Diff for /imach/src/imach.c between versions 1.94 and 1.125

version 1.94, 2003/06/27 13:00:02 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Just cleaning    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.93  2003/06/25 16:33:55  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.124  2006/03/22 17:13:53  lievre
   exist so I changed back to asctime which exists.    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Module): Version 0.96b    The log-likelihood is printed in the log file
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    * imach.c (Module): <title> changed, corresponds to .htm file
   exist so I changed back to asctime which exists.    name. <head> headers where missing.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    * imach.c (Module): Weights can have a decimal point as for
   * imach.c (Repository): Duplicated warning errors corrected.    English (a comma might work with a correct LC_NUMERIC environment,
   (Repository): Elapsed time after each iteration is now output. It    otherwise the weight is truncated).
   helps to forecast when convergence will be reached. Elapsed time    Modification of warning when the covariates values are not 0 or
   is stamped in powell.  We created a new html file for the graphs    1.
   concerning matrix of covariance. It has extension -cov.htm.    Version 0.98g
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Weights can have a decimal point as for
   mle=-1 a template is output in file "or"mypar.txt with the design    English (a comma might work with a correct LC_NUMERIC environment,
   of the covariance matrix to be input.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.89  2003/06/24 12:30:52  brouard    1.
   (Module): Some bugs corrected for windows. Also, when    Version 0.98g
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   Revision 1.88  2003/06/23 17:54:56  brouard  
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.87  2003/06/18 12:26:01  brouard    not 1 month. Version 0.98f
   Version 0.96  
     Revision 1.120  2006/03/16 15:10:38  lievre
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): refinements in the computation of lli if
   (Module): Change position of html and gnuplot routines and added    status=-2 in order to have more reliable computation if stepm is
   routine fileappend.    not 1 month. Version 0.98f
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   * imach.c (Repository): Check when date of death was earlier that    (Module): Bug if status = -2, the loglikelihood was
   current date of interview. It may happen when the death was just    computed as likelihood omitting the logarithm. Version O.98e
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.118  2006/03/14 18:20:07  brouard
   assuming that the date of death was just one stepm after the    (Module): varevsij Comments added explaining the second
   interview.    table of variances if popbased=1 .
   (Repository): Because some people have very long ID (first column)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   we changed int to long in num[] and we added a new lvector for    (Module): Function pstamp added
   memory allocation. But we also truncated to 8 characters (left    (Module): Version 0.98d
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.84  2003/06/13 21:44:43  brouard    table of variances if popbased=1 .
   * imach.c (Repository): Replace "freqsummary" at a correct    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   place. It differs from routine "prevalence" which may be called    (Module): Function pstamp added
   many times. Probs is memory consuming and must be used with    (Module): Version 0.98d
   parcimony.  
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.83  2003/06/10 13:39:11  lievre    varian-covariance of ej. is needed (Saito).
   *** empty log message ***  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Revision 1.82  2003/06/05 15:57:20  brouard    (Module): One freematrix added in mlikeli! 0.98c
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.114  2006/02/26 12:57:58  brouard
 */    (Module): Some improvements in processing parameter
 /*    filename with strsep.
    Interpolated Markov Chain  
     Revision 1.113  2006/02/24 14:20:24  brouard
   Short summary of the programme:    (Module): Memory leaks checks with valgrind and:
       datafile was not closed, some imatrix were not freed and on matrix
   This program computes Healthy Life Expectancies from    allocation too.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.112  2006/01/30 09:55:26  brouard
   interviewed on their health status or degree of disability (in the    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.111  2006/01/25 20:38:18  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Lots of cleaning and bugs added (Gompertz)
   computed from the time spent in each health state according to a    (Module): Comments can be added in data file. Missing date values
   model. More health states you consider, more time is necessary to reach the    can be a simple dot '.'.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.110  2006/01/25 00:51:50  brouard
   probability to be observed in state j at the second wave    (Module): Lots of cleaning and bugs added (Gompertz)
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.109  2006/01/24 19:37:15  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Comments (lines starting with a #) are allowed in data.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.108  2006/01/19 18:05:42  lievre
   you to do it.  More covariates you add, slower the    Gnuplot problem appeared...
   convergence.    To be fixed
   
   The advantage of this computer programme, compared to a simple    Revision 1.107  2006/01/19 16:20:37  brouard
   multinomial logistic model, is clear when the delay between waves is not    Test existence of gnuplot in imach path
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.106  2006/01/19 13:24:36  brouard
   account using an interpolation or extrapolation.      Some cleaning and links added in html output
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.105  2006/01/05 20:23:19  lievre
   conditional to the observed state i at age x. The delay 'h' can be    *** empty log message ***
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.104  2005/09/30 16:11:43  lievre
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): sump fixed, loop imx fixed, and simplifications.
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): If the status is missing at the last wave but we know
   and the contribution of each individual to the likelihood is simply    that the person is alive, then we can code his/her status as -2
   hPijx.    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   Also this programme outputs the covariance matrix of the parameters but also    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   of the life expectancies. It also computes the stable prevalence.     the healthy state at last known wave). Version is 0.98
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.103  2005/09/30 15:54:49  lievre
            Institut national d'études démographiques, Paris.    (Module): sump fixed, loop imx fixed, and simplifications.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.102  2004/09/15 17:31:30  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Add the possibility to read data file including tab characters.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.100  2004/07/12 18:29:06  brouard
       Add version for Mac OS X. Just define UNIX in Makefile
   **********************************************************************/  
 /*    Revision 1.99  2004/06/05 08:57:40  brouard
   main    *** empty log message ***
   read parameterfile  
   read datafile    Revision 1.98  2004/05/16 15:05:56  brouard
   concatwav    New version 0.97 . First attempt to estimate force of mortality
   freqsummary    directly from the data i.e. without the need of knowing the health
   if (mle >= 1)    state at each age, but using a Gompertz model: log u =a + b*age .
     mlikeli    This is the basic analysis of mortality and should be done before any
   print results files    other analysis, in order to test if the mortality estimated from the
   if mle==1     cross-longitudinal survey is different from the mortality estimated
      computes hessian    from other sources like vital statistic data.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    The same imach parameter file can be used but the option for mle should be -3.
   open gnuplot file  
   open html file    Agnès, who wrote this part of the code, tried to keep most of the
   stable prevalence    former routines in order to include the new code within the former code.
    for age prevalim()  
   h Pij x    The output is very simple: only an estimate of the intercept and of
   variance of p varprob    the slope with 95% confident intervals.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Current limitations:
   Variance-covariance of DFLE    A) Even if you enter covariates, i.e. with the
   prevalence()    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    movingaverage()    B) There is no computation of Life Expectancy nor Life Table.
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.97  2004/02/20 13:25:42  lievre
   total life expectancies    Version 0.96d. Population forecasting command line is (temporarily)
   Variance of stable prevalence    suppressed.
  end  
 */    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   
      Revision 1.95  2003/07/08 07:54:34  brouard
 #include <math.h>    * imach.c (Repository):
 #include <stdio.h>    (Repository): Using imachwizard code to output a more meaningful covariance
 #include <stdlib.h>    matrix (cov(a12,c31) instead of numbers.
 #include <unistd.h>  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #include <sys/time.h>    Just cleaning
 #include <time.h>  
 #include "timeval.h"    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXLINE 256    exist so I changed back to asctime which exists.
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Version 0.96b
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Revision 1.92  2003/06/25 16:30:45  brouard
 /*#define DEBUG*/    (Module): On windows (cygwin) function asctime_r doesn't
 /*#define windows*/    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Repository): Elapsed time after each iteration is now output. It
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define NINTERVMAX 8    concerning matrix of covariance. It has extension -cov.htm.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Some bugs corrected for windows. Also, when
 #define MAXN 20000    mle=-1 a template is output in file "or"mypar.txt with the design
 #define YEARM 12. /* Number of months per year */    of the covariance matrix to be input.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.89  2003/06/24 12:30:52  brouard
 #ifdef unix    (Module): Some bugs corrected for windows. Also, when
 #define DIRSEPARATOR '/'    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ODIRSEPARATOR '\\'    of the covariance matrix to be input.
 #else  
 #define DIRSEPARATOR '\\'    Revision 1.88  2003/06/23 17:54:56  brouard
 #define ODIRSEPARATOR '/'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #endif  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /* $Id$ */    Version 0.96
 /* $State$ */  
     Revision 1.86  2003/06/17 20:04:08  brouard
 char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";    (Module): Change position of html and gnuplot routines and added
 char fullversion[]="$Revision$ $Date$";     routine fileappend.
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;    Revision 1.85  2003/06/17 13:12:43  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Repository): Check when date of death was earlier that
 int npar=NPARMAX;    current date of interview. It may happen when the death was just
 int nlstate=2; /* Number of live states */    prior to the death. In this case, dh was negative and likelihood
 int ndeath=1; /* Number of dead states */    was wrong (infinity). We still send an "Error" but patch by
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    assuming that the date of death was just one stepm after the
 int popbased=0;    interview.
     (Repository): Because some people have very long ID (first column)
 int *wav; /* Number of waves for this individuual 0 is possible */    we changed int to long in num[] and we added a new lvector for
 int maxwav; /* Maxim number of waves */    memory allocation. But we also truncated to 8 characters (left
 int jmin, jmax; /* min, max spacing between 2 waves */    truncation)
 int gipmx, gsw; /* Global variables on the number of contributions     (Repository): No more line truncation errors.
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;    Revision 1.84  2003/06/13 21:44:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Replace "freqsummary" at a correct
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    place. It differs from routine "prevalence" which may be called
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    many times. Probs is memory consuming and must be used with
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    parcimony.
 double jmean; /* Mean space between 2 waves */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficlog, *ficrespow;  
 int globpr; /* Global variable for printing or not */    Revision 1.82  2003/06/05 15:57:20  brouard
 double fretone; /* Only one call to likelihood */    Add log in  imach.c and  fullversion number is now printed.
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  /*
 FILE *ficresilk;     Interpolated Markov Chain
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Short summary of the programme:
 FILE *fichtm, *fichtmcov; /* Html File */   
 FILE *ficreseij;    This program computes Healthy Life Expectancies from
 char filerese[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 FILE  *ficresvij;    first survey ("cross") where individuals from different ages are
 char fileresv[FILENAMELENGTH];    interviewed on their health status or degree of disability (in the
 FILE  *ficresvpl;    case of a health survey which is our main interest) -2- at least a
 char fileresvpl[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
 char title[MAXLINE];    (if any) in individual health status.  Health expectancies are
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    computed from the time spent in each health state according to a
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
 char tmpout[FILENAMELENGTH];     Maximum Likelihood of the parameters involved in the model.  The
 char command[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
 int  outcmd=0;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 char filelog[FILENAMELENGTH]; /* Log file */    complex model than "constant and age", you should modify the program
 char filerest[FILENAMELENGTH];    where the markup *Covariates have to be included here again* invites
 char fileregp[FILENAMELENGTH];    you to do it.  More covariates you add, slower the
 char popfile[FILENAMELENGTH];    convergence.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    identical for each individual. Also, if a individual missed an
 struct timezone tzp;    intermediate interview, the information is lost, but taken into
 extern int gettimeofday();    account using an interpolation or extrapolation.  
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;    hPijx is the probability to be observed in state i at age x+h
 extern long time();    conditional to the observed state i at age x. The delay 'h' can be
 char strcurr[80], strfor[80];    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define NR_END 1    semester or year) is modelled as a multinomial logistic.  The hPx
 #define FREE_ARG char*    matrix is simply the matrix product of nh*stepm elementary matrices
 #define FTOL 1.0e-10    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define NRANSI   
 #define ITMAX 200     Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence.
 #define TOL 2.0e-4    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define CGOLD 0.3819660              Institut national d'études démographiques, Paris.
 #define ZEPS 1.0e-10     This software have been partly granted by Euro-REVES, a concerted action
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define GOLD 1.618034     software can be distributed freely for non commercial use. Latest version
 #define GLIMIT 100.0     can be accessed at http://euroreves.ined.fr/imach .
 #define TINY 1.0e-20   
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 static double maxarg1,maxarg2;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    **********************************************************************/
     /*
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    main
 #define rint(a) floor(a+0.5)    read parameterfile
     read datafile
 static double sqrarg;    concatwav
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    freqsummary
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     if (mle >= 1)
       mlikeli
 int imx;     print results files
 int stepm;    if mle==1
 /* Stepm, step in month: minimum step interpolation*/       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 int estepm;        begin-prev-date,...
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    open gnuplot file
     open html file
 int m,nb;    period (stable) prevalence
 long *num;     for age prevalim()
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    h Pij x
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    variance of p varprob
 double **pmmij, ***probs;    forecasting if prevfcast==1 prevforecast call prevalence()
 double dateintmean=0;    health expectancies
     Variance-covariance of DFLE
 double *weight;    prevalence()
 int **s; /* Status */     movingaverage()
 double *agedc, **covar, idx;    varevsij()
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    if popbased==1 varevsij(,popbased)
     total life expectancies
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Variance of period (stable) prevalence
 double ftolhess; /* Tolerance for computing hessian */   end
   */
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  
   char  *ss;                            /* pointer */   
   int   l1, l2;                         /* length counters */  #include <math.h>
   #include <stdio.h>
   l1 = strlen(path );                   /* length of path */  #include <stdlib.h>
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <string.h>
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #include <unistd.h>
   if ( ss == NULL ) {                   /* no directory, so use current */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #include <limits.h>
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #include <sys/types.h>
     /* get current working directory */  #include <sys/stat.h>
     /*    extern  char* getcwd ( char *buf , int len);*/  #include <errno.h>
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  extern int errno;
       return( GLOCK_ERROR_GETCWD );  
     }  /* #include <sys/time.h> */
     strcpy( name, path );               /* we've got it */  #include <time.h>
   } else {                              /* strip direcotry from path */  #include "timeval.h"
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  /* #include <libintl.h> */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* #define _(String) gettext (String) */
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define MAXLINE 256
     dirc[l1-l2] = 0;                    /* add zero */  
   }  #define GNUPLOTPROGRAM "gnuplot"
   l1 = strlen( dirc );                  /* length of directory */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   /*#ifdef windows  #define FILENAMELENGTH 132
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
   */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   ss = strrchr( name, '.' );            /* find last / */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   ss++;  
   strcpy(ext,ss);                       /* save extension */  #define NINTERVMAX 8
   l1= strlen( name);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   l2= strlen(ss)+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   strncpy( finame, name, l1-l2);  #define NCOVMAX 8 /* Maximum number of covariates */
   finame[l1-l2]= 0;  #define MAXN 20000
   return( 0 );                          /* we're done */  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************************************/  #ifdef UNIX
   #define DIRSEPARATOR '/'
 void replace_back_to_slash(char *s, char*t)  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   int i;  #else
   int lg=0;  #define DIRSEPARATOR '\\'
   i=0;  #define CHARSEPARATOR "\\"
   lg=strlen(t);  #define ODIRSEPARATOR '/'
   for(i=0; i<= lg; i++) {  #endif
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  /* $Id$ */
   }  /* $State$ */
 }  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 int nbocc(char *s, char occ)  char fullversion[]="$Revision$ $Date$";
 {  char strstart[80];
   int i,j=0;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int lg=20;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   i=0;  int nvar;
   lg=strlen(s);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(i=0; i<= lg; i++) {  int npar=NPARMAX;
   if  (s[i] == occ ) j++;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   return j;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 void cutv(char *u,char *v, char*t, char occ)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   /* cuts string t into u and v where u is ended by char occ excluding it  int jmin, jmax; /* min, max spacing between 2 waves */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int ijmin, ijmax; /* Individuals having jmin and jmax */
      gives u="abcedf" and v="ghi2j" */  int gipmx, gsw; /* Global variables on the number of contributions
   int i,lg,j,p=0;                     to the likelihood and the sum of weights (done by funcone)*/
   i=0;  int mle, weightopt;
   for(j=0; j<=strlen(t)-1; j++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   lg=strlen(t);  double jmean; /* Mean space between 2 waves */
   for(j=0; j<p; j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
     (u[j] = t[j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
      u[p]='\0';  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
    for(j=0; j<= lg; j++) {  double fretone; /* Only one call to likelihood */
     if (j>=(p+1))(v[j-p-1] = t[j]);  long ipmx; /* Number of contributions */
   }  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /********************** nrerror ********************/  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 void nrerror(char error_text[])  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   fprintf(stderr,"ERREUR ...\n");  FILE *ficreseij;
   fprintf(stderr,"%s\n",error_text);  char filerese[FILENAMELENGTH];
   exit(EXIT_FAILURE);  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
 /*********************** vector *******************/  FILE *ficrescveij;
 double *vector(int nl, int nh)  char filerescve[FILENAMELENGTH];
 {  FILE  *ficresvij;
   double *v;  char fileresv[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE  *ficresvpl;
   if (!v) nrerror("allocation failure in vector");  char fileresvpl[FILENAMELENGTH];
   return v-nl+NR_END;  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 /************************ free vector ******************/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /************************ivector *******************************/  char filelog[FILENAMELENGTH]; /* Log file */
 int *ivector(long nl,long nh)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   int *v;  char popfile[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return v-nl+NR_END;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /******************free ivector **************************/  extern int gettimeofday();
 void free_ivector(int *v, long nl, long nh)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   free((FREE_ARG)(v+nl-NR_END));  extern long time();
 }  char strcurr[80], strfor[80];
   
 /************************lvector *******************************/  char *endptr;
 long *lvector(long nl,long nh)  long lval;
 {  double dval;
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  #define NR_END 1
   if (!v) nrerror("allocation failure in ivector");  #define FREE_ARG char*
   return v-nl+NR_END;  #define FTOL 1.0e-10
 }  
   #define NRANSI
 /******************free lvector **************************/  #define ITMAX 200
 void free_lvector(long *v, long nl, long nh)  
 {  #define TOL 2.0e-4
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define CGOLD 0.3819660
   #define ZEPS 1.0e-10
 /******************* imatrix *******************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define GOLD 1.618034
 {   #define GLIMIT 100.0
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   #define TINY 1.0e-20
   int **m;   
     static double maxarg1,maxarg2;
   /* allocate pointers to rows */   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m -= nrl;   #define rint(a) floor(a+0.5)
     
     static double sqrarg;
   /* allocate rows and set pointers to them */   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   int agegomp= AGEGOMP;
   m[nrl] += NR_END;   
   m[nrl] -= ncl;   int imx;
     int stepm=1;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   /* Stepm, step in month: minimum step interpolation*/
     
   /* return pointer to array of pointers to rows */   int estepm;
   return m;   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }   
   int m,nb;
 /****************** free_imatrix *************************/  long *num;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       int **m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       long nch,ncl,nrh,nrl;   double **pmmij, ***probs;
      /* free an int matrix allocated by imatrix() */   double *ageexmed,*agecens;
 {   double dateintmean=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));   double *weight;
 }   int **s; /* Status */
   double *agedc, **covar, idx;
 /******************* matrix *******************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double **matrix(long nrl, long nrh, long ncl, long nch)  double *lsurv, *lpop, *tpop;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double **m;  double ftolhess; /* Tolerance for computing hessian */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /**************** split *************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m += NR_END;  {
   m -= nrl;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    char  *ss;                            /* pointer */
   m[nrl] += NR_END;    int   l1, l2;                         /* length counters */
   m[nrl] -= ncl;  
     l1 = strlen(path );                   /* length of path */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   return m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     if ( ss == NULL ) {                   /* no directory, so determine current directory */
    */      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*************************free matrix ************************/      /* get current working directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m+nrl-NR_END));      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /******************* ma3x *******************************/    } else {                              /* strip direcotry from path */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double ***m;      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m) nrerror("allocation failure 1 in matrix()");      printf(" DIRC2 = %s \n",dirc);
   m += NR_END;    }
   m -= nrl;    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if( dirc[l1-1] != DIRSEPARATOR ){
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      dirc[l1] =  DIRSEPARATOR;
   m[nrl] += NR_END;      dirc[l1+1] = 0;
   m[nrl] -= ncl;      printf(" DIRC3 = %s \n",dirc);
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      ss++;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      strcpy(ext,ss);                     /* save extension */
   m[nrl][ncl] += NR_END;      l1= strlen( name);
   m[nrl][ncl] -= nll;      l2= strlen(ss)+1;
   for (j=ncl+1; j<=nch; j++)       strncpy( finame, name, l1-l2);
     m[nrl][j]=m[nrl][j-1]+nlay;      finame[l1-l2]= 0;
       }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    return( 0 );                          /* we're done */
     for (j=ncl+1; j<=nch; j++)   }
       m[i][j]=m[i][j-1]+nlay;  
   }  
   return m;   /******************************************/
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  void replace_back_to_slash(char *s, char*t)
   */  {
 }    int i;
     int lg=0;
 /*************************free ma3x ************************/    i=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      (s[i] = t[i]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG)(m+nrl-NR_END));    }
 }  }
   
 /*************** function subdirf ***********/  int nbocc(char *s, char occ)
 char *subdirf(char fileres[])  {
 {    int i,j=0;
   /* Caution optionfilefiname is hidden */    int lg=20;
   strcpy(tmpout,optionfilefiname);    i=0;
   strcat(tmpout,"/"); /* Add to the right */    lg=strlen(s);
   strcat(tmpout,fileres);    for(i=0; i<= lg; i++) {
   return tmpout;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /*************** function subdirf2 ***********/  }
 char *subdirf2(char fileres[], char *preop)  
 {  void cutv(char *u,char *v, char*t, char occ)
     {
   /* Caution optionfilefiname is hidden */    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   strcpy(tmpout,optionfilefiname);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   strcat(tmpout,"/");       gives u="abcedf" and v="ghi2j" */
   strcat(tmpout,preop);    int i,lg,j,p=0;
   strcat(tmpout,fileres);    i=0;
   return tmpout;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /*************** function subdirf3 ***********/  
 char *subdirf3(char fileres[], char *preop, char *preop2)    lg=strlen(t);
 {    for(j=0; j<p; j++) {
         (u[j] = t[j]);
   /* Caution optionfilefiname is hidden */    }
   strcpy(tmpout,optionfilefiname);       u[p]='\0';
   strcat(tmpout,"/");  
   strcat(tmpout,preop);     for(j=0; j<= lg; j++) {
   strcat(tmpout,preop2);      if (j>=(p+1))(v[j-p-1] = t[j]);
   strcat(tmpout,fileres);    }
   return tmpout;  }
 }  
   /********************** nrerror ********************/
 /***************** f1dim *************************/  
 extern int ncom;   void nrerror(char error_text[])
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);     fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
 double f1dim(double x)     exit(EXIT_FAILURE);
 {   }
   int j;   /*********************** vector *******************/
   double f;  double *vector(int nl, int nh)
   double *xt;   {
      double *v;
   xt=vector(1,ncom);     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     if (!v) nrerror("allocation failure in vector");
   f=(*nrfunc)(xt);     return v-nl+NR_END;
   free_vector(xt,1,ncom);   }
   return f;   
 }   /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     free((FREE_ARG)(v+nl-NR_END));
 {   }
   int iter;   
   double a,b,d,etemp;  /************************ivector *******************************/
   double fu,fv,fw,fx;  int *ivector(long nl,long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;     int *v;
   double e=0.0;     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   a=(ax < cx ? ax : cx);     return v-nl+NR_END;
   b=(ax > cx ? ax : cx);   }
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);   /******************free ivector **************************/
   for (iter=1;iter<=ITMAX;iter++) {   void free_ivector(int *v, long nl, long nh)
     xm=0.5*(a+b);   {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     free((FREE_ARG)(v+nl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  /************************lvector *******************************/
 #ifdef DEBUG  long *lvector(long nl,long nh)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    long *v;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #endif    if (!v) nrerror("allocation failure in ivector");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     return v-nl+NR_END;
       *xmin=x;   }
       return fx;   
     }   /******************free lvector **************************/
     ftemp=fu;  void free_lvector(long *v, long nl, long nh)
     if (fabs(e) > tol1) {   {
       r=(x-w)*(fx-fv);     free((FREE_ARG)(v+nl-NR_END));
       q=(x-v)*(fx-fw);   }
       p=(x-v)*q-(x-w)*r;   
       q=2.0*(q-r);   /******************* imatrix *******************************/
       if (q > 0.0) p = -p;   int **imatrix(long nrl, long nrh, long ncl, long nch)
       q=fabs(q);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
       etemp=e;   {
       e=d;     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     int **m;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {     /* allocate pointers to rows */
         d=p/q;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
         u=x+d;     if (!m) nrerror("allocation failure 1 in matrix()");
         if (u-a < tol2 || b-u < tol2)     m += NR_END;
           d=SIGN(tol1,xm-x);     m -= nrl;
       }    
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     /* allocate rows and set pointers to them */
     }     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fu=(*f)(u);     m[nrl] += NR_END;
     if (fu <= fx) {     m[nrl] -= ncl;
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
         SHFT(fv,fw,fx,fu)    
         } else {     /* return pointer to array of pointers to rows */
           if (u < x) a=u; else b=u;     return m;
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   /****************** free_imatrix *************************/
             fv=fw;   void free_imatrix(m,nrl,nrh,ncl,nch)
             fw=fu;         int **m;
           } else if (fu <= fv || v == x || v == w) {         long nch,ncl,nrh,nrl;
             v=u;        /* free an int matrix allocated by imatrix() */
             fv=fu;   {
           }     free((FREE_ARG) (m[nrl]+ncl-NR_END));
         }     free((FREE_ARG) (m+nrl-NR_END));
   }   }
   nrerror("Too many iterations in brent");   
   *xmin=x;   /******************* matrix *******************************/
   return fx;   double **matrix(long nrl, long nrh, long ncl, long nch)
 }   {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /****************** mnbrak ***********************/    double **m;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             double (*func)(double))     if (!m) nrerror("allocation failure 1 in matrix()");
 {     m += NR_END;
   double ulim,u,r,q, dum;    m -= nrl;
   double fu;   
      m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fa=(*func)(*ax);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fb=(*func)(*bx);     m[nrl] += NR_END;
   if (*fb > *fa) {     m[nrl] -= ncl;
     SHFT(dum,*ax,*bx,dum)   
       SHFT(dum,*fb,*fa,dum)     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }     return m;
   *cx=(*bx)+GOLD*(*bx-*ax);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   *fc=(*func)(*cx);      */
   while (*fb > *fc) {   }
     r=(*bx-*ax)*(*fb-*fc);   
     q=(*bx-*cx)*(*fb-*fa);   /*************************free matrix ************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   {
     ulim=(*bx)+GLIMIT*(*cx-*bx);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {     free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);   }
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);   /******************* ma3x *******************************/
       if (fu < *fc) {   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   {
           SHFT(*fb,*fc,fu,(*func)(u))     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           }     double ***m;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);     if (!m) nrerror("allocation failure 1 in matrix()");
     } else {     m += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);     m -= nrl;
       fu=(*func)(u);   
     }     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     SHFT(*ax,*bx,*cx,u)     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(*fa,*fb,*fc,fu)     m[nrl] += NR_END;
       }     m[nrl] -= ncl;
 }   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** linmin ************************/  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 int ncom;     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 double *pcom,*xicom;    m[nrl][ncl] += NR_END;
 double (*nrfunc)(double []);     m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   double brent(double ax, double bx, double cx,     for (i=nrl+1; i<=nrh; i++) {
                double (*f)(double), double tol, double *xmin);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double f1dim(double x);       for (j=ncl+1; j<=nch; j++)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,         m[i][j]=m[i][j-1]+nlay;
               double *fc, double (*func)(double));     }
   int j;     return m;
   double xx,xmin,bx,ax;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double fx,fb,fa;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      */
   ncom=n;   }
   pcom=vector(1,n);   
   xicom=vector(1,n);   /*************************free ma3x ************************/
   nrfunc=func;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=n;j++) {   {
     pcom[j]=p[j];     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     xicom[j]=xi[j];     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }     free((FREE_ARG)(m+nrl-NR_END));
   ax=0.0;   }
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   /*************** function subdirf ***********/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   char *subdirf(char fileres[])
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    /* Caution optionfilefiname is hidden */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/"); /* Add to the right */
   for (j=1;j<=n;j++) {     strcat(tmpout,fileres);
     xi[j] *= xmin;     return tmpout;
     p[j] += xi[j];   }
   }   
   free_vector(xicom,1,n);   /*************** function subdirf2 ***********/
   free_vector(pcom,1,n);   char *subdirf2(char fileres[], char *preop)
 }   {
    
 char *asc_diff_time(long time_sec, char ascdiff[])    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   long sec_left, days, hours, minutes;    strcat(tmpout,"/");
   days = (time_sec) / (60*60*24);    strcat(tmpout,preop);
   sec_left = (time_sec) % (60*60*24);    strcat(tmpout,fileres);
   hours = (sec_left) / (60*60) ;    return tmpout;
   sec_left = (sec_left) %(60*60);  }
   minutes = (sec_left) /60;  
   sec_left = (sec_left) % (60);  /*************** function subdirf3 ***********/
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    char *subdirf3(char fileres[], char *preop, char *preop2)
   return ascdiff;  {
 }   
     /* Caution optionfilefiname is hidden */
 /*************** powell ************************/    strcpy(tmpout,optionfilefiname);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     strcat(tmpout,"/");
             double (*func)(double []))     strcat(tmpout,preop);
 {     strcat(tmpout,preop2);
   void linmin(double p[], double xi[], int n, double *fret,     strcat(tmpout,fileres);
               double (*func)(double []));     return tmpout;
   int i,ibig,j;   }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /***************** f1dim *************************/
   double *xits;  extern int ncom;
   int niterf, itmp;  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []);
   pt=vector(1,n);    
   ptt=vector(1,n);   double f1dim(double x)
   xit=vector(1,n);   {
   xits=vector(1,n);     int j;
   *fret=(*func)(p);     double f;
   for (j=1;j<=n;j++) pt[j]=p[j];     double *xt;
   for (*iter=1;;++(*iter)) {    
     fp=(*fret);     xt=vector(1,ncom);
     ibig=0;     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     del=0.0;     f=(*nrfunc)(xt);
     last_time=curr_time;    free_vector(xt,1,ncom);
     (void) gettimeofday(&curr_time,&tzp);    return f;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);  
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);  /*****************brent *************************/
     for (i=1;i<=n;i++) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       printf(" %d %.12f",i, p[i]);  {
       fprintf(ficlog," %d %.12lf",i, p[i]);    int iter;
       fprintf(ficrespow," %.12lf", p[i]);    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
     printf("\n");    double ftemp;
     fprintf(ficlog,"\n");    double p,q,r,tol1,tol2,u,v,w,x,xm;
     fprintf(ficrespow,"\n");fflush(ficrespow);    double e=0.0;
     if(*iter <=3){   
       tm = *localtime(&curr_time.tv_sec);    a=(ax < cx ? ax : cx);
       strcpy(strcurr,asctime(&tmf));    b=(ax > cx ? ax : cx);
 /*       asctime_r(&tm,strcurr); */    x=w=v=bx;
       forecast_time=curr_time;    fw=fv=fx=(*f)(x);
       itmp = strlen(strcurr);    for (iter=1;iter<=ITMAX;iter++) {
       if(strcurr[itmp-1]=='\n')      xm=0.5*(a+b);
         strcurr[itmp-1]='\0';      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      printf(".");fflush(stdout);
       for(niterf=10;niterf<=30;niterf+=10){      fprintf(ficlog,".");fflush(ficlog);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  #ifdef DEBUG
         tmf = *localtime(&forecast_time.tv_sec);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*      asctime_r(&tmf,strfor); */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         strcpy(strfor,asctime(&tmf));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         itmp = strlen(strfor);  #endif
         if(strfor[itmp-1]=='\n')      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
         strfor[itmp-1]='\0';        *xmin=x;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        return fx;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      }
       }      ftemp=fu;
     }      if (fabs(e) > tol1) {
     for (i=1;i<=n;i++) {         r=(x-w)*(fx-fv);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         q=(x-v)*(fx-fw);
       fptt=(*fret);         p=(x-v)*q-(x-w)*r;
 #ifdef DEBUG        q=2.0*(q-r);
       printf("fret=%lf \n",*fret);        if (q > 0.0) p = -p;
       fprintf(ficlog,"fret=%lf \n",*fret);        q=fabs(q);
 #endif        etemp=e;
       printf("%d",i);fflush(stdout);        e=d;
       fprintf(ficlog,"%d",i);fflush(ficlog);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       linmin(p,xit,n,fret,func);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
       if (fabs(fptt-(*fret)) > del) {         else {
         del=fabs(fptt-(*fret));           d=p/q;
         ibig=i;           u=x+d;
       }           if (u-a < tol2 || b-u < tol2)
 #ifdef DEBUG            d=SIGN(tol1,xm-x);
       printf("%d %.12e",i,(*fret));        }
       fprintf(ficlog,"%d %.12e",i,(*fret));      } else {
       for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      }
         printf(" x(%d)=%.12e",j,xit[j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      fu=(*f)(u);
       }      if (fu <= fx) {
       for(j=1;j<=n;j++) {        if (u >= x) a=x; else b=x;
         printf(" p=%.12e",p[j]);        SHFT(v,w,x,u)
         fprintf(ficlog," p=%.12e",p[j]);          SHFT(fv,fw,fx,fu)
       }          } else {
       printf("\n");            if (u < x) a=u; else b=u;
       fprintf(ficlog,"\n");            if (fu <= fw || w == x) {
 #endif              v=w;
     }               w=u;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              fv=fw;
 #ifdef DEBUG              fw=fu;
       int k[2],l;            } else if (fu <= fv || v == x || v == w) {
       k[0]=1;              v=u;
       k[1]=-1;              fv=fu;
       printf("Max: %.12e",(*func)(p));            }
       fprintf(ficlog,"Max: %.12e",(*func)(p));          }
       for (j=1;j<=n;j++) {    }
         printf(" %.12e",p[j]);    nrerror("Too many iterations in brent");
         fprintf(ficlog," %.12e",p[j]);    *xmin=x;
       }    return fx;
       printf("\n");  }
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {  /****************** mnbrak ***********************/
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              double (*func)(double))
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    double ulim,u,r,q, dum;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double fu;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));   
       }    *fa=(*func)(*ax);
 #endif    *fb=(*func)(*bx);
     if (*fb > *fa) {
       SHFT(dum,*ax,*bx,dum)
       free_vector(xit,1,n);         SHFT(dum,*fb,*fa,dum)
       free_vector(xits,1,n);         }
       free_vector(ptt,1,n);     *cx=(*bx)+GOLD*(*bx-*ax);
       free_vector(pt,1,n);     *fc=(*func)(*cx);
       return;     while (*fb > *fc) {
     }       r=(*bx-*ax)*(*fb-*fc);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       q=(*bx-*cx)*(*fb-*fa);
     for (j=1;j<=n;j++) {       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       ptt[j]=2.0*p[j]-pt[j];         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       xit[j]=p[j]-pt[j];       ulim=(*bx)+GLIMIT*(*cx-*bx);
       pt[j]=p[j];       if ((*bx-u)*(u-*cx) > 0.0) {
     }         fu=(*func)(u);
     fptt=(*func)(ptt);       } else if ((*cx-u)*(u-ulim) > 0.0) {
     if (fptt < fp) {         fu=(*func)(u);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         if (fu < *fc) {
       if (t < 0.0) {           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
         linmin(p,xit,n,fret,func);             SHFT(*fb,*fc,fu,(*func)(u))
         for (j=1;j<=n;j++) {             }
           xi[j][ibig]=xi[j][n];       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
           xi[j][n]=xit[j];         u=ulim;
         }        fu=(*func)(u);
 #ifdef DEBUG      } else {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        u=(*cx)+GOLD*(*cx-*bx);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fu=(*func)(u);
         for(j=1;j<=n;j++){      }
           printf(" %.12e",xit[j]);      SHFT(*ax,*bx,*cx,u)
           fprintf(ficlog," %.12e",xit[j]);        SHFT(*fa,*fb,*fc,fu)
         }        }
         printf("\n");  }
         fprintf(ficlog,"\n");  
 #endif  /*************** linmin ************************/
       }  
     }   int ncom;
   }   double *pcom,*xicom;
 }   double (*nrfunc)(double []);
    
 /**** Prevalence limit (stable prevalence)  ****************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double brent(double ax, double bx, double cx,
 {                 double (*f)(double), double tol, double *xmin);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double f1dim(double x);
      matrix by transitions matrix until convergence is reached */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
                 double *fc, double (*func)(double));
   int i, ii,j,k;    int j;
   double min, max, maxmin, maxmax,sumnew=0.;    double xx,xmin,bx,ax;
   double **matprod2();    double fx,fb,fa;
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;    ncom=n;
   double agefin, delaymax=50 ; /* Max number of years to converge */    pcom=vector(1,n);
     xicom=vector(1,n);
   for (ii=1;ii<=nlstate+ndeath;ii++)    nrfunc=func;
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      pcom[j]=p[j];
     }      xicom[j]=xi[j];
     }
    cov[1]=1.;    ax=0.0;
      xx=1.0;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     newm=savm;  #ifdef DEBUG
     /* Covariates have to be included here again */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      cov[2]=agefin;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     #endif
       for (k=1; k<=cptcovn;k++) {    for (j=1;j<=n;j++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xi[j] *= xmin;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      p[j] += xi[j];
       }    }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_vector(xicom,1,n);
       for (k=1; k<=cptcovprod;k++)    free_vector(pcom,1,n);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char *asc_diff_time(long time_sec, char ascdiff[])
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    long sec_left, days, hours, minutes;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     savm=oldm;    hours = (sec_left) / (60*60) ;
     oldm=newm;    sec_left = (sec_left) %(60*60);
     maxmax=0.;    minutes = (sec_left) /60;
     for(j=1;j<=nlstate;j++){    sec_left = (sec_left) % (60);
       min=1.;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       max=0.;    return ascdiff;
       for(i=1; i<=nlstate; i++) {  }
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*************** powell ************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         max=FMAX(max,prlim[i][j]);              double (*func)(double []))
         min=FMIN(min,prlim[i][j]);  {
       }    void linmin(double p[], double xi[], int n, double *fret,
       maxmin=max-min;                double (*func)(double []));
       maxmax=FMAX(maxmax,maxmin);    int i,ibig,j;
     }    double del,t,*pt,*ptt,*xit;
     if(maxmax < ftolpl){    double fp,fptt;
       return prlim;    double *xits;
     }    int niterf, itmp;
   }  
 }    pt=vector(1,n);
     ptt=vector(1,n);
 /*************** transition probabilities ***************/     xit=vector(1,n);
     xits=vector(1,n);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *fret=(*func)(p);
 {    for (j=1;j<=n;j++) pt[j]=p[j];
   double s1, s2;    for (*iter=1;;++(*iter)) {
   /*double t34;*/      fp=(*fret);
   int i,j,j1, nc, ii, jj;      ibig=0;
       del=0.0;
     for(i=1; i<= nlstate; i++){      last_time=curr_time;
     for(j=1; j<i;j++){      (void) gettimeofday(&curr_time,&tzp);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         /*s2 += param[i][j][nc]*cov[nc];*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
       ps[i][j]=s2;        fprintf(ficlog," %d %.12lf",i, p[i]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      printf("\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fprintf(ficrespow,"\n");fflush(ficrespow);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       ps[i][j]=s2;        strcpy(strcurr,asctime(&tm));
     }  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time;
     /*ps[3][2]=1;*/        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for(i=1; i<= nlstate; i++){          strcurr[itmp-1]='\0';
      s1=0;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(j=1; j<i; j++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       s1+=exp(ps[i][j]);        for(niterf=10;niterf<=30;niterf+=10){
     for(j=i+1; j<=nlstate+ndeath; j++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       s1+=exp(ps[i][j]);          tmf = *localtime(&forecast_time.tv_sec);
     ps[i][i]=1./(s1+1.);  /*      asctime_r(&tmf,strfor); */
     for(j=1; j<i; j++)          strcpy(strfor,asctime(&tmf));
       ps[i][j]= exp(ps[i][j])*ps[i][i];          itmp = strlen(strfor);
     for(j=i+1; j<=nlstate+ndeath; j++)          if(strfor[itmp-1]=='\n')
       ps[i][j]= exp(ps[i][j])*ps[i][i];          strfor[itmp-1]='\0';
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   } /* end i */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      }
     for(jj=1; jj<= nlstate+ndeath; jj++){      for (i=1;i<=n;i++) {
       ps[ii][jj]=0;        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       ps[ii][ii]=1;        fptt=(*fret);
     }  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        printf("%d",i);fflush(stdout);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"%d",i);fflush(ficlog);
      printf("%lf ",ps[ii][jj]);        linmin(p,xit,n,fret,func);
    }        if (fabs(fptt-(*fret)) > del) {
     printf("\n ");          del=fabs(fptt-(*fret));
     }          ibig=i;
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*  #ifdef DEBUG
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        printf("%d %.12e",i,(*fret));
   goto end;*/        fprintf(ficlog,"%d %.12e",i,(*fret));
     return ps;        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /**************** Product of 2 matrices ******************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          fprintf(ficlog," p=%.12e",p[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        }
   /* in, b, out are matrice of pointers which should have been initialized         printf("\n");
      before: only the contents of out is modified. The function returns        fprintf(ficlog,"\n");
      a pointer to pointers identical to out */  #endif
   long i, j, k;      }
   for(i=nrl; i<= nrh; i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUG
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        int k[2],l;
         out[i][k] +=in[i][j]*b[j][k];        k[0]=1;
         k[1]=-1;
   return out;        printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 /************* Higher Matrix Product ***************/          fprintf(ficlog," %.12e",p[j]);
         }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        printf("\n");
 {        fprintf(ficlog,"\n");
   /* Computes the transition matrix starting at age 'age' over         for(l=0;l<=1;l++) {
      'nhstepm*hstepm*stepm' months (i.e. until          for (j=1;j<=n;j++) {
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      nhstepm*hstepm matrices.             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      (typically every 2 years instead of every month which is too big           }
      for the memory).          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      Model is determined by parameters x and covariates have to be           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      included manually here.         }
   #endif
      */  
   
   int i, j, d, h, k;        free_vector(xit,1,n);
   double **out, cov[NCOVMAX];        free_vector(xits,1,n);
   double **newm;        free_vector(ptt,1,n);
         free_vector(pt,1,n);
   /* Hstepm could be zero and should return the unit matrix */        return;
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
       oldm[i][j]=(i==j ? 1.0 : 0.0);      for (j=1;j<=n;j++) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);        ptt[j]=2.0*p[j]-pt[j];
     }        xit[j]=p[j]-pt[j];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        pt[j]=p[j];
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){      fptt=(*func)(ptt);
       newm=savm;      if (fptt < fp) {
       /* Covariates have to be included here again */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       cov[1]=1.;        if (t < 0.0) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          linmin(p,xit,n,fret,func);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovage;k++)            xi[j][ibig]=xi[j][n];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            xi[j][n]=xit[j];
       for (k=1; k<=cptcovprod;k++)          }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          for(j=1;j<=n;j++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            printf(" %.12e",xit[j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,             fprintf(ficlog," %.12e",xit[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          }
       savm=oldm;          printf("\n");
       oldm=newm;          fprintf(ficlog,"\n");
     }  #endif
     for(i=1; i<=nlstate+ndeath; i++)        }
       for(j=1;j<=nlstate+ndeath;j++) {      }
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  /**** Prevalence limit (stable or period prevalence)  ****************/
   } /* end h */  
   return po;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /*************** log-likelihood *************/  
 double func( double *x)    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   int i, ii, j, k, mi, d, kk;    double **matprod2();
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double **out, cov[NCOVMAX], **pmij();
   double **out;    double **newm;
   double sw; /* Sum of weights */    double agefin, delaymax=50 ; /* Max number of years to converge */
   double lli; /* Individual log likelihood */  
   int s1, s2;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double bbh, survp;      for (j=1;j<=nlstate+ndeath;j++){
   long ipmx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*extern weight */      }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/     cov[1]=1.;
   /*for(i=1;i<imx;i++)    
     printf(" %d\n",s[4][i]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   cov[1]=1.;      newm=savm;
       /* Covariates have to be included here again */
   for(k=1; k<=nlstate; k++) ll[k]=0.;       cov[2]=agefin;
    
   if(mle==1){        for (k=1; k<=cptcovn;k++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for(mi=1; mi<= wav[i]-1; mi++){        }
         for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovprod;k++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for(d=0; d<dh[mi][i]; d++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           newm=savm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      savm=oldm;
           }      oldm=newm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      maxmax=0.;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(j=1;j<=nlstate;j++){
           savm=oldm;        min=1.;
           oldm=newm;        max=0.;
         } /* end mult */        for(i=1; i<=nlstate; i++) {
                 sumnew=0;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         /* But now since version 0.9 we anticipate for bias and large stepm.          prlim[i][j]= newm[i][j]/(1-sumnew);
          * If stepm is larger than one month (smallest stepm) and if the exact delay           max=FMAX(max,prlim[i][j]);
          * (in months) between two waves is not a multiple of stepm, we rounded to           min=FMIN(min,prlim[i][j]);
          * the nearest (and in case of equal distance, to the lowest) interval but now        }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        maxmin=max-min;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        maxmax=FMAX(maxmax,maxmin);
          * probability in order to take into account the bias as a fraction of the way      }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      if(maxmax < ftolpl){
          * -stepm/2 to stepm/2 .        return prlim;
          * For stepm=1 the results are the same as for previous versions of Imach.      }
          * For stepm > 1 the results are less biased than in previous versions.     }
          */  }
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];  /*************** transition probabilities ***************/
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          * is higher than the multiple of stepm and negative otherwise.  {
          */    double s1, s2;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    /*double t34;*/
         if( s2 > nlstate){     int i,j,j1, nc, ii, jj;
           /* i.e. if s2 is a death state and if the date of death is known then the contribution  
              to the likelihood is the probability to die between last step unit time and current       for(i=1; i<= nlstate; i++){
              step unit time, which is also the differences between probability to die before dh         for(j=1; j<i;j++){
              and probability to die before dh-stepm .           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              In version up to 0.92 likelihood was computed            /*s2 += param[i][j][nc]*cov[nc];*/
         as if date of death was unknown. Death was treated as any other            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         health state: the date of the interview describes the actual state  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         and not the date of a change in health state. The former idea was          }
         to consider that at each interview the state was recorded          ps[i][j]=s2;
         (healthy, disable or death) and IMaCh was corrected; but when we  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         introduced the exact date of death then we should have modified        }
         the contribution of an exact death to the likelihood. This new        for(j=i+1; j<=nlstate+ndeath;j++){
         contribution is smaller and very dependent of the step unit          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         stepm. It is no more the probability to die between last interview            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         and month of death but the probability to survive from last  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         interview up to one month before death multiplied by the          }
         probability to die within a month. Thanks to Chris          ps[i][j]=s2;
         Jackson for correcting this bug.  Former versions increased        }
         mortality artificially. The bad side is that we add another loop      }
         which slows down the processing. The difference can be up to 10%      /*ps[3][2]=1;*/
         lower mortality.     
           */      for(i=1; i<= nlstate; i++){
           lli=log(out[s1][s2] - savm[s1][s2]);        s1=0;
         }else{        for(j=1; j<i; j++)
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          s1+=exp(ps[i][j]);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        for(j=i+1; j<=nlstate+ndeath; j++)
         }           s1+=exp(ps[i][j]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        ps[i][i]=1./(s1+1.);
         /*if(lli ==000.0)*/        for(j=1; j<i; j++)
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         ipmx +=1;        for(j=i+1; j<=nlstate+ndeath; j++)
         sw += weight[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end of wave */      } /* end i */
     } /* end of individual */     
   }  else if(mle==2){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ps[ii][jj]=0;
       for(mi=1; mi<= wav[i]-1; mi++){          ps[ii][ii]=1;
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);     
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(d=0; d<=dh[mi][i]; d++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           newm=savm;  /*         printf("ddd %lf ",ps[ii][jj]); */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       } */
           for (kk=1; kk<=cptcovage;kk++) {  /*       printf("\n "); */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*        } */
           }  /*        printf("\n ");printf("%lf ",cov[2]); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,         /*
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           savm=oldm;        goto end;*/
           oldm=newm;      return ps;
         } /* end mult */  }
         
         s1=s[mw[mi][i]][i];  /**************** Product of 2 matrices ******************/
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  {
         ipmx +=1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         sw += weight[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* in, b, out are matrice of pointers which should have been initialized
       } /* end of wave */       before: only the contents of out is modified. The function returns
     } /* end of individual */       a pointer to pointers identical to out */
   }  else if(mle==3){  /* exponential inter-extrapolation */    long i, j, k;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for(i=nrl; i<= nrh; i++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(k=ncolol; k<=ncoloh; k++)
       for(mi=1; mi<= wav[i]-1; mi++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for (ii=1;ii<=nlstate+ndeath;ii++)          out[i][k] +=in[i][j]*b[j][k];
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return out;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
           }  
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  /************* Higher Matrix Product ***************/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
           }    /* Computes the transition matrix starting at age 'age' over
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       'nhstepm*hstepm*stepm' months (i.e. until
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           savm=oldm;       nhstepm*hstepm matrices.
           oldm=newm;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         } /* end mult */       (typically every 2 years instead of every month which is too big
              for the memory).
         s1=s[mw[mi][i]][i];       Model is determined by parameters x and covariates have to be
         s2=s[mw[mi+1][i]][i];       included manually here.
         bbh=(double)bh[mi][i]/(double)stepm;   
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */       */
         ipmx +=1;  
         sw += weight[i];    int i, j, d, h, k;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out, cov[NCOVMAX];
       } /* end of wave */    double **newm;
     } /* end of individual */  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */    /* Hstepm could be zero and should return the unit matrix */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1;i<=nlstate+ndeath;i++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (j=1;j<=nlstate+ndeath;j++){
       for(mi=1; mi<= wav[i]-1; mi++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
         for(d=0; d<dh[mi][i]; d++){        newm=savm;
           newm=savm;        /* Covariates have to be included here again */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        cov[1]=1.;
           for (kk=1; kk<=cptcovage;kk++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
                   cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovprod;k++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           savm=oldm;  
           oldm=newm;  
         } /* end mult */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         s1=s[mw[mi][i]][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         if( s2 > nlstate){         savm=oldm;
           lli=log(out[s1][s2] - savm[s1][s2]);        oldm=newm;
         }else{      }
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
         ipmx +=1;          po[i][j][h]=newm[i][j];
         sw += weight[i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        }
       } /* end of wave */    } /* end h */
     } /* end of individual */    return po;
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  /*************** log-likelihood *************/
         for (ii=1;ii<=nlstate+ndeath;ii++)  double func( double *x)
           for (j=1;j<=nlstate+ndeath;j++){  {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int i, ii, j, k, mi, d, kk;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           }    double **out;
         for(d=0; d<dh[mi][i]; d++){    double sw; /* Sum of weights */
           newm=savm;    double lli; /* Individual log likelihood */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int s1, s2;
           for (kk=1; kk<=cptcovage;kk++) {    double bbh, survp;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    long ipmx;
           }    /*extern weight */
             /* We are differentiating ll according to initial status */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*for(i=1;i<imx;i++)
           savm=oldm;      printf(" %d\n",s[4][i]);
           oldm=newm;    */
         } /* end mult */    cov[1]=1.;
         
         s1=s[mw[mi][i]][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         s2=s[mw[mi+1][i]][i];  
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    if(mle==1){
         ipmx +=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         sw += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(mi=1; mi<= wav[i]-1; mi++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
       } /* end of wave */            for (j=1;j<=nlstate+ndeath;j++){
     } /* end of individual */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End of if */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          for(d=0; d<dh[mi][i]; d++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            newm=savm;
   return -l;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*************** log-likelihood *************/            }
 double funcone( double *x)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Same as likeli but slower because of a lot of printf and if */            savm=oldm;
   int i, ii, j, k, mi, d, kk;            oldm=newm;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          } /* end mult */
   double **out;       
   double lli; /* Individual log likelihood */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double llt;          /* But now since version 0.9 we anticipate for bias at large stepm.
   int s1, s2;           * If stepm is larger than one month (smallest stepm) and if the exact delay
   double bbh, survp;           * (in months) between two waves is not a multiple of stepm, we rounded to
   /*extern weight */           * the nearest (and in case of equal distance, to the lowest) interval but now
   /* We are differentiating ll according to initial status */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /*for(i=1;i<imx;i++)            * probability in order to take into account the bias as a fraction of the way
     printf(" %d\n",s[4][i]);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   */           * -stepm/2 to stepm/2 .
   cov[1]=1.;           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions.
   for(k=1; k<=nlstate; k++) ll[k]=0.;           */
           s1=s[mw[mi][i]][i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          bbh=(double)bh[mi][i]/(double)stepm;
     for(mi=1; mi<= wav[i]-1; mi++){          /* bias bh is positive if real duration
       for (ii=1;ii<=nlstate+ndeath;ii++)           * is higher than the multiple of stepm and negative otherwise.
         for (j=1;j<=nlstate+ndeath;j++){           */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          if( s2 > nlstate){
         }            /* i.e. if s2 is a death state and if the date of death is known
       for(d=0; d<dh[mi][i]; d++){               then the contribution to the likelihood is the probability to
         newm=savm;               die between last step unit time and current  step unit time,
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               which is also equal to probability to die before dh
         for (kk=1; kk<=cptcovage;kk++) {               minus probability to die before dh-stepm .
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          health state: the date of the interview describes the actual state
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          and not the date of a change in health state. The former idea was
         savm=oldm;          to consider that at each interview the state was recorded
         oldm=newm;          (healthy, disable or death) and IMaCh was corrected; but when we
       } /* end mult */          introduced the exact date of death then we should have modified
                 the contribution of an exact death to the likelihood. This new
       s1=s[mw[mi][i]][i];          contribution is smaller and very dependent of the step unit
       s2=s[mw[mi+1][i]][i];          stepm. It is no more the probability to die between last interview
       bbh=(double)bh[mi][i]/(double)stepm;           and month of death but the probability to survive from last
       /* bias is positive if real duration          interview up to one month before death multiplied by the
        * is higher than the multiple of stepm and negative otherwise.          probability to die within a month. Thanks to Chris
        */          Jackson for correcting this bug.  Former versions increased
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          mortality artificially. The bad side is that we add another loop
         lli=log(out[s1][s2] - savm[s1][s2]);          which slows down the processing. The difference can be up to 10%
       } else if (mle==1){          lower mortality.
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            */
       } else if(mle==2){            lli=log(out[s1][s2] - savm[s1][s2]);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  
       } else if(mle==3){  /* exponential inter-extrapolation */  
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          } else if  (s2==-2) {
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            for (j=1,survp=0. ; j<=nlstate; j++)
         lli=log(out[s1][s2]); /* Original formula */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            /*survp += out[s1][j]; */
         lli=log(out[s1][s2]); /* Original formula */            lli= log(survp);
       } /* End of if */          }
       ipmx +=1;         
       sw += weight[i];          else if  (s2==-4) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=3,survp=0. ; j<=nlstate; j++)  
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(globpr){            lli= log(survp);
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          }
  %10.6f %10.6f %10.6f ", \  
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          else if  (s2==-5) {
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            for (j=1,survp=0. ; j<=2; j++)  
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           llt +=ll[k]*gipmx/gsw;            lli= log(survp);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          }
         }         
         fprintf(ficresilk," %10.6f\n", -llt);          else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     } /* end of wave */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   } /* end of individual */          }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*if(lli ==000.0)*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   if(globpr==0){ /* First time we count the contributions and weights */          ipmx +=1;
     gipmx=ipmx;          sw += weight[i];
     gsw=sw;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   return -l;      } /* end of individual */
 }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*************** function likelione ***********/        for(mi=1; mi<= wav[i]-1; mi++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* This routine should help understanding what is done with               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      the selection of individuals/waves and              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      to check the exact contribution to the likelihood.            }
      Plotting could be done.          for(d=0; d<=dh[mi][i]; d++){
    */            newm=savm;
   int k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   if(*globpri !=0){ /* Just counts and sums, no printings */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     strcpy(fileresilk,"ilk");             }
     strcat(fileresilk,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Problem with resultfile: %s\n", fileresilk);            savm=oldm;
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            oldm=newm;
     }          } /* end mult */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");       
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          s1=s[mw[mi][i]][i];
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          s2=s[mw[mi+1][i]][i];
     for(k=1; k<=nlstate; k++)           bbh=(double)bh[mi][i]/(double)stepm;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   *fretone=(*funcone)(p);        } /* end of wave */
   if(*globpri !=0){      } /* end of individual */
     fclose(ficresilk);    }  else if(mle==3){  /* exponential inter-extrapolation */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fflush(fichtm);         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }         for(mi=1; mi<= wav[i]-1; mi++){
   return;          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Maximum Likelihood Estimation ***************/            }
           for(d=0; d<dh[mi][i]; d++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,j, iter;            for (kk=1; kk<=cptcovage;kk++) {
   double **xi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double fret;            }
   double fretone; /* Only one call to likelihood */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char filerespow[FILENAMELENGTH];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xi=matrix(1,npar,1,npar);            savm=oldm;
   for (i=1;i<=npar;i++)            oldm=newm;
     for (j=1;j<=npar;j++)          } /* end mult */
       xi[i][j]=(i==j ? 1.0 : 0.0);       
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          s1=s[mw[mi][i]][i];
   strcpy(filerespow,"pow");           s2=s[mw[mi+1][i]][i];
   strcat(filerespow,fileres);          bbh=(double)bh[mi][i]/(double)stepm;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf("Problem with resultfile: %s\n", filerespow);          ipmx +=1;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        } /* end of wave */
   for (i=1;i<=nlstate;i++)      } /* end of individual */
     for(j=1;j<=nlstate+ndeath;j++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficrespow,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   powell(p,xi,npar,ftol,&iter,&fret,func);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficrespow);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /**** Computes Hessian and covariance matrix ***/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            }
 {         
   double  **a,**y,*x,pd;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **hess;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j,jk;            savm=oldm;
   int *indx;            oldm=newm;
           } /* end mult */
   double hessii(double p[], double delta, int theta, double delti[]);       
   double hessij(double p[], double delti[], int i, int j);          s1=s[mw[mi][i]][i];
   void lubksb(double **a, int npar, int *indx, double b[]) ;          s2=s[mw[mi+1][i]][i];
   void ludcmp(double **a, int npar, int *indx, double *d) ;          if( s2 > nlstate){
             lli=log(out[s1][s2] - savm[s1][s2]);
   hess=matrix(1,npar,1,npar);          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   printf("\nCalculation of the hessian matrix. Wait...\n");          }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          ipmx +=1;
   for (i=1;i<=npar;i++){          sw += weight[i];
     printf("%d",i);fflush(stdout);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     hess[i][i]=hessii(p,ftolhess,i,delti);        } /* end of wave */
     /*printf(" %f ",p[i]);*/      } /* end of individual */
     /*printf(" %lf ",hess[i][i]);*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=npar;j++)  {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if (j>i) {             for (j=1;j<=nlstate+ndeath;j++){
         printf(".%d%d",i,j);fflush(stdout);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[i][j]=hessij(p,delti,i,j);            }
         hess[j][i]=hess[i][j];              for(d=0; d<dh[mi][i]; d++){
         /*printf(" %lf ",hess[i][j]);*/            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("\n");            }
   fprintf(ficlog,"\n");         
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            savm=oldm;
               oldm=newm;
   a=matrix(1,npar,1,npar);          } /* end mult */
   y=matrix(1,npar,1,npar);       
   x=vector(1,npar);          s1=s[mw[mi][i]][i];
   indx=ivector(1,npar);          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=npar;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          ipmx +=1;
   ludcmp(a,npar,indx,&pd);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (j=1;j<=npar;j++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for (i=1;i<=npar;i++) x[i]=0;        } /* end of wave */
     x[j]=1;      } /* end of individual */
     lubksb(a,npar,indx,x);    } /* End of if */
     for (i=1;i<=npar;i++){     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       matcov[i][j]=x[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    return -l;
   }
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");  /*************** log-likelihood *************/
   for (i=1;i<=npar;i++) {   double funcone( double *x)
     for (j=1;j<=npar;j++) {   {
       printf("%.3e ",hess[i][j]);    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficlog,"%.3e ",hess[i][j]);    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     printf("\n");    double **out;
     fprintf(ficlog,"\n");    double lli; /* Individual log likelihood */
   }    double llt;
     int s1, s2;
   /* Recompute Inverse */    double bbh, survp;
   for (i=1;i<=npar;i++)    /*extern weight */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* We are differentiating ll according to initial status */
   ludcmp(a,npar,indx,&pd);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   /*  printf("\n#Hessian matrix recomputed#\n");      printf(" %d\n",s[4][i]);
     */
   for (j=1;j<=npar;j++) {    cov[1]=1.;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       y[i][j]=x[i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("%.3e ",y[i][j]);      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficlog,"%.3e ",y[i][j]);        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
   */        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   free_matrix(a,1,npar,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(y,1,npar,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
   free_vector(x,1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_ivector(indx,1,npar);          }
   free_matrix(hess,1,npar,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
 }          oldm=newm;
         } /* end mult */
 /*************** hessian matrix ****************/       
 double hessii( double x[], double delta, int theta, double delti[])        s1=s[mw[mi][i]][i];
 {        s2=s[mw[mi+1][i]][i];
   int i;        bbh=(double)bh[mi][i]/(double)stepm;
   int l=1, lmax=20;        /* bias is positive if real duration
   double k1,k2;         * is higher than the multiple of stepm and negative otherwise.
   double p2[NPARMAX+1];         */
   double res;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          lli=log(out[s1][s2] - savm[s1][s2]);
   double fx;        } else if  (s2==-2) {
   int k=0,kmax=10;          for (j=1,survp=0. ; j<=nlstate; j++)
   double l1;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   fx=func(x);        }else if (mle==1){
   for (i=1;i<=npar;i++) p2[i]=x[i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(l=0 ; l <=lmax; l++){        } else if(mle==2){
     l1=pow(10,l);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     delts=delt;        } else if(mle==3){  /* exponential inter-extrapolation */
     for(k=1 ; k <kmax; k=k+1){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       delt = delta*(l1*k);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       p2[theta]=x[theta] +delt;          lli=log(out[s1][s2]); /* Original formula */
       k1=func(p2)-fx;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       p2[theta]=x[theta]-delt;          lli=log(out[s1][s2]); /* Original formula */
       k2=func(p2)-fx;        } /* End of if */
       /*res= (k1-2.0*fx+k2)/delt/delt; */        ipmx +=1;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        sw += weight[i];
               ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 #ifdef DEBUG  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        if(globpr){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 #endif   %11.6f %11.6f %11.6f ", \
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         k=kmax;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         k=kmax; l=lmax*10.;          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         }
         delts=delt;      } /* end of wave */
       }    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   delti[theta]=delts;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return res;     if(globpr==0){ /* First time we count the contributions and weights */
         gipmx=ipmx;
 }      gsw=sw;
     }
 double hessij( double x[], double delti[], int thetai,int thetaj)    return -l;
 {  }
   int i;  
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*************** function likelione ***********/
   double p2[NPARMAX+1];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int k;  {
     /* This routine should help understanding what is done with
   fx=func(x);       the selection of individuals/waves and
   for (k=1; k<=2; k++) {       to check the exact contribution to the likelihood.
     for (i=1;i<=npar;i++) p2[i]=x[i];       Plotting could be done.
     p2[thetai]=x[thetai]+delti[thetai]/k;     */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int k;
     k1=func(p2)-fx;  
       if(*globpri !=0){ /* Just counts and sums, no printings */
     p2[thetai]=x[thetai]+delti[thetai]/k;      strcpy(fileresilk,"ilk");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      strcat(fileresilk,fileres);
     k2=func(p2)-fx;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           printf("Problem with resultfile: %s\n", fileresilk);
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     p2[thetai]=x[thetai]-delti[thetai]/k;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(k=1; k<=nlstate; k++)
     k4=func(p2)-fx;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 #ifdef DEBUG    }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    *fretone=(*funcone)(p);
 #endif    if(*globpri !=0){
   }      fclose(ficresilk);
   return res;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 }      fflush(fichtm);
     }
 /************** Inverse of matrix **************/    return;
 void ludcmp(double **a, int n, int *indx, double *d)   }
 {   
   int i,imax,j,k;   
   double big,dum,sum,temp;   /*********** Maximum Likelihood Estimation ***************/
   double *vv;   
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   vv=vector(1,n);   {
   *d=1.0;     int i,j, iter;
   for (i=1;i<=n;i++) {     double **xi;
     big=0.0;     double fret;
     for (j=1;j<=n;j++)     double fretone; /* Only one call to likelihood */
       if ((temp=fabs(a[i][j])) > big) big=temp;     /*  char filerespow[FILENAMELENGTH];*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     xi=matrix(1,npar,1,npar);
     vv[i]=1.0/big;     for (i=1;i<=npar;i++)
   }       for (j=1;j<=npar;j++)
   for (j=1;j<=n;j++) {         xi[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1;i<j;i++) {     printf("Powell\n");  fprintf(ficlog,"Powell\n");
       sum=a[i][j];     strcpy(filerespow,"pow");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     strcat(filerespow,fileres);
       a[i][j]=sum;     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }       printf("Problem with resultfile: %s\n", filerespow);
     big=0.0;       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (i=j;i<=n;i++) {     }
       sum=a[i][j];     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for (k=1;k<j;k++)     for (i=1;i<=nlstate;i++)
         sum -= a[i][k]*a[k][j];       for(j=1;j<=nlstate+ndeath;j++)
       a[i][j]=sum;         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       if ( (dum=vv[i]*fabs(sum)) >= big) {     fprintf(ficrespow,"\n");
         big=dum;   
         imax=i;     powell(p,xi,npar,ftol,&iter,&fret,func);
       }   
     }     free_matrix(xi,1,npar,1,npar);
     if (j != imax) {     fclose(ficrespow);
       for (k=1;k<=n;k++) {     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         dum=a[imax][k];     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         a[imax][k]=a[j][k];     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         a[j][k]=dum;   
       }   }
       *d = -(*d);   
       vv[imax]=vv[j];   /**** Computes Hessian and covariance matrix ***/
     }   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     indx[j]=imax;   {
     if (a[j][j] == 0.0) a[j][j]=TINY;     double  **a,**y,*x,pd;
     if (j != n) {     double **hess;
       dum=1.0/(a[j][j]);     int i, j,jk;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     int *indx;
     }   
   }     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_vector(vv,1,n);  /* Doesn't work */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
 }     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
 void lubksb(double **a, int n, int *indx, double b[])     hess=matrix(1,npar,1,npar);
 {   
   int i,ii=0,ip,j;     printf("\nCalculation of the hessian matrix. Wait...\n");
   double sum;     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1;i<=npar;i++){
   for (i=1;i<=n;i++) {       printf("%d",i);fflush(stdout);
     ip=indx[i];       fprintf(ficlog,"%d",i);fflush(ficlog);
     sum=b[ip];      
     b[ip]=b[i];        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     if (ii)      
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       /*  printf(" %f ",p[i]);
     else if (sum) ii=i;           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     b[i]=sum;     }
   }    
   for (i=n;i>=1;i--) {     for (i=1;i<=npar;i++) {
     sum=b[i];       for (j=1;j<=npar;j++)  {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         if (j>i) {
     b[i]=sum/a[i][i];           printf(".%d%d",i,j);fflush(stdout);
   }           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 }           hess[i][j]=hessij(p,delti,i,j,func,npar);
          
 /************ Frequencies ********************/          hess[j][i]=hess[i][j];    
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)          /*printf(" %lf ",hess[i][j]);*/
 {  /* Some frequencies */        }
         }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    }
   int first;    printf("\n");
   double ***freq; /* Frequencies */    fprintf(ficlog,"\n");
   double *pp, **prop;  
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   FILE *ficresp;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   char fileresp[FILENAMELENGTH];   
       a=matrix(1,npar,1,npar);
   pp=vector(1,nlstate);    y=matrix(1,npar,1,npar);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    x=vector(1,npar);
   strcpy(fileresp,"p");    indx=ivector(1,npar);
   strcat(fileresp,fileres);    for (i=1;i<=npar;i++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    ludcmp(a,npar,indx,&pd);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);      x[j]=1;
   j1=0;      lubksb(a,npar,indx,x);
         for (i=1;i<=npar;i++){
   j=cptcoveff;        matcov[i][j]=x[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
     }
   first=1;  
     printf("\n#Hessian matrix#\n");
   for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++) {
       j1++;      for (j=1;j<=npar;j++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("%.3e ",hess[i][j]);
         scanf("%d", i);*/        fprintf(ficlog,"%.3e ",hess[i][j]);
       for (i=-1; i<=nlstate+ndeath; i++)        }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        printf("\n");
           for(m=iagemin; m <= iagemax+3; m++)      fprintf(ficlog,"\n");
             freq[i][jk][m]=0;    }
   
     for (i=1; i<=nlstate; i++)      /* Recompute Inverse */
       for(m=iagemin; m <= iagemax+3; m++)    for (i=1;i<=npar;i++)
         prop[i][m]=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           ludcmp(a,npar,indx,&pd);
       dateintsum=0;  
       k2cpt=0;    /*  printf("\n#Hessian matrix recomputed#\n");
       for (i=1; i<=imx; i++) {  
         bool=1;    for (j=1;j<=npar;j++) {
         if  (cptcovn>0) {      for (i=1;i<=npar;i++) x[i]=0;
           for (z1=1; z1<=cptcoveff; z1++)       x[j]=1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       lubksb(a,npar,indx,x);
               bool=0;      for (i=1;i<=npar;i++){
         }        y[i][j]=x[i];
         if (bool==1){        printf("%.3e ",y[i][j]);
           for(m=firstpass; m<=lastpass; m++){        fprintf(ficlog,"%.3e ",y[i][j]);
             k2=anint[m][i]+(mint[m][i]/12.);      }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      printf("\n");
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      fprintf(ficlog,"\n");
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    */
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    free_matrix(a,1,npar,1,npar);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    free_matrix(y,1,npar,1,npar);
               }    free_vector(x,1,npar);
                   free_ivector(indx,1,npar);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    free_matrix(hess,1,npar,1,npar);
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  
               }  }
               /*}*/  
           }  /*************** hessian matrix ****************/
         }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
            int i;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    int l=1, lmax=20;
     double k1,k2;
       if  (cptcovn>0) {    double p2[NPARMAX+1];
         fprintf(ficresp, "\n#********** Variable ");     double res;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficresp, "**********\n#");    double fx;
       }    int k=0,kmax=10;
       for(i=1; i<=nlstate;i++)     double l1;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    fx=func(x);
           for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=iagemin; i <= iagemax+3; i++){    for(l=0 ; l <=lmax; l++){
         if(i==iagemax+3){      l1=pow(10,l);
           fprintf(ficlog,"Total");      delts=delt;
         }else{      for(k=1 ; k <kmax; k=k+1){
           if(first==1){        delt = delta*(l1*k);
             first=0;        p2[theta]=x[theta] +delt;
             printf("See log file for details...\n");        k1=func(p2)-fx;
           }        p2[theta]=x[theta]-delt;
           fprintf(ficlog,"Age %d", i);        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for(jk=1; jk <=nlstate ; jk++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       
             pp[jk] += freq[jk][m][i];   #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           if(pp[jk]>=1.e-10){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             if(first==1){          k=kmax;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
             }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          k=kmax; l=lmax*10.;
           }else{        }
             if(first==1)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          delts=delt;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
           }      }
         }    }
     delti[theta]=delts;
         for(jk=1; jk <=nlstate ; jk++){    return res;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];  }
         }         
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           pos += pp[jk];  {
           posprop += prop[jk][i];    int i;
         }    int l=1, l1, lmax=20;
         for(jk=1; jk <=nlstate ; jk++){    double k1,k2,k3,k4,res,fx;
           if(pos>=1.e-5){    double p2[NPARMAX+1];
             if(first==1)    int k;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    fx=func(x);
           }else{    for (k=1; k<=2; k++) {
             if(first==1)      for (i=1;i<=npar;i++) p2[i]=x[i];
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetai]=x[thetai]+delti[thetai]/k;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k1=func(p2)-fx;
           if( i <= iagemax){   
             if(pos>=1.e-5){      p2[thetai]=x[thetai]+delti[thetai]/k;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               /*probs[i][jk][j1]= pp[jk]/pos;*/      k2=func(p2)-fx;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/   
             }      p2[thetai]=x[thetai]-delti[thetai]/k;
             else      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);      k3=func(p2)-fx;
           }   
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
               p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      k4=func(p2)-fx;
           for(m=-1; m <=nlstate+ndeath; m++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             if(freq[jk][m][i] !=0 ) {  #ifdef DEBUG
             if(first==1)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  #endif
             }    }
         if(i <= iagemax)    return res;
           fprintf(ficresp,"\n");  }
         if(first==1)  
           printf("Others in log...\n");  /************** Inverse of matrix **************/
         fprintf(ficlog,"\n");  void ludcmp(double **a, int n, int *indx, double *d)
       }  {
     }    int i,imax,j,k;
   }    double big,dum,sum,temp;
   dateintmean=dateintsum/k2cpt;     double *vv;
     
   fclose(ficresp);    vv=vector(1,n);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);    *d=1.0;
   free_vector(pp,1,nlstate);    for (i=1;i<=n;i++) {
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      big=0.0;
   /* End of Freq */      for (j=1;j<=n;j++)
 }        if ((temp=fabs(a[i][j])) > big) big=temp;
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
 /************ Prevalence ********************/      vv[i]=1.0/big;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    }
 {      for (j=1;j<=n;j++) {
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      for (i=1;i<j;i++) {
      in each health status at the date of interview (if between dateprev1 and dateprev2).        sum=a[i][j];
      We still use firstpass and lastpass as another selection.        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   */        a[i][j]=sum;
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      big=0.0;
   double ***freq; /* Frequencies */      for (i=j;i<=n;i++) {
   double *pp, **prop;        sum=a[i][j];
   double pos,posprop;         for (k=1;k<j;k++)
   double  y2; /* in fractional years */          sum -= a[i][k]*a[k][j];
   int iagemin, iagemax;        a[i][j]=sum;
         if ( (dum=vv[i]*fabs(sum)) >= big) {
   iagemin= (int) agemin;          big=dum;
   iagemax= (int) agemax;          imax=i;
   /*pp=vector(1,nlstate);*/        }
   prop=matrix(1,nlstate,iagemin,iagemax+3);       }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/      if (j != imax) {
   j1=0;        for (k=1;k<=n;k++) {
             dum=a[imax][k];
   j=cptcoveff;          a[imax][k]=a[j][k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          a[j][k]=dum;
           }
   for(k1=1; k1<=j;k1++){        *d = -(*d);
     for(i1=1; i1<=ncodemax[k1];i1++){        vv[imax]=vv[j];
       j1++;      }
             indx[j]=imax;
       for (i=1; i<=nlstate; i++)        if (a[j][j] == 0.0) a[j][j]=TINY;
         for(m=iagemin; m <= iagemax+3; m++)      if (j != n) {
           prop[i][m]=0.0;        dum=1.0/(a[j][j]);
              for (i=j+1;i<=n;i++) a[i][j] *= dum;
       for (i=1; i<=imx; i++) { /* Each individual */      }
         bool=1;    }
         if  (cptcovn>0) {    free_vector(vv,1,n);  /* Doesn't work */
           for (z1=1; z1<=cptcoveff; z1++)   ;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   }
               bool=0;  
         }   void lubksb(double **a, int n, int *indx, double b[])
         if (bool==1) {   {
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    int i,ii=0,ip,j;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    double sum;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */   
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    for (i=1;i<=n;i++) {
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      ip=indx[i];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       sum=b[ip];
               if (s[m][i]>0 && s[m][i]<=nlstate) {       b[ip]=b[i];
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/      if (ii)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
                 prop[s[m][i]][iagemax+3] += weight[i];       else if (sum) ii=i;
               }       b[i]=sum;
             }    }
           } /* end selection of waves */    for (i=n;i>=1;i--) {
         }      sum=b[i];
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       for(i=iagemin; i <= iagemax+3; i++){        b[i]=sum/a[i][i];
             }
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {   }
           posprop += prop[jk][i];   
         }   void pstamp(FILE *fichier)
   {
         for(jk=1; jk <=nlstate ; jk++){         fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           if( i <=  iagemax){   }
             if(posprop>=1.e-5){   
               probs[i][jk][j1]= prop[jk][i]/posprop;  /************ Frequencies ********************/
             }   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           }   {  /* Some frequencies */
         }/* end jk */    
       }/* end i */     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     } /* end i1 */    int first;
   } /* end k1 */    double ***freq; /* Frequencies */
       double *pp, **prop;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /*free_vector(pp,1,nlstate);*/    char fileresp[FILENAMELENGTH];
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);   
 }  /* End of prevalence */    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
 /************* Waves Concatenation ***************/    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    if((ficresp=fopen(fileresp,"w"))==NULL) {
 {      printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      Death is a valid wave (if date is known).      exit(0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      and mw[mi+1][i]. dh depends on stepm.    j1=0;
      */   
     j=cptcoveff;
   int i, mi, m;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    first=1;
   int first;  
   int j, k=0,jk, ju, jl;    for(k1=1; k1<=j;k1++){
   double sum=0.;      for(i1=1; i1<=ncodemax[k1];i1++){
   first=0;        j1++;
   jmin=1e+5;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   jmax=-1;          scanf("%d", i);*/
   jmean=0.;        for (i=-5; i<=nlstate+ndeath; i++)  
   for(i=1; i<=imx; i++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     mi=0;            for(m=iagemin; m <= iagemax+3; m++)
     m=firstpass;              freq[i][jk][m]=0;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)      for (i=1; i<=nlstate; i++)  
         mw[++mi][i]=m;        for(m=iagemin; m <= iagemax+3; m++)
       if(m >=lastpass)          prop[i][m]=0;
         break;       
       else        dateintsum=0;
         m++;        k2cpt=0;
     }/* end while */        for (i=1; i<=imx; i++) {
     if (s[m][i] > nlstate){          bool=1;
       mi++;     /* Death is another wave */          if  (cptcovn>0) {
       /* if(mi==0)  never been interviewed correctly before death */            for (z1=1; z1<=cptcoveff; z1++)
          /* Only death is a correct wave */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       mw[mi][i]=m;                bool=0;
     }          }
           if (bool==1){
     wav[i]=mi;            for(m=firstpass; m<=lastpass; m++){
     if(mi==0){              k2=anint[m][i]+(mint[m][i]/12.);
       nbwarn++;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       if(first==0){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         first=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
       if(first==1){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
     } /* end mi==0 */               
   } /* End individuals */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   for(i=1; i<=imx; i++){                  k2cpt++;
     for(mi=1; mi<wav[i];mi++){                }
       if (stepm <=0)                /*}*/
         dh[mi][i]=1;            }
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */        }
           if (agedc[i] < 2*AGESUP) {         
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             if(j==0) j=1;  /* Survives at least one month after exam */        pstamp(ficresp);
             else if(j<0){        if  (cptcovn>0) {
               nberr++;          fprintf(ficresp, "\n#********** Variable ");
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               j=1; /* Temporary Dangerous patch */          fprintf(ficresp, "**********\n#");
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);        }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for(i=1; i<=nlstate;i++)
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             }        fprintf(ficresp, "\n");
             k=k+1;       
             if (j >= jmax) jmax=j;        for(i=iagemin; i <= iagemax+3; i++){
             if (j <= jmin) jmin=j;          if(i==iagemax+3){
             sum=sum+j;            fprintf(ficlog,"Total");
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          }else{
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            if(first==1){
           }              first=0;
         }              printf("See log file for details...\n");
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            fprintf(ficlog,"Age %d", i);
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          }
           k=k+1;          for(jk=1; jk <=nlstate ; jk++){
           if (j >= jmax) jmax=j;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           else if (j <= jmin)jmin=j;              pp[jk] += freq[jk][m][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/          for(jk=1; jk <=nlstate ; jk++){
           if(j<0){            for(m=-1, pos=0; m <=0 ; m++)
             nberr++;              pos += freq[jk][m][i];
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            if(pp[jk]>=1.e-10){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              if(first==1){
           }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           sum=sum+j;              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         jk= j/stepm;            }else{
         jl= j -jk*stepm;              if(first==1)
         ju= j -(jk+1)*stepm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           if(jl==0){            }
             dh[mi][i]=jk;          }
             bh[mi][i]=0;  
           }else{ /* We want a negative bias in order to only have interpolation ie          for(jk=1; jk <=nlstate ; jk++){
                   * at the price of an extra matrix product in likelihood */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             dh[mi][i]=jk+1;              pp[jk] += freq[jk][m][i];
             bh[mi][i]=ju;          }      
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }else{            pos += pp[jk];
           if(jl <= -ju){            posprop += prop[jk][i];
             dh[mi][i]=jk;          }
             bh[mi][i]=jl;       /* bias is positive if real duration          for(jk=1; jk <=nlstate ; jk++){
                                  * is higher than the multiple of stepm and negative otherwise.            if(pos>=1.e-5){
                                  */              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           else{              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             dh[mi][i]=jk+1;            }else{
             bh[mi][i]=ju;              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if(dh[mi][i]==0){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             dh[mi][i]=1; /* At least one step */            }
             bh[mi][i]=ju; /* At least one step */            if( i <= iagemax){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         } /* end if mle */                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     } /* end wave */              }
   }              else
   jmean=sum/k;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
  }         
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 /*********** Tricode ****************************/            for(m=-1; m <=nlstate+ndeath; m++)
 void tricode(int *Tvar, int **nbcode, int imx)              if(freq[jk][m][i] !=0 ) {
 {              if(first==1)
                   printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int Ndum[20],ij=1, k, j, i, maxncov=19;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int cptcode=0;              }
   cptcoveff=0;           if(i <= iagemax)
              fprintf(ficresp,"\n");
   for (k=0; k<maxncov; k++) Ndum[k]=0;          if(first==1)
   for (k=1; k<=7; k++) ncodemax[k]=0;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        }
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum       }
                                modality*/     }
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    dateintmean=dateintsum/k2cpt;
       Ndum[ij]++; /*store the modality */   
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    fclose(ficresp);
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                                        Tvar[j]. If V=sex and male is 0 and     free_vector(pp,1,nlstate);
                                        female is 1, then  cptcode=1.*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     }    /* End of Freq */
   }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */  /************ Prevalence ********************/
     }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     ij=1;     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for (i=1; i<=ncodemax[j]; i++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for (k=0; k<= maxncov; k++) {       We still use firstpass and lastpass as another selection.
         if (Ndum[k] != 0) {    */
           nbcode[Tvar[j]][ij]=k;    
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               double ***freq; /* Frequencies */
           ij++;    double *pp, **prop;
         }    double pos,posprop;
         if (ij > ncodemax[j]) break;     double  y2; /* in fractional years */
       }      int iagemin, iagemax;
     }   
   }      iagemin= (int) agemin;
     iagemax= (int) agemax;
  for (k=0; k< maxncov; k++) Ndum[k]=0;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
  for (i=1; i<=ncovmodel-2; i++) {     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    j1=0;
    ij=Tvar[i];   
    Ndum[ij]++;    j=cptcoveff;
  }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
  ij=1;    for(k1=1; k1<=j;k1++){
  for (i=1; i<= maxncov; i++) {      for(i1=1; i1<=ncodemax[k1];i1++){
    if((Ndum[i]!=0) && (i<=ncovcol)){        j1++;
      Tvaraff[ij]=i; /*For printing */       
      ij++;        for (i=1; i<=nlstate; i++)  
    }          for(m=iagemin; m <= iagemax+3; m++)
  }            prop[i][m]=0.0;
         
  cptcoveff=ij-1; /*Number of simple covariates*/        for (i=1; i<=imx; i++) { /* Each individual */
 }          bool=1;
           if  (cptcovn>0) {
 /*********** Health Expectancies ****************/            for (z1=1; z1<=cptcoveff; z1++)
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                bool=0;
           }
 {          if (bool==1) {
   /* Health expectancies */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   double age, agelim, hf;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   double ***p3mat,***varhe;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double **dnewm,**doldm;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double *xp;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
   double **gp, **gm;                if (s[m][i]>0 && s[m][i]<=nlstate) {
   double ***gradg, ***trgradg;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   int theta;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i];
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);                }
   xp=vector(1,npar);              }
   dnewm=matrix(1,nlstate*nlstate,1,npar);            } /* end selection of waves */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);          }
           }
   fprintf(ficreseij,"# Health expectancies\n");        for(i=iagemin; i <= iagemax+3; i++){  
   fprintf(ficreseij,"# Age");         
   for(i=1; i<=nlstate;i++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
     for(j=1; j<=nlstate;j++)            posprop += prop[jk][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          }
   fprintf(ficreseij,"\n");  
           for(jk=1; jk <=nlstate ; jk++){    
   if(estepm < stepm){            if( i <=  iagemax){
     printf ("Problem %d lower than %d\n",estepm, stepm);              if(posprop>=1.e-5){
   }                probs[i][jk][j1]= prop[jk][i]/posprop;
   else  hstepm=estepm;                 }
   /* We compute the life expectancy from trapezoids spaced every estepm months            }
    * This is mainly to measure the difference between two models: for example          }/* end jk */
    * if stepm=24 months pijx are given only every 2 years and by summing them        }/* end i */
    * we are calculating an estimate of the Life Expectancy assuming a linear       } /* end i1 */
    * progression in between and thus overestimating or underestimating according    } /* end k1 */
    * to the curvature of the survival function. If, for the same date, we    
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    * to compare the new estimate of Life expectancy with the same linear     /*free_vector(pp,1,nlstate);*/
    * hypothesis. A more precise result, taking into account a more precise    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    * curvature will be obtained if estepm is as small as stepm. */  }  /* End of prevalence */
   
   /* For example we decided to compute the life expectancy with the smallest unit */  /************* Waves Concatenation ***************/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      nstepm is the number of stepm from age to agelin.   {
      Look at hpijx to understand the reason of that which relies in memory size    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      and note for a fixed period like estepm months */       Death is a valid wave (if date is known).
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      survival function given by stepm (the optimization length). Unfortunately it       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      means that if the survival funtion is printed only each two years of age and if       and mw[mi+1][i]. dh depends on stepm.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        */
      results. So we changed our mind and took the option of the best precision.  
   */    int i, mi, m;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   agelim=AGESUP;    int first;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int j, k=0,jk, ju, jl;
     /* nhstepm age range expressed in number of stepm */    double sum=0.;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);     first=0;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     jmin=1e+5;
     /* if (stepm >= YEARM) hstepm=1;*/    jmax=-1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    jmean=0.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=imx; i++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);      mi=0;
     gp=matrix(0,nhstepm,1,nlstate*nlstate);      m=firstpass;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          mw[++mi][i]=m;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if(m >=lastpass)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            break;
          else
           m++;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }/* end while */
       if (s[m][i] > nlstate){
     /* Computing Variances of health expectancies */        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
      for(theta=1; theta <=npar; theta++){           /* Only death is a correct wave */
       for(i=1; i<=npar; i++){         mw[mi][i]=m;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        wav[i]=mi;
         if(mi==0){
       cptj=0;        nbwarn++;
       for(j=1; j<= nlstate; j++){        if(first==0){
         for(i=1; i<=nlstate; i++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           cptj=cptj+1;          first=1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if(first==1){
           }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
       }      } /* end mi==0 */
          } /* End individuals */
        
       for(i=1; i<=npar; i++)     for(i=1; i<=imx; i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(mi=1; mi<wav[i];mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if (stepm <=0)
                 dh[mi][i]=1;
       cptj=0;        else{
       for(j=1; j<= nlstate; j++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(i=1;i<=nlstate;i++){            if (agedc[i] < 2*AGESUP) {
           cptj=cptj+1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                nberr++;
           }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1; j<= nlstate*nlstate; j++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(h=0; h<=nhstepm-1; h++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              }
         }              k=k+1;
      }               if (j >= jmax){
                    jmax=j;
 /* End theta */                ijmax=i;
               }
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              if (j <= jmin){
                 jmin=j;
      for(h=0; h<=nhstepm-1; h++)                ijmin=i;
       for(j=1; j<=nlstate*nlstate;j++)              }
         for(theta=1; theta <=npar; theta++)              sum=sum+j;
           trgradg[h][j][theta]=gradg[h][theta][j];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                    /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
      for(i=1;i<=nlstate*nlstate;i++)          }
       for(j=1;j<=nlstate*nlstate;j++)          else{
         varhe[i][j][(int)age] =0.;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            k=k+1;
      for(h=0;h<=nhstepm-1;h++){            if (j >= jmax) {
       for(k=0;k<=nhstepm-1;k++){              jmax=j;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);              ijmax=i;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);            }
         for(i=1;i<=nlstate*nlstate;i++)            else if (j <= jmin){
           for(j=1;j<=nlstate*nlstate;j++)              jmin=j;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;              ijmin=i;
       }            }
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     /* Computing expectancies */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=1; i<=nlstate;i++)            if(j<0){
       for(j=1; j<=nlstate;j++)              nberr++;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                       }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            sum=sum+j;
           }
         }          jk= j/stepm;
           jl= j -jk*stepm;
     fprintf(ficreseij,"%3.0f",age );          ju= j -(jk+1)*stepm;
     cptj=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for(i=1; i<=nlstate;i++)            if(jl==0){
       for(j=1; j<=nlstate;j++){              dh[mi][i]=jk;
         cptj++;              bh[mi][i]=0;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            }else{ /* We want a negative bias in order to only have interpolation ie
       }                    * at the price of an extra matrix product in likelihood */
     fprintf(ficreseij,"\n");              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);          }else{
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            if(jl <= -ju){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              dh[mi][i]=jk;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   printf("\n");                                   */
   fprintf(ficlog,"\n");            }
             else{
   free_vector(xp,1,npar);              dh[mi][i]=jk+1;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);              bh[mi][i]=ju;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            if(dh[mi][i]==0){
 }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 /************ Variance ******************/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)            }
 {          } /* end if mle */
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } /* end wave */
   /* double **newm;*/    }
   double **dnewm,**doldm;    jmean=sum/k;
   double **dnewmp,**doldmp;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int i, j, nhstepm, hstepm, h, nstepm ;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   int k, cptcode;   }
   double *xp;  
   double **gp, **gm;  /* for var eij */  /*********** Tricode ****************************/
   double ***gradg, ***trgradg; /*for var eij */  void tricode(int *Tvar, int **nbcode, int imx)
   double **gradgp, **trgradgp; /* for var p point j */  {
   double *gpp, *gmp; /* for var p point j */   
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    int Ndum[20],ij=1, k, j, i, maxncov=19;
   double ***p3mat;    int cptcode=0;
   double age,agelim, hf;    cptcoveff=0;
   double ***mobaverage;   
   int theta;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   char digit[4];    for (k=1; k<=7; k++) ncodemax[k]=0;
   char digitp[25];  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   char fileresprobmorprev[FILENAMELENGTH];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
   if(popbased==1){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     if(mobilav!=0)        Ndum[ij]++; /*store the modality */
       strcpy(digitp,"-populbased-mobilav-");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     else strcpy(digitp,"-populbased-nomobil-");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   }                                         Tvar[j]. If V=sex and male is 0 and
   else                                          female is 1, then  cptcode=1.*/
     strcpy(digitp,"-stablbased-");      }
   
   if (mobilav!=0) {      for (i=0; i<=cptcode; i++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      ij=1;
     }      for (i=1; i<=ncodemax[j]; i++) {
   }        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   strcpy(fileresprobmorprev,"prmorprev");             nbcode[Tvar[j]][ij]=k;
   sprintf(digit,"%-d",ij);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/           
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            ij++;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */          }
   strcat(fileresprobmorprev,fileres);          if (ij > ncodemax[j]) break;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        }  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    }  
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);   for (i=1; i<=ncovmodel-2; i++) {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){     ij=Tvar[i];
     fprintf(ficresprobmorprev," p.%-d SE",j);     Ndum[ij]++;
     for(i=1; i<=nlstate;i++)   }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }     ij=1;
   fprintf(ficresprobmorprev,"\n");   for (i=1; i<= maxncov; i++) {
   fprintf(ficgp,"\n# Routine varevsij");     if((Ndum[i]!=0) && (i<=ncovcol)){
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");       Tvaraff[ij]=i; /*For printing */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);       ij++;
 /*   } */     }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   }
    
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");   cptcoveff=ij-1; /*Number of simple covariates*/
   fprintf(ficresvij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /*********** Health Expectancies ****************/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    /* Health expectancies, no variances */
   doldm=matrix(1,nlstate,1,nlstate);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    double age, agelim, hf;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double ***p3mat;
     double eip;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  
   gpp=vector(nlstate+1,nlstate+ndeath);    pstamp(ficreseij);
   gmp=vector(nlstate+1,nlstate+ndeath);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficreseij,"# Age");
       for(i=1; i<=nlstate;i++){
   if(estepm < stepm){      for(j=1; j<=nlstate;j++){
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
   else  hstepm=estepm;         fprintf(ficreseij," e%1d. ",i);
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     fprintf(ficreseij,"\n");
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    if(estepm < stepm){
      and note for a fixed period like k years */      printf ("Problem %d lower than %d\n",estepm, stepm);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    else  hstepm=estepm;  
      means that if the survival funtion is printed every two years of age and if    /* We compute the life expectancy from trapezoids spaced every estepm months
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      * This is mainly to measure the difference between two models: for example
      results. So we changed our mind and took the option of the best precision.     * if stepm=24 months pijx are given only every 2 years and by summing them
   */     * we are calculating an estimate of the Life Expectancy assuming a linear
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      * progression in between and thus overestimating or underestimating according
   agelim = AGESUP;     * to the curvature of the survival function. If, for the same date, we
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      * to compare the new estimate of Life expectancy with the same linear
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     * hypothesis. A more precise result, taking into account a more precise
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * curvature will be obtained if estepm is as small as stepm. */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    /* For example we decided to compute the life expectancy with the smallest unit */
     gm=matrix(0,nhstepm,1,nlstate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
     for(theta=1; theta <=npar; theta++){       Look at hpijx to understand the reason of that which relies in memory size
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/       and note for a fixed period like estepm months */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         means that if the survival funtion is printed only each two years of age and if
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
       if (popbased==1) {    */
         if(mobilav ==0){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];    agelim=AGESUP;
         }else{ /* mobilav */     /* If stepm=6 months */
           for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             prlim[i][i]=mobaverage[(int)age][i][ij];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         }     
       }  /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       for(j=1; j<= nlstate; j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for(h=0; h<=nhstepm; h++){    /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }  
       }    for (age=bage; age<=fage; age ++){
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       */     
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)     
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      printf("%d|",(int)age);fflush(stdout);
       }          fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       /* end probability of death */     
   
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      /* Computing expectancies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(i=1; i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(j=1; j<=nlstate;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       if (popbased==1) {           
         if(mobilav ==0){            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];          }
         }else{ /* mobilav */      
           for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"%3.0f",age );
             prlim[i][i]=mobaverage[(int)age][i][ij];      for(i=1; i<=nlstate;i++){
         }        eip=0;
       }        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
       for(j=1; j<= nlstate; j++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        fprintf(ficreseij,"%9.4f", eip );
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }      fprintf(ficreseij,"\n");
       }     
       /* This for computing probability of death (h=1 means    }
          computed over hstepm matrices product = hstepm*stepm months)     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          as a weighted average of prlim.    printf("\n");
       */    fprintf(ficlog,"\n");
       for(j=nlstate+1;j<=nlstate+ndeath;j++){   
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       /* end probability of death */  
   {
       for(j=1; j<= nlstate; j++) /* vareij */    /* Covariances of health expectancies eij and of total life expectancies according
         for(h=0; h<=nhstepm; h++){     to initial status i, ei. .
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    double ***p3matp, ***p3matm, ***varhe;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    double **dnewm,**doldm;
       }    double *xp, *xm;
     double **gp, **gm;
     } /* End theta */    double ***gradg, ***trgradg;
     int theta;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
     double eip, vip;
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for(theta=1; theta <=npar; theta++)    xp=vector(1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(theta=1; theta <=npar; theta++)   
         trgradgp[j][theta]=gradgp[theta][j];    pstamp(ficresstdeij);
       fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for(i=1; i<=nlstate;i++){
     for(i=1;i<=nlstate;i++)      for(j=1; j<=nlstate;j++)
       for(j=1;j<=nlstate;j++)        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         vareij[i][j][(int)age] =0.;      fprintf(ficresstdeij," e%1d. ",i);
     }
     for(h=0;h<=nhstepm;h++){    fprintf(ficresstdeij,"\n");
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    pstamp(ficrescveij);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficrescveij,"# Age");
           for(j=1;j<=nlstate;j++)    for(i=1; i<=nlstate;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(j=1; j<=nlstate;j++){
       }        cptj= (j-1)*nlstate+i;
     }        for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
     /* pptj */            cptj2= (j2-1)*nlstate+i2;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            if(cptj2 <= cptj)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      }
         varppt[j][i]=doldmp[j][i];    fprintf(ficrescveij,"\n");
     /* end ppptj */   
     /*  x centered again */    if(estepm < stepm){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        printf ("Problem %d lower than %d\n",estepm, stepm);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    }
      else  hstepm=estepm;  
     if (popbased==1) {    /* We compute the life expectancy from trapezoids spaced every estepm months
       if(mobilav ==0){     * This is mainly to measure the difference between two models: for example
         for(i=1; i<=nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
           prlim[i][i]=probs[(int)age][i][ij];     * we are calculating an estimate of the Life Expectancy assuming a linear
       }else{ /* mobilav */      * progression in between and thus overestimating or underestimating according
         for(i=1; i<=nlstate;i++)     * to the curvature of the survival function. If, for the same date, we
           prlim[i][i]=mobaverage[(int)age][i][ij];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear
     }     * hypothesis. A more precise result, taking into account a more precise
                   * curvature will be obtained if estepm is as small as stepm. */
     /* This for computing probability of death (h=1 means  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     /* For example we decided to compute the life expectancy with the smallest unit */
        as a weighted average of prlim.    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     */       nhstepm is the number of hstepm from age to agelim
     for(j=nlstate+1;j<=nlstate+ndeath;j++){       nstepm is the number of stepm from age to agelin.
       for(i=1,gmp[j]=0.;i<= nlstate; i++)        Look at hpijx to understand the reason of that which relies in memory size
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        and note for a fixed period like estepm months */
     }        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     /* end probability of death */       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){       results. So we changed our mind and took the option of the best precision.
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    */
       for(i=1; i<=nlstate;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    /* If stepm=6 months */
     }     /* nhstepm age range expressed in number of stepm */
     fprintf(ficresprobmorprev,"\n");    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     fprintf(ficresvij,"%.0f ",age );    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     for(i=1; i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
       for(j=1; j<=nlstate;j++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);   
       }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficresvij,"\n");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_matrix(gp,0,nhstepm,1,nlstate);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     free_matrix(gm,0,nhstepm,1,nlstate);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (age=bage; age<=fage; age ++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/   
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      /* Computing  Variances of health expectancies */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */         decrease memory allocation */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      for(theta=1; theta <=npar; theta++){
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        for(i=1; i<=npar; i++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 */   
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */        for(j=1; j<= nlstate; j++){
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   free_vector(xp,1,npar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   free_matrix(doldm,1,nlstate,1,nlstate);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   free_matrix(dnewm,1,nlstate,1,npar);            }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fclose(ficresprobmorprev);          for(h=0; h<=nhstepm-1; h++){
   fflush(ficgp);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   fflush(fichtm);           }
 }  /* end varevsij */      }/* End theta */
      
 /************ Variance of prevlim ******************/     
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(h=0; h<=nhstepm-1; h++)
 {        for(j=1; j<=nlstate*nlstate;j++)
   /* Variance of prevalence limit */          for(theta=1; theta <=npar; theta++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/            trgradg[h][j][theta]=gradg[h][theta][j];
   double **newm;     
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;       for(ij=1;ij<=nlstate*nlstate;ij++)
   int k, cptcode;        for(ji=1;ji<=nlstate*nlstate;ji++)
   double *xp;          varhe[ij][ji][(int)age] =0.;
   double *gp, *gm;  
   double **gradg, **trgradg;       printf("%d|",(int)age);fflush(stdout);
   double age,agelim;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int theta;       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficresvpl,"# Age");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   for(i=1; i<=nlstate;i++)          for(ij=1;ij<=nlstate*nlstate;ij++)
       fprintf(ficresvpl," %1d-%1d",i,i);            for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficresvpl,"\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);      /* Computing expectancies */
         hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   hstepm=1*YEARM; /* Every year of age */      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         for(j=1; j<=nlstate;j++)
   agelim = AGESUP;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            
     if (stepm >= YEARM) hstepm=1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);          }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
     for(theta=1; theta <=npar; theta++){        eip=0.;
       for(i=1; i<=npar; i++){ /* Computes gradient */        vip=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<=nlstate;j++){
       }          eip += eij[i][j][(int)age];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       for(i=1;i<=nlstate;i++)            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         gp[i] = prlim[i][i];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
             }
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresstdeij,"\n");
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
       for(i=1;i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          cptj= (j-1)*nlstate+i;
     } /* End theta */          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
     trgradg =matrix(1,nlstate,1,npar);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
     for(j=1; j<=nlstate;j++)                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];        }
       fprintf(ficrescveij,"\n");
     for(i=1;i<=nlstate;i++)     
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficresvpl,"%.0f ",age );    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i<=nlstate;i++)    printf("\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficlog,"\n");
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    free_vector(xm,1,npar);
     free_vector(gm,1,nlstate);    free_vector(xp,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   } /* End age */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /************ Variance ******************/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
 }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 /************ Variance of one-step probabilities  ******************/    /* double **newm;*/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double **dnewm,**doldm;
 {    double **dnewmp,**doldmp;
   int i, j=0,  i1, k1, l1, t, tj;    int i, j, nhstepm, hstepm, h, nstepm ;
   int k2, l2, j1,  z1;    int k, cptcode;
   int k=0,l, cptcode;    double *xp;
   int first=1, first1;    double **gp, **gm;  /* for var eij */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    double ***gradg, ***trgradg; /*for var eij */
   double **dnewm,**doldm;    double **gradgp, **trgradgp; /* for var p point j */
   double *xp;    double *gpp, *gmp; /* for var p point j */
   double *gp, *gm;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   double **gradg, **trgradg;    double ***p3mat;
   double **mu;    double age,agelim, hf;
   double age,agelim, cov[NCOVMAX];    double ***mobaverage;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int theta;
   int theta;    char digit[4];
   char fileresprob[FILENAMELENGTH];    char digitp[25];
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];    char fileresprobmorprev[FILENAMELENGTH];
   
   double ***varpij;    if(popbased==1){
       if(mobilav!=0)
   strcpy(fileresprob,"prob");         strcpy(digitp,"-populbased-mobilav-");
   strcat(fileresprob,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    else
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      strcpy(digitp,"-stablbased-");
   }  
   strcpy(fileresprobcov,"probcov");     if (mobilav!=0) {
   strcat(fileresprobcov,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with resultfile: %s\n", fileresprobcov);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   strcpy(fileresprobcor,"probcor");     }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    strcpy(fileresprobmorprev,"prmorprev");
     printf("Problem with resultfile: %s\n", fileresprobcor);    sprintf(digit,"%-d",ij);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    strcat(fileresprobmorprev,fileres);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    }
       printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");   
   fprintf(ficresprob,"# Age");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    pstamp(ficresprobmorprev);
   fprintf(ficresprobcov,"# Age");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficresprobcov,"# Age");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     for(j=1; j<=(nlstate+ndeath);j++){    }  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  /* fprintf(ficresprob,"\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fprintf(ficresprobcov,"\n");  /*   } */
   fprintf(ficresprobcor,"\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  */    pstamp(ficresvij);
  xp=vector(1,npar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    if(popbased==1)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    else
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   first=1;    fprintf(ficresvij,"# Age");
   fprintf(ficgp,"\n# Routine varprob");    for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      for(j=1; j<=nlstate;j++)
   fprintf(fichtm,"\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\    xp=vector(1,npar);
   file %s<br>\n",optionfilehtmcov);    dnewm=matrix(1,nlstate,1,npar);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    doldm=matrix(1,nlstate,1,nlstate);
 and drawn. It helps understanding how is the covariance between two incidences.\    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \  
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    gpp=vector(nlstate+1,nlstate+ndeath);
 standard deviations wide on each axis. <br>\    gmp=vector(nlstate+1,nlstate+ndeath);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\   
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   cov[1]=1;    }
   tj=cptcoveff;    else  hstepm=estepm;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    /* For example we decided to compute the life expectancy with the smallest unit */
   j1=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   for(t=1; t<=tj;t++){       nhstepm is the number of hstepm from age to agelim
     for(i1=1; i1<=ncodemax[t];i1++){        nstepm is the number of stepm from age to agelin.
       j1++;       Look at hpijx to understand the reason of that which relies in memory size
       if  (cptcovn>0) {       and note for a fixed period like k years */
         fprintf(ficresprob, "\n#********** Variable ");     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficresprob, "**********\n#\n");       means that if the survival funtion is printed every two years of age and if
         fprintf(ficresprobcov, "\n#********** Variable ");        you sum them up and add 1 year (area under the trapezoids) you won't get the same
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       results. So we changed our mind and took the option of the best precision.
         fprintf(ficresprobcov, "**********\n#\n");    */
             hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         fprintf(ficgp, "\n#********** Variable ");     agelim = AGESUP;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficgp, "**********\n#\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
               nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      gm=matrix(0,nhstepm,1,nlstate);
           
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(theta=1; theta <=npar; theta++){
         fprintf(ficresprobcor, "**********\n#");            for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               }
       for (age=bage; age<=fage; age ++){         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         cov[2]=age;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        if (popbased==1) {
         }          if(mobilav ==0){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovprod;k++)              prlim[i][i]=probs[(int)age][i][ij];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }else{ /* mobilav */
                     for(i=1; i<=nlstate;i++)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              prlim[i][i]=mobaverage[(int)age][i][ij];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
         gp=vector(1,(nlstate)*(nlstate+ndeath));        }
         gm=vector(1,(nlstate)*(nlstate+ndeath));   
             for(j=1; j<= nlstate; j++){
         for(theta=1; theta <=npar; theta++){          for(h=0; h<=nhstepm; h++){
           for(i=1; i<=npar; i++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                     }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
                   /* This for computing probability of death (h=1 means
           k=0;           computed over hstepm matrices product = hstepm*stepm months)
           for(i=1; i<= (nlstate); i++){           as a weighted average of prlim.
             for(j=1; j<=(nlstate+ndeath);j++){        */
               k=k+1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               gp[k]=pmmij[i][j];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
                   /* end probability of death */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               xp[i] = x[i] - (i==theta ?delti[theta]:0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(i=1; i<=(nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){        if (popbased==1) {
               k=k+1;          if(mobilav ==0){
               gm[k]=pmmij[i][j];            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */
                  for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)               prlim[i][i]=mobaverage[(int)age][i][ij];
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            }
         }        }
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<= nlstate; j++){
           for(theta=1; theta <=npar; theta++)          for(h=0; h<=nhstepm; h++){
             trgradg[j][theta]=gradg[theta][j];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                       gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        }
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        /* This for computing probability of death (h=1 means
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));           computed over hstepm matrices product = hstepm*stepm months)
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           as a weighted average of prlim.
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                    gmp[j] += prlim[i][i]*p3mat[i][j][1];
         k=0;        }    
         for(i=1; i<=(nlstate); i++){        /* end probability of death */
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;        for(j=1; j<= nlstate; j++) /* vareij */
             mu[k][(int) age]=pmmij[i][j];          for(h=0; h<=nhstepm; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             varpij[i][j][(int)age] = doldm[i][j];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      } /* End theta */
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           }*/  
       for(h=0; h<=nhstepm; h++) /* veij */
         fprintf(ficresprob,"\n%d ",(int)age);        for(j=1; j<=nlstate;j++)
         fprintf(ficresprobcov,"\n%d ",(int)age);          for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobcor,"\n%d ",(int)age);            trgradg[h][j][theta]=gradg[h][theta][j];
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(theta=1; theta <=npar; theta++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          trgradgp[j][theta]=gradgp[theta][j];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);   
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         i=0;      for(i=1;i<=nlstate;i++)
         for (k=1; k<=(nlstate);k++){        for(j=1;j<=nlstate;j++)
           for (l=1; l<=(nlstate+ndeath);l++){           vareij[i][j][(int)age] =0.;
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      for(h=0;h<=nhstepm;h++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        for(k=0;k<=nhstepm;k++){
             for (j=1; j<=i;j++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(i=1;i<=nlstate;i++)
             }            for(j=1;j<=nlstate;j++)
           }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }/* end of loop for state */        }
       } /* end of loop for age */      }
    
       /* Confidence intervalle of pij  */      /* pptj */
       /*      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficgp,"\nset noparametric;unset label");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          varppt[j][i]=doldmp[j][i];
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      /* end ppptj */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      /*  x centered again */
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      if (popbased==1) {
       first1=1;        if(mobilav ==0){
       for (k2=1; k2<=(nlstate);k2++){          for(i=1; i<=nlstate;i++)
         for (l2=1; l2<=(nlstate+ndeath);l2++){             prlim[i][i]=probs[(int)age][i][ij];
           if(l2==k2) continue;        }else{ /* mobilav */
           j=(k2-1)*(nlstate+ndeath)+l2;          for(i=1; i<=nlstate;i++)
           for (k1=1; k1<=(nlstate);k1++){            prlim[i][i]=mobaverage[(int)age][i][ij];
             for (l1=1; l1<=(nlstate+ndeath);l1++){         }
               if(l1==k1) continue;      }
               i=(k1-1)*(nlstate+ndeath)+l1;               
               if(i<=j) continue;      /* This for computing probability of death (h=1 means
               for (age=bage; age<=fage; age ++){          computed over hstepm (estepm) matrices product = hstepm*stepm months)
                 if ((int)age %5==0){         as a weighted average of prlim.
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   mu2=mu[j][(int) age]/stepm*YEARM;      }    
                   c12=cv12/sqrt(v1*v2);      /* end probability of death */
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   /* Eigen vectors */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for(i=1; i<=nlstate;i++){
                   /*v21=sqrt(1.-v11*v11); *//* error */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   v21=(lc1-v1)/cv12*v11;        }
                   v12=-v21;      }
                   v22=v11;      fprintf(ficresprobmorprev,"\n");
                   tnalp=v21/v11;  
                   if(first1==1){      fprintf(ficresvij,"%.0f ",age );
                     first1=0;      for(i=1; i<=nlstate;i++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        for(j=1; j<=nlstate;j++){
                   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        }
                   /*printf(fignu*/      fprintf(ficresvij,"\n");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      free_matrix(gp,0,nhstepm,1,nlstate);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      free_matrix(gm,0,nhstepm,1,nlstate);
                   if(first==1){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                     first=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                     fprintf(ficgp,"\nset parametric;unset label");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    } /* End age */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_vector(gpp,nlstate+1,nlstate+ndeath);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    free_vector(gmp,nlstate+1,nlstate+ndeath);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   }else{    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     first=0;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);  */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    free_vector(xp,1,npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    free_matrix(doldm,1,nlstate,1,nlstate);
                   }/* if first */    free_matrix(dnewm,1,nlstate,1,npar);
                 } /* age mod 5 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               } /* end loop age */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               first=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             } /*l12 */    fclose(ficresprobmorprev);
           } /* k12 */    fflush(ficgp);
         } /*l1 */    fflush(fichtm);
       }/* k1 */  }  /* end varevsij */
     } /* loop covariates */  
   }  /************ Variance of prevlim ******************/
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  {
   free_vector(xp,1,npar);    /* Variance of prevalence limit */
   fclose(ficresprob);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fclose(ficresprobcov);    double **newm;
   fclose(ficresprobcor);    double **dnewm,**doldm;
   fflush(ficgp);    int i, j, nhstepm, hstepm;
   fflush(fichtmcov);    int k, cptcode;
 }    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
 /******************* Printing html file ***********/    double age,agelim;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int theta;
                   int lastpass, int stepm, int weightopt, char model[],\   
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    pstamp(ficresvpl);
                   int popforecast, int estepm ,\    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   double jprev1, double mprev1,double anprev1, \    fprintf(ficresvpl,"# Age");
                   double jprev2, double mprev2,double anprev2){    for(i=1; i<=nlstate;i++)
   int jj1, k1, i1, cpt;        fprintf(ficresvpl," %1d-%1d",i,i);
   /*char optionfilehtm[FILENAMELENGTH];*/    fprintf(ficresvpl,"\n");
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */  
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */    xp=vector(1,npar);
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */    dnewm=matrix(1,nlstate,1,npar);
 /*   } */    doldm=matrix(1,nlstate,1,nlstate);
    
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    hstepm=1*YEARM; /* Every year of age */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \    agelim = AGESUP;
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Life expectancies by age and initial health status (estepm=%2d months): \      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
    <a href=\"%s\">%s</a> <br>\n</li>", \      if (stepm >= YEARM) hstepm=1;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\      gradg=matrix(1,npar,1,nlstate);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\      gp=vector(1,nlstate);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));      gm=vector(1,nlstate);
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
  m=cptcoveff;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  jj1=0;        for(i=1;i<=nlstate;i++)
  for(k1=1; k1<=m;k1++){          gp[i] = prlim[i][i];
    for(i1=1; i1<=ncodemax[k1];i1++){     
      jj1++;        for(i=1; i<=npar; i++) /* Computes gradient */
      if (cptcovn > 0) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        for (cpt=1; cpt<=cptcoveff;cpt++)         for(i=1;i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          gm[i] = prlim[i][i];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }        for(i=1;i<=nlstate;i++)
      /* Pij */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \      } /* End theta */
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       
      /* Quasi-incidences */      trgradg =matrix(1,nlstate,1,npar);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \      for(j=1; j<=nlstate;j++)
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         for(theta=1; theta <=npar; theta++)
        /* Stable prevalence in each health state */          trgradg[j][theta]=gradg[theta][j];
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      for(i=1;i<=nlstate;i++)
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);        varpl[i][(int)age] =0.;
        }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
      for(cpt=1; cpt<=nlstate;cpt++) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \      for(i=1;i<=nlstate;i++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \      fprintf(ficresvpl,"%.0f ",age );
 health expectancies in states (1) and (2): %s%d.png<br>\      for(i=1; i<=nlstate;i++)
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    } /* end i1 */      fprintf(ficresvpl,"\n");
  }/* End k1 */      free_vector(gp,1,nlstate);
  fprintf(fichtm,"</ul>");      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    } /* End age */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\  
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    free_vector(xp,1,npar);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    free_matrix(doldm,1,nlstate,1,npar);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    free_matrix(dnewm,1,nlstate,1,nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\  
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\  }
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\  
          rfileres,rfileres,\  /************ Variance of one-step probabilities  ******************/
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\  {
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\    int i, j=0,  i1, k1, l1, t, tj;
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\    int k2, l2, j1,  z1;
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\    int k=0,l, cptcode;
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 /*  if(popforecast==1) fprintf(fichtm,"\n */    double **dnewm,**doldm;
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    double *xp;
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    double *gp, *gm;
 /*      <br>",fileres,fileres,fileres,fileres); */    double **gradg, **trgradg;
 /*  else  */    double **mu;
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    double age,agelim, cov[NCOVMAX];
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
  m=cptcoveff;    char fileresprob[FILENAMELENGTH];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
  jj1=0;  
  for(k1=1; k1<=m;k1++){    double ***varpij;
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    strcpy(fileresprob,"prob");
      if (cptcovn > 0) {    strcat(fileresprob,fileres);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        for (cpt=1; cpt<=cptcoveff;cpt++)       printf("Problem with resultfile: %s\n", fileresprob);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
      }    strcpy(fileresprobcov,"probcov");
      for(cpt=1; cpt<=nlstate;cpt++) {    strcat(fileresprobcov,fileres);
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 interval) in state (%d): %s%d%d.png <br>\      printf("Problem with resultfile: %s\n", fileresprobcov);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }    }
    } /* end i1 */    strcpy(fileresprobcor,"probcor");
  }/* End k1 */    strcat(fileresprobcor,fileres);
  fprintf(fichtm,"</ul>");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  fflush(fichtm);      printf("Problem with resultfile: %s\n", fileresprobcor);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
 /******************* Gnuplot file **************/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char dirfileres[132],optfileres[132];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int ng;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    pstamp(ficresprob);
 /*     printf("Problem with file %s",optionfilegnuplot); */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    fprintf(ficresprob,"# Age");
 /*   } */    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /*#ifdef windows */    fprintf(ficresprobcov,"# Age");
   fprintf(ficgp,"cd \"%s\" \n",pathc);    pstamp(ficresprobcor);
     /*#endif */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   m=pow(2,cptcoveff);    fprintf(ficresprobcor,"# Age");
   
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");    for(i=1; i<=nlstate;i++)
  /* 1eme*/      for(j=1; j<=(nlstate+ndeath);j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);      }  
      fprintf(ficgp,"set xlabel \"Age\" \n\   /* fprintf(ficresprob,"\n");
 set ylabel \"Probability\" \n\    fprintf(ficresprobcov,"\n");
 set ter png small\n\    fprintf(ficresprobcor,"\n");
 set size 0.65,0.65\n\   */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      for (i=1; i<= nlstate ; i ++) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      }    first=1;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    fprintf(ficgp,"\n# Routine varprob");
      for (i=1; i<= nlstate ; i ++) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichtm,"\n");
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      for (i=1; i<= nlstate ; i ++) {    file %s<br>\n",optionfilehtmcov);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
        else fprintf(ficgp," \%%*lf (\%%*lf)");  and drawn. It helps understanding how is the covariance between two incidences.\
      }     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /*2 eme*/  standard deviations wide on each axis. <br>\
      Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   for (k1=1; k1<= m ; k1 ++) {    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
         cov[1]=1;
     for (i=1; i<= nlstate+1 ; i ++) {    tj=cptcoveff;
       k=2*i;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    j1=0;
       for (j=1; j<= nlstate+1 ; j ++) {    for(t=1; t<=tj;t++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(i1=1; i1<=ncodemax[t];i1++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");        j1++;
       }           if  (cptcovn>0) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          fprintf(ficresprob, "\n#********** Variable ");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          fprintf(ficresprob, "**********\n#\n");
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficresprobcov, "\n#********** Variable ");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobcov, "**********\n#\n");
       }            
       fprintf(ficgp,"\" t\"\" w l 0,");          fprintf(ficgp, "\n#********** Variable ");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficgp, "**********\n#\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");         
         else fprintf(ficgp," \%%*lf (\%%*lf)");         
       }             fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       else fprintf(ficgp,"\" t\"\" w l 0,");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     }         
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*3eme*/          fprintf(ficresprobcor, "**********\n#");    
           }
   for (k1=1; k1<= m ; k1 ++) {        
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (age=bage; age<=fage; age ++){
       k=2+nlstate*(2*cpt-2);          cov[2]=age;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          for (k=1; k<=cptcovn;k++) {
       fprintf(ficgp,"set ter png small\n\            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 set size 0.65,0.65\n\          }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for (k=1; k<=cptcovprod;k++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);         
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          gp=vector(1,(nlstate)*(nlstate+ndeath));
                   gm=vector(1,(nlstate)*(nlstate+ndeath));
       */     
       for (i=1; i< nlstate ; i ++) {          for(theta=1; theta <=npar; theta++){
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);            for(i=1; i<=npar; i++)
                       xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       }            
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }           
               k=0;
   /* CV preval stable (period) */            for(i=1; i<= (nlstate); i++){
   for (k1=1; k1<= m ; k1 ++) {               for(j=1; j<=(nlstate+ndeath);j++){
     for (cpt=1; cpt<=nlstate ; cpt ++) {                k=k+1;
       k=3;                gp[k]=pmmij[i][j];
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);              }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\            }
 set ter png small\nset size 0.65,0.65\n\           
 unset log y\n\            for(i=1; i<=npar; i++)
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
            
       for (i=1; i< nlstate ; i ++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficgp,"+$%d",k+i+1);            k=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            for(i=1; i<=(nlstate); i++){
                     for(j=1; j<=(nlstate+ndeath);j++){
       l=3+(nlstate+ndeath)*cpt;                k=k+1;
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                gm[k]=pmmij[i][j];
       for (i=1; i< nlstate ; i ++) {              }
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);       
       }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                 gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }           }
   }    
             for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   /* proba elementaires */            for(theta=1; theta <=npar; theta++)
   for(i=1,jk=1; i <=nlstate; i++){              trgradg[j][theta]=gradg[theta][j];
     for(k=1; k <=(nlstate+ndeath); k++){         
       if (k != i) {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
         for(j=1; j <=ncovmodel; j++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           jk++;           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           fprintf(ficgp,"\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }  
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
    }         
           k=0;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for(i=1; i<=(nlstate); i++){
      for(jk=1; jk <=m; jk++) {            for(j=1; j<=(nlstate+ndeath);j++){
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);               k=k+1;
        if (ng==2)              mu[k][(int) age]=pmmij[i][j];
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            }
        else          }
          fprintf(ficgp,"\nset title \"Probability\"\n");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        i=1;              varpij[i][j][(int)age] = doldm[i][j];
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;          /*printf("\n%d ",(int)age);
          for(k=1; k<=(nlstate+ndeath); k++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            if (k != k2){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              if(ng==2)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            }*/
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficresprob,"\n%d ",(int)age);
              ij=1;          fprintf(ficresprobcov,"\n%d ",(int)age);
              for(j=3; j <=ncovmodel; j++) {          fprintf(ficresprobcor,"\n%d ",(int)age);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                  ij++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                else            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
              }          }
              fprintf(ficgp,")/(1");          i=0;
                        for (k=1; k<=(nlstate);k++){
              for(k1=1; k1 <=nlstate; k1++){               for (l=1; l<=(nlstate+ndeath);l++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              i=i++;
                ij=1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                for(j=3; j <=ncovmodel; j++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              for (j=1; j<=i;j++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                    ij++;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                  }              }
                  else            }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }/* end of loop for state */
                }        } /* end of loop for age */
                fprintf(ficgp,")");  
              }        /* Confidence intervalle of pij  */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        /*
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          fprintf(ficgp,"\nset noparametric;unset label");
              i=i+ncovmodel;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          } /* end k */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
        } /* end k2 */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      } /* end jk */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
    } /* end ng */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    fflush(ficgp);         */
 }  /* end gnuplot */  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
 /*************** Moving average **************/        for (k2=1; k2<=(nlstate);k2++){
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          for (l2=1; l2<=(nlstate+ndeath);l2++){
             if(l2==k2) continue;
   int i, cpt, cptcod;            j=(k2-1)*(nlstate+ndeath)+l2;
   int modcovmax =1;            for (k1=1; k1<=(nlstate);k1++){
   int mobilavrange, mob;              for (l1=1; l1<=(nlstate+ndeath);l1++){
   double age;                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                 if(i<=j) continue;
                            a covariate has 2 modalities */                for (age=bage; age<=fage; age ++){
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if(mobilav==1) mobilavrange=5; /* default */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     else mobilavrange=mobilav;                    mu1=mu[i][(int) age]/stepm*YEARM ;
     for (age=bage; age<=fage; age++)                    mu2=mu[j][(int) age]/stepm*YEARM;
       for (i=1; i<=nlstate;i++)                    c12=cv12/sqrt(v1*v2);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                    /* Computing eigen value of matrix of covariance */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /* We keep the original values on the extreme ages bage, fage and for                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                    /* Eigen vectors */
        we use a 5 terms etc. until the borders are no more concerned.                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     */                     /*v21=sqrt(1.-v11*v11); *//* error */
     for (mob=3;mob <=mobilavrange;mob=mob+2){                    v21=(lc1-v1)/cv12*v11;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                    v12=-v21;
         for (i=1; i<=nlstate;i++){                    v22=v11;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                    tnalp=v21/v11;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                    if(first1==1){
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                      first1=0;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                    }
               }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                    /*printf(fignu*/
           }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       }/* end age */                    if(first==1){
     }/* end mob */                      first=0;
   }else return -1;                      fprintf(ficgp,"\nset parametric;unset label");
   return 0;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 }/* End movingaverage */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 /************** Forecasting ******************/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   /* proj1, year, month, day of starting projection                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      agemin, agemax range of age                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      dateprev1 dateprev2 range of dates during which prevalence is computed                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
      anproj2 year of en of projection (same day and month as proj1).                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int *popage;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double agec; /* generic age */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double *popeffectif,*popcount;                    }else{
   double ***p3mat;                      first=0;
   double ***mobaverage;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   char fileresf[FILENAMELENGTH];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   agelim=AGESUP;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(fileresf,"f");                     }/* if first */
   strcat(fileresf,fileres);                  } /* age mod 5 */
   if((ficresf=fopen(fileresf,"w"))==NULL) {                } /* end loop age */
     printf("Problem with forecast resultfile: %s\n", fileresf);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                first=1;
   }              } /*l12 */
   printf("Computing forecasting: result on file '%s' \n", fileresf);            } /* k12 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);          } /*l1 */
         }/* k1 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      } /* loop covariates */
     }
   if (mobilav!=0) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    free_vector(xp,1,npar);
     }    fclose(ficresprob);
   }    fclose(ficresprobcov);
     fclose(ficresprobcor);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fflush(ficgp);
   if (stepm<=12) stepsize=1;    fflush(fichtmcov);
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  
   else  hstepm=estepm;     /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   hstepm=hstepm/stepm;                     int lastpass, int stepm, int weightopt, char model[],\
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                                fractional in yp1 */                    int popforecast, int estepm ,\
   anprojmean=yp;                    double jprev1, double mprev1,double anprev1, \
   yp2=modf((yp1*12),&yp);                    double jprev2, double mprev2,double anprev2){
   mprojmean=yp;    int jj1, k1, i1, cpt;
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   if(jprojmean==0) jprojmean=1;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   if(mprojmean==0) jprojmean=1;  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   i1=cptcoveff;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if (cptcovn < 1){i1=1;}             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
        fprintf(fichtm,"\
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   fprintf(ficresf,"#****** Routine prevforecast **\n");     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 /*            if (h==(int)(YEARM*yearp)){ */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){     fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresf,"\n#******");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       for(j=1;j<=cptcoveff;j++) {     fprintf(fichtm,"\
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Population projections by age and states: \
       }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       for(j=1; j<=nlstate+ndeath;j++){   
         for(i=1; i<=nlstate;i++)                 m=cptcoveff;
           fprintf(ficresf," p%d%d",i,j);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficresf," p.%d",j);  
       }   jj1=0;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    for(k1=1; k1<=m;k1++){
         fprintf(ficresf,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          jj1++;
        if (cptcovn > 0) {
         for (agec=fage; agec>=(ageminpar-1); agec--){          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);          for (cpt=1; cpt<=cptcoveff;cpt++)
           nhstepm = nhstepm/hstepm;            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           oldm=oldms;savm=savms;       }
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);         /* Pij */
                fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           for (h=0; h<=nhstepm; h++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
             if (h*hstepm/YEARM*stepm ==yearp) {       /* Quasi-incidences */
               fprintf(ficresf,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
               for(j=1;j<=cptcoveff;j++)    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);         /* Period (stable) prevalence in each health state */
             }          for(cpt=1; cpt<nlstate;cpt++){
             for(j=1; j<=nlstate+ndeath;j++) {           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
               ppij=0.;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
               for(i=1; i<=nlstate;i++) {         }
                 if (mobilav==1)        for(cpt=1; cpt<=nlstate;cpt++) {
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
                 else {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];       }
                 }     } /* end i1 */
                 if (h*hstepm/YEARM*stepm== yearp) {   }/* End k1 */
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   fprintf(fichtm,"</ul>");
                 }  
               } /* end i */  
               if (h*hstepm/YEARM*stepm==yearp) {   fprintf(fichtm,"\
                 fprintf(ficresf," %.3f", ppij);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
               }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
             }/* end j */  
           } /* end h */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         } /* end agec */   fprintf(fichtm,"\
       } /* end yearp */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     } /* end cptcod */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   } /* end  cptcov */  
           fprintf(fichtm,"\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   fclose(ficresf);   fprintf(fichtm,"\
 }   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
 /************** Forecasting *****not tested NB*************/             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   fprintf(fichtm,"\
      - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     <a href=\"%s\">%s</a> <br>\n</li>",
   int *popage;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   double calagedatem, agelim, kk1, kk2;   fprintf(fichtm,"\
   double *popeffectif,*popcount;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   double ***p3mat,***tabpop,***tabpopprev;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   double ***mobaverage;   fprintf(fichtm,"\
   char filerespop[FILENAMELENGTH];   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   fprintf(fichtm,"\
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   agelim=AGESUP;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
     /*  if(popforecast==1) fprintf(fichtm,"\n */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     /*      <br>",fileres,fileres,fileres,fileres); */
   strcpy(filerespop,"pop");   /*  else  */
   strcat(filerespop,fileres);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   fflush(fichtm);
     printf("Problem with forecast resultfile: %s\n", filerespop);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }   m=cptcoveff;
   printf("Computing forecasting: result on file '%s' \n", filerespop);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  
    jj1=0;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   if (mobilav!=0) {       jj1++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       if (cptcovn > 0) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);         for (cpt=1; cpt<=cptcoveff;cpt++)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   if (stepm<=12) stepsize=1;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   agelim=AGESUP;       }
          fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   hstepm=1;  health expectancies in states (1) and (2): %s%d.png<br>\
   hstepm=hstepm/stepm;   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        } /* end i1 */
   if (popforecast==1) {   }/* End k1 */
     if((ficpop=fopen(popfile,"r"))==NULL) {   fprintf(fichtm,"</ul>");
       printf("Problem with population file : %s\n",popfile);exit(0);   fflush(fichtm);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  }
     }   
     popage=ivector(0,AGESUP);  /******************* Gnuplot file **************/
     popeffectif=vector(0,AGESUP);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     popcount=vector(0,AGESUP);  
         char dirfileres[132],optfileres[132];
     i=1;       int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int ng;
      /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     imx=i;  /*     printf("Problem with file %s",optionfilegnuplot); */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    /*#ifdef windows */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
       k=k+1;      /*#endif */
       fprintf(ficrespop,"\n#******");    m=pow(2,cptcoveff);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(dirfileres,optionfilefiname);
       }    strcpy(optfileres,"vpl");
       fprintf(ficrespop,"******\n");   /* 1eme*/
       fprintf(ficrespop,"# Age");    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     for (k1=1; k1<= m ; k1 ++) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
              fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for (cpt=0; cpt<=0;cpt++) {        fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     set ylabel \"Probability\" \n\
           set ter png small\n\
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   set size 0.65,0.65\n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           nhstepm = nhstepm/hstepm;   
                  for (i=1; i<= nlstate ; i ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           oldm=oldms;savm=savms;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         }
                fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for (h=0; h<=nhstepm; h++){       for (i=1; i<= nlstate ; i ++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
               kk1=0.;kk2=0;       for (i=1; i<= nlstate ; i ++) {
               for(i=1; i<=nlstate;i++) {                       if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                 if (mobilav==1)          else fprintf(ficgp," \%%*lf (\%%*lf)");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       }  
                 else {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     }
                 }    }
               }    /*2 eme*/
               if (h==(int)(calagedatem+12*cpt)){   
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    for (k1=1; k1<= m ; k1 ++) {
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
               }     
             }      for (i=1; i<= nlstate+1 ; i ++) {
             for(i=1; i<=nlstate;i++){        k=2*i;
               kk1=0.;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 for(j=1; j<=nlstate;j++){        for (j=1; j<= nlstate+1 ; j ++) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 }          else fprintf(ficgp," \%%*lf (\%%*lf)");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];        }  
             }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for (j=1; j<= nlstate+1 ; j ++) {
           }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }  
       }        fprintf(ficgp,"\" t\"\" w l 0,");
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /******/        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           }  
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         else fprintf(ficgp,"\" t\"\" w l 0,");
           nhstepm = nhstepm/hstepm;       }
               }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    /*3eme*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
           for (h=0; h<=nhstepm; h++){    for (k1=1; k1<= m ; k1 ++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        /*       k=2+nlstate*(2*cpt-2); */
             }         k=2+(nlstate+1)*(cpt-1);
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               kk1=0.;kk2=0;        fprintf(ficgp,"set ter png small\n\
               for(i=1; i<=nlstate;i++) {                set size 0.65,0.65\n\
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
               }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }         
    }         */
   }        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
          
   if (popforecast==1) {        }
     free_ivector(popage,0,AGESUP);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);    }
   }   
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* CV preval stable (period) */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k1=1; k1<= m ; k1 ++) {
   fclose(ficrespop);      for (cpt=1; cpt<=nlstate ; cpt ++) {
 } /* End of popforecast */        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 int fileappend(FILE *fichier, char *optionfich)        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 {  set ter png small\nset size 0.65,0.65\n\
   if((fichier=fopen(optionfich,"a"))==NULL) {  unset log y\n\
     printf("Problem with file: %s\n", optionfich);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);       
     return (0);        for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
   fflush(fichier);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   return (1);       
 }        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
 /**************** function prwizard **********************/          l=3+(nlstate+ndeath)*cpt;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)          fprintf(ficgp,"+$%d",l+i+1);
 {        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   /* Wizard to print covariance matrix template */      }
     }  
   char ca[32], cb[32], cc[32];   
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    /* proba elementaires */
   int numlinepar;    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        if (k != i) {
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(j=1; j <=ncovmodel; j++){
   for(i=1; i <=nlstate; i++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     jj=0;            jk++;
     for(j=1; j <=nlstate+ndeath; j++){            fprintf(ficgp,"\n");
       if(j==i) continue;          }
       jj++;        }
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      }
       printf("%1d%1d",i,j);     }
       fprintf(ficparo,"%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         /*        printf(" %lf",param[i][j][k]); */       for(jk=1; jk <=m; jk++) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
         printf(" 0.");         if (ng==2)
         fprintf(ficparo," 0.");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       }         else
       printf("\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficparo,"\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     }         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   printf("# Scales (for hessian or gradient estimation)\n");           k3=i;
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");           for(k=1; k<=(nlstate+ndeath); k++) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/              if (k != k2){
   for(i=1; i <=nlstate; i++){               if(ng==2)
     jj=0;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     for(j=1; j <=nlstate+ndeath; j++){               else
       if(j==i) continue;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       jj++;               ij=1;
       fprintf(ficparo,"%1d%1d",i,j);               for(j=3; j <=ncovmodel; j++) {
       printf("%1d%1d",i,j);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fflush(stdout);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for(k=1; k<=ncovmodel;k++){                   ij++;
         /*      printf(" %le",delti3[i][j][k]); */                 }
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                 else
         printf(" 0.");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficparo," 0.");               }
       }               fprintf(ficgp,")/(1");
       numlinepar++;               
       printf("\n");               for(k1=1; k1 <=nlstate; k1++){  
       fprintf(ficparo,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     }                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
   printf("# Covariance matrix\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 /* # 121 Var(a12)\n\ */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                     ij++;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                   }
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                   else
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                 }
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                 fprintf(ficgp,")");
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */               }
   fflush(stdout);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficparo,"# Covariance matrix\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /* # 121 Var(a12)\n\ */               i=i+ncovmodel;
   /* # 122 Cov(b12,a12) Var(b12)\n\ */             }
   /* #   ...\n\ */           } /* end k */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */         } /* end k2 */
          } /* end jk */
   for(itimes=1;itimes<=2;itimes++){     } /* end ng */
     jj=0;     fflush(ficgp);
     for(i=1; i <=nlstate; i++){  }  /* end gnuplot */
       for(j=1; j <=nlstate+ndeath; j++){  
         if(j==i) continue;  
         for(k=1; k<=ncovmodel;k++){  /*************** Moving average **************/
           jj++;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           ca[0]= k+'a'-1;ca[1]='\0';  
           if(itimes==1){    int i, cpt, cptcod;
             printf("#%1d%1d%d",i,j,k);    int modcovmax =1;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    int mobilavrange, mob;
           }else{    double age;
             printf("%1d%1d%d",i,j,k);  
             fprintf(ficparo,"%1d%1d%d",i,j,k);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
             /*  printf(" %.5le",matcov[i][j]); */                             a covariate has 2 modalities */
           }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           ll=0;  
           for(li=1;li <=nlstate; li++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             for(lj=1;lj <=nlstate+ndeath; lj++){      if(mobilav==1) mobilavrange=5; /* default */
               if(lj==li) continue;      else mobilavrange=mobilav;
               for(lk=1;lk<=ncovmodel;lk++){      for (age=bage; age<=fage; age++)
                 ll++;        for (i=1; i<=nlstate;i++)
                 if(ll<=jj){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                   cb[0]= lk +'a'-1;cb[1]='\0';            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   if(ll<jj){      /* We keep the original values on the extreme ages bage, fage and for
                     if(itimes==1){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);         we use a 5 terms etc. until the borders are no more concerned.
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      */
                     }else{      for (mob=3;mob <=mobilavrange;mob=mob+2){
                       printf(" 0.");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                       fprintf(ficparo," 0.");          for (i=1; i<=nlstate;i++){
                     }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                   }else{              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                     if(itimes==1){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                       printf(" Var(%s%1d%1d)",ca,i,j);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                     }else{                }
                       printf(" 0.");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                       fprintf(ficparo," 0.");            }
                     }          }
                   }        }/* end age */
                 }      }/* end mob */
               } /* end lk */    }else return -1;
             } /* end lj */    return 0;
           } /* end li */  }/* End movingaverage */
           printf("\n");  
           fprintf(ficparo,"\n");  
           numlinepar++;  /************** Forecasting ******************/
         } /* end k*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       } /*end j */    /* proj1, year, month, day of starting projection
     } /* end i */       agemin, agemax range of age
   }       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
 } /* end of prwizard */    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
 /***********************************************/    double agec; /* generic age */
 /**************** Main Program *****************/    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 /***********************************************/    double *popeffectif,*popcount;
     double ***p3mat;
 int main(int argc, char *argv[])    double ***mobaverage;
 {    char fileresf[FILENAMELENGTH];
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    agelim=AGESUP;
   int jj, imk;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   int numlinepar=0; /* Current linenumber of parameter file */   
   /*  FILE *fichtm; *//* Html File */    strcpy(fileresf,"f");
   /* FILE *ficgp;*/ /*Gnuplot File */    strcat(fileresf,fileres);
   double agedeb, agefin,hf;    if((ficresf=fopen(fileresf,"w"))==NULL) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   double fret;    }
   double **xi,tmp,delta;    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   double dum; /* Dummy variable */  
   double ***p3mat;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   double ***mobaverage;  
   int *indx;    if (mobilav!=0) {
   char line[MAXLINE], linepar[MAXLINE];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   char pathr[MAXLINE];         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int firstobs=1, lastobs=10;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int sdeb, sfin; /* Status at beginning and end */      }
   int c,  h , cpt,l;    }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     if (stepm<=12) stepsize=1;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    if(estepm < stepm){
   int mobilav=0,popforecast=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int hstepm, nhstepm;    }
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    else  hstepm=estepm;  
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
     hstepm=hstepm/stepm;
   double bage, fage, age, agelim, agebase;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   double ftolpl=FTOL;                                 fractional in yp1 */
   double **prlim;    anprojmean=yp;
   double *severity;    yp2=modf((yp1*12),&yp);
   double ***param; /* Matrix of parameters */    mprojmean=yp;
   double  *p;    yp1=modf((yp2*30.5),&yp);
   double **matcov; /* Matrix of covariance */    jprojmean=yp;
   double ***delti3; /* Scale */    if(jprojmean==0) jprojmean=1;
   double *delti; /* Scale */    if(mprojmean==0) jprojmean=1;
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    i1=cptcoveff;
   double *epj, vepp;    if (cptcovn < 1){i1=1;}
   double kk1, kk2;   
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
    
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
   char z[1]="c", occ;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        k=k+1;
   char strstart[80], *strt, strtend[80];        fprintf(ficresf,"\n#******");
   char *stratrunc;        for(j=1;j<=cptcoveff;j++) {
   int lstra;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   long total_usecs;        fprintf(ficresf,"******\n");
          fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(j=1; j<=nlstate+ndeath;j++){
   (void) gettimeofday(&start_time,&tzp);          for(i=1; i<=nlstate;i++)              
   curr_time=start_time;            fprintf(ficresf," p%d%d",i,j);
   tm = *localtime(&start_time.tv_sec);          fprintf(ficresf," p.%d",j);
   tmg = *gmtime(&start_time.tv_sec);        }
   strcpy(strstart,asctime(&tm));        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
 /*  printf("Localtime (at start)=%s",strstart); */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
 /*  tp.tv_sec = tp.tv_sec +86400; */  
 /*  tm = *localtime(&start_time.tv_sec); */          for (agec=fage; agec>=(ageminpar-1); agec--){
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */            nhstepm = nhstepm/hstepm;
 /*   tmg.tm_hour=tmg.tm_hour + 1; */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   tp.tv_sec = mktime(&tmg); */            oldm=oldms;savm=savms;
 /*   strt=asctime(&tmg); */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 /*   printf("Time(after) =%s",strstart);  */         
 /*  (void) time (&time_value);            for (h=0; h<=nhstepm; h++){
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);              if (h*hstepm/YEARM*stepm ==yearp) {
 *  tm = *localtime(&time_value);                fprintf(ficresf,"\n");
 *  strstart=asctime(&tm);                for(j=1;j<=cptcoveff;j++)
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               }
   nberr=0; /* Number of errors and warnings */              for(j=1; j<=nlstate+ndeath;j++) {
   nbwarn=0;                ppij=0.;
   getcwd(pathcd, size);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1)
   printf("\n%s\n%s",version,fullversion);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   if(argc <=1){                  else {
     printf("\nEnter the parameter file name: ");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     scanf("%s",pathtot);                  }
   }                  if (h*hstepm/YEARM*stepm== yearp) {
   else{                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     strcpy(pathtot,argv[1]);                  }
   }                } /* end i */
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                if (h*hstepm/YEARM*stepm==yearp) {
   /*cygwin_split_path(pathtot,path,optionfile);                  fprintf(ficresf," %.3f", ppij);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                }
   /* cutv(path,optionfile,pathtot,'\\');*/              }/* end j */
             } /* end h */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          } /* end agec */
   chdir(path);        } /* end yearp */
   strcpy(command,"mkdir ");      } /* end cptcod */
   strcat(command,optionfilefiname);    } /* end  cptcov */
   if((outcmd=system(command)) != 0){         
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  
     /* fclose(ficlog); */    fclose(ficresf);
 /*     exit(1); */  }
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */  /************** Forecasting *****not tested NB*************/
 /*     perror("mkdir"); */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 /*   } */   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   /*-------- arguments in the command line --------*/    int *popage;
     double calagedatem, agelim, kk1, kk2;
   /* Log file */    double *popeffectif,*popcount;
   strcat(filelog, optionfilefiname);    double ***p3mat,***tabpop,***tabpopprev;
   strcat(filelog,".log");    /* */    double ***mobaverage;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    char filerespop[FILENAMELENGTH];
     printf("Problem with logfile %s\n",filelog);  
     goto end;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Log filename:%s\n",filelog);    agelim=AGESUP;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fprintf(ficlog,"\nEnter the parameter file name: ");   
   fprintf(ficlog,"pathtot=%s\n\    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
  path=%s \n\   
  optionfile=%s\n\   
  optionfilext=%s\n\    strcpy(filerespop,"pop");
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   printf("Local time (at start):%s",strstart);      printf("Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficlog,"Local time (at start): %s",strstart);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fflush(ficlog);    }
 /*   (void) gettimeofday(&curr_time,&tzp); */    printf("Computing forecasting: result on file '%s' \n", filerespop);
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   /* */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);    if (mobilav!=0) {
   strcat(fileres,".txt");    /* Other files have txt extension */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*---------arguments file --------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);    }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     fflush(ficlog);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     goto end;    if (stepm<=12) stepsize=1;
   }   
     agelim=AGESUP;
    
     hstepm=1;
   strcpy(filereso,"o");    hstepm=hstepm/stepm;
   strcat(filereso,fileres);   
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    if (popforecast==1) {
     printf("Problem with Output resultfile: %s\n", filereso);      if((ficpop=fopen(popfile,"r"))==NULL) {
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        printf("Problem with population file : %s\n",popfile);exit(0);
     fflush(ficlog);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     goto end;      }
   }      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   /* Reads comments: lines beginning with '#' */      popcount=vector(0,AGESUP);
   numlinepar=0;     
   while((c=getc(ficpar))=='#' && c!= EOF){      i=1;  
     ungetc(c,ficpar);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     fgets(line, MAXLINE, ficpar);     
     numlinepar++;      imx=i;
     puts(line);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     fputs(line,ficparo);    }
     fputs(line,ficlog);  
   }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   ungetc(c,ficpar);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        fprintf(ficrespop,"\n#******");
   numlinepar++;        for(j=1;j<=cptcoveff;j++) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        }
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficrespop,"******\n");
   fflush(ficlog);        fprintf(ficrespop,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     ungetc(c,ficpar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     fgets(line, MAXLINE, ficpar);       
     numlinepar++;        for (cpt=0; cpt<=0;cpt++) {
     puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     fputs(line,ficparo);         
     fputs(line,ficlog);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   ungetc(c,ficpar);            nhstepm = nhstepm/hstepm;
            
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   covar=matrix(0,NCOVMAX,1,n);             oldm=oldms;savm=savms;
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         
             for (h=0; h<=nhstepm; h++){
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */              if (h==(int) (calagedatem+YEARM*cpt)) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */              for(j=1; j<=nlstate+ndeath;j++) {
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                kk1=0.;kk2=0;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                for(i=1; i<=nlstate;i++) {              
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                  if (mobilav==1)
     fclose (ficparo);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     fclose (ficlog);                  else {
     exit(0);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   }                  }
   /* Read guess parameters */                }
   /* Reads comments: lines beginning with '#' */                if (h==(int)(calagedatem+12*cpt)){
   while((c=getc(ficpar))=='#' && c!= EOF){                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     ungetc(c,ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
     fgets(line, MAXLINE, ficpar);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     numlinepar++;                }
     puts(line);              }
     fputs(line,ficparo);              for(i=1; i<=nlstate;i++){
     fputs(line,ficlog);                kk1=0.;
   }                  for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   for(i=1; i <=nlstate; i++){              }
     j=0;  
     for(jj=1; jj <=nlstate+ndeath; jj++){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
       if(jj==i) continue;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       j++;            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if ((i1 != i) && (j1 != j)){          }
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        }
         exit(1);   
       }    /******/
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
         printf("%1d%1d",i,j);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       fprintf(ficlog,"%1d%1d",i,j);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
       for(k=1; k<=ncovmodel;k++){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
         fscanf(ficpar," %lf",&param[i][j][k]);            nhstepm = nhstepm/hstepm;
         if(mle==1){           
           printf(" %lf",param[i][j][k]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficlog," %lf",param[i][j][k]);            oldm=oldms;savm=savms;
         }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         else            for (h=0; h<=nhstepm; h++){
           fprintf(ficlog," %lf",param[i][j][k]);              if (h==(int) (calagedatem+YEARM*cpt)) {
         fprintf(ficparo," %lf",param[i][j][k]);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       }              }
       fscanf(ficpar,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
       numlinepar++;                kk1=0.;kk2=0;
       if(mle==1)                for(i=1; i<=nlstate;i++) {              
         printf("\n");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       fprintf(ficlog,"\n");                }
       fprintf(ficparo,"\n");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     }              }
   }              }
   fflush(ficlog);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        }
      }
   p=param[1][1];    }
      
   /* Reads comments: lines beginning with '#' */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (popforecast==1) {
     fgets(line, MAXLINE, ficpar);      free_ivector(popage,0,AGESUP);
     numlinepar++;      free_vector(popeffectif,0,AGESUP);
     puts(line);      free_vector(popcount,0,AGESUP);
     fputs(line,ficparo);    }
     fputs(line,ficlog);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    fclose(ficrespop);
   } /* End of popforecast */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */  int fileappend(FILE *fichier, char *optionfich)
   for(i=1; i <=nlstate; i++){  {
     for(j=1; j <=nlstate+ndeath-1; j++){    if((fichier=fopen(optionfich,"a"))==NULL) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with file: %s\n", optionfich);
       if ((i1-i)*(j1-j)!=0){      fprintf(ficlog,"Problem with file: %s\n", optionfich);
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      return (0);
         exit(1);    }
       }    fflush(fichier);
       printf("%1d%1d",i,j);    return (1);
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       fprintf(ficlog,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /**************** function prwizard **********************/
         printf(" %le",delti3[i][j][k]);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
         fprintf(ficparo," %le",delti3[i][j][k]);  {
         fprintf(ficlog," %le",delti3[i][j][k]);  
       }    /* Wizard to print covariance matrix template */
       fscanf(ficpar,"\n");  
       numlinepar++;    char ca[32], cb[32], cc[32];
       printf("\n");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       fprintf(ficparo,"\n");    int numlinepar;
       fprintf(ficlog,"\n");  
     }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   fflush(ficlog);    for(i=1; i <=nlstate; i++){
       jj=0;
   delti=delti3[1][1];      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
           printf("%1d%1d",i,j);
   /* Reads comments: lines beginning with '#' */        fprintf(ficparo,"%1d%1d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){        for(k=1; k<=ncovmodel;k++){
     ungetc(c,ficpar);          /*        printf(" %lf",param[i][j][k]); */
     fgets(line, MAXLINE, ficpar);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     numlinepar++;          printf(" 0.");
     puts(line);          fprintf(ficparo," 0.");
     fputs(line,ficparo);        }
     fputs(line,ficlog);        printf("\n");
   }        fprintf(ficparo,"\n");
   ungetc(c,ficpar);      }
       }
   matcov=matrix(1,npar,1,npar);    printf("# Scales (for hessian or gradient estimation)\n");
   for(i=1; i <=npar; i++){    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     fscanf(ficpar,"%s",&str);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     if(mle==1)    for(i=1; i <=nlstate; i++){
       printf("%s",str);      jj=0;
     fprintf(ficlog,"%s",str);      for(j=1; j <=nlstate+ndeath; j++){
     fprintf(ficparo,"%s",str);        if(j==i) continue;
     for(j=1; j <=i; j++){        jj++;
       fscanf(ficpar," %le",&matcov[i][j]);        fprintf(ficparo,"%1d%1d",i,j);
       if(mle==1){        printf("%1d%1d",i,j);
         printf(" %.5le",matcov[i][j]);        fflush(stdout);
       }        for(k=1; k<=ncovmodel;k++){
       fprintf(ficlog," %.5le",matcov[i][j]);          /*      printf(" %le",delti3[i][j][k]); */
       fprintf(ficparo," %.5le",matcov[i][j]);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     }          printf(" 0.");
     fscanf(ficpar,"\n");          fprintf(ficparo," 0.");
     numlinepar++;        }
     if(mle==1)        numlinepar++;
       printf("\n");        printf("\n");
     fprintf(ficlog,"\n");        fprintf(ficparo,"\n");
     fprintf(ficparo,"\n");      }
   }    }
   for(i=1; i <=npar; i++)    printf("# Covariance matrix\n");
     for(j=i+1;j<=npar;j++)  /* # 121 Var(a12)\n\ */
       matcov[i][j]=matcov[j][i];  /* # 122 Cov(b12,a12) Var(b12)\n\ */
      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   if(mle==1)  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     printf("\n");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficlog,"\n");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fflush(ficlog);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
   /*-------- Rewriting paramater file ----------*/    fprintf(ficparo,"# Covariance matrix\n");
   strcpy(rfileres,"r");    /* "Rparameterfile */    /* # 121 Var(a12)\n\ */
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   strcat(rfileres,".");    /* */    /* #   ...\n\ */
   strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   if((ficres =fopen(rfileres,"w"))==NULL) {   
     printf("Problem writing new parameter file: %s\n", fileres);goto end;    for(itimes=1;itimes<=2;itimes++){
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      jj=0;
   }      for(i=1; i <=nlstate; i++){
   fprintf(ficres,"#%s\n",version);        for(j=1; j <=nlstate+ndeath; j++){
               if(j==i) continue;
   /*-------- data file ----------*/          for(k=1; k<=ncovmodel;k++){
   if((fic=fopen(datafile,"r"))==NULL)    {            jj++;
     printf("Problem with datafile: %s\n", datafile);goto end;            ca[0]= k+'a'-1;ca[1]='\0';
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            if(itimes==1){
   }              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   n= lastobs;            }else{
   severity = vector(1,maxwav);              printf("%1d%1d%d",i,j,k);
   outcome=imatrix(1,maxwav+1,1,n);              fprintf(ficparo,"%1d%1d%d",i,j,k);
   num=lvector(1,n);              /*  printf(" %.5le",matcov[i][j]); */
   moisnais=vector(1,n);            }
   annais=vector(1,n);            ll=0;
   moisdc=vector(1,n);            for(li=1;li <=nlstate; li++){
   andc=vector(1,n);              for(lj=1;lj <=nlstate+ndeath; lj++){
   agedc=vector(1,n);                if(lj==li) continue;
   cod=ivector(1,n);                for(lk=1;lk<=ncovmodel;lk++){
   weight=vector(1,n);                  ll++;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  if(ll<=jj){
   mint=matrix(1,maxwav,1,n);                    cb[0]= lk +'a'-1;cb[1]='\0';
   anint=matrix(1,maxwav,1,n);                    if(ll<jj){
   s=imatrix(1,maxwav+1,1,n);                      if(itimes==1){
   tab=ivector(1,NCOVMAX);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   ncodemax=ivector(1,8);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
   i=1;                        printf(" 0.");
   while (fgets(line, MAXLINE, fic) != NULL)    {                        fprintf(ficparo," 0.");
     if ((i >= firstobs) && (i <=lastobs)) {                      }
                             }else{
       for (j=maxwav;j>=1;j--){                      if(itimes==1){
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                         printf(" Var(%s%1d%1d)",ca,i,j);
         strcpy(line,stra);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                      }else{
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                        printf(" 0.");
       }                        fprintf(ficparo," 0.");
                               }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                    }
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                  }
                 } /* end lk */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              } /* end lj */
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            } /* end li */
             printf("\n");
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficparo,"\n");
       for (j=ncovcol;j>=1;j--){            numlinepar++;
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } /* end k*/
       }         } /*end j */
       lstra=strlen(stra);      } /* end i */
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    } /* end itimes */
         stratrunc = &(stra[lstra-9]);  
         num[i]=atol(stratrunc);  } /* end of prwizard */
       }  /******************* Gompertz Likelihood ******************************/
       else  double gompertz(double x[])
         num[i]=atol(stra);  {
             double A,B,L=0.0,sump=0.,num=0.;
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int i,n=0; /* n is the size of the sample */
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     for (i=0;i<=imx-1 ; i++) {
       i=i+1;      sump=sump+weight[i];
     }      /*    sump=sump+1;*/
   }      num=num+1;
   /* printf("ii=%d", ij);    }
      scanf("%d",i);*/   
   imx=i-1; /* Number of individuals */   
     /* for (i=0; i<=imx; i++)
   /* for (i=1; i<=imx; i++){       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for (i=1;i<=imx ; i++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      {
     }*/        if (cens[i] == 1 && wav[i]>1)
    /*  for (i=1; i<=imx; i++){          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
      if (s[4][i]==9)  s[4][i]=-1;        
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        if (cens[i] == 0 && wav[i]>1)
             A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
  for (i=1; i<=imx; i++)               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
      else weight[i]=1;*/        if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
   /* Calculation of the number of parameter from char model*/          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);       }
   Tvaraff=ivector(1,15);   
   Tvard=imatrix(1,15,1,2);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   Tage=ivector(1,15);         
        return -2*L*num/sump;
   if (strlen(model) >1){ /* If there is at least 1 covariate */  }
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */  /******************* Printing html file ***********/
     j1=nbocc(model,'*'); /* j1=Number of '*' */  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     cptcovn=j+1;                     int lastpass, int stepm, int weightopt, char model[],\
     cptcovprod=j1; /*Number of products */                    int imx,  double p[],double **matcov,double agemortsup){
         int i,k;
     strcpy(modelsav,model);   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       printf("Error. Non available option model=%s ",model);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
       fprintf(ficlog,"Error. Non available option model=%s ",model);    for (i=1;i<=2;i++)
       goto end;      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     }    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         fprintf(fichtm,"</ul>");
     /* This loop fills the array Tvar from the string 'model'.*/  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   for (k=agegomp;k<(agemortsup-2);k++)
       /*scanf("%d",i);*/     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/   
         if (strcmp(strc,"age")==0) { /* Vn*age */    fflush(fichtm);
           cptcovprod--;  }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  /******************* Gnuplot file **************/
           cptcovage++;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    char dirfileres[132],optfileres[132];
         }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    int ng;
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    /*#ifdef windows */
           cptcovage++;    fprintf(ficgp,"cd \"%s\" \n",pathc);
           Tage[cptcovage]=i;      /*#endif */
         }  
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    strcpy(dirfileres,optionfilefiname);
           Tvar[i]=ncovcol+k1;    strcpy(optfileres,"vpl");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    fprintf(ficgp,"set out \"graphmort.png\"\n ");
           Tprod[k1]=i;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
           Tvard[k1][1]=atoi(strc); /* m*/    fprintf(ficgp, "set ter png small\n set log y\n");
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficgp, "set size 0.65,0.65\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)   }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  
           k2=k2+2;  
         }  
       }  
       else { /* no more sum */  /***********************************************/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /**************** Main Program *****************/
        /*  scanf("%d",i);*/  /***********************************************/
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  int main(int argc, char *argv[])
       }  {
       strcpy(modelsav,stra);      int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
         scanf("%d",i);*/    int linei, month, year,iout;
     } /* end of loop + */    int jj, ll, li, lj, lk, imk;
   } /* end model */    int numlinepar=0; /* Current linenumber of parameter file */
       int itimes;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    int NDIM=2;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  
     char ca[32], cb[32], cc[32];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    char dummy[]="                         ";
   printf("cptcovprod=%d ", cptcovprod);    /*  FILE *fichtm; *//* Html File */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
   scanf("%d ",i);    double agedeb, agefin,hf;
   fclose(fic);*/    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     /*  if(mle==1){*/    double fret;
   if (weightopt != 1) { /* Maximisation without weights*/    double **xi,tmp,delta;
     for(i=1;i<=n;i++) weight[i]=1.0;  
   }    double dum; /* Dummy variable */
     /*-calculation of age at interview from date of interview and age at death -*/    double ***p3mat;
   agev=matrix(1,maxwav,1,imx);    double ***mobaverage;
     int *indx;
   for (i=1; i<=imx; i++) {    char line[MAXLINE], linepar[MAXLINE];
     for(m=2; (m<= maxwav); m++) {    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    char pathr[MAXLINE], pathimach[MAXLINE];
         anint[m][i]=9999;    char **bp, *tok, *val; /* pathtot */
         s[m][i]=-1;    int firstobs=1, lastobs=10;
       }    int sdeb, sfin; /* Status at beginning and end */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    int c,  h , cpt,l;
         nberr++;    int ju,jl, mi;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         s[m][i]=-1;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       }    int mobilav=0,popforecast=0;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    int hstepm, nhstepm;
         nberr++;    int agemortsup;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     float  sumlpop=0.;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       }  
     }    double bage, fage, age, agelim, agebase;
   }    double ftolpl=FTOL;
     double **prlim;
   for (i=1; i<=imx; i++)  {    double *severity;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***param; /* Matrix of parameters */
     for(m=firstpass; (m<= lastpass); m++){    double  *p;
       if(s[m][i] >0){    double **matcov; /* Matrix of covariance */
         if (s[m][i] >= nlstate+1) {    double ***delti3; /* Scale */
           if(agedc[i]>0)    double *delti; /* Scale */
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    double ***eij, ***vareij;
               agev[m][i]=agedc[i];    double **varpl; /* Variances of prevalence limits by age */
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double *epj, vepp;
             else {    double kk1, kk2;
               if ((int)andc[i]!=9999){    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
                 nbwarn++;    double **ximort;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    char *alph[]={"a","a","b","c","d","e"}, str[4];
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    int *dcwave;
                 agev[m][i]=-1;  
               }    char z[1]="c", occ;
             }  
         }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         else if(s[m][i] !=9){ /* Standard case, age in fractional    char  *strt, strtend[80];
                                  years but with the precision of a    char *stratrunc;
                                  month */    int lstra;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    long total_usecs;
             agev[m][i]=1;   
           else if(agev[m][i] <agemin){   /*   setlocale (LC_ALL, ""); */
             agemin=agev[m][i];  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /*   textdomain (PACKAGE); */
           }  /*   setlocale (LC_CTYPE, ""); */
           else if(agev[m][i] >agemax){  /*   setlocale (LC_MESSAGES, ""); */
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
           }    (void) gettimeofday(&start_time,&tzp);
           /*agev[m][i]=anint[m][i]-annais[i];*/    curr_time=start_time;
           /*     agev[m][i] = age[i]+2*m;*/    tm = *localtime(&start_time.tv_sec);
         }    tmg = *gmtime(&start_time.tv_sec);
         else { /* =9 */    strcpy(strstart,asctime(&tm));
           agev[m][i]=1;  
           s[m][i]=-1;  /*  printf("Localtime (at start)=%s",strstart); */
         }  /*  tp.tv_sec = tp.tv_sec +86400; */
       }  /*  tm = *localtime(&start_time.tv_sec); */
       else /*= 0 Unknown */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         agev[m][i]=1;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       /*   tp.tv_sec = mktime(&tmg); */
   }  /*   strt=asctime(&tmg); */
   for (i=1; i<=imx; i++)  {  /*   printf("Time(after) =%s",strstart);  */
     for(m=firstpass; (m<=lastpass); m++){  /*  (void) time (&time_value);
       if (s[m][i] > (nlstate+ndeath)) {  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         nberr++;  *  tm = *localtime(&time_value);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       *  strstart=asctime(&tm);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);       *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
         goto end;  */
       }  
     }    nberr=0; /* Number of errors and warnings */
   }    nbwarn=0;
     getcwd(pathcd, size);
   /*for (i=1; i<=imx; i++){  
   for (m=firstpass; (m<lastpass); m++){    printf("\n%s\n%s",version,fullversion);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    if(argc <=1){
 }      printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
 }*/      i=strlen(pathr);
       if(pathr[i-1]=='\n')
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        pathr[i-1]='\0';
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
   free_vector(severity,1,maxwav);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   free_imatrix(outcome,1,maxwav+1,1,n);        printf("val= |%s| pathr=%s\n",val,pathr);
   free_vector(moisnais,1,n);        strcpy (pathtot, val);
   free_vector(annais,1,n);        if(pathr[0] == '\0') break; /* Dirty */
   /* free_matrix(mint,1,maxwav,1,n);      }
      free_matrix(anint,1,maxwav,1,n);*/    }
   free_vector(moisdc,1,n);    else{
   free_vector(andc,1,n);      strcpy(pathtot,argv[1]);
     }
        /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   wav=ivector(1,imx);    /*cygwin_split_path(pathtot,path,optionfile);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /* cutv(path,optionfile,pathtot,'\\');*/
   mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        /* Split argv[0], imach program to get pathimach */
   /* Concatenates waves */    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */   /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   Tcode=ivector(1,100);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   ncodemax[1]=1;    chdir(path); /* Can be a relative path */
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
             printf("Current directory %s!\n",pathcd);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     strcpy(command,"mkdir ");
                                  the estimations*/    strcat(command,optionfilefiname);
   h=0;    if((outcmd=system(command)) != 0){
   m=pow(2,cptcoveff);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
        /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   for(k=1;k<=cptcoveff; k++){      /* fclose(ficlog); */
     for(i=1; i <=(m/pow(2,k));i++){  /*     exit(1); */
       for(j=1; j <= ncodemax[k]; j++){    }
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*   if((imk=mkdir(optionfilefiname))<0){ */
           h++;  /*     perror("mkdir"); */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*   } */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
         }     /*-------- arguments in the command line --------*/
       }  
     }    /* Log file */
   }     strcat(filelog, optionfilefiname);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     strcat(filelog,".log");    /* */
      codtab[1][2]=1;codtab[2][2]=2; */    if((ficlog=fopen(filelog,"w"))==NULL)    {
   /* for(i=1; i <=m ;i++){       printf("Problem with logfile %s\n",filelog);
      for(k=1; k <=cptcovn; k++){      goto end;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    }
      }    fprintf(ficlog,"Log filename:%s\n",filelog);
      printf("\n");    fprintf(ficlog,"\n%s\n%s",version,fullversion);
      }    fprintf(ficlog,"\nEnter the parameter file name: \n");
      scanf("%d",i);*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
        path=%s \n\
   /*------------ gnuplot -------------*/   optionfile=%s\n\
   strcpy(optionfilegnuplot,optionfilefiname);   optionfilext=%s\n\
   strcat(optionfilegnuplot,".gp");   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    printf("Local time (at start):%s",strstart);
   }    fprintf(ficlog,"Local time (at start): %s",strstart);
   else{    fflush(ficlog);
     fprintf(ficgp,"\n# %s\n", version);   /*   (void) gettimeofday(&curr_time,&tzp); */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    /* */
   /*  fclose(ficgp);*/    strcpy(fileres,"r");
   /*--------- index.htm --------*/    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */  
   strcat(optionfilehtm,".htm");    /*---------arguments file --------*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   }      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      fflush(ficlog);
   strcat(optionfilehtmcov,"-cov.htm");      goto end;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtmcov), exit(0);  
   }  
   else{  
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    strcpy(filereso,"o");
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    strcat(filereso,fileres);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      printf("Problem with Output resultfile: %s\n", filereso);
   }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      goto end;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  
 \n\    /* Reads comments: lines beginning with '#' */
 <hr  size=\"2\" color=\"#EC5E5E\">\    numlinepar=0;
  <ul><li><h4>Parameter files</h4>\n\    while((c=getc(ficpar))=='#' && c!= EOF){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      ungetc(c,ficpar);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      fgets(line, MAXLINE, ficpar);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      numlinepar++;
  - Date and time at start: %s</ul>\n",\      puts(line);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      fputs(line,ficparo);
           fileres,fileres,\      fputs(line,ficlog);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    }
   fflush(fichtm);    ungetc(c,ficpar);
   
   strcpy(pathr,path);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   strcat(pathr,optionfilefiname);    numlinepar++;
   chdir(optionfilefiname); /* Move to directory named optionfile */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
      and prints on file fileres'p'. */    fflush(ficlog);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   fprintf(fichtm,"\n");      fgets(line, MAXLINE, ficpar);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      numlinepar++;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      puts(line);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      fputs(line,ficparo);
           imx,agemin,agemax,jmin,jmax,jmean);      fputs(line,ficlog);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    ungetc(c,ficpar);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    covar=matrix(0,NCOVMAX,1,n);
         cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
        if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    delti=delti3[1][1];
   for (k=1; k<=npar;k++)    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     printf(" %d %8.5f",k,p[k]);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   printf("\n");      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   globpr=1; /* to print the contributions */      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   for (k=1; k<=npar;k++)      fclose (ficparo);
     printf(" %d %8.5f",k,p[k]);      fclose (ficlog);
   printf("\n");      goto end;
   if(mle>=1){ /* Could be 1 or 2 */      exit(0);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    }
   }    else if(mle==-3) {
           prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   /*--------- results files --------------*/      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
   jk=1;    }
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    else{
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* Read guess parameters */
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* Reads comments: lines beginning with '#' */
   for(i=1,jk=1; i <=nlstate; i++){      while((c=getc(ficpar))=='#' && c!= EOF){
     for(k=1; k <=(nlstate+ndeath); k++){        ungetc(c,ficpar);
       if (k != i)         fgets(line, MAXLINE, ficpar);
         {        numlinepar++;
           printf("%d%d ",i,k);        puts(line);
           fprintf(ficlog,"%d%d ",i,k);        fputs(line,ficparo);
           fprintf(ficres,"%1d%1d ",i,k);        fputs(line,ficlog);
           for(j=1; j <=ncovmodel; j++){      }
             printf("%f ",p[jk]);      ungetc(c,ficpar);
             fprintf(ficlog,"%f ",p[jk]);     
             fprintf(ficres,"%f ",p[jk]);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             jk++;       for(i=1; i <=nlstate; i++){
           }        j=0;
           printf("\n");        for(jj=1; jj <=nlstate+ndeath; jj++){
           fprintf(ficlog,"\n");          if(jj==i) continue;
           fprintf(ficres,"\n");          j++;
         }          fscanf(ficpar,"%1d%1d",&i1,&j1);
     }          if ((i1 != i) && (j1 != j)){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   if(mle!=0){  It might be a problem of design; if ncovcol and the model are correct\n \
     /* Computing hessian and covariance matrix */  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     ftolhess=ftol; /* Usually correct */            exit(1);
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
   }          fprintf(ficparo,"%1d%1d",i1,j1);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          if(mle==1)
   printf("# Scales (for hessian or gradient estimation)\n");            printf("%1d%1d",i,j);
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficlog,"%1d%1d",i,j);
   for(i=1,jk=1; i <=nlstate; i++){          for(k=1; k<=ncovmodel;k++){
     for(j=1; j <=nlstate+ndeath; j++){            fscanf(ficpar," %lf",&param[i][j][k]);
       if (j!=i) {            if(mle==1){
         fprintf(ficres,"%1d%1d",i,j);              printf(" %lf",param[i][j][k]);
         printf("%1d%1d",i,j);              fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficlog,"%1d%1d",i,j);            }
         for(k=1; k<=ncovmodel;k++){            else
           printf(" %.5e",delti[jk]);              fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficlog," %.5e",delti[jk]);            fprintf(ficparo," %lf",param[i][j][k]);
           fprintf(ficres," %.5e",delti[jk]);          }
           jk++;          fscanf(ficpar,"\n");
         }          numlinepar++;
         printf("\n");          if(mle==1)
         fprintf(ficlog,"\n");            printf("\n");
         fprintf(ficres,"\n");          fprintf(ficlog,"\n");
       }          fprintf(ficparo,"\n");
     }        }
   }      }  
          fflush(ficlog);
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
   if(mle==1)      p=param[1][1];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* Reads comments: lines beginning with '#' */
   for(i=1,k=1;i<=npar;i++){      while((c=getc(ficpar))=='#' && c!= EOF){
     /*  if (k>nlstate) k=1;        ungetc(c,ficpar);
         i1=(i-1)/(ncovmodel*nlstate)+1;         fgets(line, MAXLINE, ficpar);
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        numlinepar++;
         printf("%s%d%d",alph[k],i1,tab[i]);        puts(line);
     */        fputs(line,ficparo);
     fprintf(ficres,"%3d",i);        fputs(line,ficlog);
     if(mle==1)      }
       printf("%3d",i);      ungetc(c,ficpar);
     fprintf(ficlog,"%3d",i);  
     for(j=1; j<=i;j++){      for(i=1; i <=nlstate; i++){
       fprintf(ficres," %.5e",matcov[i][j]);        for(j=1; j <=nlstate+ndeath-1; j++){
       if(mle==1)          fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf(" %.5e",matcov[i][j]);          if ((i1-i)*(j1-j)!=0){
       fprintf(ficlog," %.5e",matcov[i][j]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     }            exit(1);
     fprintf(ficres,"\n");          }
     if(mle==1)          printf("%1d%1d",i,j);
       printf("\n");          fprintf(ficparo,"%1d%1d",i1,j1);
     fprintf(ficlog,"\n");          fprintf(ficlog,"%1d%1d",i1,j1);
     k++;          for(k=1; k<=ncovmodel;k++){
   }            fscanf(ficpar,"%le",&delti3[i][j][k]);
                printf(" %le",delti3[i][j][k]);
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficparo," %le",delti3[i][j][k]);
     ungetc(c,ficpar);            fprintf(ficlog," %le",delti3[i][j][k]);
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          fscanf(ficpar,"\n");
     fputs(line,ficparo);          numlinepar++;
   }          printf("\n");
   ungetc(c,ficpar);          fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
   estepm=0;        }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      }
   if (estepm==0 || estepm < stepm) estepm=stepm;      fflush(ficlog);
   if (fage <= 2) {  
     bage = ageminpar;      delti=delti3[1][1];
     fage = agemaxpar;  
   }  
          /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      /* Reads comments: lines beginning with '#' */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      while((c=getc(ficpar))=='#' && c!= EOF){
            ungetc(c,ficpar);
   while((c=getc(ficpar))=='#' && c!= EOF){        fgets(line, MAXLINE, ficpar);
     ungetc(c,ficpar);        numlinepar++;
     fgets(line, MAXLINE, ficpar);        puts(line);
     puts(line);        fputs(line,ficparo);
     fputs(line,ficparo);        fputs(line,ficlog);
   }      }
   ungetc(c,ficpar);      ungetc(c,ficpar);
      
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      matcov=matrix(1,npar,1,npar);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for(i=1; i <=npar; i++){
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fscanf(ficpar,"%s",&str);
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if(mle==1)
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          printf("%s",str);
            fprintf(ficlog,"%s",str);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficparo,"%s",str);
     ungetc(c,ficpar);        for(j=1; j <=i; j++){
     fgets(line, MAXLINE, ficpar);          fscanf(ficpar," %le",&matcov[i][j]);
     puts(line);          if(mle==1){
     fputs(line,ficparo);            printf(" %.5le",matcov[i][j]);
   }          }
   ungetc(c,ficpar);          fprintf(ficlog," %.5le",matcov[i][j]);
            fprintf(ficparo," %.5le",matcov[i][j]);
         }
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        fscanf(ficpar,"\n");
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        numlinepar++;
         if(mle==1)
   fscanf(ficpar,"pop_based=%d\n",&popbased);          printf("\n");
   fprintf(ficparo,"pop_based=%d\n",popbased);           fprintf(ficlog,"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficparo,"\n");
         }
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i <=npar; i++)
     ungetc(c,ficpar);        for(j=i+1;j<=npar;j++)
     fgets(line, MAXLINE, ficpar);          matcov[i][j]=matcov[j][i];
     puts(line);     
     fputs(line,ficparo);      if(mle==1)
   }        printf("\n");
   ungetc(c,ficpar);      fprintf(ficlog,"\n");
      
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      fflush(ficlog);
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      /*-------- Rewriting parameter file ----------*/
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      strcpy(rfileres,"r");    /* "Rparameterfile */
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   /* day and month of proj2 are not used but only year anproj2.*/      strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
   while((c=getc(ficpar))=='#' && c!= EOF){      if((ficres =fopen(rfileres,"w"))==NULL) {
     ungetc(c,ficpar);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     puts(line);      }
     fputs(line,ficparo);      fprintf(ficres,"#%s\n",version);
   }    }    /* End of mle != -3 */
   ungetc(c,ficpar);  
     /*-------- data file ----------*/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    if((fic=fopen(datafile,"r"))==NULL)    {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      printf("Problem while opening datafile: %s\n", datafile);goto end;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/  
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    n= lastobs;
     severity = vector(1,maxwav);
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    outcome=imatrix(1,maxwav+1,1,n);
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    num=lvector(1,n);
     moisnais=vector(1,n);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    annais=vector(1,n);
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    moisdc=vector(1,n);
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    andc=vector(1,n);
      agedc=vector(1,n);
   /*------------ free_vector  -------------*/    cod=ivector(1,n);
   /*  chdir(path); */    weight=vector(1,n);
      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   free_ivector(wav,1,imx);    mint=matrix(1,maxwav,1,n);
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    anint=matrix(1,maxwav,1,n);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    s=imatrix(1,maxwav+1,1,n);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       tab=ivector(1,NCOVMAX);
   free_lvector(num,1,n);    ncodemax=ivector(1,8);
   free_vector(agedc,1,n);  
   /*free_matrix(covar,0,NCOVMAX,1,n);*/    i=1;
   /*free_matrix(covar,1,NCOVMAX,1,n);*/    linei=0;
   fclose(ficparo);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   fclose(ficres);      linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
   /*--------------- Prevalence limit  (stable prevalence) --------------*/          line[j] = ' ';
         }
   strcpy(filerespl,"pl");      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   strcat(filerespl,fileres);        ;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      };
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      line[j+1]=0;  /* Trims blanks at end of line */
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      if(line[0]=='#'){
   }        fprintf(ficlog,"Comment line\n%s\n",line);
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);        printf("Comment line\n%s\n",line);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        continue;
   fprintf(ficrespl,"#Stable prevalence \n");      }
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for (j=maxwav;j>=1;j--){
   fprintf(ficrespl,"\n");        cutv(stra, strb,line,' ');
           errno=0;
   prlim=matrix(1,nlstate,1,nlstate);        lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   agebase=ageminpar;        if( strb[0]=='\0' || (*endptr != '\0')){
   agelim=agemaxpar;          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   ftolpl=1.e-10;          exit(1);
   i1=cptcoveff;        }
   if (cptcovn < 1){i1=1;}        s[j][i]=lval;
        
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        strcpy(line,stra);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        cutv(stra, strb,line,' ');
       k=k+1;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }
       fprintf(ficrespl,"\n#******");        else  if(iout=sscanf(strb,"%s.") != 0){
       printf("\n#******");          month=99;
       fprintf(ficlog,"\n#******");          year=9999;
       for(j=1;j<=cptcoveff;j++) {        }else{
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          exit(1);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }        anint[j][i]= (double) year;
       fprintf(ficrespl,"******\n");        mint[j][i]= (double)month;
       printf("******\n");        strcpy(line,stra);
       fprintf(ficlog,"******\n");      } /* ENd Waves */
              
       for (age=agebase; age<=agelim; age++){      cutv(stra, strb,line,' ');
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         fprintf(ficrespl,"%.0f ",age );      }
         for(j=1;j<=cptcoveff;j++)      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        month=99;
         for(i=1; i<=nlstate;i++)        year=9999;
           fprintf(ficrespl," %.5f", prlim[i][i]);      }else{
         fprintf(ficrespl,"\n");        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       }        exit(1);
     }      }
   }      andc[i]=(double) year;
   fclose(ficrespl);      moisdc[i]=(double) month;
       strcpy(line,stra);
   /*------------- h Pij x at various ages ------------*/     
         cutv(stra, strb,line,' ');
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      else  if(iout=sscanf(strb,"%s.") != 0){
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        month=99;
   }        year=9999;
   printf("Computing pij: result on file '%s' \n", filerespij);      }else{
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
           exit(1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   /*if (stepm<=24) stepsize=2;*/      annais[i]=(double)(year);
       moisnais[i]=(double)(month);
   agelim=AGESUP;      strcpy(line,stra);
   hstepm=stepsize*YEARM; /* Every year of age */     
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       cutv(stra, strb,line,' ');
       errno=0;
   /* hstepm=1;   aff par mois*/      dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        exit(1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;      weight[i]=dval;
       fprintf(ficrespij,"\n#****** ");      strcpy(line,stra);
       for(j=1;j<=cptcoveff;j++)      
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (j=ncovcol;j>=1;j--){
       fprintf(ficrespij,"******\n");        cutv(stra, strb,line,' ');
                 errno=0;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        lval=strtol(strb,&endptr,10);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         if( strb[0]=='\0' || (*endptr != '\0')){
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        }
         if(lval <-1 || lval >1){
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
         oldm=oldms;savm=savms;   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");   For example, for multinomial values like 1, 2 and 3,\n \
         for(i=1; i<=nlstate;i++)   build V1=0 V2=0 for the reference value (1),\n \
           for(j=1; j<=nlstate+ndeath;j++)          V1=1 V2=0 for (2) \n \
             fprintf(ficrespij," %1d-%1d",i,j);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
         fprintf(ficrespij,"\n");   output of IMaCh is often meaningless.\n \
         for (h=0; h<=nhstepm; h++){   Exiting.\n",lval,linei, i,line,j);
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          exit(1);
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        covar[j][i]=(double)(lval);
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);        strcpy(line,stra);
           fprintf(ficrespij,"\n");      }
         }      lstra=strlen(stra);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
         fprintf(ficrespij,"\n");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       }        stratrunc = &(stra[lstra-9]);
     }        num[i]=atol(stratrunc);
   }      }
       else
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);        num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   fclose(ficrespij);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      i=i+1;
     } /* End loop reading  data */
   /*---------- Forecasting ------------------*/    fclose(fic);
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    /* printf("ii=%d", ij);
   if(prevfcast==1){       scanf("%d",i);*/
     /*    if(stepm ==1){*/    imx=i-1; /* Number of individuals */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    /* for (i=1; i<=imx; i++){
 /*      }  */      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 /*      else{ */      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 /*        erreur=108; */      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }*/
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */     /*  for (i=1; i<=imx; i++){
 /*      } */       if (s[4][i]==9)  s[4][i]=-1;
   }       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
      
     /* for (i=1; i<=imx; i++) */
   /*---------- Health expectancies and variances ------------*/   
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
   strcpy(filerest,"t");       else weight[i]=1;*/
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* Calculation of the number of parameters from char model */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    Tprod=ivector(1,15);
   }    Tvaraff=ivector(1,15);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     Tvard=imatrix(1,15,1,2);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
   strcpy(filerese,"e");      j=0, j1=0, k1=1, k2=1;
   strcat(filerese,fileres);      j=nbocc(model,'+'); /* j=Number of '+' */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      j1=nbocc(model,'*'); /* j1=Number of '*' */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      cptcovn=j+1;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      cptcovprod=j1; /*Number of products */
   }     
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      strcpy(modelsav,model);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
   strcpy(fileresv,"v");        fprintf(ficlog,"Error. Non available option model=%s ",model);
   strcat(fileresv,fileres);        goto end;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      /* This loop fills the array Tvar from the string 'model'.*/
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(i=(j+1); i>=1;i--){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        /*scanf("%d",i);*/
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\        if (strchr(strb,'*')) {  /* Model includes a product */
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   */          if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
   if (mobilav!=0) {            cutv(strb,stre,strd,'V');
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            cptcovage++;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              Tage[cptcovage]=i;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              /*printf("stre=%s ", stre);*/
     }          }
   }          else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){            cutv(strb,stre,strc,'V');
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            Tvar[i]=atoi(stre);
       k=k+1;             cptcovage++;
       fprintf(ficrest,"\n#****** ");            Tage[cptcovage]=i;
       for(j=1;j<=cptcoveff;j++)           }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else {  /* Age is not in the model */
       fprintf(ficrest,"******\n");            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
       fprintf(ficreseij,"\n#****** ");            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
       for(j=1;j<=cptcoveff;j++)             Tprod[k1]=i;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            Tvard[k1][1]=atoi(strc); /* m*/
       fprintf(ficreseij,"******\n");            Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
       fprintf(ficresvij,"\n#****** ");            Tvar[cptcovn+k2+1]=Tvard[k1][2];
       for(j=1;j<=cptcoveff;j++)             for (k=1; k<=lastobs;k++)
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
       fprintf(ficresvij,"******\n");            k1++;
             k2=k2+2;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          else { /* no more sum */
            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         /*  scanf("%d",i);*/
       oldm=oldms;savm=savms;        cutv(strd,strc,strb,'V');
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);        Tvar[i]=atoi(strc);
       if(popbased==1){        }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        strcpy(modelsav,stra);  
       }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
        } /* end of loop + */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    } /* end model */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   
       fprintf(ficrest,"\n");    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    printf("cptcovprod=%d ", cptcovprod);
         if (popbased==1) {    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           if(mobilav ==0){  
             for(i=1; i<=nlstate;i++)    scanf("%d ",i);*/
               prlim[i][i]=probs[(int)age][i][k];  
           }else{ /* mobilav */       /*  if(mle==1){*/
             for(i=1; i<=nlstate;i++)    if (weightopt != 1) { /* Maximisation without weights*/
               prlim[i][i]=mobaverage[(int)age][i][k];      for(i=1;i<=n;i++) weight[i]=1.0;
           }    }
         }      /*-calculation of age at interview from date of interview and age at death -*/
             agev=matrix(1,maxwav,1,imx);
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for (i=1; i<=imx; i++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(m=2; (m<= maxwav); m++) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          anint[m][i]=9999;
           }          s[m][i]=-1;
           epj[nlstate+1] +=epj[j];        }
         }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
         for(i=1, vepp=0.;i <=nlstate;i++)          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           for(j=1;j <=nlstate;j++)          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
             vepp += vareij[i][j][(int)age];          s[m][i]=-1;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        }
         for(j=1;j <=nlstate;j++){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          nberr++;
         }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
         fprintf(ficrest,"\n");          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
       }          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
       free_vector(epj,1,nlstate+1);    }
     }  
   }    for (i=1; i<=imx; i++)  {
   free_vector(weight,1,n);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   free_imatrix(Tvard,1,15,1,2);      for(m=firstpass; (m<= lastpass); m++){
   free_imatrix(s,1,maxwav+1,1,n);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   free_matrix(anint,1,maxwav,1,n);           if (s[m][i] >= nlstate+1) {
   free_matrix(mint,1,maxwav,1,n);            if(agedc[i]>0)
   free_ivector(cod,1,n);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   free_ivector(tab,1,NCOVMAX);                agev[m][i]=agedc[i];
   fclose(ficreseij);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   fclose(ficresvij);              else {
   fclose(ficrest);                if ((int)andc[i]!=9999){
   fclose(ficpar);                  nbwarn++;
                     printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   /*------- Variance of stable prevalence------*/                     fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
   strcpy(fileresvpl,"vpl");                }
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          }
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);          else if(s[m][i] !=9){ /* Standard case, age in fractional
     exit(0);                                   years but with the precision of a month */
   }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){            else if(agev[m][i] <agemin){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              agemin=agev[m][i];
       k=k+1;              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       fprintf(ficresvpl,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)             else if(agev[m][i] >agemax){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              agemax=agev[m][i];
       fprintf(ficresvpl,"******\n");              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
                   }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            /*agev[m][i]=anint[m][i]-annais[i];*/
       oldm=oldms;savm=savms;            /*     agev[m][i] = age[i]+2*m;*/
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          else { /* =9 */
     }            agev[m][i]=1;
   }            s[m][i]=-1;
           }
   fclose(ficresvpl);        }
         else /*= 0 Unknown */
   /*---------- End : free ----------------*/          agev[m][i]=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    for (i=1; i<=imx; i++)  {
         for(m=firstpass; (m<=lastpass); m++){
   free_matrix(covar,0,NCOVMAX,1,n);        if (s[m][i] > (nlstate+ndeath)) {
   free_matrix(matcov,1,npar,1,npar);          nberr++;
   /*free_vector(delti,1,npar);*/          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   free_matrix(agev,1,maxwav,1,imx);          goto end;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   
   free_ivector(ncodemax,1,8);    /*for (i=1; i<=imx; i++){
   free_ivector(Tvar,1,15);    for (m=firstpass; (m<lastpass); m++){
   free_ivector(Tprod,1,15);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   free_ivector(Tvaraff,1,15);  }
   free_ivector(Tage,1,15);  
   free_ivector(Tcode,1,100);  }*/
   
   fflush(fichtm);  
   fflush(ficgp);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
   if((nberr >0) || (nbwarn>0)){    agegomp=(int)agemin;
     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);    free_vector(severity,1,maxwav);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);    free_imatrix(outcome,1,maxwav+1,1,n);
   }else{    free_vector(moisnais,1,n);
     printf("End of Imach\n");    free_vector(annais,1,n);
     fprintf(ficlog,"End of Imach\n");    /* free_matrix(mint,1,maxwav,1,n);
   }       free_matrix(anint,1,maxwav,1,n);*/
   printf("See log file on %s\n",filelog);    free_vector(moisdc,1,n);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_vector(andc,1,n);
   (void) gettimeofday(&end_time,&tzp);  
   tm = *localtime(&end_time.tv_sec);     
   tmg = *gmtime(&end_time.tv_sec);    wav=ivector(1,imx);
   strcpy(strtend,asctime(&tm));    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);     bh=imatrix(1,lastpass-firstpass+1,1,imx);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);     mw=imatrix(1,lastpass-firstpass+1,1,imx);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     
     /* Concatenates waves */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  
 /*   if(fileappend(fichtm,optionfilehtm)){ */    Tcode=ivector(1,100);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
   fclose(fichtm);    ncodemax[1]=1;
   fclose(fichtmcov);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   fclose(ficgp);       
   fclose(ficlog);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
   /*------ End -----------*/                                   the estimations*/
     h=0;
   chdir(path);    m=pow(2,cptcoveff);
   strcpy(plotcmd,GNUPLOTPROGRAM);   
   strcat(plotcmd," ");    for(k=1;k<=cptcoveff; k++){
   strcat(plotcmd,optionfilegnuplot);      for(i=1; i <=(m/pow(2,k));i++){
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);        for(j=1; j <= ncodemax[k]; j++){
   if((outcmd=system(plotcmd)) != 0){          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     printf(" Problem with gnuplot\n");            h++;
   }            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   printf(" Wait...");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   while (z[0] != 'q') {          }
     /* chdir(path); */        }
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      }
     scanf("%s",z);    }
 /*     if (z[0] == 'c') system("./imach"); */    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
     if (z[0] == 'e') system(optionfilehtm);       codtab[1][2]=1;codtab[2][2]=2; */
     else if (z[0] == 'g') system(plotcmd);    /* for(i=1; i <=m ;i++){
     else if (z[0] == 'q') exit(0);       for(k=1; k <=cptcovn; k++){
   }       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   end:       }
   while (z[0] != 'q') {       printf("\n");
     printf("\nType  q for exiting: ");       }
     scanf("%s",z);       scanf("%d",i);*/
   }     
 }    /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.94  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>