Diff for /imach/src/imach.c between versions 1.35 and 1.94

version 1.35, 2002/03/26 17:08:39 version 1.94, 2003/06/27 13:00:02
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.93  2003/06/25 16:33:55  brouard
   first survey ("cross") where individuals from different ages are    (Module): On windows (cygwin) function asctime_r doesn't
   interviewed on their health status or degree of disability (in the    exist so I changed back to asctime which exists.
   case of a health survey which is our main interest) -2- at least a    (Module): Version 0.96b
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.92  2003/06/25 16:30:45  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.91  2003/06/25 15:30:29  brouard
   probabibility to be observed in state j at the second wave    * imach.c (Repository): Duplicated warning errors corrected.
   conditional to be observed in state i at the first wave. Therefore    (Repository): Elapsed time after each iteration is now output. It
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    helps to forecast when convergence will be reached. Elapsed time
   'age' is age and 'sex' is a covariate. If you want to have a more    is stamped in powell.  We created a new html file for the graphs
   complex model than "constant and age", you should modify the program    concerning matrix of covariance. It has extension -cov.htm.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.90  2003/06/24 12:34:15  brouard
   convergence.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   The advantage of this computer programme, compared to a simple    of the covariance matrix to be input.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.89  2003/06/24 12:30:52  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.88  2003/06/23 17:54:56  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.87  2003/06/18 12:26:01  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.96
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   Also this programme outputs the covariance matrix of the parameters but also    routine fileappend.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.85  2003/06/17 13:12:43  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Repository): Check when date of death was earlier that
            Institut national d'études démographiques, Paris.    current date of interview. It may happen when the death was just
   This software have been partly granted by Euro-REVES, a concerted action    prior to the death. In this case, dh was negative and likelihood
   from the European Union.    was wrong (infinity). We still send an "Error" but patch by
   It is copyrighted identically to a GNU software product, ie programme and    assuming that the date of death was just one stepm after the
   software can be distributed freely for non commercial use. Latest version    interview.
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Because some people have very long ID (first column)
   **********************************************************************/    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
 #include <math.h>    truncation)
 #include <stdio.h>    (Repository): No more line truncation errors.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXLINE 256    place. It differs from routine "prevalence" which may be called
 #define GNUPLOTPROGRAM "wgnuplot"    many times. Probs is memory consuming and must be used with
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    parcimony.
 #define FILENAMELENGTH 80    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*#define DEBUG*/  
 #define windows    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add log in  imach.c and  fullversion number is now printed.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
   */
 #define NINTERVMAX 8  /*
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     Interpolated Markov Chain
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Short summary of the programme:
 #define MAXN 20000    
 #define YEARM 12. /* Number of months per year */    This program computes Healthy Life Expectancies from
 #define AGESUP 130    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define AGEBASE 40    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int erreur; /* Error number */    second wave of interviews ("longitudinal") which measure each change
 int nvar;    (if any) in individual health status.  Health expectancies are
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    computed from the time spent in each health state according to a
 int npar=NPARMAX;    model. More health states you consider, more time is necessary to reach the
 int nlstate=2; /* Number of live states */    Maximum Likelihood of the parameters involved in the model.  The
 int ndeath=1; /* Number of dead states */    simplest model is the multinomial logistic model where pij is the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    probability to be observed in state j at the second wave
 int popbased=0;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *wav; /* Number of waves for this individuual 0 is possible */    'age' is age and 'sex' is a covariate. If you want to have a more
 int maxwav; /* Maxim number of waves */    complex model than "constant and age", you should modify the program
 int jmin, jmax; /* min, max spacing between 2 waves */    where the markup *Covariates have to be included here again* invites
 int mle, weightopt;    you to do it.  More covariates you add, slower the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    convergence.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    The advantage of this computer programme, compared to a simple
 double **oldm, **newm, **savm; /* Working pointers to matrices */    multinomial logistic model, is clear when the delay between waves is not
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    identical for each individual. Also, if a individual missed an
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    intermediate interview, the information is lost, but taken into
 FILE *ficgp,*ficresprob,*ficpop;    account using an interpolation or extrapolation.  
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    hPijx is the probability to be observed in state i at age x+h
  FILE  *ficresvij;    conditional to the observed state i at age x. The delay 'h' can be
   char fileresv[FILENAMELENGTH];    split into an exact number (nh*stepm) of unobserved intermediate
  FILE  *ficresvpl;    states. This elementary transition (by month, quarter,
   char fileresvpl[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define NR_END 1    and the contribution of each individual to the likelihood is simply
 #define FREE_ARG char*    hPijx.
 #define FTOL 1.0e-10  
     Also this programme outputs the covariance matrix of the parameters but also
 #define NRANSI    of the life expectancies. It also computes the stable prevalence. 
 #define ITMAX 200    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define TOL 2.0e-4             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define CGOLD 0.3819660    from the European Union.
 #define ZEPS 1.0e-10    It is copyrighted identically to a GNU software product, ie programme and
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define TINY 1.0e-20    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 static double maxarg1,maxarg2;    **********************************************************************/
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  /*
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    main
      read parameterfile
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    read datafile
 #define rint(a) floor(a+0.5)    concatwav
     freqsummary
 static double sqrarg;    if (mle >= 1)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)      mlikeli
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    print results files
     if mle==1 
 int imx;       computes hessian
 int stepm;    read end of parameter file: agemin, agemax, bage, fage, estepm
 /* Stepm, step in month: minimum step interpolation*/        begin-prev-date,...
     open gnuplot file
 int m,nb;    open html file
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    stable prevalence
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;     for age prevalim()
 double **pmmij, ***probs, ***mobaverage;    h Pij x
 double dateintmean=0;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 double *weight;    health expectancies
 int **s; /* Status */    Variance-covariance of DFLE
 double *agedc, **covar, idx;    prevalence()
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;     movingaverage()
     varevsij() 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    if popbased==1 varevsij(,popbased)
 double ftolhess; /* Tolerance for computing hessian */    total life expectancies
     Variance of stable prevalence
 /**************** split *************************/   end
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  */
 {  
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  
    
    l1 = strlen( path );                 /* length of path */  #include <math.h>
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #include <stdio.h>
 #ifdef windows  #include <stdlib.h>
    s = strrchr( path, '\\' );           /* find last / */  #include <unistd.h>
 #else  
    s = strrchr( path, '/' );            /* find last / */  #include <sys/time.h>
 #endif  #include <time.h>
    if ( s == NULL ) {                   /* no directory, so use current */  #include "timeval.h"
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
       if ( getwd( dirc ) == NULL ) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #else  #define FILENAMELENGTH 132
       extern char       *getcwd( );  /*#define DEBUG*/
   /*#define windows*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #endif  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
          return( GLOCK_ERROR_GETCWD );  
       }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       strcpy( name, path );             /* we've got it */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define NINTERVMAX 8
       l2 = strlen( s );                 /* length of filename */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       strcpy( name, s );                /* save file name */  #define NCOVMAX 8 /* Maximum number of covariates */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define MAXN 20000
       dirc[l1-l2] = 0;                  /* add zero */  #define YEARM 12. /* Number of months per year */
    }  #define AGESUP 130
    l1 = strlen( dirc );                 /* length of directory */  #define AGEBASE 40
 #ifdef windows  #ifdef unix
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define DIRSEPARATOR '/'
 #else  #define ODIRSEPARATOR '\\'
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #else
 #endif  #define DIRSEPARATOR '\\'
    s = strrchr( name, '.' );            /* find last / */  #define ODIRSEPARATOR '/'
    s++;  #endif
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  /* $Id$ */
    l2= strlen( s)+1;  /* $State$ */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
    return( 0 );                         /* we're done */  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************************************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 void replace(char *s, char*t)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int i;  int popbased=0;
   int lg=20;  
   i=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   lg=strlen(t);  int maxwav; /* Maxim number of waves */
   for(i=0; i<= lg; i++) {  int jmin, jmax; /* min, max spacing between 2 waves */
     (s[i] = t[i]);  int gipmx, gsw; /* Global variables on the number of contributions 
     if (t[i]== '\\') s[i]='/';                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int nbocc(char *s, char occ)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i,j=0;  double jmean; /* Mean space between 2 waves */
   int lg=20;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   i=0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   lg=strlen(s);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for(i=0; i<= lg; i++) {  FILE *ficlog, *ficrespow;
   if  (s[i] == occ ) j++;  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   return j;  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void cutv(char *u,char *v, char*t, char occ)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i,lg,j,p=0;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm, *fichtmcov; /* Html File */
   for(j=0; j<=strlen(t)-1; j++) {  FILE *ficreseij;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char filerese[FILENAMELENGTH];
   }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   lg=strlen(t);  FILE  *ficresvpl;
   for(j=0; j<p; j++) {  char fileresvpl[FILENAMELENGTH];
     (u[j] = t[j]);  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      u[p]='\0';  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
    for(j=0; j<= lg; j++) {  char command[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  int  outcmd=0;
   }  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /********************** nrerror ********************/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 void nrerror(char error_text[])  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   exit(1);  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /*********************** vector *******************/  struct timezone tzp;
 double *vector(int nl, int nh)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double *v;  long time_value;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  extern long time();
   if (!v) nrerror("allocation failure in vector");  char strcurr[80], strfor[80];
   return v-nl+NR_END;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /************************ free vector ******************/  #define FTOL 1.0e-10
 void free_vector(double*v, int nl, int nh)  
 {  #define NRANSI 
   free((FREE_ARG)(v+nl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   int *v;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #define GOLD 1.618034 
   return v-nl+NR_END;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************free ivector **************************/  static double maxarg1,maxarg2;
 void free_ivector(int *v, long nl, long nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(v+nl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  static double sqrarg;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  int imx; 
    int stepm;
   /* allocate pointers to rows */  /* Stepm, step in month: minimum step interpolation*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int estepm;
   m += NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m -= nrl;  
    int m,nb;
    long *num;
   /* allocate rows and set pointers to them */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **pmmij, ***probs;
   m[nrl] += NR_END;  double dateintmean=0;
   m[nrl] -= ncl;  
    double *weight;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int **s; /* Status */
    double *agedc, **covar, idx;
   /* return pointer to array of pointers to rows */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   return m;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  /**************** split *************************/
       int **m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       long nch,ncl,nrh,nrl;  {
      /* free an int matrix allocated by imatrix() */    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /******************* matrix *******************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 double **matrix(long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      /* get current working directory */
   double **m;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));        return( GLOCK_ERROR_GETCWD );
   if (!m) nrerror("allocation failure 1 in matrix()");      }
   m += NR_END;      strcpy( name, path );               /* we've got it */
   m -= nrl;    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      l2 = strlen( ss );                  /* length of filename */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] += NR_END;      strcpy( name, ss );         /* save file name */
   m[nrl] -= ncl;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   return m;    l1 = strlen( dirc );                  /* length of directory */
 }    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /*************************free matrix ************************/  #else
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    */
   free((FREE_ARG)(m+nrl-NR_END));    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /******************* ma3x *******************************/    l1= strlen( name);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    finame[l1-l2]= 0;
   double ***m;    return( 0 );                          /* we're done */
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /******************************************/
   m -= nrl;  
   void replace_back_to_slash(char *s, char*t)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int i;
   m[nrl] += NR_END;    int lg=0;
   m[nrl] -= ncl;    i=0;
     lg=strlen(t);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      if (t[i]== '\\') s[i]='/';
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    }
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  int nbocc(char *s, char occ)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      int i,j=0;
   for (i=nrl+1; i<=nrh; i++) {    int lg=20;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    i=0;
     for (j=ncl+1; j<=nch; j++)    lg=strlen(s);
       m[i][j]=m[i][j-1]+nlay;    for(i=0; i<= lg; i++) {
   }    if  (s[i] == occ ) j++;
   return m;    }
 }    return j;
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    /* cuts string t into u and v where u is ended by char occ excluding it
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free((FREE_ARG)(m+nrl-NR_END));       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /***************** f1dim *************************/    for(j=0; j<=strlen(t)-1; j++) {
 extern int ncom;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 extern double *pcom,*xicom;    }
 extern double (*nrfunc)(double []);  
      lg=strlen(t);
 double f1dim(double x)    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   int j;    }
   double f;       u[p]='\0';
   double *xt;  
       for(j=0; j<= lg; j++) {
   xt=vector(1,ncom);      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    }
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   int iter;    exit(EXIT_FAILURE);
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  /*********************** vector *******************/
   double ftemp;  double *vector(int nl, int nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    double *v;
      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   a=(ax < cx ? ax : cx);    if (!v) nrerror("allocation failure in vector");
   b=(ax > cx ? ax : cx);    return v-nl+NR_END;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /************************ free vector ******************/
     xm=0.5*(a+b);  void free_vector(double*v, int nl, int nh)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(v+nl-NR_END));
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************ivector *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int *ivector(long nl,long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    int *v;
       *xmin=x;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       return fx;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /******************free ivector **************************/
       q=(x-v)*(fx-fw);  void free_ivector(int *v, long nl, long nh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(v+nl-NR_END));
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /************************lvector *******************************/
       e=d;  long *lvector(long nl,long nh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    long *v;
       else {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         d=p/q;    if (!v) nrerror("allocation failure in ivector");
         u=x+d;    return v-nl+NR_END;
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  /******************free lvector **************************/
     } else {  void free_lvector(long *v, long nl, long nh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    free((FREE_ARG)(v+nl-NR_END));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /******************* imatrix *******************************/
       if (u >= x) a=x; else b=x;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       SHFT(v,w,x,u)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         SHFT(fv,fw,fx,fu)  { 
         } else {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           if (u < x) a=u; else b=u;    int **m; 
           if (fu <= fw || w == x) {    
             v=w;    /* allocate pointers to rows */ 
             w=u;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             fv=fw;    if (!m) nrerror("allocation failure 1 in matrix()"); 
             fw=fu;    m += NR_END; 
           } else if (fu <= fv || v == x || v == w) {    m -= nrl; 
             v=u;    
             fv=fu;    
           }    /* allocate rows and set pointers to them */ 
         }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   nrerror("Too many iterations in brent");    m[nrl] += NR_END; 
   *xmin=x;    m[nrl] -= ncl; 
   return fx;    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /****************** mnbrak ***********************/    /* return pointer to array of pointers to rows */ 
     return m; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  } 
             double (*func)(double))  
 {  /****************** free_imatrix *************************/
   double ulim,u,r,q, dum;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double fu;        int **m;
          long nch,ncl,nrh,nrl; 
   *fa=(*func)(*ax);       /* free an int matrix allocated by imatrix() */ 
   *fb=(*func)(*bx);  { 
   if (*fb > *fa) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG) (m+nrl-NR_END)); 
       SHFT(dum,*fb,*fa,dum)  } 
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /******************* matrix *******************************/
   *fc=(*func)(*cx);  double **matrix(long nrl, long nrh, long ncl, long nch)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     q=(*bx-*cx)*(*fb-*fa);    double **m;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (!m) nrerror("allocation failure 1 in matrix()");
     if ((*bx-u)*(u-*cx) > 0.0) {    m += NR_END;
       fu=(*func)(u);    m -= nrl;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fu < *fc) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl] += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl] -= ncl;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       u=ulim;    return m;
       fu=(*func)(u);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     } else {     */
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /*************************free matrix ************************/
     SHFT(*ax,*bx,*cx,u)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       SHFT(*fa,*fb,*fc,fu)  {
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 /*************** linmin ************************/  
   /******************* ma3x *******************************/
 int ncom;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double brent(double ax, double bx, double cx,    if (!m) nrerror("allocation failure 1 in matrix()");
                double (*f)(double), double tol, double *xmin);    m += NR_END;
   double f1dim(double x);    m -= nrl;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int j;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double xx,xmin,bx,ax;    m[nrl] += NR_END;
   double fx,fb,fa;    m[nrl] -= ncl;
    
   ncom=n;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   pcom=vector(1,n);  
   xicom=vector(1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   nrfunc=func;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (j=1;j<=n;j++) {    m[nrl][ncl] += NR_END;
     pcom[j]=p[j];    m[nrl][ncl] -= nll;
     xicom[j]=xi[j];    for (j=ncl+1; j<=nch; j++) 
   }      m[nrl][j]=m[nrl][j-1]+nlay;
   ax=0.0;    
   xx=1.0;    for (i=nrl+1; i<=nrh; i++) {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif    return m; 
   for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     xi[j] *= xmin;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     p[j] += xi[j];    */
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*************** powell ************************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             double (*func)(double []))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /*************** function subdirf ***********/
   int i,ibig,j;  char *subdirf(char fileres[])
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    /* Caution optionfilefiname is hidden */
   double *xits;    strcpy(tmpout,optionfilefiname);
   pt=vector(1,n);    strcat(tmpout,"/"); /* Add to the right */
   ptt=vector(1,n);    strcat(tmpout,fileres);
   xit=vector(1,n);    return tmpout;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /*************** function subdirf2 ***********/
   for (*iter=1;;++(*iter)) {  char *subdirf2(char fileres[], char *preop)
     fp=(*fret);  {
     ibig=0;    
     del=0.0;    /* Caution optionfilefiname is hidden */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=n;i++)    strcat(tmpout,"/");
       printf(" %d %.12f",i, p[i]);    strcat(tmpout,preop);
     printf("\n");    strcat(tmpout,fileres);
     for (i=1;i<=n;i++) {    return tmpout;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /*************** function subdirf3 ***********/
       printf("fret=%lf \n",*fret);  char *subdirf3(char fileres[], char *preop, char *preop2)
 #endif  {
       printf("%d",i);fflush(stdout);    
       linmin(p,xit,n,fret,func);    /* Caution optionfilefiname is hidden */
       if (fabs(fptt-(*fret)) > del) {    strcpy(tmpout,optionfilefiname);
         del=fabs(fptt-(*fret));    strcat(tmpout,"/");
         ibig=i;    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
 #ifdef DEBUG    strcat(tmpout,fileres);
       printf("%d %.12e",i,(*fret));    return tmpout;
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /***************** f1dim *************************/
       }  extern int ncom; 
       for(j=1;j<=n;j++)  extern double *pcom,*xicom;
         printf(" p=%.12e",p[j]);  extern double (*nrfunc)(double []); 
       printf("\n");   
 #endif  double f1dim(double x) 
     }  { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int j; 
 #ifdef DEBUG    double f;
       int k[2],l;    double *xt; 
       k[0]=1;   
       k[1]=-1;    xt=vector(1,ncom); 
       printf("Max: %.12e",(*func)(p));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (j=1;j<=n;j++)    f=(*nrfunc)(xt); 
         printf(" %.12e",p[j]);    free_vector(xt,1,ncom); 
       printf("\n");    return f; 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*****************brent *************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         }  { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int iter; 
       }    double a,b,d,etemp;
 #endif    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
       free_vector(xit,1,n);    double e=0.0; 
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);    a=(ax < cx ? ax : cx); 
       free_vector(pt,1,n);    b=(ax > cx ? ax : cx); 
       return;    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for (iter=1;iter<=ITMAX;iter++) { 
     for (j=1;j<=n;j++) {      xm=0.5*(a+b); 
       ptt[j]=2.0*p[j]-pt[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       xit[j]=p[j]-pt[j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       pt[j]=p[j];      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     fptt=(*func)(ptt);  #ifdef DEBUG
     if (fptt < fp) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       if (t < 0.0) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         linmin(p,xit,n,fret,func);  #endif
         for (j=1;j<=n;j++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           xi[j][ibig]=xi[j][n];        *xmin=x; 
           xi[j][n]=xit[j];        return fx; 
         }      } 
 #ifdef DEBUG      ftemp=fu;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if (fabs(e) > tol1) { 
         for(j=1;j<=n;j++)        r=(x-w)*(fx-fv); 
           printf(" %.12e",xit[j]);        q=(x-v)*(fx-fw); 
         printf("\n");        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
       }        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
   }        etemp=e; 
 }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /**** Prevalence limit ****************/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          d=p/q; 
 {          u=x+d; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          if (u-a < tol2 || b-u < tol2) 
      matrix by transitions matrix until convergence is reached */            d=SIGN(tol1,xm-x); 
         } 
   int i, ii,j,k;      } else { 
   double min, max, maxmin, maxmax,sumnew=0.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **matprod2();      } 
   double **out, cov[NCOVMAX], **pmij();      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double **newm;      fu=(*f)(u); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for (ii=1;ii<=nlstate+ndeath;ii++)        SHFT(v,w,x,u) 
     for (j=1;j<=nlstate+ndeath;j++){          SHFT(fv,fw,fx,fu) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } else { 
     }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
    cov[1]=1.;              v=w; 
                w=u; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */              fv=fw; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              fw=fu; 
     newm=savm;            } else if (fu <= fv || v == x || v == w) { 
     /* Covariates have to be included here again */              v=u; 
      cov[2]=agefin;              fv=fu; 
              } 
       for (k=1; k<=cptcovn;k++) {          } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return fx; 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /****************** mnbrak ***********************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/              double (*func)(double)) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     double ulim,u,r,q, dum;
     savm=oldm;    double fu; 
     oldm=newm;   
     maxmax=0.;    *fa=(*func)(*ax); 
     for(j=1;j<=nlstate;j++){    *fb=(*func)(*bx); 
       min=1.;    if (*fb > *fa) { 
       max=0.;      SHFT(dum,*ax,*bx,dum) 
       for(i=1; i<=nlstate; i++) {        SHFT(dum,*fb,*fa,dum) 
         sumnew=0;        } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    *cx=(*bx)+GOLD*(*bx-*ax); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    *fc=(*func)(*cx); 
         max=FMAX(max,prlim[i][j]);    while (*fb > *fc) { 
         min=FMIN(min,prlim[i][j]);      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
       maxmin=max-min;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       maxmax=FMAX(maxmax,maxmin);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if(maxmax < ftolpl){      if ((*bx-u)*(u-*cx) > 0.0) { 
       return prlim;        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   }        fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 /*************** transition probabilities ***************/            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 {        u=ulim; 
   double s1, s2;        fu=(*func)(u); 
   /*double t34;*/      } else { 
   int i,j,j1, nc, ii, jj;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
     for(i=1; i<= nlstate; i++){      } 
     for(j=1; j<i;j++){      SHFT(*ax,*bx,*cx,u) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        SHFT(*fa,*fb,*fc,fu) 
         /*s2 += param[i][j][nc]*cov[nc];*/        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************** linmin ************************/
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int ncom; 
     }  double *pcom,*xicom;
     for(j=i+1; j<=nlstate+ndeath;j++){  double (*nrfunc)(double []); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  { 
       }    double brent(double ax, double bx, double cx, 
       ps[i][j]=s2;                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
   }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /*ps[3][2]=1;*/                double *fc, double (*func)(double)); 
     int j; 
   for(i=1; i<= nlstate; i++){    double xx,xmin,bx,ax; 
      s1=0;    double fx,fb,fa;
     for(j=1; j<i; j++)   
       s1+=exp(ps[i][j]);    ncom=n; 
     for(j=i+1; j<=nlstate+ndeath; j++)    pcom=vector(1,n); 
       s1+=exp(ps[i][j]);    xicom=vector(1,n); 
     ps[i][i]=1./(s1+1.);    nrfunc=func; 
     for(j=1; j<i; j++)    for (j=1;j<=n;j++) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      pcom[j]=p[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)      xicom[j]=xi[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    ax=0.0; 
   } /* end i */    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
       ps[ii][jj]=0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[ii][ii]=1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
   }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       p[j] += xi[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    free_vector(xicom,1,n); 
      printf("%lf ",ps[ii][jj]);    free_vector(pcom,1,n); 
    }  } 
     printf("\n ");  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    long sec_left, days, hours, minutes;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    days = (time_sec) / (60*60*24);
   goto end;*/    sec_left = (time_sec) % (60*60*24);
     return ps;    hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /**************** Product of 2 matrices ******************/    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return ascdiff;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** powell ************************/
   /* in, b, out are matrice of pointers which should have been initialized  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      before: only the contents of out is modified. The function returns              double (*func)(double [])) 
      a pointer to pointers identical to out */  { 
   long i, j, k;    void linmin(double p[], double xi[], int n, double *fret, 
   for(i=nrl; i<= nrh; i++)                double (*func)(double [])); 
     for(k=ncolol; k<=ncoloh; k++)    int i,ibig,j; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double del,t,*pt,*ptt,*xit;
         out[i][k] +=in[i][j]*b[j][k];    double fp,fptt;
     double *xits;
   return out;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /************* Higher Matrix Product ***************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (*iter=1;;++(*iter)) { 
      duration (i.e. until      fp=(*fret); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      ibig=0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      del=0.0; 
      (typically every 2 years instead of every month which is too big).      last_time=curr_time;
      Model is determined by parameters x and covariates have to be      (void) gettimeofday(&curr_time,&tzp);
      included manually here.      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
   int i, j, d, h, k;        printf(" %d %.12f",i, p[i]);
   double **out, cov[NCOVMAX];        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **newm;        fprintf(ficrespow," %.12lf", p[i]);
       }
   /* Hstepm could be zero and should return the unit matrix */      printf("\n");
   for (i=1;i<=nlstate+ndeath;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if(*iter <=3){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tmf));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*       asctime_r(&tm,strcurr); */
   for(h=1; h <=nhstepm; h++){        forecast_time=curr_time;
     for(d=1; d <=hstepm; d++){        itmp = strlen(strcurr);
       newm=savm;        if(strcurr[itmp-1]=='\n')
       /* Covariates have to be included here again */          strcurr[itmp-1]='\0';
       cov[1]=1.;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for(niterf=10;niterf<=30;niterf+=10){
       for (k=1; k<=cptcovage;k++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          tmf = *localtime(&forecast_time.tv_sec);
       for (k=1; k<=cptcovprod;k++)  /*      asctime_r(&tmf,strfor); */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          strfor[itmp-1]='\0';
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;      }
       oldm=newm;      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(i=1; i<=nlstate+ndeath; i++)        fptt=(*fret); 
       for(j=1;j<=nlstate+ndeath;j++) {  #ifdef DEBUG
         po[i][j][h]=newm[i][j];        printf("fret=%lf \n",*fret);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fprintf(ficlog,"fret=%lf \n",*fret);
          */  #endif
       }        printf("%d",i);fflush(stdout);
   } /* end h */        fprintf(ficlog,"%d",i);fflush(ficlog);
   return po;        linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
           ibig=i; 
 /*************** log-likelihood *************/        } 
 double func( double *x)  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   int i, ii, j, k, mi, d, kk;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (j=1;j<=n;j++) {
   double **out;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double sw; /* Sum of weights */          printf(" x(%d)=%.12e",j,xit[j]);
   double lli; /* Individual log likelihood */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   long ipmx;        }
   /*extern weight */        for(j=1;j<=n;j++) {
   /* We are differentiating ll according to initial status */          printf(" p=%.12e",p[j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          fprintf(ficlog," p=%.12e",p[j]);
   /*for(i=1;i<imx;i++)        }
     printf(" %d\n",s[4][i]);        printf("\n");
   */        fprintf(ficlog,"\n");
   cov[1]=1.;  #endif
       } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        int k[2],l;
     for(mi=1; mi<= wav[i]-1; mi++){        k[0]=1;
       for (ii=1;ii<=nlstate+ndeath;ii++)        k[1]=-1;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("Max: %.12e",(*func)(p));
       for(d=0; d<dh[mi][i]; d++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
         newm=savm;        for (j=1;j<=n;j++) {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf(" %.12e",p[j]);
         for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog," %.12e",p[j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
         }        printf("\n");
                fprintf(ficlog,"\n");
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(l=0;l<=1;l++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for (j=1;j<=n;j++) {
         savm=oldm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         oldm=newm;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                  }
       } /* end mult */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #endif
       ipmx +=1;  
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        free_vector(xit,1,n); 
     } /* end of wave */        free_vector(xits,1,n); 
   } /* end of individual */        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        return; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   return -l;      for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 /*********** Maximum Likelihood Estimation ***************/      } 
       fptt=(*func)(ptt); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      if (fptt < fp) { 
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int i,j, iter;        if (t < 0.0) { 
   double **xi,*delti;          linmin(p,xit,n,fret,func); 
   double fret;          for (j=1;j<=n;j++) { 
   xi=matrix(1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   for (i=1;i<=npar;i++)            xi[j][n]=xit[j]; 
     for (j=1;j<=npar;j++)          }
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
   printf("Powell\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   powell(p,xi,npar,ftol,&iter,&fret,func);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            printf(" %.12e",xit[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            fprintf(ficlog," %.12e",xit[j]);
           }
 }          printf("\n");
           fprintf(ficlog,"\n");
 /**** Computes Hessian and covariance matrix ***/  #endif
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {      } 
   double  **a,**y,*x,pd;    } 
   double **hess;  } 
   int i, j,jk;  
   int *indx;  /**** Prevalence limit (stable prevalence)  ****************/
   
   double hessii(double p[], double delta, int theta, double delti[]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double hessij(double p[], double delti[], int i, int j);  {
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   void ludcmp(double **a, int npar, int *indx, double *d) ;       matrix by transitions matrix until convergence is reached */
   
   hess=matrix(1,npar,1,npar);    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double **matprod2();
   for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX], **pmij();
     printf("%d",i);fflush(stdout);    double **newm;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double agefin, delaymax=50 ; /* Max number of years to converge */
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {     cov[1]=1.;
         printf(".%d%d",i,j);fflush(stdout);   
         hess[i][j]=hessij(p,delti,i,j);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         hess[j][i]=hess[i][j];        for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         /*printf(" %lf ",hess[i][j]);*/      newm=savm;
       }      /* Covariates have to be included here again */
     }       cov[2]=agefin;
   }    
   printf("\n");        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
   a=matrix(1,npar,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   y=matrix(1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   x=vector(1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   ludcmp(a,npar,indx,&pd);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;      savm=oldm;
     x[j]=1;      oldm=newm;
     lubksb(a,npar,indx,x);      maxmax=0.;
     for (i=1;i<=npar;i++){      for(j=1;j<=nlstate;j++){
       matcov[i][j]=x[i];        min=1.;
     }        max=0.;
   }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   printf("\n#Hessian matrix#\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1;i<=npar;i++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=npar;j++) {          max=FMAX(max,prlim[i][j]);
       printf("%.3e ",hess[i][j]);          min=FMIN(min,prlim[i][j]);
     }        }
     printf("\n");        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
       }
   /* Recompute Inverse */      if(maxmax < ftolpl){
   for (i=1;i<=npar;i++)        return prlim;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      }
   ludcmp(a,npar,indx,&pd);    }
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /*************** transition probabilities ***************/ 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     x[j]=1;  {
     lubksb(a,npar,indx,x);    double s1, s2;
     for (i=1;i<=npar;i++){    /*double t34;*/
       y[i][j]=x[i];    int i,j,j1, nc, ii, jj;
       printf("%.3e ",y[i][j]);  
     }      for(i=1; i<= nlstate; i++){
     printf("\n");      for(j=1; j<i;j++){
   }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   */          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_matrix(a,1,npar,1,npar);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        ps[i][j]=s2;
   free_ivector(indx,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_matrix(hess,1,npar,1,npar);      }
       for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 /*************** hessian matrix ****************/        }
 double hessii( double x[], double delta, int theta, double delti[])        ps[i][j]=s2;
 {      }
   int i;    }
   int l=1, lmax=20;      /*ps[3][2]=1;*/
   double k1,k2;  
   double p2[NPARMAX+1];    for(i=1; i<= nlstate; i++){
   double res;       s1=0;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for(j=1; j<i; j++)
   double fx;        s1+=exp(ps[i][j]);
   int k=0,kmax=10;      for(j=i+1; j<=nlstate+ndeath; j++)
   double l1;        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
   fx=func(x);      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(l=0 ; l <=lmax; l++){      for(j=i+1; j<=nlstate+ndeath; j++)
     l1=pow(10,l);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     delts=delt;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(k=1 ; k <kmax; k=k+1){    } /* end i */
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       k1=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
       p2[theta]=x[theta]-delt;        ps[ii][jj]=0;
       k2=func(p2)-fx;        ps[ii][ii]=1;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
        
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 #endif      for(jj=1; jj<= nlstate+ndeath; jj++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       printf("%lf ",ps[ii][jj]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){     }
         k=kmax;      printf("\n ");
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      printf("\n ");printf("%lf ",cov[2]);*/
         k=kmax; l=lmax*10.;  /*
       }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    goto end;*/
         delts=delt;      return ps;
       }  }
     }  
   }  /**************** Product of 2 matrices ******************/
   delti[theta]=delts;  
   return res;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   int i;       a pointer to pointers identical to out */
   int l=1, l1, lmax=20;    long i, j, k;
   double k1,k2,k3,k4,res,fx;    for(i=nrl; i<= nrh; i++)
   double p2[NPARMAX+1];      for(k=ncolol; k<=ncoloh; k++)
   int k;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   fx=func(x);  
   for (k=1; k<=2; k++) {    return out;
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /************* Higher Matrix Product ***************/
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetai]=x[thetai]-delti[thetai]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       nhstepm*hstepm matrices. 
     k3=func(p2)-fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
     p2[thetai]=x[thetai]-delti[thetai]/k;       for the memory).
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       Model is determined by parameters x and covariates have to be 
     k4=func(p2)-fx;       included manually here. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG       */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    int i, j, d, h, k;
   }    double **out, cov[NCOVMAX];
   return res;    double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 /************** Inverse of matrix **************/    for (i=1;i<=nlstate+ndeath;i++)
 void ludcmp(double **a, int n, int *indx, double *d)      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i,imax,j,k;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double big,dum,sum,temp;      }
   double *vv;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   vv=vector(1,n);      for(d=1; d <=hstepm; d++){
   *d=1.0;        newm=savm;
   for (i=1;i<=n;i++) {        /* Covariates have to be included here again */
     big=0.0;        cov[1]=1.;
     for (j=1;j<=n;j++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (k=1; k<=cptcovage;k++)
     vv[i]=1.0/big;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   for (j=1;j<=n;j++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<j;i++) {  
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       a[i][j]=sum;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     big=0.0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=j;i<=n;i++) {        savm=oldm;
       sum=a[i][j];        oldm=newm;
       for (k=1;k<j;k++)      }
         sum -= a[i][k]*a[k][j];      for(i=1; i<=nlstate+ndeath; i++)
       a[i][j]=sum;        for(j=1;j<=nlstate+ndeath;j++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {          po[i][j][h]=newm[i][j];
         big=dum;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         imax=i;           */
       }        }
     }    } /* end h */
     if (j != imax) {    return po;
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  /*************** log-likelihood *************/
       }  double func( double *x)
       *d = -(*d);  {
       vv[imax]=vv[j];    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     indx[j]=imax;    double **out;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double sw; /* Sum of weights */
     if (j != n) {    double lli; /* Individual log likelihood */
       dum=1.0/(a[j][j]);    int s1, s2;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double bbh, survp;
     }    long ipmx;
   }    /*extern weight */
   free_vector(vv,1,n);  /* Doesn't work */    /* We are differentiating ll according to initial status */
 ;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 void lubksb(double **a, int n, int *indx, double b[])    */
 {    cov[1]=1.;
   int i,ii=0,ip,j;  
   double sum;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   for (i=1;i<=n;i++) {    if(mle==1){
     ip=indx[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     sum=b[ip];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[ip]=b[i];        for(mi=1; mi<= wav[i]-1; mi++){
     if (ii)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            for (j=1;j<=nlstate+ndeath;j++){
     else if (sum) ii=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   for (i=n;i>=1;i--) {          for(d=0; d<dh[mi][i]; d++){
     sum=b[i];            newm=savm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[i]=sum/a[i][i];            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Frequencies ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double *pp;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double pos, k2, dateintsum=0,k2cpt=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   FILE *ficresp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   char fileresp[FILENAMELENGTH];           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   pp=vector(1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * probability in order to take into account the bias as a fraction of the way
   strcpy(fileresp,"p");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   strcat(fileresp,fileres);           * -stepm/2 to stepm/2 .
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * For stepm=1 the results are the same as for previous versions of Imach.
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * For stepm > 1 the results are less biased than in previous versions. 
     exit(0);           */
   }          s1=s[mw[mi][i]][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s2=s[mw[mi+1][i]][i];
   j1=0;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   j=cptcoveff;           * is higher than the multiple of stepm and negative otherwise.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(k1=1; k1<=j;k1++){          if( s2 > nlstate){ 
     for(i1=1; i1<=ncodemax[k1];i1++){            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       j1++;               to the likelihood is the probability to die between last step unit time and current 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);               step unit time, which is also the differences between probability to die before dh 
         scanf("%d", i);*/               and probability to die before dh-stepm . 
       for (i=-1; i<=nlstate+ndeath; i++)                 In version up to 0.92 likelihood was computed
         for (jk=-1; jk<=nlstate+ndeath; jk++)            as if date of death was unknown. Death was treated as any other
           for(m=agemin; m <= agemax+3; m++)          health state: the date of the interview describes the actual state
             freq[i][jk][m]=0;          and not the date of a change in health state. The former idea was
                to consider that at each interview the state was recorded
       dateintsum=0;          (healthy, disable or death) and IMaCh was corrected; but when we
       k2cpt=0;          introduced the exact date of death then we should have modified
       for (i=1; i<=imx; i++) {          the contribution of an exact death to the likelihood. This new
         bool=1;          contribution is smaller and very dependent of the step unit
         if  (cptcovn>0) {          stepm. It is no more the probability to die between last interview
           for (z1=1; z1<=cptcoveff; z1++)          and month of death but the probability to survive from last
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          interview up to one month before death multiplied by the
               bool=0;          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
         if (bool==1) {          mortality artificially. The bad side is that we add another loop
           for(m=firstpass; m<=lastpass; m++){          which slows down the processing. The difference can be up to 10%
             k2=anint[m][i]+(mint[m][i]/12.);          lower mortality.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            */
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli=log(out[s1][s2] - savm[s1][s2]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }else{
               if (m<lastpass) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          } 
               }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                        /*if(lli ==000.0)*/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                 dateintsum=dateintsum+k2;          ipmx +=1;
                 k2cpt++;          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, "\n#********** Variable ");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, "**********\n#");            }
       }          for(d=0; d<=dh[mi][i]; d++){
       for(i=1; i<=nlstate;i++)            newm=savm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresp, "\n");            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=(int)agemin; i <= (int)agemax+3; i++){            }
         if(i==(int)agemax+3)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           printf("Total");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else            savm=oldm;
           printf("Age %d", i);            oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=-1, pos=0; m <=0 ; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             pos += freq[jk][m][i];          ipmx +=1;
           if(pp[jk]>=1.e-10)          sw += weight[i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           else        } /* end of wave */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1,pos=0; jk <=nlstate ; jk++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           if(pos>=1.e-5)            newm=savm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               probs[i][jk][j1]= pp[jk]/pos;            savm=oldm;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            oldm=newm;
             }          } /* end mult */
             else        
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
                  lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          ipmx +=1;
           for(m=-1; m <=nlstate+ndeath; m++)          sw += weight[i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(i <= (int) agemax)        } /* end of wave */
           fprintf(ficresp,"\n");      } /* end of individual */
         printf("\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   dateintmean=dateintsum/k2cpt;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
   /* End of Freq */            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Prevalence ********************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            }
 {  /* Some frequencies */          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */            savm=oldm;
   double *pp;            oldm=newm;
   double pos, k2;          } /* end mult */
         
   pp=vector(1,nlstate);          s1=s[mw[mi][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            lli=log(out[s1][s2] - savm[s1][s2]);
   j1=0;          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
            sw += weight[i];
  for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i1=1; i1<=ncodemax[k1];i1++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       j1++;        } /* end of wave */
        } /* end of individual */
       for (i=-1; i<=nlstate+ndeath; i++)      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             freq[i][jk][m]=0;        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
         bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<dh[mi][i]; d++){
               bool=0;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (bool==1) {            for (kk=1; kk<=cptcovage;kk++) {
           for(m=firstpass; m<=lastpass; m++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          
               if(agev[m][i]==0) agev[m][i]=agemax+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==1) agev[m][i]=agemax+2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            savm=oldm;
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */            oldm=newm;
             }          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
               pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
             for(m=-1, pos=0; m <=0 ; m++)      } /* end of individual */
             pos += freq[jk][m][i];    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          for(jk=1; jk <=nlstate ; jk++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    return -l;
              pp[jk] += freq[jk][m][i];  }
          }  
            /*************** log-likelihood *************/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  double funcone( double *x)
   {
          for(jk=1; jk <=nlstate ; jk++){              /* Same as likeli but slower because of a lot of printf and if */
            if( i <= (int) agemax){    int i, ii, j, k, mi, d, kk;
              if(pos>=1.e-5){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                probs[i][jk][j1]= pp[jk]/pos;    double **out;
              }    double lli; /* Individual log likelihood */
            }    double llt;
          }    int s1, s2;
              double bbh, survp;
         }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    */
   free_vector(pp,1,nlstate);    cov[1]=1.;
    
 }  /* End of Freq */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************* Waves Concatenation ***************/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.        for(d=0; d<dh[mi][i]; d++){
      */          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;          for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;          savm=oldm;
   jmin=1e+5;          oldm=newm;
   jmax=-1;        } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){        s1=s[mw[mi][i]][i];
     mi=0;        s2=s[mw[mi+1][i]][i];
     m=firstpass;        bbh=(double)bh[mi][i]/(double)stepm; 
     while(s[m][i] <= nlstate){        /* bias is positive if real duration
       if(s[m][i]>=1)         * is higher than the multiple of stepm and negative otherwise.
         mw[++mi][i]=m;         */
       if(m >=lastpass)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         break;          lli=log(out[s1][s2] - savm[s1][s2]);
       else        } else if (mle==1){
         m++;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }/* end while */        } else if(mle==2){
     if (s[m][i] > nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       mi++;     /* Death is another wave */        } else if(mle==3){  /* exponential inter-extrapolation */
       /* if(mi==0)  never been interviewed correctly before death */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          /* Only death is a correct wave */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       mw[mi][i]=m;          lli=log(out[s1][s2]); /* Original formula */
     }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
     wav[i]=mi;        } /* End of if */
     if(mi==0)        ipmx +=1;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=imx; i++){        if(globpr){
     for(mi=1; mi<wav[i];mi++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       if (stepm <=0)   %10.6f %10.6f %10.6f ", \
         dh[mi][i]=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       else{                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if (s[mw[mi+1][i]][i] > nlstate) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           if (agedc[i] < 2*AGESUP) {            llt +=ll[k]*gipmx/gsw;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           if(j==0) j=1;  /* Survives at least one month after exam */          }
           k=k+1;          fprintf(ficresilk," %10.6f\n", -llt);
           if (j >= jmax) jmax=j;        }
           if (j <= jmin) jmin=j;      } /* end of wave */
           sum=sum+j;    } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         else{    if(globpr==0){ /* First time we count the contributions and weights */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      gipmx=ipmx;
           k=k+1;      gsw=sw;
           if (j >= jmax) jmax=j;    }
           else if (j <= jmin)jmin=j;    return -l;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  }
           sum=sum+j;  
         }  
         jk= j/stepm;  /*************** function likelione ***********/
         jl= j -jk*stepm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         ju= j -(jk+1)*stepm;  {
         if(jl <= -ju)    /* This routine should help understanding what is done with 
           dh[mi][i]=jk;       the selection of individuals/waves and
         else       to check the exact contribution to the likelihood.
           dh[mi][i]=jk+1;       Plotting could be done.
         if(dh[mi][i]==0)     */
           dh[mi][i]=1; /* At least one step */    int k;
       }  
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ilk"); 
   jmean=sum/k;      strcat(fileresilk,fileres);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  }        printf("Problem with resultfile: %s\n", fileresilk);
 /*********** Tricode ****************************/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 void tricode(int *Tvar, int **nbcode, int imx)      }
 {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int Ndum[20],ij=1, k, j, i;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int cptcode=0;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   cptcoveff=0;      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;    }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    *fretone=(*funcone)(p);
     for (i=1; i<=imx; i++) {    if(*globpri !=0){
       ij=(int)(covar[Tvar[j]][i]);      fclose(ficresilk);
       Ndum[ij]++;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fflush(fichtm); 
       if (ij > cptcode) cptcode=ij;    } 
     }    return;
   }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /*********** Maximum Likelihood Estimation ***************/
     ij=1;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     for (i=1; i<=ncodemax[j]; i++) {    int i,j, iter;
       for (k=0; k<=19; k++) {    double **xi;
         if (Ndum[k] != 0) {    double fret;
           nbcode[Tvar[j]][ij]=k;    double fretone; /* Only one call to likelihood */
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/    char filerespow[FILENAMELENGTH];
           ij++;    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
         if (ij > ncodemax[j]) break;      for (j=1;j<=npar;j++)
       }          xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }      strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
  for (k=0; k<19; k++) Ndum[k]=0;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
  for (i=1; i<=ncovmodel-2; i++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       ij=Tvar[i];    }
       Ndum[ij]++;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
  ij=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  for (i=1; i<=10; i++) {    fprintf(ficrespow,"\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    powell(p,xi,npar,ftol,&iter,&fret,func);
      ij++;  
    }    fclose(ficrespow);
  }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     cptcoveff=ij-1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }  
   }
 /*********** Health Expectancies ****************/  
   /**** Computes Hessian and covariance matrix ***/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   /* Health expectancies */    double  **a,**y,*x,pd;
   int i, j, nhstepm, hstepm, h, nstepm, k;    double **hess;
   double age, agelim, hf;    int i, j,jk;
   double ***p3mat;    int *indx;
    
   fprintf(ficreseij,"# Health expectancies\n");    double hessii(double p[], double delta, int theta, double delti[]);
   fprintf(ficreseij,"# Age");    double hessij(double p[], double delti[], int i, int j);
   for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(j=1; j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");    hess=matrix(1,npar,1,npar);
   
   k=1;             /* For example stepm=6 months */    printf("\nCalculation of the hessian matrix. Wait...\n");
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    for (i=1;i<=npar;i++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("%d",i);fflush(stdout);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"%d",i);fflush(ficlog);
      nstepm is the number of stepm from age to agelin.      hess[i][i]=hessii(p,ftolhess,i,delti);
      Look at hpijx to understand the reason of that which relies in memory size      /*printf(" %f ",p[i]);*/
      and note for a fixed period like k years */      /*printf(" %lf ",hess[i][i]);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=npar;j++)  {
      results. So we changed our mind and took the option of the best precision.        if (j>i) { 
   */          printf(".%d%d",i,j);fflush(stdout);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j);
   agelim=AGESUP;          hess[j][i]=hess[i][j];    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*printf(" %lf ",hess[i][j]);*/
     /* nhstepm age range expressed in number of stepm */        }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    }
     /* if (stepm >= YEARM) hstepm=1;*/    printf("\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficlog,"\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    a=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    y=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    x=vector(1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    indx=ivector(1,npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (i=1;i<=npar;i++)
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++) x[i]=0;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);      x[j]=1;
       }      lubksb(a,npar,indx,x);
     fprintf(ficreseij,"\n");      for (i=1;i<=npar;i++){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        matcov[i][j]=x[i];
   }      }
 }    }
   
 /************ Variance ******************/    printf("\n#Hessian matrix#\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\n#Hessian matrix#\n");
 {    for (i=1;i<=npar;i++) { 
   /* Variance of health expectancies */      for (j=1;j<=npar;j++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        printf("%.3e ",hess[i][j]);
   double **newm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm, h, nstepm, kk;      printf("\n");
   int k, cptcode;      fprintf(ficlog,"\n");
   double *xp;    }
   double **gp, **gm;  
   double ***gradg, ***trgradg;    /* Recompute Inverse */
   double ***p3mat;    for (i=1;i<=npar;i++)
   double age,agelim, hf;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int theta;    ludcmp(a,npar,indx,&pd);
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      x[j]=1;
   fprintf(ficresvij,"\n");      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   xp=vector(1,npar);        y[i][j]=x[i];
   dnewm=matrix(1,nlstate,1,npar);        printf("%.3e ",y[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
        }
   kk=1;             /* For example stepm=6 months */      printf("\n");
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      fprintf(ficlog,"\n");
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    */
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    free_matrix(a,1,npar,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(y,1,npar,1,npar);
      and note for a fixed period like k years */    free_vector(x,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_ivector(indx,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_matrix(hess,1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  /*************** hessian matrix ****************/
   agelim = AGESUP;  double hessii( double x[], double delta, int theta, double delti[])
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int l=1, lmax=20;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double k1,k2;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double p2[NPARMAX+1];
     gp=matrix(0,nhstepm,1,nlstate);    double res;
     gm=matrix(0,nhstepm,1,nlstate);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     for(theta=1; theta <=npar; theta++){    int k=0,kmax=10;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double l1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    fx=func(x);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
       if (popbased==1) {      delts=delt;
         for(i=1; i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
           prlim[i][i]=probs[(int)age][i][ij];        delt = delta*(l1*k);
       }        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
       for(j=1; j<= nlstate; j++){        p2[theta]=x[theta]-delt;
         for(h=0; h<=nhstepm; h++){        k2=func(p2)-fx;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
       }  #ifdef DEBUG
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           prlim[i][i]=probs[(int)age][i][ij];          k=kmax; l=lmax*10.;
       }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1; j<= nlstate; j++){          delts=delt;
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    delti[theta]=delts;
       }    return res; 
     
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  double hessij( double x[], double delti[], int thetai,int thetaj)
         }  {
     } /* End theta */    int i;
     int l=1, l1, lmax=20;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     for(h=0; h<=nhstepm; h++)    int k;
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    fx=func(x);
           trgradg[h][j][theta]=gradg[h][theta][j];    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1;j<=nlstate;j++)      k1=func(p2)-fx;
         vareij[i][j][(int)age] =0.;    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(h=0;h<=nhstepm;h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(k=0;k<=nhstepm;k++){      k2=func(p2)-fx;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           for(j=1;j<=nlstate;j++)      k3=func(p2)-fx;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     fprintf(ficresvij,"%.0f ",age );      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  #endif
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);    return res;
     free_matrix(gm,0,nhstepm,1,nlstate);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /************** Inverse of matrix **************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void ludcmp(double **a, int n, int *indx, double *d) 
   } /* End age */  { 
      int i,imax,j,k; 
   free_vector(xp,1,npar);    double big,dum,sum,temp; 
   free_matrix(doldm,1,nlstate,1,npar);    double *vv; 
   free_matrix(dnewm,1,nlstate,1,nlstate);   
     vv=vector(1,n); 
 }    *d=1.0; 
     for (i=1;i<=n;i++) { 
 /************ Variance of prevlim ******************/      big=0.0; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=n;j++) 
 {        if ((temp=fabs(a[i][j])) > big) big=temp; 
   /* Variance of prevalence limit */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      vv[i]=1.0/big; 
   double **newm;    } 
   double **dnewm,**doldm;    for (j=1;j<=n;j++) { 
   int i, j, nhstepm, hstepm;      for (i=1;i<j;i++) { 
   int k, cptcode;        sum=a[i][j]; 
   double *xp;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double *gp, *gm;        a[i][j]=sum; 
   double **gradg, **trgradg;      } 
   double age,agelim;      big=0.0; 
   int theta;      for (i=j;i<=n;i++) { 
            sum=a[i][j]; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for (k=1;k<j;k++) 
   fprintf(ficresvpl,"# Age");          sum -= a[i][k]*a[k][j]; 
   for(i=1; i<=nlstate;i++)        a[i][j]=sum; 
       fprintf(ficresvpl," %1d-%1d",i,i);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fprintf(ficresvpl,"\n");          big=dum; 
           imax=i; 
   xp=vector(1,npar);        } 
   dnewm=matrix(1,nlstate,1,npar);      } 
   doldm=matrix(1,nlstate,1,nlstate);      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   hstepm=1*YEARM; /* Every year of age */          dum=a[imax][k]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          a[imax][k]=a[j][k]; 
   agelim = AGESUP;          a[j][k]=dum; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        *d = -(*d); 
     if (stepm >= YEARM) hstepm=1;        vv[imax]=vv[j]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } 
     gradg=matrix(1,npar,1,nlstate);      indx[j]=imax; 
     gp=vector(1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     gm=vector(1,nlstate);      if (j != n) { 
         dum=1.0/(a[j][j]); 
     for(theta=1; theta <=npar; theta++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } 
       }    free_vector(vv,1,n);  /* Doesn't work */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  ;
       for(i=1;i<=nlstate;i++)  } 
         gp[i] = prlim[i][i];  
      void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1; i<=npar; i++) /* Computes gradient */  { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,ii=0,ip,j; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double sum; 
       for(i=1;i<=nlstate;i++)   
         gm[i] = prlim[i][i];    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       for(i=1;i<=nlstate;i++)      sum=b[ip]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      b[ip]=b[i]; 
     } /* End theta */      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     trgradg =matrix(1,nlstate,1,npar);      else if (sum) ii=i; 
       b[i]=sum; 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)    for (i=n;i>=1;i--) { 
         trgradg[j][theta]=gradg[theta][j];      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=nlstate;i++)      b[i]=sum/a[i][i]; 
       varpl[i][(int)age] =0.;    } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
     fprintf(ficresvpl,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int first;
     fprintf(ficresvpl,"\n");    double ***freq; /* Frequencies */
     free_vector(gp,1,nlstate);    double *pp, **prop;
     free_vector(gm,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_matrix(gradg,1,npar,1,nlstate);    FILE *ficresp;
     free_matrix(trgradg,1,nlstate,1,npar);    char fileresp[FILENAMELENGTH];
   } /* End age */    
     pp=vector(1,nlstate);
   free_vector(xp,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_matrix(doldm,1,nlstate,1,npar);    strcpy(fileresp,"p");
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
 }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 /************ Variance of one-step probabilities  ******************/      exit(0);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    }
 {    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   int i, j;    j1=0;
   int k=0, cptcode;    
   double **dnewm,**doldm;    j=cptcoveff;
   double *xp;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double *gp, *gm;  
   double **gradg, **trgradg;    first=1;
   double age,agelim, cov[NCOVMAX];  
   int theta;    for(k1=1; k1<=j;k1++){
   char fileresprob[FILENAMELENGTH];      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   strcpy(fileresprob,"prob");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcat(fileresprob,fileres);          scanf("%d", i);*/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for (i=-1; i<=nlstate+ndeath; i++)  
     printf("Problem with resultfile: %s\n", fileresprob);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);              freq[i][jk][m]=0;
    
       for (i=1; i<=nlstate; i++)  
   xp=vector(1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          prop[i][m]=0;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        
          dateintsum=0;
   cov[1]=1;        k2cpt=0;
   for (age=bage; age<=fage; age ++){        for (i=1; i<=imx; i++) {
     cov[2]=age;          bool=1;
     gradg=matrix(1,npar,1,9);          if  (cptcovn>0) {
     trgradg=matrix(1,9,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                bool=0;
              }
     for(theta=1; theta <=npar; theta++){          if (bool==1){
       for(i=1; i<=npar; i++)            for(m=firstpass; m<=lastpass; m++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              k2=anint[m][i]+(mint[m][i]/12.);
                    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
       k=0;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<= (nlstate+ndeath); i++){                if (m<lastpass) {
         for(j=1; j<=(nlstate+ndeath);j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
            k=k+1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           gp[k]=pmmij[i][j];                }
         }                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
       for(i=1; i<=npar; i++)                  k2cpt++;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                }
                    /*}*/
             }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
       k=0;        }
       for(i=1; i<=(nlstate+ndeath); i++){         
         for(j=1; j<=(nlstate+ndeath);j++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           k=k+1;  
           gm[k]=pmmij[i][j];        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficresp, "**********\n#");
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for(i=1; i<=nlstate;i++) 
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        
       for(theta=1; theta <=npar; theta++)        for(i=iagemin; i <= iagemax+3; i++){
       trgradg[j][theta]=gradg[theta][j];          if(i==iagemax+3){
              fprintf(ficlog,"Total");
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          }else{
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            if(first==1){
               first=0;
      pmij(pmmij,cov,ncovmodel,x,nlstate);              printf("See log file for details...\n");
             }
      k=0;            fprintf(ficlog,"Age %d", i);
      for(i=1; i<=(nlstate+ndeath); i++){          }
        for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
          k=k+1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
          gm[k]=pmmij[i][j];              pp[jk] += freq[jk][m][i]; 
         }          }
      }          for(jk=1; jk <=nlstate ; jk++){
                  for(m=-1, pos=0; m <=0 ; m++)
      /*printf("\n%d ",(int)age);              pos += freq[jk][m][i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            if(pp[jk]>=1.e-10){
                      if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              }
      }*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   fprintf(ficresprob,"\n%d ",(int)age);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          }
   }  
           for(jk=1; jk <=nlstate ; jk++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              pp[jk] += freq[jk][m][i];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }       
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 }            pos += pp[jk];
  free_vector(xp,1,npar);            posprop += prop[jk][i];
 fclose(ficresprob);          }
           for(jk=1; jk <=nlstate ; jk++){
 }            if(pos>=1.e-5){
               if(first==1)
 /******************* Printing html file ***********/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  int lastpass, int stepm, int weightopt, char model[],\            }else{
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              if(first==1)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  char version[], int popforecast ){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;            if( i <= iagemax){
   /*char optionfilehtm[FILENAMELENGTH];*/              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcpy(optionfilehtm,optionfile);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   strcat(optionfilehtm,".htm");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              }
     printf("Problem with %s \n",optionfilehtm), exit(0);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          
 \n          for(jk=-1; jk <=nlstate+ndeath; jk++)
 Total number of observations=%d <br>\n            for(m=-1; m <=nlstate+ndeath; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              if(freq[jk][m][i] !=0 ) {
 <hr  size=\"2\" color=\"#EC5E5E\">              if(first==1)
  <ul><li>Outputs files<br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if(i <= iagemax)
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            fprintf(ficresp,"\n");
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          if(first==1)
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
  fprintf(fichtm,"\n        }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    dateintmean=dateintsum/k2cpt; 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);   
     fclose(ficresp);
  if(popforecast==1) fprintf(fichtm,"\n    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    free_vector(pp,1,nlstate);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         <br>",fileres,fileres,fileres,fileres);    /* End of Freq */
  else  }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  m=cptcoveff;  {  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
  jj1=0;       We still use firstpass and lastpass as another selection.
  for(k1=1; k1<=m;k1++){    */
    for(i1=1; i1<=ncodemax[k1];i1++){   
        jj1++;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        if (cptcovn > 0) {    double ***freq; /* Frequencies */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *pp, **prop;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double pos,posprop; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double  y2; /* in fractional years */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int iagemin, iagemax;
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    iagemin= (int) agemin;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        iagemax= (int) agemax;
        for(cpt=1; cpt<nlstate;cpt++){    /*pp=vector(1,nlstate);*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        }    j1=0;
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    j=cptcoveff;
 interval) in state (%d): v%s%d%d.gif <br>    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      
      }    for(k1=1; k1<=j;k1++){
      for(cpt=1; cpt<=nlstate;cpt++) {      for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        j1++;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        
      }        for (i=1; i<=nlstate; i++)  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          for(m=iagemin; m <= iagemax+3; m++)
 health expectancies in states (1) and (2): e%s%d.gif<br>            prop[i][m]=0.0;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       
 fprintf(fichtm,"\n</body>");        for (i=1; i<=imx; i++) { /* Each individual */
    }          bool=1;
    }          if  (cptcovn>0) {
 fclose(fichtm);            for (z1=1; z1<=cptcoveff; z1++) 
 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
 /******************* Gnuplot file **************/          } 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   strcpy(optionfilegnuplot,optionfilefiname);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcat(optionfilegnuplot,".gp.txt");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     printf("Problem with file %s",optionfilegnuplot);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef windows                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);                } 
 #endif              }
 m=pow(2,cptcoveff);            } /* end selection of waves */
            }
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=iagemin; i <= iagemax+3; i++){  
    for (k1=1; k1<= m ; k1 ++) {          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 #ifdef windows            posprop += prop[jk][i]; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          } 
 #endif  
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){     
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            if( i <=  iagemax){ 
 #endif              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 for (i=1; i<= nlstate ; i ++) {              } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }/* end jk */ 
 }        }/* end i */ 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* end i1 */
     for (i=1; i<= nlstate ; i ++) {    } /* end k1 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }    /*free_vector(pp,1,nlstate);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      for (i=1; i<= nlstate ; i ++) {  }  /* End of prevalence */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 #ifdef unix  {
 fprintf(ficgp,"\nset ter gif small size 400,300");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 #endif       Death is a valid wave (if date is known).
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   }       and mw[mi+1][i]. dh depends on stepm.
   /*2 eme*/       */
   
   for (k1=1; k1<= m ; k1 ++) {    int i, mi, m;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           double sum=0., jmean=0.;*/
     for (i=1; i<= nlstate+1 ; i ++) {    int first;
       k=2*i;    int j, k=0,jk, ju, jl;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double sum=0.;
       for (j=1; j<= nlstate+1 ; j ++) {    first=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmin=1e+5;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmax=-1;
 }      jmean=0.;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for(i=1; i<=imx; i++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      mi=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      m=firstpass;
       for (j=1; j<= nlstate+1 ; j ++) {      while(s[m][i] <= nlstate){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(s[m][i]>=1)
         else fprintf(ficgp," \%%*lf (\%%*lf)");          mw[++mi][i]=m;
 }          if(m >=lastpass)
       fprintf(ficgp,"\" t\"\" w l 0,");          break;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        else
       for (j=1; j<= nlstate+1 ; j ++) {          m++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }/* end while */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (s[m][i] > nlstate){
 }          mi++;     /* Death is another wave */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        /* if(mi==0)  never been interviewed correctly before death */
       else fprintf(ficgp,"\" t\"\" w l 0,");           /* Only death is a correct wave */
     }        mw[mi][i]=m;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      }
   }  
        wav[i]=mi;
   /*3eme*/      if(mi==0){
         nbwarn++;
   for (k1=1; k1<= m ; k1 ++) {        if(first==0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       k=2+nlstate*(cpt-1);          first=1;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        }
       for (i=1; i< nlstate ; i ++) {        if(first==1){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       }        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      } /* end mi==0 */
     }    } /* End individuals */
     }  
      for(i=1; i<=imx; i++){
   /* CV preval stat */      for(mi=1; mi<wav[i];mi++){
     for (k1=1; k1<= m ; k1 ++) {        if (stepm <=0)
     for (cpt=1; cpt<nlstate ; cpt ++) {          dh[mi][i]=1;
       k=3;        else{
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
       for (i=1; i< nlstate ; i ++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficgp,"+$%d",k+i+1);              if(j==0) j=1;  /* Survives at least one month after exam */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              else if(j<0){
                      nberr++;
       l=3+(nlstate+ndeath)*cpt;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                j=1; /* Temporary Dangerous patch */
       for (i=1; i< nlstate ; i ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         l=3+(nlstate+ndeath)*cpt;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,"+$%d",l+i+1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       }              }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                k=k+1;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if (j >= jmax) jmax=j;
     }              if (j <= jmin) jmin=j;
   }                sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /* proba elementaires */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          else{
         for(j=1; j <=ncovmodel; j++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                    /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            k=k+1;
           jk++;            if (j >= jmax) jmax=j;
           fprintf(ficgp,"\n");            else if (j <= jmin)jmin=j;
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
     }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(jk=1; jk <=m; jk++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }
    i=1;            sum=sum+j;
    for(k2=1; k2<=nlstate; k2++) {          }
      k3=i;          jk= j/stepm;
      for(k=1; k<=(nlstate+ndeath); k++) {          jl= j -jk*stepm;
        if (k != k2){          ju= j -(jk+1)*stepm;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 ij=1;            if(jl==0){
         for(j=3; j <=ncovmodel; j++) {              dh[mi][i]=jk;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              bh[mi][i]=0;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }else{ /* We want a negative bias in order to only have interpolation ie
             ij++;                    * at the price of an extra matrix product in likelihood */
           }              dh[mi][i]=jk+1;
           else              bh[mi][i]=ju;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
         }          }else{
           fprintf(ficgp,")/(1");            if(jl <= -ju){
                      dh[mi][i]=jk;
         for(k1=1; k1 <=nlstate; k1++){                bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                   * is higher than the multiple of stepm and negative otherwise.
 ij=1;                                   */
           for(j=3; j <=ncovmodel; j++){            }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            else{
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              dh[mi][i]=jk+1;
             ij++;              bh[mi][i]=ju;
           }            }
           else            if(dh[mi][i]==0){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
           fprintf(ficgp,")");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          } /* end if mle */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
         i=i+ncovmodel;      } /* end wave */
        }    }
      }    jmean=sum/k;
    }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }   }
      
   fclose(ficgp);  /*********** Tricode ****************************/
 }  /* end gnuplot */  void tricode(int *Tvar, int **nbcode, int imx)
   {
     
 /*************** Moving average **************/    int Ndum[20],ij=1, k, j, i, maxncov=19;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int cptcode=0;
     cptcoveff=0; 
   int i, cpt, cptcod;   
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
       for (i=1; i<=nlstate;i++)    for (k=1; k<=7; k++) ncodemax[k]=0;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                 modality*/ 
       for (i=1; i<=nlstate;i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        Ndum[ij]++; /*store the modality */
           for (cpt=0;cpt<=4;cpt++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           }                                         Tvar[j]. If V=sex and male is 0 and 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                                         female is 1, then  cptcode=1.*/
         }      }
       }  
     }      for (i=0; i<=cptcode; i++) {
            if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }      }
   
       ij=1; 
 /************** Forecasting ******************/      for (i=1; i<=ncodemax[j]; i++) {
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            nbcode[Tvar[j]][ij]=k; 
   int *popage;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            
   double *popeffectif,*popcount;            ij++;
   double ***p3mat;          }
   char fileresf[FILENAMELENGTH];          if (ij > ncodemax[j]) break; 
         }  
  agelim=AGESUP;      } 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }  
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
     for (i=1; i<=ncovmodel-2; i++) { 
   strcpy(fileresf,"f");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   strcat(fileresf,fileres);     ij=Tvar[i];
   if((ficresf=fopen(fileresf,"w"))==NULL) {     Ndum[ij]++;
     printf("Problem with forecast resultfile: %s\n", fileresf);   }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);   ij=1;
    for (i=1; i<= maxncov; i++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   if (mobilav==1) {       ij++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     }
     movingaverage(agedeb, fage, ageminpar, mobaverage);   }
   }   
    cptcoveff=ij-1; /*Number of simple covariates*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   if (stepm<=12) stepsize=1;  
    /*********** Health Expectancies ****************/
   agelim=AGESUP;  
    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   hstepm=1;  
   hstepm=hstepm/stepm;  {
   yp1=modf(dateintmean,&yp);    /* Health expectancies */
   anprojmean=yp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   yp2=modf((yp1*12),&yp);    double age, agelim, hf;
   mprojmean=yp;    double ***p3mat,***varhe;
   yp1=modf((yp2*30.5),&yp);    double **dnewm,**doldm;
   jprojmean=yp;    double *xp;
   if(jprojmean==0) jprojmean=1;    double **gp, **gm;
   if(mprojmean==0) jprojmean=1;    double ***gradg, ***trgradg;
      int theta;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   for(cptcov=1;cptcov<=i2;cptcov++){    xp=vector(1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       k=k+1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresf,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficreseij,"# Health expectancies\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficreseij,"# Age");
       }    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"******\n");      for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"# StartingAge FinalAge");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficreseij,"\n");
        
          if(estepm < stepm){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * This is mainly to measure the difference between two models: for example
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
           nhstepm = nhstepm/hstepm;     * we are calculating an estimate of the Life Expectancy assuming a linear 
               * progression in between and thus overestimating or underestimating according
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to the curvature of the survival function. If, for the same date, we 
           oldm=oldms;savm=savms;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
           for (h=0; h<=nhstepm; h++){     * curvature will be obtained if estepm is as small as stepm. */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             for(j=1; j<=nlstate+ndeath;j++) {       nhstepm is the number of hstepm from age to agelim 
               kk1=0.;kk2=0;       nstepm is the number of stepm from age to agelin. 
               for(i=1; i<=nlstate;i++) {                     Look at hpijx to understand the reason of that which relies in memory size
                 if (mobilav==1)       and note for a fixed period like estepm months */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 else {       survival function given by stepm (the optimization length). Unfortunately it
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       means that if the survival funtion is printed only each two years of age and if
                 }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                       results. So we changed our mind and took the option of the best precision.
               }    */
               if (h==(int)(calagedate+12*cpt)){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 fprintf(ficresf," %.3f", kk1);  
                            agelim=AGESUP;
               }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             }      /* nhstepm age range expressed in number of stepm */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
              gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   fclose(ficresf);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 /************** Forecasting ******************/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /* Computing Variances of health expectancies */
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;       for(theta=1; theta <=npar; theta++){
   char filerespop[FILENAMELENGTH];        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   agelim=AGESUP;    
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        cptj=0;
          for(j=1; j<= nlstate; j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   strcpy(filerespop,"pop");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   strcat(filerespop,fileres);            }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", filerespop);        }
   }       
   printf("Computing forecasting: result on file '%s' \n", filerespop);       
         for(i=1; i<=npar; i++) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (mobilav==1) {        
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        cptj=0;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(j=1; j<= nlstate; j++){
   }          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   if (stepm<=12) stepsize=1;  
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   agelim=AGESUP;            }
            }
   hstepm=1;        }
   hstepm=hstepm/stepm;        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
   if (popforecast==1) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     if((ficpop=fopen(popfile,"r"))==NULL) {          }
       printf("Problem with population file : %s\n",popfile);exit(0);       } 
     }     
     popage=ivector(0,AGESUP);  /* End theta */
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
     i=1;         for(h=0; h<=nhstepm-1; h++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     imx=i;            trgradg[h][j][theta]=gradg[h][theta][j];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       
   }  
        for(i=1;i<=nlstate*nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1;j<=nlstate*nlstate;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          varhe[i][j][(int)age] =0.;
       k=k+1;  
       fprintf(ficrespop,"\n#******");       printf("%d|",(int)age);fflush(stdout);
       for(j=1;j<=cptcoveff;j++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(h=0;h<=nhstepm-1;h++){
       }        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficrespop,"******\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"# Age");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(i=1;i<=nlstate*nlstate;i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(j=1;j<=nlstate*nlstate;j++)
                    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (cpt=0; cpt<=0;cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
              /* Computing expectancies */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                      eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            
           oldm=oldms;savm=savms;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                  }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficreseij,"%3.0f",age );
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      cptj=0;
             }      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++){
               kk1=0.;kk2=0;          cptj++;
               for(i=1; i<=nlstate;i++) {                        fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficreseij,"\n");
                 else {     
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                 }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    printf("\n");
               }    fprintf(ficlog,"\n");
             }  
             for(i=1; i<=nlstate;i++){    free_vector(xp,1,npar);
               kk1=0.;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                 for(j=1; j<=nlstate;j++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                 }  }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* Variance of health expectancies */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* double **newm;*/
         }    double **dnewm,**doldm;
       }    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   /******/    int k, cptcode;
     double *xp;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double **gp, **gm;  /* for var eij */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double ***gradg, ***trgradg; /*for var eij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **gradgp, **trgradgp; /* for var p point j */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double *gpp, *gmp; /* for var p point j */
           nhstepm = nhstepm/hstepm;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
              double ***p3mat;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age,agelim, hf;
           oldm=oldms;savm=savms;    double ***mobaverage;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int theta;
           for (h=0; h<=nhstepm; h++){    char digit[4];
             if (h==(int) (calagedate+YEARM*cpt)) {    char digitp[25];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    char fileresprobmorprev[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if(popbased==1){
               for(i=1; i<=nlstate;i++) {                    if(mobilav!=0)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            strcpy(digitp,"-populbased-mobilav-");
               }      else strcpy(digitp,"-populbased-nomobil-");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    }
             }    else 
           }      strcpy(digitp,"-stablbased-");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     }
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    strcpy(fileresprobmorprev,"prmorprev"); 
     free_vector(popeffectif,0,AGESUP);    sprintf(digit,"%-d",ij);
     free_vector(popcount,0,AGESUP);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,fileres);
   fclose(ficrespop);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /***********************************************/    }
 /**************** Main Program *****************/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /***********************************************/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 int main(int argc, char *argv[])    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(i=1; i<=nlstate;i++)
   double agedeb, agefin,hf;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    }  
     fprintf(ficresprobmorprev,"\n");
   double fret;    fprintf(ficgp,"\n# Routine varevsij");
   double **xi,tmp,delta;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double dum; /* Dummy variable */  /*   } */
   double ***p3mat;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   char title[MAXLINE];    fprintf(ficresvij,"# Age");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for(i=1; i<=nlstate;i++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    fprintf(ficresvij,"\n");
   
   char filerest[FILENAMELENGTH];    xp=vector(1,npar);
   char fileregp[FILENAMELENGTH];    dnewm=matrix(1,nlstate,1,npar);
   char popfile[FILENAMELENGTH];    doldm=matrix(1,nlstate,1,nlstate);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   int firstobs=1, lastobs=10;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int ju,jl, mi;    gpp=vector(nlstate+1,nlstate+ndeath);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    gmp=vector(nlstate+1,nlstate+ndeath);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;    if(estepm < stepm){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   double bage, fage, age, agelim, agebase;    else  hstepm=estepm;   
   double ftolpl=FTOL;    /* For example we decided to compute the life expectancy with the smallest unit */
   double **prlim;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double *severity;       nhstepm is the number of hstepm from age to agelim 
   double ***param; /* Matrix of parameters */       nstepm is the number of stepm from age to agelin. 
   double  *p;       Look at hpijx to understand the reason of that which relies in memory size
   double **matcov; /* Matrix of covariance */       and note for a fixed period like k years */
   double ***delti3; /* Scale */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *delti; /* Scale */       survival function given by stepm (the optimization length). Unfortunately it
   double ***eij, ***vareij;       means that if the survival funtion is printed every two years of age and if
   double **varpl; /* Variances of prevalence limits by age */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double *epj, vepp;       results. So we changed our mind and took the option of the best precision.
   double kk1, kk2;    */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   char z[1]="c", occ;      gp=matrix(0,nhstepm,1,nlstate);
 #include <sys/time.h>      gm=matrix(0,nhstepm,1,nlstate);
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        for(theta=1; theta <=npar; theta++){
   /* long total_usecs;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   struct timeval start_time, end_time;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   getcwd(pathcd, size);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   printf("\n%s",version);        if (popbased==1) {
   if(argc <=1){          if(mobilav ==0){
     printf("\nEnter the parameter file name: ");            for(i=1; i<=nlstate;i++)
     scanf("%s",pathtot);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   else{            for(i=1; i<=nlstate;i++)
     strcpy(pathtot,argv[1]);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }
   /*cygwin_split_path(pathtot,path,optionfile);    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(j=1; j<= nlstate; j++){
   /* cutv(path,optionfile,pathtot,'\\');*/          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);        }
   replace(pathc,path);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
 /*-------- arguments in the command line --------*/           as a weighted average of prlim.
         */
   strcpy(fileres,"r");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcat(fileres, optionfilefiname);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   strcat(fileres,".txt");    /* Other files have txt extension */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /*---------arguments file --------*/        /* end probability of death */
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     printf("Problem with optionfile %s\n",optionfile);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   strcpy(filereso,"o");        if (popbased==1) {
   strcat(filereso,fileres);          if(mobilav ==0){
   if((ficparo=fopen(filereso,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */              prlim[i][i]=mobaverage[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);  
     puts(line);        for(j=1; j<= nlstate; j++){
     fputs(line,ficparo);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   ungetc(c,ficpar);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        /* This for computing probability of death (h=1 means
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);           computed over hstepm matrices product = hstepm*stepm months) 
 while((c=getc(ficpar))=='#' && c!= EOF){           as a weighted average of prlim.
     ungetc(c,ficpar);        */
     fgets(line, MAXLINE, ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     puts(line);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fputs(line,ficparo);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   ungetc(c,ficpar);        /* end probability of death */
    
            for(j=1; j<= nlstate; j++) /* vareij */
   covar=matrix(0,NCOVMAX,1,n);          for(h=0; h<=nhstepm; h++){
   cptcovn=0;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
   
   ncovmodel=2+cptcovn;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      } /* End theta */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(h=0; h<=nhstepm; h++) /* veij */
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for(i=1; i <=nlstate; i++)        for(theta=1; theta <=npar; theta++)
     for(j=1; j <=nlstate+ndeath-1; j++){          trgradgp[j][theta]=gradgp[theta][j];
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(k=1; k<=ncovmodel;k++){      for(i=1;i<=nlstate;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);        for(j=1;j<=nlstate;j++)
         printf(" %lf",param[i][j][k]);          vareij[i][j][(int)age] =0.;
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      for(h=0;h<=nhstepm;h++){
       fscanf(ficpar,"\n");        for(k=0;k<=nhstepm;k++){
       printf("\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficparo,"\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     }          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   p=param[1][1];      }
      
   /* Reads comments: lines beginning with '#' */      /* pptj */
   while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     puts(line);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fputs(line,ficparo);          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
   ungetc(c,ficpar);      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   
   for(i=1; i <=nlstate; i++){      if (popbased==1) {
     for(j=1; j <=nlstate+ndeath-1; j++){        if(mobilav ==0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficparo,"%1d%1d",i1,j1);        }else{ /* mobilav */ 
       for(k=1; k<=ncovmodel;k++){          for(i=1; i<=nlstate;i++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);            prlim[i][i]=mobaverage[(int)age][i][ij];
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);      }
       }               
       fscanf(ficpar,"\n");      /* This for computing probability of death (h=1 means
       printf("\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficparo,"\n");         as a weighted average of prlim.
     }      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   delti=delti3[1][1];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /* Reads comments: lines beginning with '#' */      }    
   while((c=getc(ficpar))=='#' && c!= EOF){      /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     puts(line);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   matcov=matrix(1,npar,1,npar);      } 
   for(i=1; i <=npar; i++){      fprintf(ficresprobmorprev,"\n");
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      fprintf(ficresvij,"%.0f ",age );
     fprintf(ficparo,"%s",str);      for(i=1; i<=nlstate;i++)
     for(j=1; j <=i; j++){        for(j=1; j<=nlstate;j++){
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       printf(" %.5le",matcov[i][j]);        }
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficresvij,"\n");
     }      free_matrix(gp,0,nhstepm,1,nlstate);
     fscanf(ficpar,"\n");      free_matrix(gm,0,nhstepm,1,nlstate);
     printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     fprintf(ficparo,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++)    } /* End age */
     for(j=i+1;j<=npar;j++)    free_vector(gpp,nlstate+1,nlstate+ndeath);
       matcov[i][j]=matcov[j][i];    free_vector(gmp,nlstate+1,nlstate+ndeath);
        free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   printf("\n");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     /*-------- Rewriting paramater file ----------*/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      strcpy(rfileres,"r");    /* "Rparameterfile */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      strcat(rfileres,".");    /* */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(ficres,"#%s\n",version);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     /*-------- data file ----------*/  */
     if((fic=fopen(datafile,"r"))==NULL)    {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }  
     free_vector(xp,1,npar);
     n= lastobs;    free_matrix(doldm,1,nlstate,1,nlstate);
     severity = vector(1,maxwav);    free_matrix(dnewm,1,nlstate,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     num=ivector(1,n);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     moisnais=vector(1,n);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     annais=vector(1,n);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     moisdc=vector(1,n);    fclose(ficresprobmorprev);
     andc=vector(1,n);    fflush(ficgp);
     agedc=vector(1,n);    fflush(fichtm); 
     cod=ivector(1,n);  }  /* end varevsij */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /************ Variance of prevlim ******************/
     mint=matrix(1,maxwav,1,n);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     anint=matrix(1,maxwav,1,n);  {
     s=imatrix(1,maxwav+1,1,n);    /* Variance of prevalence limit */
     adl=imatrix(1,maxwav+1,1,n);        /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     tab=ivector(1,NCOVMAX);    double **newm;
     ncodemax=ivector(1,8);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     i=1;    int k, cptcode;
     while (fgets(line, MAXLINE, fic) != NULL)    {    double *xp;
       if ((i >= firstobs) && (i <=lastobs)) {    double *gp, *gm;
            double **gradg, **trgradg;
         for (j=maxwav;j>=1;j--){    double age,agelim;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    int theta;
           strcpy(line,stra);     
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvpl,"# Age");
         }    for(i=1; i<=nlstate;i++)
                fprintf(ficresvpl," %1d-%1d",i,i);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvpl,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     xp=vector(1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,nlstate,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    doldm=matrix(1,nlstate,1,nlstate);
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=1*YEARM; /* Every year of age */
         for (j=ncovcol;j>=1;j--){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         num[i]=atol(stra);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              if (stepm >= YEARM) hstepm=1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
         i=i+1;      gm=vector(1,nlstate);
       }  
     }      for(theta=1; theta <=npar; theta++){
     /* printf("ii=%d", ij);        for(i=1; i<=npar; i++){ /* Computes gradient */
        scanf("%d",i);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   imx=i-1; /* Number of individuals */        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* for (i=1; i<=imx; i++){        for(i=1;i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          gp[i] = prlim[i][i];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(i=1; i<=npar; i++) /* Computes gradient */
     }*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* for (i=1; i<=imx; i++){        for(i=1;i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;          gm[i] = prlim[i][i];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}  
   */        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* Calculation of the number of parameter from char model*/      } /* End theta */
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);      trgradg =matrix(1,nlstate,1,npar);
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      for(j=1; j<=nlstate;j++)
   Tage=ivector(1,15);              for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      for(i=1;i<=nlstate;i++)
     j=nbocc(model,'+');        varpl[i][(int)age] =0.;
     j1=nbocc(model,'*');      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     cptcovn=j+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     cptcovprod=j1;      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fprintf(ficresvpl,"%.0f ",age );
       printf("Error. Non available option model=%s ",model);      for(i=1; i<=nlstate;i++)
       goto end;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     }      fprintf(ficresvpl,"\n");
          free_vector(gp,1,nlstate);
     for(i=(j+1); i>=1;i--){      free_vector(gm,1,nlstate);
       cutv(stra,strb,modelsav,'+');      free_matrix(gradg,1,npar,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      free_matrix(trgradg,1,nlstate,1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    } /* End age */
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {    free_vector(xp,1,npar);
         cutv(strd,strc,strb,'*');    free_matrix(doldm,1,nlstate,1,npar);
         if (strcmp(strc,"age")==0) {    free_matrix(dnewm,1,nlstate,1,nlstate);
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  }
           Tvar[i]=atoi(stre);  
           cptcovage++;  /************ Variance of one-step probabilities  ******************/
             Tage[cptcovage]=i;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
             /*printf("stre=%s ", stre);*/  {
         }    int i, j=0,  i1, k1, l1, t, tj;
         else if (strcmp(strd,"age")==0) {    int k2, l2, j1,  z1;
           cptcovprod--;    int k=0,l, cptcode;
           cutv(strb,stre,strc,'V');    int first=1, first1;
           Tvar[i]=atoi(stre);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           cptcovage++;    double **dnewm,**doldm;
           Tage[cptcovage]=i;    double *xp;
         }    double *gp, *gm;
         else {    double **gradg, **trgradg;
           cutv(strb,stre,strc,'V');    double **mu;
           Tvar[i]=ncovcol+k1;    double age,agelim, cov[NCOVMAX];
           cutv(strb,strc,strd,'V');    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           Tprod[k1]=i;    int theta;
           Tvard[k1][1]=atoi(strc);    char fileresprob[FILENAMELENGTH];
           Tvard[k1][2]=atoi(stre);    char fileresprobcov[FILENAMELENGTH];
           Tvar[cptcovn+k2]=Tvard[k1][1];    char fileresprobcor[FILENAMELENGTH];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    double ***varpij;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    strcpy(fileresprob,"prob"); 
           k2=k2+2;    strcat(fileresprob,fileres);
         }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprob);
       else {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    strcpy(fileresprobcov,"probcov"); 
       cutv(strd,strc,strb,'V');    strcat(fileresprobcov,fileres);
       Tvar[i]=atoi(strc);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
       strcpy(modelsav,stra);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    }
         scanf("%d",i);*/    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
 }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   printf("cptcovprod=%d ", cptcovprod);    }
   scanf("%d ",i);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fclose(fic);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     /*  if(mle==1){*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     if (weightopt != 1) { /* Maximisation without weights*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     agev=matrix(1,maxwav,1,imx);    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     for (i=1; i<=imx; i++) {    fprintf(ficresprobcov,"# Age");
       for(m=2; (m<= maxwav); m++) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficresprobcov,"# Age");
          anint[m][i]=9999;  
          s[m][i]=-1;  
        }    for(i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     for (i=1; i<=imx; i++)  {      }  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   /* fprintf(ficresprob,"\n");
       for(m=1; (m<= maxwav); m++){    fprintf(ficresprobcov,"\n");
         if(s[m][i] >0){    fprintf(ficresprobcor,"\n");
           if (s[m][i] >= nlstate+1) {   */
             if(agedc[i]>0)   xp=vector(1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                 agev[m][i]=agedc[i];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            else {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               if (andc[i]!=9999){    first=1;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficgp,"\n# Routine varprob");
               agev[m][i]=-1;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               }    fprintf(fichtm,"\n");
             }  
           }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    file %s<br>\n",optionfilehtmcov);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
               agev[m][i]=1;  and drawn. It helps understanding how is the covariance between two incidences.\
             else if(agev[m][i] <agemin){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               agemin=agev[m][i];    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             else if(agev[m][i] >agemax){  standard deviations wide on each axis. <br>\
               agemax=agev[m][i];   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    cov[1]=1;
           }    tj=cptcoveff;
           else { /* =9 */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
             agev[m][i]=1;    j1=0;
             s[m][i]=-1;    for(t=1; t<=tj;t++){
           }      for(i1=1; i1<=ncodemax[t];i1++){ 
         }        j1++;
         else /*= 0 Unknown */        if  (cptcovn>0) {
           agev[m][i]=1;          fprintf(ficresprob, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     for (i=1; i<=imx; i++)  {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(m=1; (m<= maxwav); m++){          fprintf(ficresprobcov, "**********\n#\n");
         if (s[m][i] > (nlstate+ndeath)) {          
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(ficgp, "\n#********** Variable "); 
           goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
       }          
     }          
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(severity,1,maxwav);          
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     free_vector(moisnais,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(annais,1,n);          fprintf(ficresprobcor, "**********\n#");    
     /* free_matrix(mint,1,maxwav,1,n);        }
        free_matrix(anint,1,maxwav,1,n);*/        
     free_vector(moisdc,1,n);        for (age=bage; age<=fage; age ++){ 
     free_vector(andc,1,n);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     wav=ivector(1,imx);          }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /* Concatenates waves */          
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
       Tcode=ivector(1,100);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      
       ncodemax[1]=1;          for(theta=1; theta <=npar; theta++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(i=1; i<=npar; i++)
                    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    codtab=imatrix(1,100,1,10);            
    h=0;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    m=pow(2,cptcoveff);            
              k=0;
    for(k=1;k<=cptcoveff; k++){            for(i=1; i<= (nlstate); i++){
      for(i=1; i <=(m/pow(2,k));i++){              for(j=1; j<=(nlstate+ndeath);j++){
        for(j=1; j <= ncodemax[k]; j++){                k=k+1;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                gp[k]=pmmij[i][j];
            h++;              }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            
          }            for(i=1; i<=npar; i++)
        }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      }      
    }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            k=0;
       codtab[1][2]=1;codtab[2][2]=2; */            for(i=1; i<=(nlstate); i++){
    /* for(i=1; i <=m ;i++){              for(j=1; j<=(nlstate+ndeath);j++){
       for(k=1; k <=cptcovn; k++){                k=k+1;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                gm[k]=pmmij[i][j];
       }              }
       printf("\n");            }
       }       
       scanf("%d",i);*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                  gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
     if(mle==1){          k=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
     /*--------- results files --------------*/              mu[k][(int) age]=pmmij[i][j];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            }
            }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    jk=1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              varpij[i][j][(int)age] = doldm[i][j];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){          /*printf("\n%d ",(int)age);
      for(k=1; k <=(nlstate+ndeath); k++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if (k != i)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          {            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            printf("%d%d ",i,k);            }*/
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){          fprintf(ficresprob,"\n%d ",(int)age);
              printf("%f ",p[jk]);          fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficresprobcor,"\n%d ",(int)age);
              jk++;  
            }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            printf("\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            fprintf(ficres,"\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
      }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    }          }
  if(mle==1){          i=0;
     /* Computing hessian and covariance matrix */          for (k=1; k<=(nlstate);k++){
     ftolhess=ftol; /* Usually correct */            for (l=1; l<=(nlstate+ndeath);l++){ 
     hesscov(matcov, p, npar, delti, ftolhess, func);              i=i++;
  }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("# Scales (for hessian or gradient estimation)\n");              for (j=1; j<=i;j++){
      for(i=1,jk=1; i <=nlstate; i++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       for(j=1; j <=nlstate+ndeath; j++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         if (j!=i) {              }
           fprintf(ficres,"%1d%1d",i,j);            }
           printf("%1d%1d",i,j);          }/* end of loop for state */
           for(k=1; k<=ncovmodel;k++){        } /* end of loop for age */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);        /* Confidence intervalle of pij  */
             jk++;        /*
           }          fprintf(ficgp,"\nset noparametric;unset label");
           printf("\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficres,"\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     k=1;        */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     for(i=1;i<=npar;i++){        first1=1;
       /*  if (k>nlstate) k=1;        for (k2=1; k2<=(nlstate);k2++){
       i1=(i-1)/(ncovmodel*nlstate)+1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            if(l2==k2) continue;
       printf("%s%d%d",alph[k],i1,tab[i]);*/            j=(k2-1)*(nlstate+ndeath)+l2;
       fprintf(ficres,"%3d",i);            for (k1=1; k1<=(nlstate);k1++){
       printf("%3d",i);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       for(j=1; j<=i;j++){                if(l1==k1) continue;
         fprintf(ficres," %.5e",matcov[i][j]);                i=(k1-1)*(nlstate+ndeath)+l1;
         printf(" %.5e",matcov[i][j]);                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
       fprintf(ficres,"\n");                  if ((int)age %5==0){
       printf("\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       k++;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        mu1=mu[i][(int) age]/stepm*YEARM ;
     while((c=getc(ficpar))=='#' && c!= EOF){                    mu2=mu[j][(int) age]/stepm*YEARM;
       ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
       fgets(line, MAXLINE, ficpar);                    /* Computing eigen value of matrix of covariance */
       puts(line);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fputs(line,ficparo);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);                    v21=(lc1-v1)/cv12*v11;
                        v12=-v21;
     if (fage <= 2) {                    v22=v11;
       bage = ageminpar;                    tnalp=v21/v11;
       fage = agemaxpar;                    if(first1==1){
     }                      first1=0;
                          printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                    }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     ungetc(c,ficpar);                    if(first==1){
     fgets(line, MAXLINE, ficpar);                      first=0;
     puts(line);                      fprintf(ficgp,"\nset parametric;unset label");
     fputs(line,ficparo);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                            fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     puts(line);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fputs(line,ficparo);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   ungetc(c,ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
                       first=0;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficparo,"pop_based=%d\n",popbased);                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficres,"pop_based=%d\n",popbased);                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   while((c=getc(ficpar))=='#' && c!= EOF){                  } /* age mod 5 */
     ungetc(c,ficpar);                } /* end loop age */
     fgets(line, MAXLINE, ficpar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                first=1;
     fputs(line,ficparo);              } /*l12 */
   }            } /* k12 */
   ungetc(c,ficpar);          } /*l1 */
         }/* k1 */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      } /* loop covariates */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresprob);
     ungetc(c,ficpar);    fclose(ficresprobcov);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprobcor);
     puts(line);    fflush(ficgp);
     fputs(line,ficparo);    fflush(fichtmcov);
   }  }
   ungetc(c,ficpar);  
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /******************* Printing html file ***********/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
 /*------------ gnuplot -------------*/                    double jprev2, double mprev2,double anprev2){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    int jj1, k1, i1, cpt;
      /*char optionfilehtm[FILENAMELENGTH];*/
 /*------------ free_vector  -------------*/  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
  chdir(path);  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
    /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
  free_ivector(wav,1,imx);  /*   } */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
  free_ivector(num,1,n);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
  free_vector(agedc,1,n);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
  fclose(ficparo);   - Life expectancies by age and initial health status (estepm=%2d months): \
  fclose(ficres);     <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
 /*--------- index.htm --------*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /*--------------- Prevalence limit --------------*/  
     m=cptcoveff;
   strcpy(filerespl,"pl");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   jj1=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       jj1++;
   fprintf(ficrespl,"#Prevalence limit\n");       if (cptcovn > 0) {
   fprintf(ficrespl,"#Age ");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   fprintf(ficrespl,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   prlim=matrix(1,nlstate,1,nlstate);       }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       /* Pij */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       /* Quasi-incidences */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   k=0;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   agebase=ageminpar;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   agelim=agemaxpar;         /* Stable prevalence in each health state */
   ftolpl=1.e-10;         for(cpt=1; cpt<nlstate;cpt++){
   i1=cptcoveff;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   if (cptcovn < 1){i1=1;}  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   for(cptcov=1;cptcov<=i1;cptcov++){       for(cpt=1; cpt<=nlstate;cpt++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
         k=k+1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       }
         fprintf(ficrespl,"\n#******");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         for(j=1;j<=cptcoveff;j++)  health expectancies in states (1) and (2): %s%d.png<br>\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         fprintf(ficrespl,"******\n");     } /* end i1 */
           }/* End k1 */
         for (age=agebase; age<=agelim; age++){   fprintf(fichtm,"</ul>");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
           fprintf(ficrespl,"\n");   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
         }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
   fclose(ficrespl);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /*------------- h Pij x at various ages ------------*/           rfileres,rfileres,\
             subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   }           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   printf("Computing pij: result on file '%s' \n", filerespij);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*if (stepm<=24) stepsize=2;*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   agelim=AGESUP;  /*      <br>",fileres,fileres,fileres,fileres); */
   hstepm=stepsize*YEARM; /* Every year of age */  /*  else  */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");   jj1=0;
         for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrespij,"******\n");       jj1++;
               if (cptcovn > 0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           oldm=oldms;savm=savms;       }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficrespij,"# Age");         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
           for(i=1; i<=nlstate;i++)  interval) in state (%d): %s%d%d.png <br>\
             for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
               fprintf(ficrespij," %1d-%1d",i,j);       }
           fprintf(ficrespij,"\n");     } /* end i1 */
           for (h=0; h<=nhstepm; h++){   }/* End k1 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   fprintf(fichtm,"</ul>");
             for(i=1; i<=nlstate;i++)   fflush(fichtm);
               for(j=1; j<=nlstate+ndeath;j++)  }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /******************* Gnuplot file **************/
           }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    char dirfileres[132],optfileres[132];
         }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     }    int ng;
   }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   fclose(ficrespij);  
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*---------- Forecasting ------------------*/      /*#endif */
   if((stepm == 1) && (strcmp(model,".")==0)){    m=pow(2,cptcoveff);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    strcpy(dirfileres,optionfilefiname);
     free_matrix(mint,1,maxwav,1,n);    strcpy(optfileres,"vpl");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   /* 1eme*/
     free_vector(weight,1,n);}    for (cpt=1; cpt<= nlstate ; cpt ++) {
   else{     for (k1=1; k1<= m ; k1 ++) {
     erreur=108;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   set ter png small\n\
   /*---------- Health expectancies and variances ------------*/  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerese,"e");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filerese,fileres);       } 
   if((ficreseij=fopen(filerese,"w"))==NULL) {       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
  strcpy(fileresv,"v");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   strcat(fileresv,fileres);     }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /*2 eme*/
   }    
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   k=0;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   for(cptcov=1;cptcov<=i1;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (i=1; i<= nlstate+1 ; i ++) {
       k=k+1;        k=2*i;
       fprintf(ficrest,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
       fprintf(ficreseij,"\n#****** ");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1;j<=cptcoveff;j++)        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficreseij,"******\n");        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvij,"\n#****** ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)        }   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficresvij,"******\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       oldm=oldms;savm=savms;          else fprintf(ficgp," \%%*lf (\%%*lf)");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }   
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"\" w l 0,");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
        }
     
      /*3eme*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficrest,"\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
       epj=vector(1,nlstate+1);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for(age=bage; age <=fage ;age++){        fprintf(ficgp,"set ter png small\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  set size 0.65,0.65\n\
         if (popbased==1) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           for(i=1; i<=nlstate;i++)        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             prlim[i][i]=probs[(int)age][i][k];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                  fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficrest," %4.0f",age);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        */
           }        for (i=1; i< nlstate ; i ++) {
           epj[nlstate+1] +=epj[j];          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         }          
         for(i=1, vepp=0.;i <=nlstate;i++)        } 
           for(j=1;j <=nlstate;j++)      }
             vepp += vareij[i][j][(int)age];    }
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));    
         for(j=1;j <=nlstate;j++){    /* CV preval stable (period) */
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));    for (k1=1; k1<= m ; k1 ++) { 
         }      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficrest,"\n");        k=3;
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   }  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   fclose(ficreseij);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fclose(ficresvij);        
   fclose(ficrest);        for (i=1; i< nlstate ; i ++)
   fclose(ficpar);          fprintf(ficgp,"+$%d",k+i+1);
   free_vector(epj,1,nlstate+1);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
   /*------- Variance limit prevalence------*/          l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   strcpy(fileresvpl,"vpl");        for (i=1; i< nlstate ; i ++) {
   strcat(fileresvpl,fileres);          l=3+(nlstate+ndeath)*cpt;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficgp,"+$%d",l+i+1);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   }      } 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }  
     
   k=0;    /* proba elementaires */
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1,jk=1; i <=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(k=1; k <=(nlstate+ndeath); k++){
       k=k+1;        if (k != i) {
       fprintf(ficresvpl,"\n#****** ");          for(j=1; j <=ncovmodel; j++){
       for(j=1;j<=cptcoveff;j++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            jk++; 
       fprintf(ficresvpl,"******\n");            fprintf(ficgp,"\n");
                }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;      }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     }
     }  
  }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   fclose(ficresvpl);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
   /*---------- End : free ----------------*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         else
             fprintf(ficgp,"\nset title \"Probability\"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         i=1;
           for(k2=1; k2<=nlstate; k2++) {
             k3=i;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           for(k=1; k<=(nlstate+ndeath); k++) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);             if (k != k2){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);               if(ng==2)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   free_matrix(matcov,1,npar,1,npar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   free_vector(delti,1,npar);               ij=1;
   free_matrix(agev,1,maxwav,1,imx);               for(j=3; j <=ncovmodel; j++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if(erreur >0)                   ij++;
     printf("End of Imach with error or warning %d\n",erreur);                 }
   else   printf("End of Imach\n");                 else
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/               fprintf(ficgp,")/(1");
   /*printf("Total time was %d uSec.\n", total_usecs);*/               
   /*------ End -----------*/               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
  end:                 for(j=3; j <=ncovmodel; j++){
 #ifdef windows                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   /* chdir(pathcd);*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 #endif                     ij++;
  /*system("wgnuplot graph.plt");*/                   }
  /*system("../gp37mgw/wgnuplot graph.plt");*/                   else
  /*system("cd ../gp37mgw");*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                 }
  strcpy(plotcmd,GNUPLOTPROGRAM);                 fprintf(ficgp,")");
  strcat(plotcmd," ");               }
  strcat(plotcmd,optionfilegnuplot);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  system(plotcmd);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
 #ifdef windows             }
   while (z[0] != 'q') {           } /* end k */
     /* chdir(path); */         } /* end k2 */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       } /* end jk */
     scanf("%s",z);     } /* end ng */
     if (z[0] == 'c') system("./imach");     fflush(ficgp); 
     else if (z[0] == 'e') system(optionfilehtm);  }  /* end gnuplot */
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);  
   }  /*************** Moving average **************/
 #endif  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 }  
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.94


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>