         if (bool==1) {    int s1, s2;
           for(m=firstpass; m<=lastpass; m++){    double bbh, survp;
             k2=anint[m][i]+(mint[m][i]/12.);    /*extern weight */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* We are differentiating ll according to initial status */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /*for(i=1;i<imx;i++) 
               if (m<lastpass)      printf(" %d\n",s[4][i]);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    */
               else    cov[1]=1.;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           for(jk=1; jk <=nlstate ; jk++){          for (j=1;j<=nlstate+ndeath;j++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               pp[jk] += freq[jk][m][i];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }          }
           for(jk=1; jk <=nlstate ; jk++){        for(d=0; d<dh[mi][i]; d++){
             for(m=-1, pos=0; m <=0 ; m++)          newm=savm;
             pos += freq[jk][m][i];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1; jk <=nlstate ; jk++){          }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              pp[jk] += freq[jk][m][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }          savm=oldm;
                    oldm=newm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } /* end mult */
         
          for(jk=1; jk <=nlstate ; jk++){                  s1=s[mw[mi][i]][i];
            if( i <= (int) agemax){        s2=s[mw[mi+1][i]][i];
              if(pos>=1.e-5){        bbh=(double)bh[mi][i]/(double)stepm; 
                probs[i][jk][j1]= pp[jk]/pos;        /* bias is positive if real duration
              }         * is higher than the multiple of stepm and negative otherwise.
            }         */
          }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                    lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(pp,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
 }  /* End of Freq */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
 /************* Waves Concatenation ***************/        } /* End of if */
         ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        sw += weight[i];
 {        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      Death is a valid wave (if date is known).        if(globpr){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]   %10.6f %10.6f %10.6f ", \
      and mw[mi+1][i]. dh depends on stepm.                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   int i, mi, m;            llt +=ll[k]*gipmx/gsw;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      double sum=0., jmean=0.;*/          }
           fprintf(ficresilk," %10.6f\n", -llt);
   int j, k=0,jk, ju, jl;        }
   double sum=0.;      } /* end of wave */
   jmin=1e+5;    } /* end of individual */
   jmax=-1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmean=0.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=imx; i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     mi=0;    if(globpr==0){ /* First time we count the contributions and weights */
     m=firstpass;      gipmx=ipmx;
     while(s[m][i] <= nlstate){      gsw=sw;
       if(s[m][i]>=1)    }
         mw[++mi][i]=m;    return -l;
       if(m >=lastpass)  }
         break;  
       else  char *subdirf(char fileres[])
         m++;  {
     }/* end while */    /* Caution optionfilefiname is hidden */
     if (s[m][i] > nlstate){    strcpy(tmpout,optionfilefiname);
       mi++;     /* Death is another wave */    strcat(tmpout,"/"); /* Add to the right */
       /* if(mi==0)  never been interviewed correctly before death */    strcat(tmpout,fileres);
          /* Only death is a correct wave */    return tmpout;
       mw[mi][i]=m;  }
     }  
   char *subdirf2(char fileres[], char *preop)
     wav[i]=mi;  {
     if(mi==0)    
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     strcat(tmpout,preop);
   for(i=1; i<=imx; i++){    strcat(tmpout,fileres);
     for(mi=1; mi<wav[i];mi++){    return tmpout;
       if (stepm <=0)  }
         dh[mi][i]=1;  char *subdirf3(char fileres[], char *preop, char *preop2)
       else{  {
         if (s[mw[mi+1][i]][i] > nlstate) {    
           if (agedc[i] < 2*AGESUP) {    strcpy(tmpout,optionfilefiname);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    strcat(tmpout,"/");
           if(j==0) j=1;  /* Survives at least one month after exam */    strcat(tmpout,preop);
           k=k+1;    strcat(tmpout,preop2);
           if (j >= jmax) jmax=j;    strcat(tmpout,fileres);
           if (j <= jmin) jmin=j;    return tmpout;
           sum=sum+j;  }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         }  {
         else{    /* This routine should help understanding what is done with 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       the selection of individuals/waves and
           k=k+1;       to check the exact contribution to the likelihood.
           if (j >= jmax) jmax=j;       Plotting could be done.
           else if (j <= jmin)jmin=j;     */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int k;
           sum=sum+j;  
         }    if(*globpri !=0){ /* Just counts and sums, no printings */
         jk= j/stepm;      strcpy(fileresilk,"ilk"); 
         jl= j -jk*stepm;      strcat(fileresilk,fileres);
         ju= j -(jk+1)*stepm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         if(jl <= -ju)        printf("Problem with resultfile: %s\n", fileresilk);
           dh[mi][i]=jk;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         else      }
           dh[mi][i]=jk+1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         if(dh[mi][i]==0)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           dh[mi][i]=1; /* At least one step */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   jmean=sum/k;    }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    *fretone=(*funcone)(p);
 /*********** Tricode ****************************/    if(*globpri !=0){
 void tricode(int *Tvar, int **nbcode, int imx)      fclose(ficresilk);
 {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int Ndum[20],ij=1, k, j, i;      fflush(fichtm); 
   int cptcode=0;    } 
   cptcoveff=0;    return;
    }
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   /*********** Maximum Likelihood Estimation ***************/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       ij=(int)(covar[Tvar[j]][i]);  {
       Ndum[ij]++;    int i,j, iter;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double **xi;
       if (ij > cptcode) cptcode=ij;    double fret;
     }    double fretone; /* Only one call to likelihood */
     char filerespow[FILENAMELENGTH];
     for (i=0; i<=cptcode; i++) {    xi=matrix(1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
     ij=1;        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     for (i=1; i<=ncodemax[j]; i++) {    strcat(filerespow,fileres);
       for (k=0; k<=19; k++) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         if (Ndum[k] != 0) {      printf("Problem with resultfile: %s\n", filerespow);
           nbcode[Tvar[j]][ij]=k;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
              }
           ij++;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }    for (i=1;i<=nlstate;i++)
         if (ij > ncodemax[j]) break;      for(j=1;j<=nlstate+ndeath;j++)
       }          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   }    
     powell(p,xi,npar,ftol,&iter,&fret,func);
  for (k=0; k<19; k++) Ndum[k]=0;  
     fclose(ficrespow);
  for (i=1; i<=ncovmodel-2; i++) {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       ij=Tvar[i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       Ndum[ij]++;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }  
   }
  ij=1;  
  for (i=1; i<=10; i++) {  /**** Computes Hessian and covariance matrix ***/
    if((Ndum[i]!=0) && (i<=ncovcol)){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      Tvaraff[ij]=i;  {
      ij++;    double  **a,**y,*x,pd;
    }    double **hess;
  }    int i, j,jk;
      int *indx;
     cptcoveff=ij-1;  
 }    double hessii(double p[], double delta, int theta, double delti[]);
     double hessij(double p[], double delti[], int i, int j);
 /*********** Health Expectancies ****************/    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     hess=matrix(1,npar,1,npar);
 {  
   /* Health expectancies */    printf("\nCalculation of the hessian matrix. Wait...\n");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double age, agelim, hf;    for (i=1;i<=npar;i++){
   double ***p3mat,***varhe;      printf("%d",i);fflush(stdout);
   double **dnewm,**doldm;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double *xp;      hess[i][i]=hessii(p,ftolhess,i,delti);
   double **gp, **gm;      /*printf(" %f ",p[i]);*/
   double ***gradg, ***trgradg;      /*printf(" %lf ",hess[i][i]);*/
   int theta;    }
     
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for (i=1;i<=npar;i++) {
   xp=vector(1,npar);      for (j=1;j<=npar;j++)  {
   dnewm=matrix(1,nlstate*2,1,npar);        if (j>i) { 
   doldm=matrix(1,nlstate*2,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(ficreseij,"# Health expectancies\n");          hess[i][j]=hessij(p,delti,i,j);
   fprintf(ficreseij,"# Age");          hess[j][i]=hess[i][j];    
   for(i=1; i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      }
   fprintf(ficreseij,"\n");    }
     printf("\n");
   if(estepm < stepm){    fprintf(ficlog,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   else  hstepm=estepm;      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    
    * This is mainly to measure the difference between two models: for example    a=matrix(1,npar,1,npar);
    * if stepm=24 months pijx are given only every 2 years and by summing them    y=matrix(1,npar,1,npar);
    * we are calculating an estimate of the Life Expectancy assuming a linear    x=vector(1,npar);
    * progression inbetween and thus overestimating or underestimating according    indx=ivector(1,npar);
    * to the curvature of the survival function. If, for the same date, we    for (i=1;i<=npar;i++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    * to compare the new estimate of Life expectancy with the same linear    ludcmp(a,npar,indx,&pd);
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   /* For example we decided to compute the life expectancy with the smallest unit */      x[j]=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      lubksb(a,npar,indx,x);
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++){ 
      nstepm is the number of stepm from age to agelin.        matcov[i][j]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like estepm months */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    printf("\n#Hessian matrix#\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\n#Hessian matrix#\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++) { 
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) { 
   */        printf("%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   agelim=AGESUP;      printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"\n");
     /* nhstepm age range expressed in number of stepm */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* Recompute Inverse */
     /* if (stepm >= YEARM) hstepm=1;*/    for (i=1;i<=npar;i++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ludcmp(a,npar,indx,&pd);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    /*  printf("\n#Hessian matrix recomputed#\n");
     gm=matrix(0,nhstepm,1,nlstate*2);  
     for (j=1;j<=npar;j++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (i=1;i<=npar;i++) x[i]=0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      x[j]=1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     /* Computing Variances of health expectancies */      }
       printf("\n");
      for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    */
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
       cptj=0;    free_vector(x,1,npar);
       for(j=1; j<= nlstate; j++){    free_ivector(indx,1,npar);
         for(i=1; i<=nlstate; i++){    free_matrix(hess,1,npar,1,npar);
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  /*************** hessian matrix ****************/
       }  double hessii( double x[], double delta, int theta, double delti[])
        {
          int i;
       for(i=1; i<=npar; i++)    int l=1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double p2[NPARMAX+1];
          double res;
       cptj=0;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j<= nlstate; j++){    double fx;
         for(i=1;i<=nlstate;i++){    int k=0,kmax=10;
           cptj=cptj+1;    double l1;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fx=func(x);
           }    for (i=1;i<=npar;i++) p2[i]=x[i];
         }    for(l=0 ; l <=lmax; l++){
       }      l1=pow(10,l);
            delts=delt;
          for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
       for(j=1; j<= nlstate*2; j++)        p2[theta]=x[theta] +delt;
         for(h=0; h<=nhstepm-1; h++){        k1=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        p2[theta]=x[theta]-delt;
         }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
      }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
 /* End theta */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
      for(h=0; h<=nhstepm-1; h++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<=nlstate*2;j++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(theta=1; theta <=npar; theta++)          k=kmax;
         trgradg[h][j][theta]=gradg[h][theta][j];        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
      for(i=1;i<=nlstate*2;i++)        }
       for(j=1;j<=nlstate*2;j++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         varhe[i][j][(int)age] =0.;          delts=delt;
         }
     for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    delti[theta]=delts;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    return res; 
         for(i=1;i<=nlstate*2;i++)    
           for(j=1;j<=nlstate*2;j++)  }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  double hessij( double x[], double delti[], int thetai,int thetaj)
     }  {
     int i;
          int l=1, l1, lmax=20;
     /* Computing expectancies */    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++)    int k;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    fx=func(x);
              for (k=1; k<=2; k++) {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     fprintf(ficreseij,"%3.0f",age );    
     cptj=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<=nlstate;j++){      k2=func(p2)-fx;
         cptj++;    
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficreseij,"\n");      k3=func(p2)-fx;
        
     free_matrix(gm,0,nhstepm,1,nlstate*2);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_matrix(gp,0,nhstepm,1,nlstate*2);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      k4=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_vector(xp,1,npar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_matrix(dnewm,1,nlstate*2,1,npar);  #endif
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    return res;
 }  }
   
 /************ Variance ******************/  /************** Inverse of matrix **************/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  void ludcmp(double **a, int n, int *indx, double *d) 
 {  { 
   /* Variance of health expectancies */    int i,imax,j,k; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double big,dum,sum,temp; 
   double **newm;    double *vv; 
   double **dnewm,**doldm;   
   int i, j, nhstepm, hstepm, h, nstepm ;    vv=vector(1,n); 
   int k, cptcode;    *d=1.0; 
   double *xp;    for (i=1;i<=n;i++) { 
   double **gp, **gm;      big=0.0; 
   double ***gradg, ***trgradg;      for (j=1;j<=n;j++) 
   double ***p3mat;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double age,agelim, hf;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   int theta;      vv[i]=1.0/big; 
     } 
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for (j=1;j<=n;j++) { 
   fprintf(ficresvij,"# Age");      for (i=1;i<j;i++) { 
   for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
     for(j=1; j<=nlstate;j++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        a[i][j]=sum; 
   fprintf(ficresvij,"\n");      } 
       big=0.0; 
   xp=vector(1,npar);      for (i=j;i<=n;i++) { 
   dnewm=matrix(1,nlstate,1,npar);        sum=a[i][j]; 
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   if(estepm < stepm){        a[i][j]=sum; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
   else  hstepm=estepm;            imax=i; 
   /* For example we decided to compute the life expectancy with the smallest unit */        } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } 
      nhstepm is the number of hstepm from age to agelim      if (j != imax) { 
      nstepm is the number of stepm from age to agelin.        for (k=1;k<=n;k++) { 
      Look at hpijx to understand the reason of that which relies in memory size          dum=a[imax][k]; 
      and note for a fixed period like k years */          a[imax][k]=a[j][k]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          a[j][k]=dum; 
      survival function given by stepm (the optimization length). Unfortunately it        } 
      means that if the survival funtion is printed only each two years of age and if        *d = -(*d); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        vv[imax]=vv[j]; 
      results. So we changed our mind and took the option of the best precision.      } 
   */      indx[j]=imax; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   agelim = AGESUP;      if (j != n) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        dum=1.0/(a[j][j]); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
     gp=matrix(0,nhstepm,1,nlstate);  ;
     gm=matrix(0,nhstepm,1,nlstate);  } 
   
     for(theta=1; theta <=npar; theta++){  void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1; i<=npar; i++){ /* Computes gradient */  { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i,ii=0,ip,j; 
       }    double sum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       if (popbased==1) {      sum=b[ip]; 
         for(i=1; i<=nlstate;i++)      b[ip]=b[i]; 
           prlim[i][i]=probs[(int)age][i][ij];      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
       for(j=1; j<= nlstate; j++){      b[i]=sum; 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (i=n;i>=1;i--) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      sum=b[i]; 
         }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */  } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /************ Frequencies ********************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
    {  /* Some frequencies */
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           prlim[i][i]=probs[(int)age][i][ij];    int first;
       }    double ***freq; /* Frequencies */
     double *pp, **prop;
       for(j=1; j<= nlstate; j++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(h=0; h<=nhstepm; h++){    FILE *ficresp;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
       for(j=1; j<= nlstate; j++)    strcat(fileresp,fileres);
         for(h=0; h<=nhstepm; h++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      printf("Problem with prevalence resultfile: %s\n", fileresp);
         }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     } /* End theta */      exit(0);
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
     for(h=0; h<=nhstepm; h++)    
       for(j=1; j<=nlstate;j++)    j=cptcoveff;
         for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           trgradg[h][j][theta]=gradg[h][theta][j];  
     first=1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
       for(j=1;j<=nlstate;j++)      for(i1=1; i1<=ncodemax[k1];i1++){
         vareij[i][j][(int)age] =0.;        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(h=0;h<=nhstepm;h++){          scanf("%d", i);*/
       for(k=0;k<=nhstepm;k++){        for (i=-1; i<=nlstate+ndeath; i++)  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for(m=iagemin; m <= iagemax+3; m++)
         for(i=1;i<=nlstate;i++)              freq[i][jk][m]=0;
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
         
     fprintf(ficresvij,"%.0f ",age );        dateintsum=0;
     for(i=1; i<=nlstate;i++)        k2cpt=0;
       for(j=1; j<=nlstate;j++){        for (i=1; i<=imx; i++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          bool=1;
       }          if  (cptcovn>0) {
     fprintf(ficresvij,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(gp,0,nhstepm,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(gm,0,nhstepm,1,nlstate);                bool=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          if (bool==1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=firstpass; m<=lastpass; m++){
   } /* End age */              k2=anint[m][i]+(mint[m][i]/12.);
                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   free_vector(xp,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_matrix(doldm,1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   free_matrix(dnewm,1,nlstate,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 /************ Variance of prevlim ******************/                }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                
 {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /* Variance of prevalence limit */                  dateintsum=dateintsum+k2;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  k2cpt++;
   double **newm;                }
   double **dnewm,**doldm;                /*}*/
   int i, j, nhstepm, hstepm;            }
   int k, cptcode;          }
   double *xp;        }
   double *gp, *gm;         
   double **gradg, **trgradg;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   double age,agelim;  
   int theta;        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresvpl,"# Age");          fprintf(ficresp, "**********\n#");
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);        for(i=1; i<=nlstate;i++) 
   fprintf(ficresvpl,"\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   doldm=matrix(1,nlstate,1,nlstate);          if(i==iagemax+3){
              fprintf(ficlog,"Total");
   hstepm=1*YEARM; /* Every year of age */          }else{
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            if(first==1){
   agelim = AGESUP;              first=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              printf("See log file for details...\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;            fprintf(ficlog,"Age %d", i);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gp=vector(1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     gm=vector(1,nlstate);              pp[jk] += freq[jk][m][i]; 
           }
     for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(m=-1, pos=0; m <=0 ; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1){
       for(i=1;i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         gp[i] = prlim[i][i];              }
                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=npar; i++) /* Computes gradient */            }else{
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         gm[i] = prlim[i][i];            }
           }
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(jk=1; jk <=nlstate ; jk++){
     } /* End theta */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     trgradg =matrix(1,nlstate,1,npar);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     for(j=1; j<=nlstate;j++)            pos += pp[jk];
       for(theta=1; theta <=npar; theta++)            posprop += prop[jk][i];
         trgradg[j][theta]=gradg[theta][j];          }
           for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            if(pos>=1.e-5){
       varpl[i][(int)age] =0.;              if(first==1)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1;i<=nlstate;i++)            }else{
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficresvpl,"%.0f ",age );              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            if( i <= iagemax){
     fprintf(ficresvpl,"\n");              if(pos>=1.e-5){
     free_vector(gp,1,nlstate);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_vector(gm,1,nlstate);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     free_matrix(gradg,1,npar,1,nlstate);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_matrix(trgradg,1,nlstate,1,npar);              }
   } /* End age */              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
 /************ Variance of one-step probabilities  ******************/              if(first==1)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int i, j, i1, k1, j1, z1;              }
   int k=0, cptcode;          if(i <= iagemax)
   double **dnewm,**doldm;            fprintf(ficresp,"\n");
   double *xp;          if(first==1)
   double *gp, *gm;            printf("Others in log...\n");
   double **gradg, **trgradg;          fprintf(ficlog,"\n");
   double age,agelim, cov[NCOVMAX];        }
   int theta;      }
   char fileresprob[FILENAMELENGTH];    }
     dateintmean=dateintsum/k2cpt; 
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);    fclose(ficresp);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     printf("Problem with resultfile: %s\n", fileresprob);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* End of Freq */
    }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  
   fprintf(ficresprob,"# Age");  /************ Prevalence ********************/
   for(i=1; i<=nlstate;i++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     for(j=1; j<=(nlstate+ndeath);j++)  {  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   fprintf(ficresprob,"\n");    */
    
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   xp=vector(1,npar);    double ***freq; /* Frequencies */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double *pp, **prop;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double pos,posprop; 
      double  y2; /* in fractional years */
   cov[1]=1;    int iagemin, iagemax;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    iagemin= (int) agemin;
   j1=0;    iagemax= (int) agemax;
   for(k1=1; k1<=1;k1++){    /*pp=vector(1,nlstate);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     j1++;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     if  (cptcovn>0) {    
       fprintf(ficresprob, "\n#********** Variable ");    j=cptcoveff;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficresprob, "**********\n#");    
     }    for(k1=1; k1<=j;k1++){
          for(i1=1; i1<=ncodemax[k1];i1++){
       for (age=bage; age<=fage; age ++){        j1++;
         cov[2]=age;        
         for (k=1; k<=cptcovn;k++) {        for (i=1; i<=nlstate; i++)  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          for(m=iagemin; m <= iagemax+3; m++)
                      prop[i][m]=0.0;
         }       
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (i=1; i<=imx; i++) { /* Each individual */
         for (k=1; k<=cptcovprod;k++)          bool=1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if  (cptcovn>0) {
                    for (z1=1; z1<=cptcoveff; z1++) 
         gradg=matrix(1,npar,1,9);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         trgradg=matrix(1,9,1,npar);                bool=0;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          } 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1) { 
                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         for(theta=1; theta <=npar; theta++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           for(i=1; i<=npar; i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                          if(agev[m][i]==1) agev[m][i]=iagemax+2;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                          if (s[m][i]>0 && s[m][i]<=nlstate) { 
           k=0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           for(i=1; i<= (nlstate+ndeath); i++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             for(j=1; j<=(nlstate+ndeath);j++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
               k=k+1;                } 
               gp[k]=pmmij[i][j];              }
             }            } /* end selection of waves */
           }          }
                  }
           for(i=1; i<=npar; i++)        for(i=iagemin; i <= iagemax+3; i++){  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          
              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            posprop += prop[jk][i]; 
           k=0;          } 
           for(i=1; i<=(nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){     
               k=k+1;            if( i <=  iagemax){ 
               gm[k]=pmmij[i][j];              if(posprop>=1.e-5){ 
             }                probs[i][jk][j1]= prop[jk][i]/posprop;
           }              } 
                  } 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          }/* end jk */ 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          }/* end i */ 
         }      } /* end i1 */
     } /* end k1 */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    
           for(theta=1; theta <=npar; theta++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             trgradg[j][theta]=gradg[theta][j];    /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  }  /* End of prevalence */
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
          /************* Waves Concatenation ***************/
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
          void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         k=0;  {
         for(i=1; i<=(nlstate+ndeath); i++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(j=1; j<=(nlstate+ndeath);j++){       Death is a valid wave (if date is known).
             k=k+1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             gm[k]=pmmij[i][j];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
         }       */
        
      /*printf("\n%d ",(int)age);    int i, mi, m;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       double sum=0., jmean=0.;*/
      }*/    int first;
     int j, k=0,jk, ju, jl;
         fprintf(ficresprob,"\n%d ",(int)age);    double sum=0.;
     first=0;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    jmin=1e+5;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    jmax=-1;
      jmean=0.;
       }    for(i=1; i<=imx; i++){
     }      mi=0;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      m=firstpass;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      while(s[m][i] <= nlstate){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if(s[m][i]>=1)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          mw[++mi][i]=m;
   }        if(m >=lastpass)
   free_vector(xp,1,npar);          break;
   fclose(ficresprob);        else
            m++;
 }      }/* end while */
       if (s[m][i] > nlstate){
 /******************* Printing html file ***********/        mi++;     /* Death is another wave */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        /* if(mi==0)  never been interviewed correctly before death */
  int lastpass, int stepm, int weightopt, char model[],\           /* Only death is a correct wave */
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        mw[mi][i]=m;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      }
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;      wav[i]=mi;
   FILE *fichtm;      if(mi==0){
   /*char optionfilehtm[FILENAMELENGTH];*/        nbwarn++;
         if(first==0){
   strcpy(optionfilehtm,optionfile);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcat(optionfilehtm,".htm");          first=1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm), exit(0);        if(first==1){
   }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      } /* end mi==0 */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    } /* End individuals */
 \n  
 Total number of observations=%d <br>\n    for(i=1; i<=imx; i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for(mi=1; mi<wav[i];mi++){
 <hr  size=\"2\" color=\"#EC5E5E\">        if (stepm <=0)
  <ul><li>Outputs files<br>\n          dh[mi][i]=1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        else{
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            if (agedc[i] < 2*AGESUP) {
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              else if(j<0){
                 nberr++;
  fprintf(fichtm,"\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n                j=1; /* Temporary Dangerous patch */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              }
               k=k+1;
  if(popforecast==1) fprintf(fichtm,"\n              if (j >= jmax) jmax=j;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if (j <= jmin) jmin=j;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              sum=sum+j;
         <br>",fileres,fileres,fileres,fileres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  else              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            }
 fprintf(fichtm," <li>Graphs</li><p>");          }
           else{
  m=cptcoveff;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
  jj1=0;            if (j >= jmax) jmax=j;
  for(k1=1; k1<=m;k1++){            else if (j <= jmin)jmin=j;
    for(i1=1; i1<=ncodemax[k1];i1++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        jj1++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        if (cptcovn > 0) {            if(j<0){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              nberr++;
          for (cpt=1; cpt<=cptcoveff;cpt++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
        }            sum=sum+j;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              jk= j/stepm;
        for(cpt=1; cpt<nlstate;cpt++){          jl= j -jk*stepm;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          ju= j -(jk+1)*stepm;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        }            if(jl==0){
     for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              bh[mi][i]=0;
 interval) in state (%d): v%s%d%d.gif <br>            }else{ /* We want a negative bias in order to only have interpolation ie
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                      * at the price of an extra matrix product in likelihood */
      }              dh[mi][i]=jk+1;
      for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=ju;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }else{
      }            if(jl <= -ju){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=jk;
 health expectancies in states (1) and (2): e%s%d.gif<br>              bh[mi][i]=jl;       /* bias is positive if real duration
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                                   * is higher than the multiple of stepm and negative otherwise.
 fprintf(fichtm,"\n</body>");                                   */
    }            }
    }            else{
 fclose(fichtm);              dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
             }
 /******************* Gnuplot file **************/            if(dh[mi][i]==0){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   strcpy(optionfilegnuplot,optionfilefiname);          } /* end if mle */
   strcat(optionfilegnuplot,".gp.txt");        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      } /* end wave */
     printf("Problem with file %s",optionfilegnuplot);    }
   }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 #ifdef windows    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficgp,"cd \"%s\" \n",pathc);   }
 #endif  
 m=pow(2,cptcoveff);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
  /* 1eme*/  {
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    cptcoveff=0; 
    
 for (i=1; i<= nlstate ; i ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for (i=1; i<= nlstate ; i ++) {                                 modality*/ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        Ndum[ij]++; /*store the modality */
 }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      for (i=1; i<= nlstate ; i ++) {                                         Tvar[j]. If V=sex and male is 0 and 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                         female is 1, then  cptcode=1.*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
    }  
   }      ij=1; 
   /*2 eme*/      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   for (k1=1; k1<= m ; k1 ++) {          if (Ndum[k] != 0) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);            nbcode[Tvar[j]][ij]=k; 
                /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (i=1; i<= nlstate+1 ; i ++) {            
       k=2*i;            ij++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          if (ij > ncodemax[j]) break; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }      }  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   for (i=1; i<=ncovmodel-2; i++) { 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");     ij=Tvar[i];
 }       Ndum[ij]++;
       fprintf(ficgp,"\" t\"\" w l 0,");   }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   ij=1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<= maxncov; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
 }         Tvaraff[ij]=i; /*For printing */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       ij++;
       else fprintf(ficgp,"\" t\"\" w l 0,");     }
     }   }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
    }
   /*3eme*/  
   /*********** Health Expectancies ****************/
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* Health expectancies */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double age, agelim, hf;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double ***p3mat,***varhe;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double **dnewm,**doldm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double *xp;
     double **gp, **gm;
 */    double ***gradg, ***trgradg;
       for (i=1; i< nlstate ; i ++) {    int theta;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
      fprintf(ficreseij,"# Health expectancies\n");
   /* CV preval stat */    fprintf(ficreseij,"# Age");
     for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++)
       k=3;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fprintf(ficreseij,"\n");
   
       for (i=1; i< nlstate ; i ++)    if(estepm < stepm){
         fprintf(ficgp,"+$%d",k+i+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else  hstepm=estepm;   
       l=3+(nlstate+ndeath)*cpt;    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * This is mainly to measure the difference between two models: for example
       for (i=1; i< nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         l=3+(nlstate+ndeath)*cpt;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,"+$%d",l+i+1);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
   }       * curvature will be obtained if estepm is as small as stepm. */
    
   /* proba elementaires */    /* For example we decided to compute the life expectancy with the smallest unit */
    for(i=1,jk=1; i <=nlstate; i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(k=1; k <=(nlstate+ndeath); k++){       nhstepm is the number of hstepm from age to agelim 
       if (k != i) {       nstepm is the number of stepm from age to agelin. 
         for(j=1; j <=ncovmodel; j++){       Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           jk++;       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficgp,"\n");       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     for(jk=1; jk <=m; jk++) {    agelim=AGESUP;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    i=1;      /* nhstepm age range expressed in number of stepm */
    for(k2=1; k2<=nlstate; k2++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      k3=i;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      for(k=1; k<=(nlstate+ndeath); k++) {      /* if (stepm >= YEARM) hstepm=1;*/
        if (k != k2){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 ij=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         for(j=3; j <=ncovmodel; j++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           else      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
         }  
           fprintf(ficgp,")/(1");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
         for(k1=1; k1 <=nlstate; k1++){        /* Computing Variances of health expectancies */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;       for(theta=1; theta <=npar; theta++){
           for(j=3; j <=ncovmodel; j++){        for(i=1; i<=npar; i++){ 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }    
           else        cptj=0;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<= nlstate; j++){
           }          for(i=1; i<=nlstate; i++){
           fprintf(ficgp,")");            cptj=cptj+1;
         }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            }
         i=i+ncovmodel;          }
        }        }
      }       
    }       
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        for(i=1; i<=npar; i++) 
    }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficgp);        
 }  /* end gnuplot */        cptj=0;
         for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
 /*************** Moving average **************/            cptj=cptj+1;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   int i, cpt, cptcod;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            }
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(j=1; j<= nlstate*nlstate; j++)
              for(h=0; h<=nhstepm-1; h++){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for (i=1; i<=nlstate;i++){          }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       } 
           for (cpt=0;cpt<=4;cpt++){     
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  /* End theta */
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         }  
       }       for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
 }            trgradg[h][j][theta]=gradg[h][theta][j];
        
   
 /************** Forecasting ******************/       for(i=1;i<=nlstate*nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;       printf("%d|",(int)age);fflush(stdout);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double *popeffectif,*popcount;       for(h=0;h<=nhstepm-1;h++){
   double ***p3mat;        for(k=0;k<=nhstepm-1;k++){
   char fileresf[FILENAMELENGTH];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  agelim=AGESUP;          for(i=1;i<=nlstate*nlstate;i++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
        }
        /* Computing expectancies */
   strcpy(fileresf,"f");      for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);        for(j=1; j<=nlstate;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("Problem with forecast resultfile: %s\n", fileresf);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
   
   if (mobilav==1) {      fprintf(ficreseij,"%3.0f",age );
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      cptj=0;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
           cptj++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   if (stepm<=12) stepsize=1;        }
        fprintf(ficreseij,"\n");
   agelim=AGESUP;     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   hstepm=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   hstepm=hstepm/stepm;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   yp1=modf(dateintmean,&yp);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   anprojmean=yp;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   yp2=modf((yp1*12),&yp);    }
   mprojmean=yp;    printf("\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficlog,"\n");
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    free_vector(xp,1,npar);
   if(mprojmean==0) jprojmean=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /************ Variance ******************/
       k=k+1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       fprintf(ficresf,"\n#******");  {
       for(j=1;j<=cptcoveff;j++) {    /* Variance of health expectancies */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       }    /* double **newm;*/
       fprintf(ficresf,"******\n");    double **dnewm,**doldm;
       fprintf(ficresf,"# StartingAge FinalAge");    double **dnewmp,**doldmp;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    int i, j, nhstepm, hstepm, h, nstepm ;
          int k, cptcode;
          double *xp;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double **gp, **gm;  /* for var eij */
         fprintf(ficresf,"\n");    double ***gradg, ***trgradg; /*for var eij */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***p3mat;
           nhstepm = nhstepm/hstepm;    double age,agelim, hf;
              double ***mobaverage;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int theta;
           oldm=oldms;savm=savms;    char digit[4];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char digitp[25];
          
           for (h=0; h<=nhstepm; h++){    char fileresprobmorprev[FILENAMELENGTH];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    if(popbased==1){
             }      if(mobilav!=0)
             for(j=1; j<=nlstate+ndeath;j++) {        strcpy(digitp,"-populbased-mobilav-");
               kk1=0.;kk2=0;      else strcpy(digitp,"-populbased-nomobil-");
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    else 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      strcpy(digitp,"-stablbased-");
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if (mobilav!=0) {
                 }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               if (h==(int)(calagedate+12*cpt)){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 fprintf(ficresf," %.3f", kk1);      }
                            }
               }  
             }    strcpy(fileresprobmorprev,"prmorprev"); 
           }    sprintf(digit,"%-d",ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   fclose(ficresf);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /************** Forecasting ******************/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficresprobmorprev," p.%-d SE",j);
   int *popage;      for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double *popeffectif,*popcount;    }  
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficresprobmorprev,"\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   } */
   agelim=AGESUP;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   strcpy(filerespop,"pop");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   strcat(filerespop,fileres);    fprintf(ficresvij,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   if (mobilav==1) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gpp=vector(nlstate+1,nlstate+ndeath);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(estepm < stepm){
   if (stepm<=12) stepsize=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   agelim=AGESUP;    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
   hstepm=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   hstepm=hstepm/stepm;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   if (popforecast==1) {       Look at hpijx to understand the reason of that which relies in memory size
     if((ficpop=fopen(popfile,"r"))==NULL) {       and note for a fixed period like k years */
       printf("Problem with population file : %s\n",popfile);exit(0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
     popage=ivector(0,AGESUP);       means that if the survival funtion is printed every two years of age and if
     popeffectif=vector(0,AGESUP);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     popcount=vector(0,AGESUP);       results. So we changed our mind and took the option of the best precision.
        */
     i=1;      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     imx=i;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      gp=matrix(0,nhstepm,1,nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=matrix(0,nhstepm,1,nlstate);
       k=k+1;  
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      for(theta=1; theta <=npar; theta++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
              if (popbased==1) {
       for (cpt=0; cpt<=0;cpt++) {          if(mobilav ==0){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(i=1; i<=nlstate;i++)
                      prlim[i][i]=probs[(int)age][i][ij];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }else{ /* mobilav */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;              prlim[i][i]=mobaverage[(int)age][i][ij];
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<= nlstate; j++){
                  for(h=0; h<=nhstepm; h++){
           for (h=0; h<=nhstepm; h++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        /* This for computing probability of death (h=1 means
               kk1=0.;kk2=0;           computed over hstepm matrices product = hstepm*stepm months) 
               for(i=1; i<=nlstate;i++) {                         as a weighted average of prlim.
                 if (mobilav==1)        */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                 else {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                 }        }    
               }        /* end probability of death */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   /*fprintf(ficrespop," %.3f", kk1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }   
             for(i=1; i<=nlstate;i++){        if (popbased==1) {
               kk1=0.;          if(mobilav ==0){
                 for(j=1; j<=nlstate;j++){            for(i=1; i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              prlim[i][i]=probs[(int)age][i][ij];
                 }          }else{ /* mobilav */ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }        for(j=1; j<= nlstate; j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   /******/        }
         /* This for computing probability of death (h=1 means
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             as a weighted average of prlim.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           nhstepm = nhstepm/hstepm;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                     gmp[j] += prlim[i][i]*p3mat[i][j][1];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }    
           oldm=oldms;savm=savms;        /* end probability of death */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++) /* vareij */
             if (h==(int) (calagedate+YEARM*cpt)) {          for(h=0; h<=nhstepm; h++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               for(i=1; i<=nlstate;i++) {                        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            }
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      } /* End theta */
             }  
           }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
    }          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   if (popforecast==1) {          trgradgp[j][theta]=gradgp[theta][j];
     free_ivector(popage,0,AGESUP);    
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1;j<=nlstate;j++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          vareij[i][j][(int)age] =0.;
   fclose(ficrespop);  
 }      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
 /***********************************************/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 /**************** Main Program *****************/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 /***********************************************/          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
 int main(int argc, char *argv[])              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 {        }
       }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    
   double agedeb, agefin,hf;      /* pptj */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double fret;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double **xi,tmp,delta;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   double dum; /* Dummy variable */      /* end ppptj */
   double ***p3mat;      /*  x centered again */
   int *indx;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   char line[MAXLINE], linepar[MAXLINE];      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   char title[MAXLINE];   
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      if (popbased==1) {
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   char filerest[FILENAMELENGTH];          for(i=1; i<=nlstate;i++)
   char fileregp[FILENAMELENGTH];            prlim[i][i]=mobaverage[(int)age][i][ij];
   char popfile[FILENAMELENGTH];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      }
   int firstobs=1, lastobs=10;               
   int sdeb, sfin; /* Status at beginning and end */      /* This for computing probability of death (h=1 means
   int c,  h , cpt,l;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   int ju,jl, mi;         as a weighted average of prlim.
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int mobilav=0,popforecast=0;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   int hstepm, nhstepm;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      }    
       /* end probability of death */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double **prlim;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double *severity;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   double ***param; /* Matrix of parameters */        for(i=1; i<=nlstate;i++){
   double  *p;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */      } 
   double *delti; /* Scale */      fprintf(ficresprobmorprev,"\n");
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresvij,"%.0f ",age );
   double *epj, vepp;      for(i=1; i<=nlstate;i++)
   double kk1, kk2;        for(j=1; j<=nlstate;j++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
       fprintf(ficresvij,"\n");
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      free_matrix(gp,0,nhstepm,1,nlstate);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   char z[1]="c", occ;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #include <sys/time.h>    } /* End age */
 #include <time.h>    free_vector(gpp,nlstate+1,nlstate+ndeath);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   /* long total_usecs;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   struct timeval start_time, end_time;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   getcwd(pathcd, size);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   printf("\n%s",version);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if(argc <=1){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     printf("\nEnter the parameter file name: ");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     scanf("%s",pathtot);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   else{    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     strcpy(pathtot,argv[1]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(dnewm,1,nlstate,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   chdir(path);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   replace(pathc,path);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*-------- arguments in the command line --------*/    fclose(ficresprobmorprev);
     fflush(ficgp);
   strcpy(fileres,"r");    fflush(fichtm); 
   strcat(fileres, optionfilefiname);  }  /* end varevsij */
   strcat(fileres,".txt");    /* Other files have txt extension */  
   /************ Variance of prevlim ******************/
   /*---------arguments file --------*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* Variance of prevalence limit */
     printf("Problem with optionfile %s\n",optionfile);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     goto end;    double **newm;
   }    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   strcpy(filereso,"o");    int k, cptcode;
   strcat(filereso,fileres);    double *xp;
   if((ficparo=fopen(filereso,"w"))==NULL) {    double *gp, *gm;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double **gradg, **trgradg;
   }    double age,agelim;
     int theta;
   /* Reads comments: lines beginning with '#' */     
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++)
     puts(line);        fprintf(ficresvpl," %1d-%1d",i,i);
     fputs(line,ficparo);    fprintf(ficresvpl,"\n");
   }  
   ungetc(c,ficpar);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    doldm=matrix(1,nlstate,1,nlstate);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    hstepm=1*YEARM; /* Every year of age */
 while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     ungetc(c,ficpar);    agelim = AGESUP;
     fgets(line, MAXLINE, ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     puts(line);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fputs(line,ficparo);      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   ungetc(c,ficpar);      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
          gm=vector(1,nlstate);
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      for(theta=1; theta <=npar; theta++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   /* Read guess parameters */          gp[i] = prlim[i][i];
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gm[i] = prlim[i][i];
   }  
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } /* End theta */
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){      trgradg =matrix(1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);      for(j=1; j<=nlstate;j++)
       printf("%1d%1d",i,j);        for(theta=1; theta <=npar; theta++)
       for(k=1; k<=ncovmodel;k++){          trgradg[j][theta]=gradg[theta][j];
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);      for(i=1;i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);        varpl[i][(int)age] =0.;
       }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fscanf(ficpar,"\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       printf("\n");      for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
        fprintf(ficresvpl,"%.0f ",age );
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   p=param[1][1];      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_vector(gm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gradg,1,npar,1,nlstate);
     ungetc(c,ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);  
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){  /************ Variance of one-step probabilities  ******************/
     for(j=1; j <=nlstate+ndeath-1; j++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {
       printf("%1d%1d",i,j);    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficparo,"%1d%1d",i1,j1);    int k2, l2, j1,  z1;
       for(k=1; k<=ncovmodel;k++){    int k=0,l, cptcode;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int first=1, first1;
         printf(" %le",delti3[i][j][k]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficparo," %le",delti3[i][j][k]);    double **dnewm,**doldm;
       }    double *xp;
       fscanf(ficpar,"\n");    double *gp, *gm;
       printf("\n");    double **gradg, **trgradg;
       fprintf(ficparo,"\n");    double **mu;
     }    double age,agelim, cov[NCOVMAX];
   }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   delti=delti3[1][1];    int theta;
      char fileresprob[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */    char fileresprobcov[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprobcor[FILENAMELENGTH];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    double ***varpij;
     puts(line);  
     fputs(line,ficparo);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   matcov=matrix(1,npar,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   for(i=1; i <=npar; i++){    }
     fscanf(ficpar,"%s",&str);    strcpy(fileresprobcov,"probcov"); 
     printf("%s",str);    strcat(fileresprobcov,fileres);
     fprintf(ficparo,"%s",str);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     for(j=1; j <=i; j++){      printf("Problem with resultfile: %s\n", fileresprobcov);
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
     fscanf(ficpar,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
   for(i=1; i <=npar; i++)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=i+1;j<=npar;j++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       matcov[i][j]=matcov[j][i];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     /*-------- Rewriting paramater file ----------*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficresprob,"# Age");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      strcat(rfileres,".");    /* */    fprintf(ficresprobcov,"# Age");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresprobcov,"# Age");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }  
     fprintf(ficres,"#%s\n",version);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
     /*-------- data file ----------*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       printf("Problem with datafile: %s\n", datafile);goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
    /* fprintf(ficresprob,"\n");
     n= lastobs;    fprintf(ficresprobcov,"\n");
     severity = vector(1,maxwav);    fprintf(ficresprobcor,"\n");
     outcome=imatrix(1,maxwav+1,1,n);   */
     num=ivector(1,n);   xp=vector(1,npar);
     moisnais=vector(1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     annais=vector(1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     moisdc=vector(1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     andc=vector(1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     agedc=vector(1,n);    first=1;
     cod=ivector(1,n);    fprintf(ficgp,"\n# Routine varprob");
     weight=vector(1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(fichtm,"\n");
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     s=imatrix(1,maxwav+1,1,n);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     adl=imatrix(1,maxwav+1,1,n);        file %s<br>\n",optionfilehtmcov);
     tab=ivector(1,NCOVMAX);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     ncodemax=ivector(1,8);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     i=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     while (fgets(line, MAXLINE, fic) != NULL)    {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       if ((i >= firstobs) && (i <=lastobs)) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          standard deviations wide on each axis. <br>\
         for (j=maxwav;j>=1;j--){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           strcpy(line,stra);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    cov[1]=1;
         }    tj=cptcoveff;
            if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    j1=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (j=ncovcol;j>=1;j--){          fprintf(ficresprob, "**********\n#\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         num[i]=atol(stra);          fprintf(ficresprobcov, "**********\n#\n");
                  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(ficgp, "\n#********** Variable "); 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
         i=i+1;          
       }          
     }          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     /* printf("ii=%d", ij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        scanf("%d",i);*/          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   imx=i-1; /* Number of individuals */          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   /* for (i=1; i<=imx; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficresprobcor, "**********\n#");    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        
     }*/        for (age=bage; age<=fage; age ++){ 
    /*  for (i=1; i<=imx; i++){          cov[2]=age;
      if (s[4][i]==9)  s[4][i]=-1;          for (k=1; k<=cptcovn;k++) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            }
            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* Calculation of the number of parameter from char model*/          for (k=1; k<=cptcovprod;k++)
   Tvar=ivector(1,15);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   Tprod=ivector(1,15);          
   Tvaraff=ivector(1,15);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   Tvard=imatrix(1,15,1,2);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   Tage=ivector(1,15);                gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
   if (strlen(model) >1){      
     j=0, j1=0, k1=1, k2=1;          for(theta=1; theta <=npar; theta++){
     j=nbocc(model,'+');            for(i=1; i<=npar; i++)
     j1=nbocc(model,'*');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     cptcovn=j+1;            
     cptcovprod=j1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                
     strcpy(modelsav,model);            k=0;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for(i=1; i<= (nlstate); i++){
       printf("Error. Non available option model=%s ",model);              for(j=1; j<=(nlstate+ndeath);j++){
       goto end;                k=k+1;
     }                gp[k]=pmmij[i][j];
                  }
     for(i=(j+1); i>=1;i--){            }
       cutv(stra,strb,modelsav,'+');            
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for(i=1; i<=npar; i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       /*scanf("%d",i);*/      
       if (strchr(strb,'*')) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         cutv(strd,strc,strb,'*');            k=0;
         if (strcmp(strc,"age")==0) {            for(i=1; i<=(nlstate); i++){
           cptcovprod--;              for(j=1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strd,'V');                k=k+1;
           Tvar[i]=atoi(stre);                gm[k]=pmmij[i][j];
           cptcovage++;              }
             Tage[cptcovage]=i;            }
             /*printf("stre=%s ", stre);*/       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         else if (strcmp(strd,"age")==0) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           cptcovprod--;          }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           cptcovage++;            for(theta=1; theta <=npar; theta++)
           Tage[cptcovage]=i;              trgradg[j][theta]=gradg[theta][j];
         }          
         else {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           cutv(strb,stre,strc,'V');          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           Tvar[i]=ncovcol+k1;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(strb,strc,strd,'V');          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tprod[k1]=i;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvard[k1][1]=atoi(strc);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];          pmij(pmmij,cov,ncovmodel,x,nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          
           for (k=1; k<=lastobs;k++)          k=0;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(i=1; i<=(nlstate); i++){
           k1++;            for(j=1; j<=(nlstate+ndeath);j++){
           k2=k2+2;              k=k+1;
         }              mu[k][(int) age]=pmmij[i][j];
       }            }
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
        /*  scanf("%d",i);*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       cutv(strd,strc,strb,'V');              varpij[i][j][(int)age] = doldm[i][j];
       Tvar[i]=atoi(strc);  
       }          /*printf("\n%d ",(int)age);
       strcpy(modelsav,stra);              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         scanf("%d",i);*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
 }  
            fprintf(ficresprob,"\n%d ",(int)age);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(ficresprobcov,"\n%d ",(int)age);
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficresprobcor,"\n%d ",(int)age);
   scanf("%d ",i);*/  
     fclose(fic);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     /*  if(mle==1){*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     if (weightopt != 1) { /* Maximisation without weights*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       for(i=1;i<=n;i++) weight[i]=1.0;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/          i=0;
     agev=matrix(1,maxwav,1,imx);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
     for (i=1; i<=imx; i++) {              i=i++;
       for(m=2; (m<= maxwav); m++) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
          anint[m][i]=9999;              for (j=1; j<=i;j++){
          s[m][i]=-1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              }
       }            }
     }          }/* end of loop for state */
         } /* end of loop for age */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        /* Confidence intervalle of pij  */
       for(m=1; (m<= maxwav); m++){        /*
         if(s[m][i] >0){          fprintf(ficgp,"\nset noparametric;unset label");
           if (s[m][i] >= nlstate+1) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             if(agedc[i]>0)          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               if(moisdc[i]!=99 && andc[i]!=9999)          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                 agev[m][i]=agedc[i];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            else {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               if (andc[i]!=9999){        */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               }        first1=1;
             }        for (k2=1; k2<=(nlstate);k2++){
           }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           else if(s[m][i] !=9){ /* Should no more exist */            if(l2==k2) continue;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            j=(k2-1)*(nlstate+ndeath)+l2;
             if(mint[m][i]==99 || anint[m][i]==9999)            for (k1=1; k1<=(nlstate);k1++){
               agev[m][i]=1;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             else if(agev[m][i] <agemin){                if(l1==k1) continue;
               agemin=agev[m][i];                i=(k1-1)*(nlstate+ndeath)+l1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if(i<=j) continue;
             }                for (age=bage; age<=fage; age ++){ 
             else if(agev[m][i] >agemax){                  if ((int)age %5==0){
               agemax=agev[m][i];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             /*agev[m][i]=anint[m][i]-annais[i];*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
             /*   agev[m][i] = age[i]+2*m;*/                    mu2=mu[j][(int) age]/stepm*YEARM;
           }                    c12=cv12/sqrt(v1*v2);
           else { /* =9 */                    /* Computing eigen value of matrix of covariance */
             agev[m][i]=1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             s[m][i]=-1;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           }                    /* Eigen vectors */
         }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         else /*= 0 Unknown */                    /*v21=sqrt(1.-v11*v11); *//* error */
           agev[m][i]=1;                    v21=(lc1-v1)/cv12*v11;
       }                    v12=-v21;
                        v22=v11;
     }                    tnalp=v21/v11;
     for (i=1; i<=imx; i++)  {                    if(first1==1){
       for(m=1; (m<= maxwav); m++){                      first1=0;
         if (s[m][i] > (nlstate+ndeath)) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           printf("Error: Wrong value in nlstate or ndeath\n");                      }
           goto end;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    /*printf(fignu*/
       }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
     free_vector(severity,1,maxwav);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     free_imatrix(outcome,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     free_vector(moisnais,1,n);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     free_vector(annais,1,n);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     /* free_matrix(mint,1,maxwav,1,n);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
        free_matrix(anint,1,maxwav,1,n);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     free_vector(moisdc,1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(andc,1,n);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     wav=ivector(1,imx);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     /* Concatenates waves */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       Tcode=ivector(1,100);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       ncodemax[1]=1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    codtab=imatrix(1,100,1,10);                    }/* if first */
    h=0;                  } /* age mod 5 */
    m=pow(2,cptcoveff);                } /* end loop age */
                  fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    for(k=1;k<=cptcoveff; k++){                first=1;
      for(i=1; i <=(m/pow(2,k));i++){              } /*l12 */
        for(j=1; j <= ncodemax[k]; j++){            } /* k12 */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          } /*l1 */
            h++;        }/* k1 */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      } /* loop covariates */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }
          }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      }    free_vector(xp,1,npar);
    }    fclose(ficresprob);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fclose(ficresprobcov);
       codtab[1][2]=1;codtab[2][2]=2; */    fclose(ficresprobcor);
    /* for(i=1; i <=m ;i++){    fflush(ficgp);
       for(k=1; k <=cptcovn; k++){    fflush(fichtmcov);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  }
       }  
       printf("\n");  
       }  /******************* Printing html file ***********/
       scanf("%d",i);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
    /* Calculates basic frequencies. Computes observed prevalence at single age                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        and prints on file fileres'p'. */                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                        double jprev2, double mprev2,double anprev2){
        int jj1, k1, i1, cpt;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*char optionfilehtm[FILENAMELENGTH];*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*   } */
        
     /* For Powell, parameters are in a vector p[] starting at p[1]     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     if(mle==1){   - Life expectancies by age and initial health status (estepm=%2d months): \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     <a href=\"%s\">%s</a> <br>\n</li>", \
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
                 stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
     /*--------- results files --------------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   m=cptcoveff;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){   jj1=0;
        if (k != i)   for(k1=1; k1<=m;k1++){
          {     for(i1=1; i1<=ncodemax[k1];i1++){
            printf("%d%d ",i,k);       jj1++;
            fprintf(ficres,"%1d%1d ",i,k);       if (cptcovn > 0) {
            for(j=1; j <=ncovmodel; j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
              printf("%f ",p[jk]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
              fprintf(ficres,"%f ",p[jk]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
              jk++;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            }       }
            printf("\n");       /* Pij */
            fprintf(ficres,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
          }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
      }       /* Quasi-incidences */
    }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  if(mle==1){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     /* Computing hessian and covariance matrix */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     ftolhess=ftol; /* Usually correct */         /* Stable prevalence in each health state */
     hesscov(matcov, p, npar, delti, ftolhess, func);         for(cpt=1; cpt<nlstate;cpt++){
  }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("# Scales (for hessian or gradient estimation)\n");         }
      for(i=1,jk=1; i <=nlstate; i++){       for(cpt=1; cpt<=nlstate;cpt++) {
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
         if (j!=i) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           fprintf(ficres,"%1d%1d",i,j);       }
           printf("%1d%1d",i,j);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           for(k=1; k<=ncovmodel;k++){  health expectancies in states (1) and (2): %s%d.png<br>\
             printf(" %.5e",delti[jk]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
             fprintf(ficres," %.5e",delti[jk]);     } /* end i1 */
             jk++;   }/* End k1 */
           }   fprintf(fichtm,"</ul>");
           printf("\n");  
           fprintf(ficres,"\n");  
         }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
      }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     k=1;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     for(i=1;i<=npar;i++){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       /*  if (k>nlstate) k=1;           rfileres,rfileres,\
       i1=(i-1)/(ncovmodel*nlstate)+1;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       printf("%s%d%d",alph[k],i1,tab[i]);*/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       fprintf(ficres,"%3d",i);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
       printf("%3d",i);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       for(j=1; j<=i;j++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficres,"\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       printf("\n");  /*      <br>",fileres,fileres,fileres,fileres); */
       k++;  /*  else  */
     }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);   m=cptcoveff;
       fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       puts(line);  
       fputs(line,ficparo);   jj1=0;
     }   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     estepm=0;       jj1++;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       if (cptcovn > 0) {
     if (estepm==0 || estepm < stepm) estepm=stepm;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if (fage <= 2) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
       bage = ageminpar;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fage = agemaxpar;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
           for(cpt=1; cpt<=nlstate;cpt++) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  interval) in state (%d): %s%d%d.png <br>\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
     while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);   fflush(fichtm);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    char dirfileres[132],optfileres[132];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
          int ng;
   while((c=getc(ficpar))=='#' && c!= EOF){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     ungetc(c,ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fgets(line, MAXLINE, ficpar);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     puts(line);  /*   } */
     fputs(line,ficparo);  
   }    /*#ifdef windows */
   ungetc(c,ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
     m=pow(2,cptcoveff);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   fscanf(ficpar,"pop_based=%d\n",&popbased);   /* 1eme*/
   fprintf(ficparo,"pop_based=%d\n",popbased);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);       for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     ungetc(c,ficpar);       fprintf(ficgp,"set xlabel \"Age\" \n\
     fgets(line, MAXLINE, ficpar);  set ylabel \"Probability\" \n\
     puts(line);  set ter png small\n\
     fputs(line,ficparo);  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   ungetc(c,ficpar);  
        for (i=1; i<= nlstate ; i ++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);       } 
     puts(line);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     fputs(line,ficparo);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
     /*2 eme*/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
     for (k1=1; k1<= m ; k1 ++) { 
 /*------------ gnuplot -------------*/      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
 /*------------ free_vector  -------------*/      for (i=1; i<= nlstate+1 ; i ++) {
  chdir(path);        k=2*i;
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_ivector(wav,1,imx);        for (j=1; j<= nlstate+1 ; j ++) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_ivector(num,1,n);        }   
  free_vector(agedc,1,n);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  fclose(ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  fclose(ficres);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /*--------- index.htm --------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   /*--------------- Prevalence limit --------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerespl,"pl");        }   
   strcat(filerespl,fileres);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        else fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      }
   }    }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    
   fprintf(ficrespl,"#Prevalence limit\n");    /*3eme*/
   fprintf(ficrespl,"#Age ");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficrespl,"\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
          k=2+nlstate*(2*cpt-2);
   prlim=matrix(1,nlstate,1,nlstate);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"set ter png small\n\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  set size 0.65,0.65\n\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   k=0;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   agebase=ageminpar;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   agelim=agemaxpar;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   ftolpl=1.e-10;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   i1=cptcoveff;          
   if (cptcovn < 1){i1=1;}        */
         for (i=1; i< nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
         k=k+1;        } 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      }
         fprintf(ficrespl,"\n#******");    }
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* CV preval stable (period) */
         fprintf(ficrespl,"******\n");    for (k1=1; k1<= m ; k1 ++) { 
              for (cpt=1; cpt<=nlstate ; cpt ++) {
         for (age=agebase; age<=agelim; age++){        k=3;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficrespl,"%.0f",age );        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           for(i=1; i<=nlstate;i++)  set ter png small\nset size 0.65,0.65\n\
           fprintf(ficrespl," %.5f", prlim[i][i]);  unset log y\n\
           fprintf(ficrespl,"\n");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         }        
       }        for (i=1; i< nlstate ; i ++)
     }          fprintf(ficgp,"+$%d",k+i+1);
   fclose(ficrespl);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
   /*------------- h Pij x at various ages ------------*/        l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for (i=1; i< nlstate ; i ++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          l=3+(nlstate+ndeath)*cpt;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        } 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }  
   /*if (stepm<=24) stepsize=2;*/    
     /* proba elementaires */
   agelim=AGESUP;    for(i=1,jk=1; i <=nlstate; i++){
   hstepm=stepsize*YEARM; /* Every year of age */      for(k=1; k <=(nlstate+ndeath); k++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
   k=0;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   for(cptcov=1;cptcov<=i1;cptcov++){            jk++; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficgp,"\n");
       k=k+1;          }
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     }
         fprintf(ficrespij,"******\n");  
             for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       for(jk=1; jk <=m; jk++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         if (ng==2)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           oldm=oldms;savm=savms;         else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficrespij,"# Age");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           for(i=1; i<=nlstate;i++)         i=1;
             for(j=1; j<=nlstate+ndeath;j++)         for(k2=1; k2<=nlstate; k2++) {
               fprintf(ficrespij," %1d-%1d",i,j);           k3=i;
           fprintf(ficrespij,"\n");           for(k=1; k<=(nlstate+ndeath); k++) {
            for (h=0; h<=nhstepm; h++){             if (k != k2){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );               if(ng==2)
             for(i=1; i<=nlstate;i++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               for(j=1; j<=nlstate+ndeath;j++)               else
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             fprintf(ficrespij,"\n");               ij=1;
              }               for(j=3; j <=ncovmodel; j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           fprintf(ficrespij,"\n");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         }                   ij++;
     }                 }
   }                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);               }
                fprintf(ficgp,")/(1");
   fclose(ficrespij);               
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   /*---------- Forecasting ------------------*/                 ij=1;
   if((stepm == 1) && (strcmp(model,".")==0)){                 for(j=3; j <=ncovmodel; j++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                     ij++;
   else{                   }
     erreur=108;                   else
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }                 }
                   fprintf(ficgp,")");
                }
   /*---------- Health expectancies and variances ------------*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   strcpy(filerest,"t");               i=i+ncovmodel;
   strcat(filerest,fileres);             }
   if((ficrest=fopen(filerest,"w"))==NULL) {           } /* end k */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         } /* end k2 */
   }       } /* end jk */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*************** Moving average **************/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    int i, cpt, cptcod;
     int modcovmax =1;
  strcpy(fileresv,"v");    int mobilavrange, mob;
   strcat(fileresv,fileres);    double age;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   }                             a covariate has 2 modalities */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   k=0;      else mobilavrange=mobilav;
   for(cptcov=1;cptcov<=i1;cptcov++){      for (age=bage; age<=fage; age++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (i=1; i<=nlstate;i++)
       k=k+1;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       fprintf(ficrest,"\n#****** ");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       for(j=1;j<=cptcoveff;j++)      /* We keep the original values on the extreme ages bage, fage and for 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       fprintf(ficrest,"******\n");         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       fprintf(ficreseij,"\n#****** ");      for (mob=3;mob <=mobilavrange;mob=mob+2){
       for(j=1;j<=cptcoveff;j++)        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=nlstate;i++){
       fprintf(ficreseij,"******\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficresvij,"\n#****** ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficresvij,"******\n");                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;          }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          }/* end age */
        }/* end mob */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }else return -1;
       oldm=oldms;savm=savms;    return 0;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  }/* End movingaverage */
      
   
    /************** Forecasting ******************/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* proj1, year, month, day of starting projection 
       fprintf(ficrest,"\n");       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
       epj=vector(1,nlstate+1);       anproj2 year of en of projection (same day and month as proj1).
       for(age=bage; age <=fage ;age++){    */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         if (popbased==1) {    int *popage;
           for(i=1; i<=nlstate;i++)    double agec; /* generic age */
             prlim[i][i]=probs[(int)age][i][k];    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         }    double *popeffectif,*popcount;
            double ***p3mat;
         fprintf(ficrest," %4.0f",age);    double ***mobaverage;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    char fileresf[FILENAMELENGTH];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    agelim=AGESUP;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           }   
           epj[nlstate+1] +=epj[j];    strcpy(fileresf,"f"); 
         }    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
         for(i=1, vepp=0.;i <=nlstate;i++)      printf("Problem with forecast resultfile: %s\n", fileresf);
           for(j=1;j <=nlstate;j++)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
             vepp += vareij[i][j][(int)age];    }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    printf("Computing forecasting: result on file '%s' \n", fileresf);
         for(j=1;j <=nlstate;j++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         fprintf(ficrest,"\n");  
       }    if (mobilav!=0) {
     }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 free_matrix(mint,1,maxwav,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     free_vector(weight,1,n);      }
   fclose(ficreseij);    }
   fclose(ficresvij);  
   fclose(ficrest);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fclose(ficpar);    if (stepm<=12) stepsize=1;
   free_vector(epj,1,nlstate+1);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /*------- Variance limit prevalence------*/      }
     else  hstepm=estepm;   
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    hstepm=hstepm/stepm; 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                                 fractional in yp1 */
     exit(0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   k=0;    jprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    if(jprojmean==0) jprojmean=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if(mprojmean==0) jprojmean=1;
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    i1=cptcoveff;
       for(j=1;j<=cptcoveff;j++)    if (cptcovn < 1){i1=1;}
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvpl,"******\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficresf,"#****** Routine prevforecast **\n");
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*            if (h==(int)(YEARM*yearp)){ */
     }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fclose(ficresvpl);        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   /*---------- End : free ----------------*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }
          fprintf(ficresf,"******\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<=nlstate+ndeath;j++){ 
            for(i=1; i<=nlstate;i++)              
              fprintf(ficresf," p%d%d",i,j);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresf," p.%d",j);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   free_matrix(agev,1,maxwav,1,imx);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if(erreur >0)            oldm=oldms;savm=savms;
     printf("End of Imach with error or warning %d\n",erreur);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   else   printf("End of Imach\n");          
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                fprintf(ficresf,"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/                for(j=1;j<=cptcoveff;j++) 
   /*------ End -----------*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
  end:              for(j=1; j<=nlstate+ndeath;j++) {
   /* chdir(pathcd);*/                ppij=0.;
  /*system("wgnuplot graph.plt");*/                for(i=1; i<=nlstate;i++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  if (mobilav==1) 
  /*system("cd ../gp37mgw");*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  else {
  strcpy(plotcmd,GNUPLOTPROGRAM);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  strcat(plotcmd," ");                  }
  strcat(plotcmd,optionfilegnuplot);                  if (h*hstepm/YEARM*stepm== yearp) {
  system(plotcmd);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
  /*#ifdef windows*/                } /* end i */
   while (z[0] != 'q') {                if (h*hstepm/YEARM*stepm==yearp) {
     /* chdir(path); */                  fprintf(ficresf," %.3f", ppij);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                }
     scanf("%s",z);              }/* end j */
     if (z[0] == 'c') system("./imach");            } /* end h */
     else if (z[0] == 'e') system(optionfilehtm);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'g') system(plotcmd);          } /* end agec */
     else if (z[0] == 'q') exit(0);        } /* end yearp */
   }      } /* end cptcod */
   /*#endif */    } /* end  cptcov */
 }         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>