Diff for /imach/src/imach.c between versions 1.5 and 1.93

version 1.5, 2001/05/02 17:42:45 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.93  2003/06/25 16:33:55  brouard
   individuals from different ages are interviewed on their health status    (Module): On windows (cygwin) function asctime_r doesn't
   or degree of  disability. At least a second wave of interviews    exist so I changed back to asctime which exists.
   ("longitudinal") should  measure each new individual health status.    (Module): Version 0.96b
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.92  2003/06/25 16:30:45  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): On windows (cygwin) function asctime_r doesn't
   reach the Maximum Likelihood of the parameters involved in the model.    exist so I changed back to asctime which exists.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.91  2003/06/25 15:30:29  brouard
   to be observed in state i at the first wave. Therefore the model is:    * imach.c (Repository): Duplicated warning errors corrected.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): Elapsed time after each iteration is now output. It
   is a covariate. If you want to have a more complex model than "constant and    helps to forecast when convergence will be reached. Elapsed time
   age", you should modify the program where the markup    is stamped in powell.  We created a new html file for the graphs
     *Covariates have to be included here again* invites you to do it.    concerning matrix of covariance. It has extension -cov.htm.
   More covariates you add, less is the speed of the convergence.  
     Revision 1.90  2003/06/24 12:34:15  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Some bugs corrected for windows. Also, when
   delay between waves is not identical for each individual, or if some    mle=-1 a template is output in file "or"mypar.txt with the design
   individual missed an interview, the information is not rounded or lost, but    of the covariance matrix to be input.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.89  2003/06/24 12:30:52  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Some bugs corrected for windows. Also, when
   x. The delay 'h' can be split into an exact number (nh*stepm) of    mle=-1 a template is output in file "or"mypar.txt with the design
   unobserved intermediate  states. This elementary transition (by month or    of the covariance matrix to be input.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.88  2003/06/23 17:54:56  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define FILENAMELENGTH 80    (Repository): No more line truncation errors.
 /*#define DEBUG*/  
 #define windows    Revision 1.84  2003/06/13 21:44:43  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Replace "freqsummary" at a correct
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
     parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add log in  imach.c and  fullversion number is now printed.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  */
 #define YEARM 12. /* Number of months per year */  /*
 #define AGESUP 130     Interpolated Markov Chain
 #define AGEBASE 40  
     Short summary of the programme:
     
 int nvar;    This program computes Healthy Life Expectancies from
 static int cptcov;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int cptcovn;    first survey ("cross") where individuals from different ages are
 int npar=NPARMAX;    interviewed on their health status or degree of disability (in the
 int nlstate=2; /* Number of live states */    case of a health survey which is our main interest) -2- at least a
 int ndeath=1; /* Number of dead states */    second wave of interviews ("longitudinal") which measure each change
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 int *wav; /* Number of waves for this individuual 0 is possible */    model. More health states you consider, more time is necessary to reach the
 int maxwav; /* Maxim number of waves */    Maximum Likelihood of the parameters involved in the model.  The
 int mle, weightopt;    simplest model is the multinomial logistic model where pij is the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    probability to be observed in state j at the second wave
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    conditional to be observed in state i at the first wave. Therefore
 double **oldm, **newm, **savm; /* Working pointers to matrices */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    'age' is age and 'sex' is a covariate. If you want to have a more
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    complex model than "constant and age", you should modify the program
 FILE *ficgp, *fichtm;    where the markup *Covariates have to be included here again* invites
 FILE *ficreseij;    you to do it.  More covariates you add, slower the
   char filerese[FILENAMELENGTH];    convergence.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    The advantage of this computer programme, compared to a simple
  FILE  *ficresvpl;    multinomial logistic model, is clear when the delay between waves is not
   char fileresvpl[FILENAMELENGTH];    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 #define NR_END 1    conditional to the observed state i at age x. The delay 'h' can be
 #define FREE_ARG char*    split into an exact number (nh*stepm) of unobserved intermediate
 #define FTOL 1.0e-10    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define NRANSI    matrix is simply the matrix product of nh*stepm elementary matrices
 #define ITMAX 200    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define TOL 2.0e-4  
     Also this programme outputs the covariance matrix of the parameters but also
 #define CGOLD 0.3819660    of the life expectancies. It also computes the stable prevalence. 
 #define ZEPS 1.0e-10    
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define GOLD 1.618034    This software have been partly granted by Euro-REVES, a concerted action
 #define GLIMIT 100.0    from the European Union.
 #define TINY 1.0e-20    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 static double maxarg1,maxarg2;    can be accessed at http://euroreves.ined.fr/imach .
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    
 #define rint(a) floor(a+0.5)    **********************************************************************/
   /*
 static double sqrarg;    main
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read parameterfile
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    read datafile
     concatwav
 int imx;    freqsummary
 int stepm;    if (mle >= 1)
 /* Stepm, step in month: minimum step interpolation*/      mlikeli
     print results files
 int m,nb;    if mle==1 
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;       computes hessian
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    read end of parameter file: agemin, agemax, bage, fage, estepm
 double **pmmij;        begin-prev-date,...
     open gnuplot file
 double *weight;    open html file
 int **s; /* Status */    stable prevalence
 double *agedc, **covar, idx;     for age prevalim()
 int **nbcode, *Tcode, *Tvar, **codtab;    h Pij x
     variance of p varprob
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    forecasting if prevfcast==1 prevforecast call prevalence()
 double ftolhess; /* Tolerance for computing hessian */    health expectancies
     Variance-covariance of DFLE
     prevalence()
 static  int split( char *path, char *dirc, char *name )     movingaverage()
 {    varevsij() 
    char *s;                             /* pointer */    if popbased==1 varevsij(,popbased)
    int  l1, l2;                         /* length counters */    total life expectancies
     Variance of stable prevalence
    l1 = strlen( path );                 /* length of path */   end
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  */
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );   
   #include <math.h>
       if ( getwd( dirc ) == NULL ) {  #include <stdio.h>
 #else  #include <stdlib.h>
       extern char       *getcwd( );  #include <unistd.h>
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <sys/time.h>
 #endif  #include <time.h>
          return( GLOCK_ERROR_GETCWD );  #include "timeval.h"
       }  
       strcpy( name, path );             /* we've got it */  #define MAXLINE 256
    } else {                             /* strip direcotry from path */  #define GNUPLOTPROGRAM "gnuplot"
       s++;                              /* after this, the filename */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       l2 = strlen( s );                 /* length of filename */  #define FILENAMELENGTH 132
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define DEBUG*/
       strcpy( name, s );                /* save file name */  /*#define windows*/
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       dirc[l1-l2] = 0;                  /* add zero */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    }  
    l1 = strlen( dirc );                 /* length of directory */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    return( 0 );                         /* we're done */  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /******************************************/  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 void replace(char *s, char*t)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int i;  #define AGEBASE 40
   int lg=20;  #ifdef unix
   i=0;  #define DIRSEPARATOR '/'
   lg=strlen(t);  #define ODIRSEPARATOR '\\'
   for(i=0; i<= lg; i++) {  #else
     (s[i] = t[i]);  #define DIRSEPARATOR '\\'
     if (t[i]== '\\') s[i]='/';  #define ODIRSEPARATOR '/'
   }  #endif
 }  
   /* $Id$ */
 int nbocc(char *s, char occ)  /* $State$ */
 {  
   int i,j=0;  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   int lg=20;  char fullversion[]="$Revision$ $Date$"; 
   i=0;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   lg=strlen(s);  int nvar;
   for(i=0; i<= lg; i++) {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if  (s[i] == occ ) j++;  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
   return j;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 void cutv(char *u,char *v, char*t, char occ)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int i,lg,j,p;  int maxwav; /* Maxim number of waves */
   i=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   for(j=0; j<=strlen(t)-1; j++) {  int gipmx, gsw; /* Global variables on the number of contributions 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   lg=strlen(t);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(j=0; j<p; j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     (u[j] = t[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     u[p]='\0';  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    for(j=0; j<= lg; j++) {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *ficlog, *ficrespow;
   }  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /********************** nrerror ********************/  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void nrerror(char error_text[])  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   fprintf(stderr,"ERREUR ...\n");  FILE *ficresprobmorprev;
   fprintf(stderr,"%s\n",error_text);  FILE *fichtm, *fichtmcov; /* Html File */
   exit(1);  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
 /*********************** vector *******************/  FILE  *ficresvij;
 double *vector(int nl, int nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   double *v;  char fileresvpl[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!v) nrerror("allocation failure in vector");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return v-nl+NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /************************ free vector ******************/  int  outcmd=0;
 void free_vector(double*v, int nl, int nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char lfileres[FILENAMELENGTH];
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /************************ivector *******************************/  char fileregp[FILENAMELENGTH];
 int *ivector(long nl,long nh)  char popfile[FILENAMELENGTH];
 {  
   int *v;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   return v-nl+NR_END;  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************free ivector **************************/  long time_value;
 void free_ivector(int *v, long nl, long nh)  extern long time();
 {  char strcurr[80], strfor[80];
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NR_END 1
   #define FREE_ARG char*
 /******************* imatrix *******************************/  #define FTOL 1.0e-10
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define NRANSI 
 {  #define ITMAX 200 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define TOL 2.0e-4 
    
   /* allocate pointers to rows */  #define CGOLD 0.3819660 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define ZEPS 1.0e-10 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m += NR_END;  
   m -= nrl;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  static double maxarg1,maxarg2;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] += NR_END;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] -= ncl;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define rint(a) floor(a+0.5)
    
   /* return pointer to array of pointers to rows */  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 /****************** free_imatrix *************************/  int imx; 
 void free_imatrix(m,nrl,nrh,ncl,nch)  int stepm;
       int **m;  /* Stepm, step in month: minimum step interpolation*/
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /******************* matrix *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **pmmij, ***probs;
 {  double dateintmean=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  double *weight;
   int **s; /* Status */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *agedc, **covar, idx;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m += NR_END;  
   m -= nrl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /**************** split *************************/
   m[nrl] += NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl] -= ncl;  {
     char  *ss;                            /* pointer */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int   l1, l2;                         /* length counters */
   return m;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************************free matrix ************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG)(m+nrl-NR_END));      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /******************* ma3x *******************************/        return( GLOCK_ERROR_GETCWD );
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      }
 {      strcpy( name, path );               /* we've got it */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    } else {                              /* strip direcotry from path */
   double ***m;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, ss );         /* save file name */
   m += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m -= nrl;      dirc[l1-l2] = 0;                    /* add zero */
     }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    l1 = strlen( dirc );                  /* length of directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /*#ifdef windows
   m[nrl] += NR_END;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m[nrl] -= ncl;  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #endif
     */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    ss = strrchr( name, '.' );            /* find last / */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    ss++;
   m[nrl][ncl] += NR_END;    strcpy(ext,ss);                       /* save extension */
   m[nrl][ncl] -= nll;    l1= strlen( name);
   for (j=ncl+1; j<=nch; j++)    l2= strlen(ss)+1;
     m[nrl][j]=m[nrl][j-1]+nlay;    strncpy( finame, name, l1-l2);
      finame[l1-l2]= 0;
   for (i=nrl+1; i<=nrh; i++) {    return( 0 );                          /* we're done */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************************************/
   return m;  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*************************free ma3x ************************/    int i;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    int lg=0;
 {    i=0;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m+nrl-NR_END));      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  int nbocc(char *s, char occ)
 extern double (*nrfunc)(double []);  {
      int i,j=0;
 double f1dim(double x)    int lg=20;
 {    i=0;
   int j;    lg=strlen(s);
   double f;    for(i=0; i<= lg; i++) {
   double *xt;    if  (s[i] == occ ) j++;
      }
   xt=vector(1,ncom);    return j;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  void cutv(char *u,char *v, char*t, char occ)
   return f;  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /*****************brent *************************/       gives u="abcedf" and v="ghi2j" */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    int i,lg,j,p=0;
 {    i=0;
   int iter;    for(j=0; j<=strlen(t)-1; j++) {
   double a,b,d,etemp;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double fu,fv,fw,fx;    }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    lg=strlen(t);
   double e=0.0;    for(j=0; j<p; j++) {
        (u[j] = t[j]);
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);       u[p]='\0';
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);     for(j=0; j<= lg; j++) {
   for (iter=1;iter<=ITMAX;iter++) {      if (j>=(p+1))(v[j-p-1] = t[j]);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /********************** nrerror ********************/
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void nrerror(char error_text[])
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    fprintf(stderr,"ERREUR ...\n");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    fprintf(stderr,"%s\n",error_text);
       *xmin=x;    exit(EXIT_FAILURE);
       return fx;  }
     }  /*********************** vector *******************/
     ftemp=fu;  double *vector(int nl, int nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    double *v;
       q=(x-v)*(fx-fw);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       p=(x-v)*q-(x-w)*r;    if (!v) nrerror("allocation failure in vector");
       q=2.0*(q-r);    return v-nl+NR_END;
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /************************ free vector ******************/
       e=d;  void free_vector(double*v, int nl, int nh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(v+nl-NR_END));
       else {  }
         d=p/q;  
         u=x+d;  /************************ivector *******************************/
         if (u-a < tol2 || b-u < tol2)  int *ivector(long nl,long nh)
           d=SIGN(tol1,xm-x);  {
       }    int *v;
     } else {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /******************free ivector **************************/
       if (u >= x) a=x; else b=x;  void free_ivector(int *v, long nl, long nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(v+nl-NR_END));
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /************************lvector *******************************/
             v=w;  long *lvector(long nl,long nh)
             w=u;  {
             fv=fw;    long *v;
             fw=fu;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           } else if (fu <= fv || v == x || v == w) {    if (!v) nrerror("allocation failure in ivector");
             v=u;    return v-nl+NR_END;
             fv=fu;  }
           }  
         }  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
   nrerror("Too many iterations in brent");  {
   *xmin=x;    free((FREE_ARG)(v+nl-NR_END));
   return fx;  }
 }  
   /******************* imatrix *******************************/
 /****************** mnbrak ***********************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  { 
             double (*func)(double))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   double ulim,u,r,q, dum;    
   double fu;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   *fa=(*func)(*ax);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   *fb=(*func)(*bx);    m += NR_END; 
   if (*fb > *fa) {    m -= nrl; 
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    
       }    /* allocate rows and set pointers to them */ 
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *fc=(*func)(*cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   while (*fb > *fc) {    m[nrl] += NR_END; 
     r=(*bx-*ax)*(*fb-*fc);    m[nrl] -= ncl; 
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /* return pointer to array of pointers to rows */ 
     if ((*bx-u)*(u-*cx) > 0.0) {    return m; 
       fu=(*func)(u);  } 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /****************** free_imatrix *************************/
       if (fu < *fc) {  void free_imatrix(m,nrl,nrh,ncl,nch)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        int **m;
           SHFT(*fb,*fc,fu,(*func)(u))        long nch,ncl,nrh,nrl; 
           }       /* free an int matrix allocated by imatrix() */ 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  { 
       u=ulim;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fu=(*func)(u);    free((FREE_ARG) (m+nrl-NR_END)); 
     } else {  } 
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** linmin ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 int ncom;    m -= nrl;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double f1dim(double x);    return m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
               double *fc, double (*func)(double));     */
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   ncom=n;  {
   pcom=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xicom=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /******************* ma3x *******************************/
     xicom[j]=xi[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   }  {
   ax=0.0;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   xx=1.0;    double ***m;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m += NR_END;
 #endif    m -= nrl;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     p[j] += xi[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   free_vector(xicom,1,n);    m[nrl] -= ncl;
   free_vector(pcom,1,n);  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*************** powell ************************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   void linmin(double p[], double xi[], int n, double *fret,    for (j=ncl+1; j<=nch; j++) 
               double (*func)(double []));      m[nrl][j]=m[nrl][j-1]+nlay;
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    for (i=nrl+1; i<=nrh; i++) {
   double fp,fptt;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double *xits;      for (j=ncl+1; j<=nch; j++) 
   pt=vector(1,n);        m[i][j]=m[i][j-1]+nlay;
   ptt=vector(1,n);    }
   xit=vector(1,n);    return m; 
   xits=vector(1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   *fret=(*func)(p);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (j=1;j<=n;j++) pt[j]=p[j];    */
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  /*************************free ma3x ************************/
     del=0.0;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /***************** f1dim *************************/
 #ifdef DEBUG  extern int ncom; 
       printf("fret=%lf \n",*fret);  extern double *pcom,*xicom;
 #endif  extern double (*nrfunc)(double []); 
       printf("%d",i);fflush(stdout);   
       linmin(p,xit,n,fret,func);  double f1dim(double x) 
       if (fabs(fptt-(*fret)) > del) {  { 
         del=fabs(fptt-(*fret));    int j; 
         ibig=i;    double f;
       }    double *xt; 
 #ifdef DEBUG   
       printf("%d %.12e",i,(*fret));    xt=vector(1,ncom); 
       for (j=1;j<=n;j++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    f=(*nrfunc)(xt); 
         printf(" x(%d)=%.12e",j,xit[j]);    free_vector(xt,1,ncom); 
       }    return f; 
       for(j=1;j<=n;j++)  } 
         printf(" p=%.12e",p[j]);  
       printf("\n");  /*****************brent *************************/
 #endif  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int iter; 
 #ifdef DEBUG    double a,b,d,etemp;
       int k[2],l;    double fu,fv,fw,fx;
       k[0]=1;    double ftemp;
       k[1]=-1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       printf("Max: %.12e",(*func)(p));    double e=0.0; 
       for (j=1;j<=n;j++)   
         printf(" %.12e",p[j]);    a=(ax < cx ? ax : cx); 
       printf("\n");    b=(ax > cx ? ax : cx); 
       for(l=0;l<=1;l++) {    x=w=v=bx; 
         for (j=1;j<=n;j++) {    fw=fv=fx=(*f)(x); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (iter=1;iter<=ITMAX;iter++) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
 #endif      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       free_vector(xit,1,n);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       free_vector(xits,1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       free_vector(ptt,1,n);  #endif
       free_vector(pt,1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       return;        *xmin=x; 
     }        return fx; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      } 
     for (j=1;j<=n;j++) {      ftemp=fu;
       ptt[j]=2.0*p[j]-pt[j];      if (fabs(e) > tol1) { 
       xit[j]=p[j]-pt[j];        r=(x-w)*(fx-fv); 
       pt[j]=p[j];        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
     fptt=(*func)(ptt);        q=2.0*(q-r); 
     if (fptt < fp) {        if (q > 0.0) p = -p; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        q=fabs(q); 
       if (t < 0.0) {        etemp=e; 
         linmin(p,xit,n,fret,func);        e=d; 
         for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           xi[j][ibig]=xi[j][n];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           xi[j][n]=xit[j];        else { 
         }          d=p/q; 
 #ifdef DEBUG          u=x+d; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          if (u-a < tol2 || b-u < tol2) 
         for(j=1;j<=n;j++)            d=SIGN(tol1,xm-x); 
           printf(" %.12e",xit[j]);        } 
         printf("\n");      } else { 
 #endif        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
 }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /**** Prevalence limit ****************/        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          } else { 
 {            if (u < x) a=u; else b=u; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit            if (fu <= fw || w == x) { 
      matrix by transitions matrix until convergence is reached */              v=w; 
               w=u; 
   int i, ii,j,k;              fv=fw; 
   double min, max, maxmin, maxmax,sumnew=0.;              fw=fu; 
   double **matprod2();            } else if (fu <= fv || v == x || v == w) { 
   double **out, cov[NCOVMAX], **pmij();              v=u; 
   double **newm;              fv=fu; 
   double agefin, delaymax=50 ; /* Max number of years to converge */            } 
           } 
   for (ii=1;ii<=nlstate+ndeath;ii++)    } 
     for (j=1;j<=nlstate+ndeath;j++){    nrerror("Too many iterations in brent"); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *xmin=x; 
     }    return fx; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /****************** mnbrak ***********************/
     /* Covariates have to be included here again */  
     cov[1]=1.;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     cov[2]=agefin;              double (*func)(double)) 
     if (cptcovn>0){  { 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    double ulim,u,r,q, dum;
     }    double fu; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);   
     *fa=(*func)(*ax); 
     savm=oldm;    *fb=(*func)(*bx); 
     oldm=newm;    if (*fb > *fa) { 
     maxmax=0.;      SHFT(dum,*ax,*bx,dum) 
     for(j=1;j<=nlstate;j++){        SHFT(dum,*fb,*fa,dum) 
       min=1.;        } 
       max=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(i=1; i<=nlstate; i++) {    *fc=(*func)(*cx); 
         sumnew=0;    while (*fb > *fc) { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      r=(*bx-*ax)*(*fb-*fc); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      q=(*bx-*cx)*(*fb-*fa); 
         max=FMAX(max,prlim[i][j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         min=FMIN(min,prlim[i][j]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       maxmin=max-min;      if ((*bx-u)*(u-*cx) > 0.0) { 
       maxmax=FMAX(maxmax,maxmin);        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     if(maxmax < ftolpl){        fu=(*func)(u); 
       return prlim;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /*************** transition probabilities **********/        u=ulim; 
         fu=(*func)(u); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } else { 
 {        u=(*cx)+GOLD*(*cx-*bx); 
   double s1, s2;        fu=(*func)(u); 
   /*double t34;*/      } 
   int i,j,j1, nc, ii, jj;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
     for(i=1; i<= nlstate; i++){        } 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /*************** linmin ************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  int ncom; 
       }  double *pcom,*xicom;
       ps[i][j]=s2;  double (*nrfunc)(double []); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double brent(double ax, double bx, double cx, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                 double (*f)(double), double tol, double *xmin); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ps[i][j]=s2;                double *fc, double (*func)(double)); 
     }    int j; 
   }    double xx,xmin,bx,ax; 
   for(i=1; i<= nlstate; i++){    double fx,fb,fa;
      s1=0;   
     for(j=1; j<i; j++)    ncom=n; 
       s1+=exp(ps[i][j]);    pcom=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)    xicom=vector(1,n); 
       s1+=exp(ps[i][j]);    nrfunc=func; 
     ps[i][i]=1./(s1+1.);    for (j=1;j<=n;j++) { 
     for(j=1; j<i; j++)      pcom[j]=p[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      xicom[j]=xi[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)    } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    ax=0.0; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    xx=1.0; 
   } /* end i */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[ii][jj]=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[ii][ii]=1;  #endif
     }    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
       p[j] += xi[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    free_vector(xicom,1,n); 
      printf("%lf ",ps[ii][jj]);    free_vector(pcom,1,n); 
    }  } 
     printf("\n ");  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    long sec_left, days, hours, minutes;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    days = (time_sec) / (60*60*24);
   goto end;*/    sec_left = (time_sec) % (60*60*24);
     return ps;    hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /**************** Product of 2 matrices ******************/    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return ascdiff;
 {  }
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** powell ************************/
   /* in, b, out are matrice of pointers which should have been initialized  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      before: only the contents of out is modified. The function returns              double (*func)(double [])) 
      a pointer to pointers identical to out */  { 
   long i, j, k;    void linmin(double p[], double xi[], int n, double *fret, 
   for(i=nrl; i<= nrh; i++)                double (*func)(double [])); 
     for(k=ncolol; k<=ncoloh; k++)    int i,ibig,j; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double del,t,*pt,*ptt,*xit;
         out[i][k] +=in[i][j]*b[j][k];    double fp,fptt;
     double *xits;
   return out;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /************* Higher Matrix Product ***************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (*iter=1;;++(*iter)) { 
      duration (i.e. until      fp=(*fret); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      ibig=0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      del=0.0; 
      (typically every 2 years instead of every month which is too big).      last_time=curr_time;
      Model is determined by parameters x and covariates have to be      (void) gettimeofday(&curr_time,&tzp);
      included manually here.      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
   int i, j, d, h, k;        printf(" %d %.12f",i, p[i]);
   double **out, cov[NCOVMAX];        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **newm;        fprintf(ficrespow," %.12lf", p[i]);
       }
   /* Hstepm could be zero and should return the unit matrix */      printf("\n");
   for (i=1;i<=nlstate+ndeath;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if(*iter <=3){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tmf));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*       asctime_r(&tm,strcurr); */
   for(h=1; h <=nhstepm; h++){        forecast_time=curr_time;
     for(d=1; d <=hstepm; d++){        itmp = strlen(strcurr);
       newm=savm;        if(strcurr[itmp-1]=='\n')
       /* Covariates have to be included here again */          strcurr[itmp-1]='\0';
       cov[1]=1.;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       if (cptcovn>0){        for(niterf=10;niterf<=30;niterf+=10){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*      asctime_r(&tmf,strfor); */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          strcpy(strfor,asctime(&tmf));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          itmp = strlen(strfor);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          if(strfor[itmp-1]=='\n')
       savm=oldm;          strfor[itmp-1]='\0';
       oldm=newm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(i=1; i<=nlstate+ndeath; i++)        }
       for(j=1;j<=nlstate+ndeath;j++) {      }
         po[i][j][h]=newm[i][j];      for (i=1;i<=n;i++) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          */        fptt=(*fret); 
       }  #ifdef DEBUG
   } /* end h */        printf("fret=%lf \n",*fret);
   return po;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*************** log-likelihood *************/        linmin(p,xit,n,fret,func); 
 double func( double *x)        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i, ii, j, k, mi, d;          ibig=i; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        } 
   double **out;  #ifdef DEBUG
   double sw; /* Sum of weights */        printf("%d %.12e",i,(*fret));
   double lli; /* Individual log likelihood */        fprintf(ficlog,"%d %.12e",i,(*fret));
   long ipmx;        for (j=1;j<=n;j++) {
   /*extern weight */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /* We are differentiating ll according to initial status */          printf(" x(%d)=%.12e",j,xit[j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*for(i=1;i<imx;i++)        }
 printf(" %d\n",s[4][i]);        for(j=1;j<=n;j++) {
   */          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("\n");
        for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
             for(d=0; d<dh[mi][i]; d++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         newm=savm;  #ifdef DEBUG
           cov[1]=1.;        int k[2],l;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        k[0]=1;
           if (cptcovn>0){        k[1]=-1;
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];        printf("Max: %.12e",(*func)(p));
             }        fprintf(ficlog,"Max: %.12e",(*func)(p));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (j=1;j<=n;j++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          printf(" %.12e",p[j]);
           savm=oldm;          fprintf(ficlog," %.12e",p[j]);
           oldm=newm;        }
         printf("\n");
         fprintf(ficlog,"\n");
       } /* end mult */        for(l=0;l<=1;l++) {
              for (j=1;j<=n;j++) {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ipmx +=1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       sw += weight[i];          }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end of wave */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* end of individual */        }
   #endif
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        free_vector(xit,1,n); 
   return -l;        free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         return; 
 /*********** Maximum Likelihood Estimation ***************/      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i,j, iter;        xit[j]=p[j]-pt[j]; 
   double **xi,*delti;        pt[j]=p[j]; 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      fptt=(*func)(ptt); 
   for (i=1;i<=npar;i++)      if (fptt < fp) { 
     for (j=1;j<=npar;j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       xi[i][j]=(i==j ? 1.0 : 0.0);        if (t < 0.0) { 
   printf("Powell\n");          linmin(p,xit,n,fret,func); 
   powell(p,xi,npar,ftol,&iter,&fret,func);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            xi[j][n]=xit[j]; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          }
   #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /**** Computes Hessian and covariance matrix ***/          for(j=1;j<=n;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   double  **a,**y,*x,pd;          }
   double **hess;          printf("\n");
   int i, j,jk;          fprintf(ficlog,"\n");
   int *indx;  #endif
         }
   double hessii(double p[], double delta, int theta, double delti[]);      } 
   double hessij(double p[], double delti[], int i, int j);    } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /**** Prevalence limit (stable prevalence)  ****************/
   
   hess=matrix(1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++){       matrix by transitions matrix until convergence is reached */
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    int i, ii,j,k;
     /*printf(" %f ",p[i]);*/    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   for (i=1;i<=npar;i++) {    double **newm;
     for (j=1;j<=npar;j++)  {    double agefin, delaymax=50 ; /* Max number of years to converge */
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    for (ii=1;ii<=nlstate+ndeath;ii++)
         hess[i][j]=hessij(p,delti,i,j);      for (j=1;j<=nlstate+ndeath;j++){
         hess[j][i]=hess[i][j];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
     }  
   }     cov[1]=1.;
   printf("\n");   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
   a=matrix(1,npar,1,npar);      /* Covariates have to be included here again */
   y=matrix(1,npar,1,npar);       cov[2]=agefin;
   x=vector(1,npar);    
   indx=ivector(1,npar);        for (k=1; k<=cptcovn;k++) {
   for (i=1;i<=npar;i++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   ludcmp(a,npar,indx,&pd);        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovprod;k++)
     for (i=1;i<=npar;i++) x[i]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     x[j]=1;  
     lubksb(a,npar,indx,x);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (i=1;i<=npar;i++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       matcov[i][j]=x[i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
       savm=oldm;
   printf("\n#Hessian matrix#\n");      oldm=newm;
   for (i=1;i<=npar;i++) {      maxmax=0.;
     for (j=1;j<=npar;j++) {      for(j=1;j<=nlstate;j++){
       printf("%.3e ",hess[i][j]);        min=1.;
     }        max=0.;
     printf("\n");        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Recompute Inverse */          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=npar;i++)          max=FMAX(max,prlim[i][j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          min=FMIN(min,prlim[i][j]);
   ludcmp(a,npar,indx,&pd);        }
         maxmin=max-min;
   /*  printf("\n#Hessian matrix recomputed#\n");        maxmax=FMAX(maxmax,maxmin);
       }
   for (j=1;j<=npar;j++) {      if(maxmax < ftolpl){
     for (i=1;i<=npar;i++) x[i]=0;        return prlim;
     x[j]=1;      }
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /*************** transition probabilities ***************/ 
     }  
     printf("\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   */    double s1, s2;
     /*double t34;*/
   free_matrix(a,1,npar,1,npar);    int i,j,j1, nc, ii, jj;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);      for(i=1; i<= nlstate; i++){
   free_ivector(indx,1,npar);      for(j=1; j<i;j++){
   free_matrix(hess,1,npar,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 /*************** hessian matrix ****************/        ps[i][j]=s2;
 double hessii( double x[], double delta, int theta, double delti[])        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 {      }
   int i;      for(j=i+1; j<=nlstate+ndeath;j++){
   int l=1, lmax=20;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double k1,k2;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double p2[NPARMAX+1];          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        ps[i][j]=s2;
   double fx;      }
   int k=0,kmax=10;    }
   double l1;      /*ps[3][2]=1;*/
   
   fx=func(x);    for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++) p2[i]=x[i];       s1=0;
   for(l=0 ; l <=lmax; l++){      for(j=1; j<i; j++)
     l1=pow(10,l);        s1+=exp(ps[i][j]);
     delts=delt;      for(j=i+1; j<=nlstate+ndeath; j++)
     for(k=1 ; k <kmax; k=k+1){        s1+=exp(ps[i][j]);
       delt = delta*(l1*k);      ps[i][i]=1./(s1+1.);
       p2[theta]=x[theta] +delt;      for(j=1; j<i; j++)
       k1=func(p2)-fx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       p2[theta]=x[theta]-delt;      for(j=i+1; j<=nlstate+ndeath; j++)
       k2=func(p2)-fx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /*res= (k1-2.0*fx+k2)/delt/delt; */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    } /* end i */
        
 #ifdef DEBUG    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(jj=1; jj<= nlstate+ndeath; jj++){
 #endif        ps[ii][jj]=0;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        ps[ii][ii]=1;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;    }
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       }      for(jj=1; jj<= nlstate+ndeath; jj++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       printf("%lf ",ps[ii][jj]);
         delts=delt;     }
       }      printf("\n ");
     }      }
   }      printf("\n ");printf("%lf ",cov[2]);*/
   delti[theta]=delts;  /*
   return res;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
      goto end;*/
 }      return ps;
   }
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  /**************** Product of 2 matrices ******************/
   int i;  
   int l=1, l1, lmax=20;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double k1,k2,k3,k4,res,fx;  {
   double p2[NPARMAX+1];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   fx=func(x);       before: only the contents of out is modified. The function returns
   for (k=1; k<=2; k++) {       a pointer to pointers identical to out */
     for (i=1;i<=npar;i++) p2[i]=x[i];    long i, j, k;
     p2[thetai]=x[thetai]+delti[thetai]/k;    for(i=nrl; i<= nrh; i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(k=ncolol; k<=ncoloh; k++)
     k1=func(p2)-fx;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return out;
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /************* Higher Matrix Product ***************/
     k3=func(p2)-fx;  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Computes the transition matrix starting at age 'age' over 
     k4=func(p2)-fx;       'nhstepm*hstepm*stepm' months (i.e. until
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 #ifdef DEBUG       nhstepm*hstepm matrices. 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 #endif       (typically every 2 years instead of every month which is too big 
   }       for the memory).
   return res;       Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 /************** Inverse of matrix **************/       */
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    int i, j, d, h, k;
   int i,imax,j,k;    double **out, cov[NCOVMAX];
   double big,dum,sum,temp;    double **newm;
   double *vv;  
      /* Hstepm could be zero and should return the unit matrix */
   vv=vector(1,n);    for (i=1;i<=nlstate+ndeath;i++)
   *d=1.0;      for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
     big=0.0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)      }
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for(h=1; h <=nhstepm; h++){
     vv[i]=1.0/big;      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   for (j=1;j<=n;j++) {        /* Covariates have to be included here again */
     for (i=1;i<j;i++) {        cov[1]=1.;
       sum=a[i][j];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       a[i][j]=sum;        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     big=0.0;        for (k=1; k<=cptcovprod;k++)
     for (i=j;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       sum=a[i][j];  
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       a[i][j]=sum;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         big=dum;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         imax=i;        savm=oldm;
       }        oldm=newm;
     }      }
     if (j != imax) {      for(i=1; i<=nlstate+ndeath; i++)
       for (k=1;k<=n;k++) {        for(j=1;j<=nlstate+ndeath;j++) {
         dum=a[imax][k];          po[i][j][h]=newm[i][j];
         a[imax][k]=a[j][k];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         a[j][k]=dum;           */
       }        }
       *d = -(*d);    } /* end h */
       vv[imax]=vv[j];    return po;
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /*************** log-likelihood *************/
       dum=1.0/(a[j][j]);  double func( double *x)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  {
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   free_vector(vv,1,n);  /* Doesn't work */    double **out;
 ;    double sw; /* Sum of weights */
 }    double lli; /* Individual log likelihood */
     int s1, s2;
 void lubksb(double **a, int n, int *indx, double b[])    double bbh, survp;
 {    long ipmx;
   int i,ii=0,ip,j;    /*extern weight */
   double sum;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (i=1;i<=n;i++) {    /*for(i=1;i<imx;i++) 
     ip=indx[i];      printf(" %d\n",s[4][i]);
     sum=b[ip];    */
     b[ip]=b[i];    cov[1]=1.;
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     else if (sum) ii=i;  
     b[i]=sum;    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=n;i>=1;i--) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[i];        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum/a[i][i];            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************ Frequencies ********************/          for(d=0; d<dh[mi][i]; d++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            newm=savm;
 {  /* Some frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */            }
   double *pp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   FILE *ficresp;            savm=oldm;
   char fileresp[FILENAMELENGTH];            oldm=newm;
           } /* end mult */
   pp=vector(1,nlstate);        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   strcpy(fileresp,"p");          /* But now since version 0.9 we anticipate for bias and large stepm.
   strcat(fileresp,fileres);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * the nearest (and in case of equal distance, to the lowest) interval but now
     exit(0);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * probability in order to take into account the bias as a fraction of the way
   j1=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   j=cptcovn;           * For stepm=1 the results are the same as for previous versions of Imach.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * For stepm > 1 the results are less biased than in previous versions. 
            */
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
    for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
        j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
         for (i=-1; i<=nlstate+ndeath; i++)             * is higher than the multiple of stepm and negative otherwise.
          for (jk=-1; jk<=nlstate+ndeath; jk++)             */
            for(m=agemin; m <= agemax+3; m++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              freq[i][jk][m]=0;          if( s2 > nlstate){ 
                    /* i.e. if s2 is a death state and if the date of death is known then the contribution
        for (i=1; i<=imx; i++) {               to the likelihood is the probability to die between last step unit time and current 
          bool=1;               step unit time, which is also the differences between probability to die before dh 
          if  (cptcovn>0) {               and probability to die before dh-stepm . 
            for (z1=1; z1<=cptcovn; z1++)               In version up to 0.92 likelihood was computed
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          as if date of death was unknown. Death was treated as any other
          }          health state: the date of the interview describes the actual state
           if (bool==1) {          and not the date of a change in health state. The former idea was
            for(m=firstpass; m<=lastpass-1; m++){          to consider that at each interview the state was recorded
              if(agev[m][i]==0) agev[m][i]=agemax+1;          (healthy, disable or death) and IMaCh was corrected; but when we
              if(agev[m][i]==1) agev[m][i]=agemax+2;          introduced the exact date of death then we should have modified
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          the contribution of an exact death to the likelihood. This new
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          contribution is smaller and very dependent of the step unit
            }          stepm. It is no more the probability to die between last interview
          }          and month of death but the probability to survive from last
        }          interview up to one month before death multiplied by the
         if  (cptcovn>0) {          probability to die within a month. Thanks to Chris
          fprintf(ficresp, "\n#Variable");          Jackson for correcting this bug.  Former versions increased
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          mortality artificially. The bad side is that we add another loop
        }          which slows down the processing. The difference can be up to 10%
        fprintf(ficresp, "\n#");          lower mortality.
        for(i=1; i<=nlstate;i++)            */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            lli=log(out[s1][s2] - savm[s1][s2]);
        fprintf(ficresp, "\n");          }else{
                    lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(i=(int)agemin; i <= (int)agemax+3; i++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     if(i==(int)agemax+3)          } 
       printf("Total");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     else          /*if(lli ==000.0)*/
       printf("Age %d", i);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
         pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
       for(m=-1, pos=0; m <=0 ; m++)    }  else if(mle==2){
         pos += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(pp[jk]>=1.e-10)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            }
         pp[jk] += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
     }            newm=savm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
     for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(pos>=1.e-5)            }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            savm=oldm;
       if( i <= (int) agemax){            oldm=newm;
         if(pos>=1.e-5)          } /* end mult */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        
       else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /* But now since version 0.9 we anticipate for bias and large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(m=-1; m <=nlstate+ndeath; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if(i <= (int) agemax)           * probability in order to take into account the bias as a fraction of the way
       fprintf(ficresp,"\n");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     printf("\n");           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
  }           */
            s1=s[mw[mi][i]][i];
   fclose(ficresp);          s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(pp,1,nlstate);          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 }  /* End of Freq */           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /************* Waves Concatenation ***************/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {          /*if(lli ==000.0)*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      Death is a valid wave (if date is known).          ipmx +=1;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          sw += weight[i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      and mw[mi+1][i]. dh depends on stepm.        } /* end of wave */
      */      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, mi, m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 float sum=0.;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
     mi=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){            }
       if(s[m][i]>=1)          for(d=0; d<dh[mi][i]; d++){
         mw[++mi][i]=m;            newm=savm;
       if(m >=lastpass)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         break;            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         m++;            }
     }/* end while */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (s[m][i] > nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mi++;     /* Death is another wave */            savm=oldm;
       /* if(mi==0)  never been interviewed correctly before death */            oldm=newm;
          /* Only death is a correct wave */          } /* end mult */
       mw[mi][i]=m;        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
     wav[i]=mi;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if(mi==0)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for(i=1; i<=imx; i++){           * probability in order to take into account the bias as a fraction of the way
     for(mi=1; mi<wav[i];mi++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if (stepm <=0)           * -stepm/2 to stepm/2 .
         dh[mi][i]=1;           * For stepm=1 the results are the same as for previous versions of Imach.
       else{           * For stepm > 1 the results are less biased than in previous versions. 
         if (s[mw[mi+1][i]][i] > nlstate) {           */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j=0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         else{          /* bias is positive if real duration
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * is higher than the multiple of stepm and negative otherwise.
           k=k+1;           */
           if (j >= jmax) jmax=j;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           sum=sum+j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         jk= j/stepm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         jl= j -jk*stepm;          ipmx +=1;
         ju= j -(jk+1)*stepm;          sw += weight[i];
         if(jl <= -ju)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk;        } /* end of wave */
         else      } /* end of individual */
           dh[mi][i]=jk+1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if(dh[mi][i]==0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=1; /* At least one step */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int Ndum[80],ij, k, j, i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int cptcode=0;            for (kk=1; kk<=cptcovage;kk++) {
   for (k=0; k<79; k++) Ndum[k]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=1; k<=7; k++) ncodemax[k]=0;            }
            
   for (j=1; j<=cptcovn; j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=imx; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=(int)(covar[Tvar[j]][i]);            savm=oldm;
       Ndum[ij]++;            oldm=newm;
       if (ij > cptcode) cptcode=ij;          } /* end mult */
     }        
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          s1=s[mw[mi][i]][i];
     for (i=0; i<=cptcode; i++) {          s2=s[mw[mi+1][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          if( s2 > nlstate){ 
     }            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
     ij=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=79; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           ij++;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         if (ij > ncodemax[j]) break;      } /* end of individual */
       }      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*********** Health Expectancies ****************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Health expectancies */            newm=savm;
   int i, j, nhstepm, hstepm, h;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age, agelim,hf;            for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   fprintf(ficreseij,"# Health expectancies\n");          
   fprintf(ficreseij,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)            savm=oldm;
       fprintf(ficreseij," %1d-%1d",i,j);            oldm=newm;
   fprintf(ficreseij,"\n");          } /* end mult */
         
   hstepm=1*YEARM; /*  Every j years of age (in month) */          s1=s[mw[mi][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   agelim=AGESUP;          ipmx +=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sw += weight[i];
     /* nhstepm age range expressed in number of stepm */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     /* Typically if 20 years = 20*12/6=40 stepm */        } /* end of wave */
     if (stepm >= YEARM) hstepm=1;      } /* end of individual */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    } /* End of if */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      return -l;
   }
   
     for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
       for(j=1; j<=nlstate;j++)  double funcone( double *x)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  {
           eij[i][j][(int)age] +=p3mat[i][j][h];    /* Same as likeli but slower because of a lot of printf and if */
         }    int i, ii, j, k, mi, d, kk;
        double l, ll[NLSTATEMAX], cov[NCOVMAX];
     hf=1;    double **out;
     if (stepm >= YEARM) hf=stepm/YEARM;    double lli; /* Individual log likelihood */
     fprintf(ficreseij,"%.0f",age );    double llt;
     for(i=1; i<=nlstate;i++)    int s1, s2;
       for(j=1; j<=nlstate;j++){    double bbh, survp;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     fprintf(ficreseij,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   /* Variance of health expectancies */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **newm;      for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm, h;          for (j=1;j<=nlstate+ndeath;j++){
   int k, cptcode;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    double *xp;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;          }
   double ***gradg, ***trgradg;        for(d=0; d<dh[mi][i]; d++){
   double ***p3mat;          newm=savm;
   double age,agelim;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    fprintf(ficresvij,"# Covariances of life expectancies\n");          }
   fprintf(ficresvij,"# Age");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)          savm=oldm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          oldm=newm;
   fprintf(ficresvij,"\n");        } /* end mult */
         
   xp=vector(1,npar);        s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate,1,npar);        s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   hstepm=1*YEARM; /* Every year of age */         * is higher than the multiple of stepm and negative otherwise.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         */
   agelim = AGESUP;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli=log(out[s1][s2] - savm[s1][s2]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } else if (mle==1){
     if (stepm >= YEARM) hstepm=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        } else if(mle==2){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
     gp=matrix(0,nhstepm,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gm=matrix(0,nhstepm,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
     for(theta=1; theta <=npar; theta++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(i=1; i<=npar; i++){ /* Computes gradient */          lli=log(out[s1][s2]); /* Original formula */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* End of if */
       }        ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(h=0; h<=nhstepm; h++){        if(globpr){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];   %10.6f %10.6f %10.6f ", \
         }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
              for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(i=1; i<=npar; i++) /* Computes gradient */            llt +=ll[k]*gipmx/gsw;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      } /* end of wave */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } /* end of individual */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1; j<= nlstate; j++)    if(globpr==0){ /* First time we count the contributions and weights */
         for(h=0; h<=nhstepm; h++){      gipmx=ipmx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      gsw=sw;
         }    }
     } /* End theta */    return -l;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   char *subdirf(char fileres[])
     for(h=0; h<=nhstepm; h++)  {
       for(j=1; j<=nlstate;j++)    /* Caution optionfilefiname is hidden */
         for(theta=1; theta <=npar; theta++)    strcpy(tmpout,optionfilefiname);
           trgradg[h][j][theta]=gradg[h][theta][j];    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     for(i=1;i<=nlstate;i++)    return tmpout;
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){  char *subdirf2(char fileres[], char *preop)
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    strcpy(tmpout,optionfilefiname);
         for(i=1;i<=nlstate;i++)    strcat(tmpout,"/");
           for(j=1;j<=nlstate;j++)    strcat(tmpout,preop);
             vareij[i][j][(int)age] += doldm[i][j];    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
     h=1;  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (stepm >= YEARM) h=stepm/YEARM;  {
     fprintf(ficresvij,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    strcpy(tmpout,optionfilefiname);
       for(j=1; j<=nlstate;j++){    strcat(tmpout,"/");
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
     fprintf(ficresvij,"\n");    strcat(tmpout,fileres);
     free_matrix(gp,0,nhstepm,1,nlstate);    return tmpout;
     free_matrix(gm,0,nhstepm,1,nlstate);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
   } /* End age */    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
   free_vector(xp,1,npar);       to check the exact contribution to the likelihood.
   free_matrix(doldm,1,nlstate,1,npar);       Plotting could be done.
   free_matrix(dnewm,1,nlstate,1,nlstate);     */
     int k;
 }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 /************ Variance of prevlim ******************/      strcpy(fileresilk,"ilk"); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* Variance of prevalence limit */        printf("Problem with resultfile: %s\n", fileresilk);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **newm;      }
   double **dnewm,**doldm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int i, j, nhstepm, hstepm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int k, cptcode;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double *xp;      for(k=1; k<=nlstate; k++) 
   double *gp, *gm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **gradg, **trgradg;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double age,agelim;    }
   int theta;  
        *fretone=(*funcone)(p);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    if(*globpri !=0){
   fprintf(ficresvpl,"# Age");      fclose(ficresilk);
   for(i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficresvpl," %1d-%1d",i,i);      fflush(fichtm); 
   fprintf(ficresvpl,"\n");    } 
     return;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
    /*********** Maximum Likelihood Estimation ***************/
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,j, iter;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **xi;
     if (stepm >= YEARM) hstepm=1;    double fret;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double fretone; /* Only one call to likelihood */
     gradg=matrix(1,npar,1,nlstate);    char filerespow[FILENAMELENGTH];
     gp=vector(1,nlstate);    xi=matrix(1,npar,1,npar);
     gm=vector(1,nlstate);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     for(theta=1; theta <=npar; theta++){        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
         gp[i] = prlim[i][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(j=1;j<=nlstate+ndeath;j++)
       for(i=1;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         gm[i] = prlim[i][i];    fprintf(ficrespow,"\n");
   
       for(i=1;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)  }
         trgradg[j][theta]=gradg[theta][j];  
   /**** Computes Hessian and covariance matrix ***/
     for(i=1;i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       varpl[i][(int)age] =0.;  {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double  **a,**y,*x,pd;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double **hess;
     for(i=1;i<=nlstate;i++)    int i, j,jk;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int *indx;
   
     fprintf(ficresvpl,"%.0f ",age );    double hessii(double p[], double delta, int theta, double delti[]);
     for(i=1; i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fprintf(ficresvpl,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    hess=matrix(1,npar,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   } /* End age */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   free_vector(xp,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
 }      /*printf(" %lf ",hess[i][i]);*/
     }
     
     for (i=1;i<=npar;i++) {
 /***********************************************/      for (j=1;j<=npar;j++)  {
 /**************** Main Program *****************/        if (j>i) { 
 /***********************************************/          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 /*int main(int argc, char *argv[])*/          hess[i][j]=hessij(p,delti,i,j);
 int main()          hess[j][i]=hess[i][j];    
 {          /*printf(" %lf ",hess[i][j]);*/
         }
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      }
   double agedeb, agefin,hf;    }
   double agemin=1.e20, agemax=-1.e20;    printf("\n");
     fprintf(ficlog,"\n");
   double fret;  
   double **xi,tmp,delta;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double dum; /* Dummy variable */    
   double ***p3mat;    a=matrix(1,npar,1,npar);
   int *indx;    y=matrix(1,npar,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    x=vector(1,npar);
   char title[MAXLINE];    indx=ivector(1,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for (i=1;i<=npar;i++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   char filerest[FILENAMELENGTH];    ludcmp(a,npar,indx,&pd);
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    for (j=1;j<=npar;j++) {
   int firstobs=1, lastobs=10;      for (i=1;i<=npar;i++) x[i]=0;
   int sdeb, sfin; /* Status at beginning and end */      x[j]=1;
   int c,  h , cpt,l;      lubksb(a,npar,indx,x);
   int ju,jl, mi;      for (i=1;i<=npar;i++){ 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;        matcov[i][j]=x[i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }
      }
   int hstepm, nhstepm;  
   double bage, fage, age, agelim, agebase;    printf("\n#Hessian matrix#\n");
   double ftolpl=FTOL;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **prlim;    for (i=1;i<=npar;i++) { 
   double *severity;      for (j=1;j<=npar;j++) { 
   double ***param; /* Matrix of parameters */        printf("%.3e ",hess[i][j]);
   double  *p;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **matcov; /* Matrix of covariance */      }
   double ***delti3; /* Scale */      printf("\n");
   double *delti; /* Scale */      fprintf(ficlog,"\n");
   double ***eij, ***vareij;    }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    /* Recompute Inverse */
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    for (i=1;i<=npar;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   char z[1]="c", occ;  
 #include <sys/time.h>    /*  printf("\n#Hessian matrix recomputed#\n");
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (j=1;j<=npar;j++) {
   /* long total_usecs;      for (i=1;i<=npar;i++) x[i]=0;
   struct timeval start_time, end_time;      x[j]=1;
        lubksb(a,npar,indx,x);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   printf("\nIMACH, Version 0.64a");        fprintf(ficlog,"%.3e ",y[i][j]);
   printf("\nEnter the parameter file name: ");      }
       printf("\n");
 #ifdef windows      fprintf(ficlog,"\n");
   scanf("%s",pathtot);    }
   getcwd(pathcd, size);    */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(a,1,npar,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 split(pathtot, path,optionfile);    free_ivector(indx,1,npar);
   chdir(path);    free_matrix(hess,1,npar,1,npar);
   replace(pathc,path);  
 #endif  
 #ifdef unix  }
   scanf("%s",optionfile);  
 #endif  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
 /*-------- arguments in the command line --------*/  {
     int i;
   strcpy(fileres,"r");    int l=1, lmax=20;
   strcat(fileres, optionfile);    double k1,k2;
     double p2[NPARMAX+1];
   /*---------arguments file --------*/    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double fx;
     printf("Problem with optionfile %s\n",optionfile);    int k=0,kmax=10;
     goto end;    double l1;
   }  
     fx=func(x);
   strcpy(filereso,"o");    for (i=1;i<=npar;i++) p2[i]=x[i];
   strcat(filereso,fileres);    for(l=0 ; l <=lmax; l++){
   if((ficparo=fopen(filereso,"w"))==NULL) {      l1=pow(10,l);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   /* Reads comments: lines beginning with '#' */        p2[theta]=x[theta] +delt;
   while((c=getc(ficpar))=='#' && c!= EOF){        k1=func(p2)-fx;
     ungetc(c,ficpar);        p2[theta]=x[theta]-delt;
     fgets(line, MAXLINE, ficpar);        k2=func(p2)-fx;
     puts(line);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     fputs(line,ficparo);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   ungetc(c,ficpar);  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  #endif
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   covar=matrix(1,NCOVMAX,1,n);              k=kmax;
   if (strlen(model)<=1) cptcovn=0;        }
   else {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     j=0;          k=kmax; l=lmax*10.;
     j=nbocc(model,'+');        }
     cptcovn=j+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   }          delts=delt;
         }
   ncovmodel=2+cptcovn;      }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      delti[theta]=delts;
   /* Read guess parameters */    return res; 
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  double hessij( double x[], double delti[], int thetai,int thetaj)
     puts(line);  {
     fputs(line,ficparo);    int i;
   }    int l=1, l1, lmax=20;
   ungetc(c,ficpar);    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int k;
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    fx=func(x);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (k=1; k<=2; k++) {
       fprintf(ficparo,"%1d%1d",i1,j1);      for (i=1;i<=npar;i++) p2[i]=x[i];
       printf("%1d%1d",i,j);      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(k=1; k<=ncovmodel;k++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fscanf(ficpar," %lf",&param[i][j][k]);      k1=func(p2)-fx;
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fscanf(ficpar,"\n");      k2=func(p2)-fx;
       printf("\n");    
       fprintf(ficparo,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    
   p=param[1][1];      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Reads comments: lines beginning with '#' */      k4=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     ungetc(c,ficpar);  #ifdef DEBUG
     fgets(line, MAXLINE, ficpar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     puts(line);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fputs(line,ficparo);  #endif
   }    }
   ungetc(c,ficpar);    return res;
   }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /************** Inverse of matrix **************/
   for(i=1; i <=nlstate; i++){  void ludcmp(double **a, int n, int *indx, double *d) 
     for(j=1; j <=nlstate+ndeath-1; j++){  { 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i,imax,j,k; 
       printf("%1d%1d",i,j);    double big,dum,sum,temp; 
       fprintf(ficparo,"%1d%1d",i1,j1);    double *vv; 
       for(k=1; k<=ncovmodel;k++){   
         fscanf(ficpar,"%le",&delti3[i][j][k]);    vv=vector(1,n); 
         printf(" %le",delti3[i][j][k]);    *d=1.0; 
         fprintf(ficparo," %le",delti3[i][j][k]);    for (i=1;i<=n;i++) { 
       }      big=0.0; 
       fscanf(ficpar,"\n");      for (j=1;j<=n;j++) 
       printf("\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficparo,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
   }    } 
   delti=delti3[1][1];    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
   /* Reads comments: lines beginning with '#' */        sum=a[i][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     ungetc(c,ficpar);        a[i][j]=sum; 
     fgets(line, MAXLINE, ficpar);      } 
     puts(line);      big=0.0; 
     fputs(line,ficparo);      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   ungetc(c,ficpar);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   matcov=matrix(1,npar,1,npar);        a[i][j]=sum; 
   for(i=1; i <=npar; i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fscanf(ficpar,"%s",&str);          big=dum; 
     printf("%s",str);          imax=i; 
     fprintf(ficparo,"%s",str);        } 
     for(j=1; j <=i; j++){      } 
       fscanf(ficpar," %le",&matcov[i][j]);      if (j != imax) { 
       printf(" %.5le",matcov[i][j]);        for (k=1;k<=n;k++) { 
       fprintf(ficparo," %.5le",matcov[i][j]);          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
     fscanf(ficpar,"\n");          a[j][k]=dum; 
     printf("\n");        } 
     fprintf(ficparo,"\n");        *d = -(*d); 
   }        vv[imax]=vv[j]; 
   for(i=1; i <=npar; i++)      } 
     for(j=i+1;j<=npar;j++)      indx[j]=imax; 
       matcov[i][j]=matcov[j][i];      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
   printf("\n");        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
    if(mle==1){    } 
     /*-------- data file ----------*/    free_vector(vv,1,n);  /* Doesn't work */
     if((ficres =fopen(fileres,"w"))==NULL) {  ;
       printf("Problem with resultfile: %s\n", fileres);goto end;  } 
     }  
     fprintf(ficres,"#%s\n",version);  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
     if((fic=fopen(datafile,"r"))==NULL)    {    int i,ii=0,ip,j; 
       printf("Problem with datafile: %s\n", datafile);goto end;    double sum; 
     }   
     for (i=1;i<=n;i++) { 
     n= lastobs;      ip=indx[i]; 
     severity = vector(1,maxwav);      sum=b[ip]; 
     outcome=imatrix(1,maxwav+1,1,n);      b[ip]=b[i]; 
     num=ivector(1,n);      if (ii) 
     moisnais=vector(1,n);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     annais=vector(1,n);      else if (sum) ii=i; 
     moisdc=vector(1,n);      b[i]=sum; 
     andc=vector(1,n);    } 
     agedc=vector(1,n);    for (i=n;i>=1;i--) { 
     cod=ivector(1,n);      sum=b[i]; 
     weight=vector(1,n);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      b[i]=sum/a[i][i]; 
     mint=matrix(1,maxwav,1,n);    } 
     anint=matrix(1,maxwav,1,n);  } 
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      /************ Frequencies ********************/
     tab=ivector(1,NCOVMAX);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     ncodemax=ivector(1,8);  {  /* Some frequencies */
     
     i=1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     while (fgets(line, MAXLINE, fic) != NULL)    {    int first;
       if ((i >= firstobs) && (i <=lastobs)) {    double ***freq; /* Frequencies */
            double *pp, **prop;
         for (j=maxwav;j>=1;j--){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    FILE *ficresp;
           strcpy(line,stra);    char fileresp[FILENAMELENGTH];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
            strcpy(fileresp,"p");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresp,fileres);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      exit(0);
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         for (j=ncov;j>=1;j--){    j1=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    j=cptcoveff;
         num[i]=atol(stra);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    first=1;
   
         i=i+1;    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     /*scanf("%d",i);*/          scanf("%d", i);*/
   imx=i-1; /* Number of individuals */        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   /* Calculation of the number of parameter from char model*/            for(m=iagemin; m <= iagemax+3; m++)
   Tvar=ivector(1,8);                  freq[i][jk][m]=0;
      
   if (strlen(model) >1){      for (i=1; i<=nlstate; i++)  
     j=0;        for(m=iagemin; m <= iagemax+3; m++)
     j=nbocc(model,'+');          prop[i][m]=0;
     cptcovn=j+1;        
            dateintsum=0;
     strcpy(modelsav,model);        k2cpt=0;
     if (j==0) {        for (i=1; i<=imx; i++) {
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);          bool=1;
     }          if  (cptcovn>0) {
     else {            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=j; i>=1;i--){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         cutv(stra,strb,modelsav,'+');                bool=0;
         if (strchr(strb,'*')) {          }
           cutv(strd,strc,strb,'*');          if (bool==1){
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;            for(m=firstpass; m<=lastpass; m++){
           cutv(strb,strc,strd,'V');              k2=anint[m][i]+(mint[m][i]/12.);
           for (k=1; k<=lastobs;k++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         else {cutv(strd,strc,strb,'V');                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         Tvar[i+1]=atoi(strc);                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         strcpy(modelsav,stra);                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       cutv(strd,strc,stra,'V');                
       Tvar[1]=atoi(strc);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
   /*printf("tvar=%d ",Tvar[1]);                }
   scanf("%d ",i);*/                /*}*/
     fclose(fic);            }
           }
     if (weightopt != 1) { /* Maximisation without weights*/        }
       for(i=1;i<=n;i++) weight[i]=1.0;         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
     for (i=1; i<=imx; i++)  {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficresp, "**********\n#");
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){        for(i=1; i<=nlstate;i++) 
           if (s[m][i] == nlstate+1) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             if(agedc[i]>0)        fprintf(ficresp, "\n");
               if(moisdc[i]!=99 && andc[i]!=9999)        
               agev[m][i]=agedc[i];        for(i=iagemin; i <= iagemax+3; i++){
             else{          if(i==iagemax+3){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            fprintf(ficlog,"Total");
               agev[m][i]=-1;          }else{
             }            if(first==1){
           }              first=0;
           else if(s[m][i] !=9){ /* Should no more exist */              printf("See log file for details...\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)            fprintf(ficlog,"Age %d", i);
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){          for(jk=1; jk <=nlstate ; jk++){
               agemin=agev[m][i];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              pp[jk] += freq[jk][m][i]; 
             }          }
             else if(agev[m][i] >agemax){          for(jk=1; jk <=nlstate ; jk++){
               agemax=agev[m][i];            for(m=-1, pos=0; m <=0 ; m++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              pos += freq[jk][m][i];
             }            if(pp[jk]>=1.e-10){
             /*agev[m][i]=anint[m][i]-annais[i];*/              if(first==1){
             /*   agev[m][i] = age[i]+2*m;*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }              }
           else { /* =9 */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             agev[m][i]=1;            }else{
             s[m][i]=-1;              if(first==1)
           }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         else /*= 0 Unknown */            }
           agev[m][i]=1;          }
       }  
              for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for (i=1; i<=imx; i++)  {              pp[jk] += freq[jk][m][i];
       for(m=1; (m<= maxwav); m++){          }       
         if (s[m][i] > (nlstate+ndeath)) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           printf("Error: Wrong value in nlstate or ndeath\n");              pos += pp[jk];
           goto end;            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
               if(first==1)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_vector(severity,1,maxwav);            }else{
     free_imatrix(outcome,1,maxwav+1,1,n);              if(first==1)
     free_vector(moisnais,1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_vector(annais,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(mint,1,maxwav,1,n);            }
     free_matrix(anint,1,maxwav,1,n);            if( i <= iagemax){
     free_vector(moisdc,1,n);              if(pos>=1.e-5){
     free_vector(andc,1,n);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     wav=ivector(1,imx);              }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              else
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
     /* Concatenates waves */          }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 Tcode=ivector(1,100);              if(freq[jk][m][i] !=0 ) {
    nbcode=imatrix(1,nvar,1,8);                if(first==1)
    ncodemax[1]=1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
    codtab=imatrix(1,100,1,10);          if(i <= iagemax)
    h=0;            fprintf(ficresp,"\n");
    m=pow(2,cptcovn);          if(first==1)
              printf("Others in log...\n");
    for(k=1;k<=cptcovn; k++){          fprintf(ficlog,"\n");
      for(i=1; i <=(m/pow(2,k));i++){        }
        for(j=1; j <= ncodemax[k]; j++){      }
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    }
            h++;    dateintmean=dateintsum/k2cpt; 
            if (h>m) h=1;codtab[h][k]=j;   
          }    fclose(ficresp);
        }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
      }    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    /*for(i=1; i <=m ;i++){  }
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);  /************ Prevalence ********************/
      }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      printf("\n");  {  
    }*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    /*scanf("%d",i);*/       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
    /* Calculates basic frequencies. Computes observed prevalence at single age    */
        and prints on file fileres'p'. */   
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *pp, **prop;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double pos,posprop; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double  y2; /* in fractional years */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int iagemin, iagemax;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        iagemin= (int) agemin;
     /* For Powell, parameters are in a vector p[] starting at p[1]    iagemax= (int) agemax;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*pp=vector(1,nlstate);*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    j1=0;
     
        j=cptcoveff;
     /*--------- results files --------------*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    
        for(k1=1; k1<=j;k1++){
    jk=1;      for(i1=1; i1<=ncodemax[k1];i1++){
    fprintf(ficres,"# Parameters\n");        j1++;
    printf("# Parameters\n");        
    for(i=1,jk=1; i <=nlstate; i++){        for (i=1; i<=nlstate; i++)  
      for(k=1; k <=(nlstate+ndeath); k++){          for(m=iagemin; m <= iagemax+3; m++)
        if (k != i)            prop[i][m]=0.0;
          {       
            printf("%d%d ",i,k);        for (i=1; i<=imx; i++) { /* Each individual */
            fprintf(ficres,"%1d%1d ",i,k);          bool=1;
            for(j=1; j <=ncovmodel; j++){          if  (cptcovn>0) {
              printf("%f ",p[jk]);            for (z1=1; z1<=cptcoveff; z1++) 
              fprintf(ficres,"%f ",p[jk]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
              jk++;                bool=0;
            }          } 
            printf("\n");          if (bool==1) { 
            fprintf(ficres,"\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
          }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* Computing hessian and covariance matrix */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     ftolhess=ftol; /* Usually correct */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     hesscov(matcov, p, npar, delti, ftolhess, func);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficres,"# Scales\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     printf("# Scales\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
      for(i=1,jk=1; i <=nlstate; i++){                } 
       for(j=1; j <=nlstate+ndeath; j++){              }
         if (j!=i) {            } /* end selection of waves */
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){        for(i=iagemin; i <= iagemax+3; i++){  
             printf(" %.5e",delti[jk]);          
             fprintf(ficres," %.5e",delti[jk]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             jk++;            posprop += prop[jk][i]; 
           }          } 
           printf("\n");  
           fprintf(ficres,"\n");          for(jk=1; jk <=nlstate ; jk++){     
         }            if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
                  } 
     k=1;            } 
     fprintf(ficres,"# Covariance\n");          }/* end jk */ 
     printf("# Covariance\n");        }/* end i */ 
     for(i=1;i<=npar;i++){      } /* end i1 */
       /*  if (k>nlstate) k=1;    } /* end k1 */
       i1=(i-1)/(ncovmodel*nlstate)+1;    
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /*free_vector(pp,1,nlstate);*/
       fprintf(ficres,"%3d",i);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       printf("%3d",i);  }  /* End of prevalence */
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);  /************* Waves Concatenation ***************/
         printf(" %.5e",matcov[i][j]);  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fprintf(ficres,"\n");  {
       printf("\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       k++;       Death is a valid wave (if date is known).
     }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     while((c=getc(ficpar))=='#' && c!= EOF){       and mw[mi+1][i]. dh depends on stepm.
       ungetc(c,ficpar);       */
       fgets(line, MAXLINE, ficpar);  
       puts(line);    int i, mi, m;
       fputs(line,ficparo);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     }       double sum=0., jmean=0.;*/
     ungetc(c,ficpar);    int first;
      int j, k=0,jk, ju, jl;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double sum=0.;
        first=0;
     if (fage <= 2) {    jmin=1e+5;
       bage = agemin;    jmax=-1;
       fage = agemax;    jmean=0.;
     }    for(i=1; i<=imx; i++){
       mi=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      m=firstpass;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      while(s[m][i] <= nlstate){
 /*------------ gnuplot -------------*/        if(s[m][i]>=1)
 chdir(pathcd);          mw[++mi][i]=m;
   if((ficgp=fopen("graph.plt","w"))==NULL) {        if(m >=lastpass)
     printf("Problem with file graph.gp");goto end;          break;
   }        else
 #ifdef windows          m++;
   fprintf(ficgp,"cd \"%s\" \n",pathc);      }/* end while */
 #endif      if (s[m][i] > nlstate){
 m=pow(2,cptcovn);        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
  /* 1eme*/           /* Only death is a correct wave */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        mw[mi][i]=m;
    for (k1=1; k1<= m ; k1 ++) {      }
   
 #ifdef windows      wav[i]=mi;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      if(mi==0){
 #endif        nbwarn++;
 #ifdef unix        if(first==0){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #endif          first=1;
         }
 for (i=1; i<= nlstate ; i ++) {        if(first==1){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      } /* end mi==0 */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    } /* End individuals */
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(mi=1; mi<wav[i];mi++){
 }        if (stepm <=0)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          dh[mi][i]=1;
      for (i=1; i<= nlstate ; i ++) {        else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (agedc[i] < 2*AGESUP) {
 }                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if(j==0) j=1;  /* Survives at least one month after exam */
 #ifdef unix              else if(j<0){
 fprintf(ficgp,"\nset ter gif small size 400,300");                nberr++;
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                j=1; /* Temporary Dangerous patch */
    }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*2 eme*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
   for (k1=1; k1<= m ; k1 ++) {              k=k+1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);              if (j >= jmax) jmax=j;
                  if (j <= jmin) jmin=j;
     for (i=1; i<= nlstate+1 ; i ++) {              sum=sum+j;
       k=2*i;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          else{
 }              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            k=k+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if (j >= jmax) jmax=j;
       for (j=1; j<= nlstate+1 ; j ++) {            else if (j <= jmin)jmin=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         else fprintf(ficgp," \%%*lf (\%%*lf)");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 }              if(j<0){
       fprintf(ficgp,"\" t\"\" w l 0,");              nberr++;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          jk= j/stepm;
       else fprintf(ficgp,"\" t\"\" w l 0,");          jl= j -jk*stepm;
     }          ju= j -(jk+1)*stepm;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
                dh[mi][i]=jk;
   /*3eme*/              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   for (k1=1; k1<= m ; k1 ++) {                    * at the price of an extra matrix product in likelihood */
     for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=jk+1;
       k=2+nlstate*(cpt-1);              bh[mi][i]=ju;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            }
       for (i=1; i< nlstate ; i ++) {          }else{
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            if(jl <= -ju){
       }              dh[mi][i]=jk;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=jl;       /* bias is positive if real duration
     }                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
              }
   /* CV preval stat */            else{
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=3;            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            if(dh[mi][i]==0){
       for (i=1; i< nlstate ; i ++)              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp,"+$%d",k+i+1);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  }
       l=3+(nlstate+ndeath)*cpt;          } /* end if mle */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      } /* end wave */
         l=3+(nlstate+ndeath)*cpt;    }
         fprintf(ficgp,"+$%d",l+i+1);    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   }
     }  
   }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   /* proba elementaires */  {
    for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
       if (k != i) {    int cptcode=0;
         for(j=1; j <=ncovmodel; j++){    cptcoveff=0; 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/   
           /*fprintf(ficgp,"%s",alph[1]);*/    for (k=0; k<maxncov; k++) Ndum[k]=0;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    for (k=1; k<=7; k++) ncodemax[k]=0;
           jk++;  
           fprintf(ficgp,"\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       }                                 modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   for(jk=1; jk <=m; jk++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);                                         Tvar[j]. If V=sex and male is 0 and 
    i=1;                                         female is 1, then  cptcode=1.*/
    for(k2=1; k2<=nlstate; k2++) {      }
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {      for (i=0; i<=cptcode; i++) {
        if (k != k2){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      }
   
         for(j=3; j <=ncovmodel; j++)      ij=1; 
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficgp,")/(1");        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
         for(k1=1; k1 <=nlstate+1; k1=k1+2){              nbcode[Tvar[j]][ij]=k; 
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
             for(j=3; j <=ncovmodel; j++)            ij++;
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
             fprintf(ficgp,")");          if (ij > ncodemax[j]) break; 
         }        }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      } 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }  
     i=i+ncovmodel;  
        }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      }  
    }   for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    }     ij=Tvar[i];
         Ndum[ij]++;
   fclose(ficgp);   }
      
 chdir(path);   ij=1;
     free_matrix(agev,1,maxwav,1,imx);   for (i=1; i<= maxncov; i++) {
     free_ivector(wav,1,imx);     if((Ndum[i]!=0) && (i<=ncovcol)){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       Tvaraff[ij]=i; /*For printing */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       ij++;
         }
     free_imatrix(s,1,maxwav+1,1,n);   }
       
       cptcoveff=ij-1; /*Number of simple covariates*/
     free_ivector(num,1,n);  }
     free_vector(agedc,1,n);  
     free_vector(weight,1,n);  /*********** Health Expectancies ****************/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     fclose(ficres);  
    }  {
        /* Health expectancies */
    /*________fin mle=1_________*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     double ***p3mat,***varhe;
      double **dnewm,**doldm;
     /* No more information from the sample is required now */    double *xp;
   /* Reads comments: lines beginning with '#' */    double **gp, **gm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***gradg, ***trgradg;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fputs(line,ficparo);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    fprintf(ficreseij,"# Health expectancies\n");
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    fprintf(ficreseij,"# Age");
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for(i=1; i<=nlstate;i++)
 /*--------- index.htm --------*/      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
   if((fichtm=fopen("index.htm","w"))==NULL)    {    fprintf(ficreseij,"\n");
     printf("Problem with index.htm \n");goto end;  
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    else  hstepm=estepm;   
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /* We compute the life expectancy from trapezoids spaced every estepm months
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>     * This is mainly to measure the difference between two models: for example
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>     * if stepm=24 months pijx are given only every 2 years and by summing them
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>     * we are calculating an estimate of the Life Expectancy assuming a linear 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>     * progression in between and thus overestimating or underestimating according
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>     * to the curvature of the survival function. If, for the same date, we 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  fprintf(fichtm," <li>Graphs</li>\n<p>");     * curvature will be obtained if estepm is as small as stepm. */
   
  m=cptcovn;    /* For example we decided to compute the life expectancy with the smallest unit */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  j1=0;       nstepm is the number of stepm from age to agelin. 
  for(k1=1; k1<=m;k1++){       Look at hpijx to understand the reason of that which relies in memory size
    for(i1=1; i1<=ncodemax[k1];i1++){       and note for a fixed period like estepm months */
        j1++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        if (cptcovn > 0) {       survival function given by stepm (the optimization length). Unfortunately it
          fprintf(fichtm,"<hr>************ Results for covariates");       means that if the survival funtion is printed only each two years of age and if
          for (cpt=1; cpt<=cptcovn;cpt++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);       results. So we changed our mind and took the option of the best precision.
          fprintf(fichtm," ************\n<hr>");    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        agelim=AGESUP;
        for(cpt=1; cpt<nlstate;cpt++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      /* nhstepm age range expressed in number of stepm */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for(cpt=1; cpt<=nlstate;cpt++) {      /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 interval) in state (%d): v%s%d%d.gif <br>      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 health expectancies in states (1) and (2): e%s%d.gif<br>   
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }  
  }      /* Computing Variances of health expectancies */
 fclose(fichtm);  
        for(theta=1; theta <=npar; theta++){
   /*--------------- Prevalence limit --------------*/        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        cptj=0;
   }        for(j=1; j<= nlstate; j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(i=1; i<=nlstate; i++){
   fprintf(ficrespl,"#Prevalence limit\n");            cptj=cptj+1;
   fprintf(ficrespl,"#Age ");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficrespl,"\n");            }
            }
   prlim=matrix(1,nlstate,1,nlstate);        }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   k=0;        
   agebase=agemin;        cptj=0;
   agelim=agemax;        for(j=1; j<= nlstate; j++){
   ftolpl=1.e-10;          for(i=1;i<=nlstate;i++){
   i1=cptcovn;            cptj=cptj+1;
   if (cptcovn < 1){i1=1;}            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   for(cptcov=1;cptcov<=i1;cptcov++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
         k=k+1;          }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }
         fprintf(ficrespl,"\n#****** ");        for(j=1; j<= nlstate*nlstate; j++)
         for(j=1;j<=cptcovn;j++)          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficrespl,"******\n");          }
               } 
         for (age=agebase; age<=agelim; age++){     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /* End theta */
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");       for(h=0; h<=nhstepm-1; h++)
         }        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
   fclose(ficrespl);       
   /*------------- h Pij x at various ages ------------*/  
         for(i=1;i<=nlstate*nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(j=1;j<=nlstate*nlstate;j++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          varhe[i][j][(int)age] =0.;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }       printf("%d|",(int)age);fflush(stdout);
   printf("Computing pij: result on file '%s' \n", filerespij);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(k=0;k<=nhstepm-1;k++){
   if (stepm<=24) stepsize=2;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   agelim=AGESUP;          for(i=1;i<=nlstate*nlstate;i++)
   hstepm=stepsize*YEARM; /* Every year of age */            for(j=1;j<=nlstate*nlstate;j++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){      /* Computing expectancies */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++)
         fprintf(ficrespij,"\n#****** ");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         for(j=1;j<=cptcovn;j++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            
         fprintf(ficrespij,"******\n");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficreseij,"%3.0f",age );
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      cptj=0;
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate;j++){
           fprintf(ficrespij,"# Age");          cptj++;
           for(i=1; i<=nlstate;i++)          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficreseij,"\n");
           fprintf(ficrespij,"\n");     
           for (h=0; h<=nhstepm; h++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             for(i=1; i<=nlstate;i++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
               for(j=1; j<=nlstate+ndeath;j++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");    }
           }    printf("\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
           fprintf(ficrespij,"\n");  
         }    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fclose(ficrespij);  }
   
   /*---------- Health expectancies and variances ------------*/  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   strcpy(filerest,"t");  {
   strcat(filerest,fileres);    /* Variance of health expectancies */
   if((ficrest=fopen(filerest,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* double **newm;*/
   }    double **dnewm,**doldm;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   strcpy(filerese,"e");    double *xp;
   strcat(filerese,fileres);    double **gp, **gm;  /* for var eij */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double ***gradg, ***trgradg; /*for var eij */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
  strcpy(fileresv,"v");    double age,agelim, hf;
   strcat(fileresv,fileres);    double ***mobaverage;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int theta;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    char digit[4];
   }    char digitp[25];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     char fileresprobmorprev[FILENAMELENGTH];
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    if(popbased==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if(mobilav!=0)
       k=k+1;        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficrest,"\n#****** ");      else strcpy(digitp,"-populbased-nomobil-");
       for(j=1;j<=cptcovn;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    else 
       fprintf(ficrest,"******\n");      strcpy(digitp,"-stablbased-");
   
       fprintf(ficreseij,"\n#****** ");    if (mobilav!=0) {
       for(j=1;j<=cptcovn;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficreseij,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvij,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)    }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       oldm=oldms;savm=savms;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcat(fileresprobmorprev,fileres);
       oldm=oldms;savm=savms;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficrest,"\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       hf=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       if (stepm >= YEARM) hf=stepm/YEARM;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       epj=vector(1,nlstate+1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(age=bage; age <=fage ;age++){      for(i=1; i<=nlstate;i++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficrest," %.0f",age);    }  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficresprobmorprev,"\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficgp,"\n# Routine varevsij");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           epj[nlstate+1] +=epj[j];  /*   } */
         }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
             vepp += vareij[i][j][(int)age];    fprintf(ficresvij,"# Age");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    for(i=1; i<=nlstate;i++)
         for(j=1;j <=nlstate;j++){      for(j=1; j<=nlstate;j++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         }    fprintf(ficresvij,"\n");
         fprintf(ficrest,"\n");  
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
            dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  fclose(ficreseij);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fclose(ficresvij);  
   fclose(ficrest);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fclose(ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
   free_vector(epj,1,nlstate+1);    gmp=vector(nlstate+1,nlstate+ndeath);
   /*  scanf("%d ",i); */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   /*------- Variance limit prevalence------*/      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
 strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    else  hstepm=estepm;   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     exit(0);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
  k=0;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  for(cptcov=1;cptcov<=i1;cptcov++){       survival function given by stepm (the optimization length). Unfortunately it
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       means that if the survival funtion is printed every two years of age and if
      k=k+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      fprintf(ficresvpl,"\n#****** ");       results. So we changed our mind and took the option of the best precision.
      for(j=1;j<=cptcovn;j++)    */
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      fprintf(ficresvpl,"******\n");    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      oldm=oldms;savm=savms;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  }      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   fclose(ficresvpl);  
   
   /*---------- End : free ----------------*/      for(theta=1; theta <=npar; theta++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if (popbased==1) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          if(mobilav ==0){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1; i<=nlstate;i++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   free_matrix(matcov,1,npar,1,npar);            for(i=1; i<=nlstate;i++)
   free_vector(delti,1,npar);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
     
   printf("End of Imach\n");        for(j=1; j<= nlstate; j++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/        }
         /* This for computing probability of death (h=1 means
  end:           computed over hstepm matrices product = hstepm*stepm months) 
 #ifdef windows           as a weighted average of prlim.
  chdir(pathcd);        */
 #endif        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  system("wgnuplot graph.plt");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
 #ifdef windows        }    
   while (z[0] != 'q') {        /* end probability of death */
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     scanf("%s",z);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     if (z[0] == 'c') system("./imach");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     else if (z[0] == 'e') {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       chdir(path);   
       system("index.htm");        if (popbased==1) {
     }          if(mobilav ==0){
     else if (z[0] == 'q') exit(0);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
 #endif          }else{ /* mobilav */ 
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.5  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>