Diff for /imach/src/imach.c between versions 1.45 and 1.94

version 1.45, 2002/05/24 16:34:18 version 1.94, 2003/06/27 13:00:02
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.93  2003/06/25 16:33:55  brouard
   first survey ("cross") where individuals from different ages are    (Module): On windows (cygwin) function asctime_r doesn't
   interviewed on their health status or degree of disability (in the    exist so I changed back to asctime which exists.
   case of a health survey which is our main interest) -2- at least a    (Module): Version 0.96b
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.92  2003/06/25 16:30:45  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.91  2003/06/25 15:30:29  brouard
   probability to be observed in state j at the second wave    * imach.c (Repository): Duplicated warning errors corrected.
   conditional to be observed in state i at the first wave. Therefore    (Repository): Elapsed time after each iteration is now output. It
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    helps to forecast when convergence will be reached. Elapsed time
   'age' is age and 'sex' is a covariate. If you want to have a more    is stamped in powell.  We created a new html file for the graphs
   complex model than "constant and age", you should modify the program    concerning matrix of covariance. It has extension -cov.htm.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.90  2003/06/24 12:34:15  brouard
   convergence.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   The advantage of this computer programme, compared to a simple    of the covariance matrix to be input.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.89  2003/06/24 12:30:52  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.88  2003/06/23 17:54:56  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.87  2003/06/18 12:26:01  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.96
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   Also this programme outputs the covariance matrix of the parameters but also    routine fileappend.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.85  2003/06/17 13:12:43  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Repository): Check when date of death was earlier that
            Institut national d'études démographiques, Paris.    current date of interview. It may happen when the death was just
   This software have been partly granted by Euro-REVES, a concerted action    prior to the death. In this case, dh was negative and likelihood
   from the European Union.    was wrong (infinity). We still send an "Error" but patch by
   It is copyrighted identically to a GNU software product, ie programme and    assuming that the date of death was just one stepm after the
   software can be distributed freely for non commercial use. Latest version    interview.
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Because some people have very long ID (first column)
   **********************************************************************/    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
 #include <math.h>    truncation)
 #include <stdio.h>    (Repository): No more line truncation errors.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXLINE 256    place. It differs from routine "prevalence" which may be called
 #define GNUPLOTPROGRAM "gnuplot"    many times. Probs is memory consuming and must be used with
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    parcimony.
 #define FILENAMELENGTH 80    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*#define DEBUG*/  
 #define windows    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add log in  imach.c and  fullversion number is now printed.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
   */
 #define NINTERVMAX 8  /*
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     Interpolated Markov Chain
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Short summary of the programme:
 #define MAXN 20000    
 #define YEARM 12. /* Number of months per year */    This program computes Healthy Life Expectancies from
 #define AGESUP 130    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define AGEBASE 40    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int erreur; /* Error number */    second wave of interviews ("longitudinal") which measure each change
 int nvar;    (if any) in individual health status.  Health expectancies are
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    computed from the time spent in each health state according to a
 int npar=NPARMAX;    model. More health states you consider, more time is necessary to reach the
 int nlstate=2; /* Number of live states */    Maximum Likelihood of the parameters involved in the model.  The
 int ndeath=1; /* Number of dead states */    simplest model is the multinomial logistic model where pij is the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    probability to be observed in state j at the second wave
 int popbased=0;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *wav; /* Number of waves for this individuual 0 is possible */    'age' is age and 'sex' is a covariate. If you want to have a more
 int maxwav; /* Maxim number of waves */    complex model than "constant and age", you should modify the program
 int jmin, jmax; /* min, max spacing between 2 waves */    where the markup *Covariates have to be included here again* invites
 int mle, weightopt;    you to do it.  More covariates you add, slower the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    convergence.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    The advantage of this computer programme, compared to a simple
 double **oldm, **newm, **savm; /* Working pointers to matrices */    multinomial logistic model, is clear when the delay between waves is not
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    identical for each individual. Also, if a individual missed an
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    intermediate interview, the information is lost, but taken into
 FILE *ficgp,*ficresprob,*ficpop;    account using an interpolation or extrapolation.  
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    hPijx is the probability to be observed in state i at age x+h
  FILE  *ficresvij;    conditional to the observed state i at age x. The delay 'h' can be
   char fileresv[FILENAMELENGTH];    split into an exact number (nh*stepm) of unobserved intermediate
  FILE  *ficresvpl;    states. This elementary transition (by month, quarter,
   char fileresvpl[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define NR_END 1    and the contribution of each individual to the likelihood is simply
 #define FREE_ARG char*    hPijx.
 #define FTOL 1.0e-10  
     Also this programme outputs the covariance matrix of the parameters but also
 #define NRANSI    of the life expectancies. It also computes the stable prevalence. 
 #define ITMAX 200    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define TOL 2.0e-4             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define CGOLD 0.3819660    from the European Union.
 #define ZEPS 1.0e-10    It is copyrighted identically to a GNU software product, ie programme and
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define TINY 1.0e-20    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 static double maxarg1,maxarg2;    **********************************************************************/
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  /*
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    main
      read parameterfile
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    read datafile
 #define rint(a) floor(a+0.5)    concatwav
     freqsummary
 static double sqrarg;    if (mle >= 1)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)      mlikeli
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    print results files
     if mle==1 
 int imx;       computes hessian
 int stepm;    read end of parameter file: agemin, agemax, bage, fage, estepm
 /* Stepm, step in month: minimum step interpolation*/        begin-prev-date,...
     open gnuplot file
 int estepm;    open html file
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    stable prevalence
      for age prevalim()
 int m,nb;    h Pij x
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    variance of p varprob
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    forecasting if prevfcast==1 prevforecast call prevalence()
 double **pmmij, ***probs, ***mobaverage;    health expectancies
 double dateintmean=0;    Variance-covariance of DFLE
     prevalence()
 double *weight;     movingaverage()
 int **s; /* Status */    varevsij() 
 double *agedc, **covar, idx;    if popbased==1 varevsij(,popbased)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    total life expectancies
     Variance of stable prevalence
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */   end
 double ftolhess; /* Tolerance for computing hessian */  */
   
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {   
    char *s;                             /* pointer */  #include <math.h>
    int  l1, l2;                         /* length counters */  #include <stdio.h>
   #include <stdlib.h>
    l1 = strlen( path );                 /* length of path */  #include <unistd.h>
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  #include <sys/time.h>
    s = strrchr( path, '\\' );           /* find last / */  #include <time.h>
 #else  #include "timeval.h"
    s = strrchr( path, '/' );            /* find last / */  
 #endif  #define MAXLINE 256
    if ( s == NULL ) {                   /* no directory, so use current */  #define GNUPLOTPROGRAM "gnuplot"
 #if     defined(__bsd__)                /* get current working directory */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       extern char       *getwd( );  #define FILENAMELENGTH 132
   /*#define DEBUG*/
       if ( getwd( dirc ) == NULL ) {  /*#define windows*/
 #else  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       extern char       *getcwd( );  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #endif  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
          return( GLOCK_ERROR_GETCWD );  
       }  #define NINTERVMAX 8
       strcpy( name, path );             /* we've got it */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    } else {                             /* strip direcotry from path */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       s++;                              /* after this, the filename */  #define NCOVMAX 8 /* Maximum number of covariates */
       l2 = strlen( s );                 /* length of filename */  #define MAXN 20000
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define YEARM 12. /* Number of months per year */
       strcpy( name, s );                /* save file name */  #define AGESUP 130
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define AGEBASE 40
       dirc[l1-l2] = 0;                  /* add zero */  #ifdef unix
    }  #define DIRSEPARATOR '/'
    l1 = strlen( dirc );                 /* length of directory */  #define ODIRSEPARATOR '\\'
 #ifdef windows  #else
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define DIRSEPARATOR '\\'
 #else  #define ODIRSEPARATOR '/'
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #endif
 #endif  
    s = strrchr( name, '.' );            /* find last / */  /* $Id$ */
    s++;  /* $State$ */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
    l2= strlen( s)+1;  char fullversion[]="$Revision$ $Date$"; 
    strncpy( finame, name, l1-l2);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    finame[l1-l2]= 0;  int nvar;
    return( 0 );                         /* we're done */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 void replace(char *s, char*t)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int i;  int maxwav; /* Maxim number of waves */
   int lg=20;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions 
   lg=strlen(t);                     to the likelihood and the sum of weights (done by funcone)*/
   for(i=0; i<= lg; i++) {  int mle, weightopt;
     (s[i] = t[i]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (t[i]== '\\') s[i]='/';  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 int nbocc(char *s, char occ)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int i,j=0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int lg=20;  FILE *ficlog, *ficrespow;
   i=0;  int globpr; /* Global variable for printing or not */
   lg=strlen(s);  double fretone; /* Only one call to likelihood */
   for(i=0; i<= lg; i++) {  long ipmx; /* Number of contributions */
   if  (s[i] == occ ) j++;  double sw; /* Sum of weights */
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return j;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void cutv(char *u,char *v, char*t, char occ)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   int i,lg,j,p=0;  char filerese[FILENAMELENGTH];
   i=0;  FILE  *ficresvij;
   for(j=0; j<=strlen(t)-1; j++) {  char fileresv[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   lg=strlen(t);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(j=0; j<p; j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
     (u[j] = t[j]);  char tmpout[FILENAMELENGTH]; 
   }  char command[FILENAMELENGTH];
      u[p]='\0';  int  outcmd=0;
   
    for(j=0; j<= lg; j++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /********************** nrerror ********************/  char popfile[FILENAMELENGTH];
   
 void nrerror(char error_text[])  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   fprintf(stderr,"ERREUR ...\n");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   fprintf(stderr,"%s\n",error_text);  struct timezone tzp;
   exit(1);  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /*********************** vector *******************/  long time_value;
 double *vector(int nl, int nh)  extern long time();
 {  char strcurr[80], strfor[80];
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NR_END 1
   if (!v) nrerror("allocation failure in vector");  #define FREE_ARG char*
   return v-nl+NR_END;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /************************ free vector ******************/  #define ITMAX 200 
 void free_vector(double*v, int nl, int nh)  
 {  #define TOL 2.0e-4 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /************************ivector *******************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 int *ivector(long nl,long nh)  
 {  #define GOLD 1.618034 
   int *v;  #define GLIMIT 100.0 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define TINY 1.0e-20 
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************free ivector **************************/    
 void free_ivector(int *v, long nl, long nh)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   free((FREE_ARG)(v+nl-NR_END));  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /******************* imatrix *******************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int imx; 
 {  int stepm;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* Stepm, step in month: minimum step interpolation*/
   int **m;  
    int estepm;
   /* allocate pointers to rows */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int m,nb;
   m += NR_END;  long *num;
   m -= nrl;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   /* allocate rows and set pointers to them */  double dateintmean=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *weight;
   m[nrl] += NR_END;  int **s; /* Status */
   m[nrl] -= ncl;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   /* return pointer to array of pointers to rows */  double ftolhess; /* Tolerance for computing hessian */
   return m;  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /****************** free_imatrix *************************/  {
 void free_imatrix(m,nrl,nrh,ncl,nch)    char  *ss;                            /* pointer */
       int **m;    int   l1, l2;                         /* length counters */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   free((FREE_ARG) (m+nrl-NR_END));    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /******************* matrix *******************************/      /* get current working directory */
 double **matrix(long nrl, long nrh, long ncl, long nch)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;        return( GLOCK_ERROR_GETCWD );
   double **m;      }
       strcpy( name, path );               /* we've got it */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    } else {                              /* strip direcotry from path */
   if (!m) nrerror("allocation failure 1 in matrix()");      ss++;                               /* after this, the filename */
   m += NR_END;      l2 = strlen( ss );                  /* length of filename */
   m -= nrl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return m;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /*************************free matrix ************************/    */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(m+nrl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /******************* ma3x *******************************/    finame[l1-l2]= 0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    return( 0 );                          /* we're done */
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  
   /******************************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  void replace_back_to_slash(char *s, char*t)
   m += NR_END;  {
   m -= nrl;    int i;
     int lg=0;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(t);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int nbocc(char *s, char occ)
   m[nrl][ncl] += NR_END;  {
   m[nrl][ncl] -= nll;    int i,j=0;
   for (j=ncl+1; j<=nch; j++)    int lg=20;
     m[nrl][j]=m[nrl][j-1]+nlay;    i=0;
      lg=strlen(s);
   for (i=nrl+1; i<=nrh; i++) {    for(i=0; i<= lg; i++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if  (s[i] == occ ) j++;
     for (j=ncl+1; j<=nch; j++)    }
       m[i][j]=m[i][j-1]+nlay;    return j;
   }  }
   return m;  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /*************************free ma3x ************************/    /* cuts string t into u and v where u is ended by char occ excluding it
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 {       gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    int i,lg,j,p=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    i=0;
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /***************** f1dim *************************/  
 extern int ncom;    lg=strlen(t);
 extern double *pcom,*xicom;    for(j=0; j<p; j++) {
 extern double (*nrfunc)(double []);      (u[j] = t[j]);
      }
 double f1dim(double x)       u[p]='\0';
 {  
   int j;     for(j=0; j<= lg; j++) {
   double f;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double *xt;    }
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /********************** nrerror ********************/
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  void nrerror(char error_text[])
   return f;  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /*****************brent *************************/    exit(EXIT_FAILURE);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  /*********************** vector *******************/
   int iter;  double *vector(int nl, int nh)
   double a,b,d,etemp;  {
   double fu,fv,fw,fx;    double *v;
   double ftemp;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!v) nrerror("allocation failure in vector");
   double e=0.0;    return v-nl+NR_END;
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /************************ free vector ******************/
   x=w=v=bx;  void free_vector(double*v, int nl, int nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    free((FREE_ARG)(v+nl-NR_END));
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /************************ivector *******************************/
     printf(".");fflush(stdout);  int *ivector(long nl,long nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int *v;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #endif    if (!v) nrerror("allocation failure in ivector");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    return v-nl+NR_END;
       *xmin=x;  }
       return fx;  
     }  /******************free ivector **************************/
     ftemp=fu;  void free_ivector(int *v, long nl, long nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    free((FREE_ARG)(v+nl-NR_END));
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /************************lvector *******************************/
       if (q > 0.0) p = -p;  long *lvector(long nl,long nh)
       q=fabs(q);  {
       etemp=e;    long *v;
       e=d;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!v) nrerror("allocation failure in ivector");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
       else {  }
         d=p/q;  
         u=x+d;  /******************free lvector **************************/
         if (u-a < tol2 || b-u < tol2)  void free_lvector(long *v, long nl, long nh)
           d=SIGN(tol1,xm-x);  {
       }    free((FREE_ARG)(v+nl-NR_END));
     } else {  }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /******************* imatrix *******************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     fu=(*f)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (fu <= fx) {  { 
       if (u >= x) a=x; else b=x;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       SHFT(v,w,x,u)    int **m; 
         SHFT(fv,fw,fx,fu)    
         } else {    /* allocate pointers to rows */ 
           if (u < x) a=u; else b=u;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           if (fu <= fw || w == x) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
             v=w;    m += NR_END; 
             w=u;    m -= nrl; 
             fv=fw;    
             fw=fu;    
           } else if (fu <= fv || v == x || v == w) {    /* allocate rows and set pointers to them */ 
             v=u;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             fv=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           }    m[nrl] += NR_END; 
         }    m[nrl] -= ncl; 
   }    
   nrerror("Too many iterations in brent");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *xmin=x;    
   return fx;    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /****************** mnbrak ***********************/  
   /****************** free_imatrix *************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void free_imatrix(m,nrl,nrh,ncl,nch)
             double (*func)(double))        int **m;
 {        long nch,ncl,nrh,nrl; 
   double ulim,u,r,q, dum;       /* free an int matrix allocated by imatrix() */ 
   double fu;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fa=(*func)(*ax);    free((FREE_ARG) (m+nrl-NR_END)); 
   *fb=(*func)(*bx);  } 
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************* matrix *******************************/
       SHFT(dum,*fb,*fa,dum)  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   *fc=(*func)(*cx);    double **m;
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     q=(*bx-*cx)*(*fb-*fa);    if (!m) nrerror("allocation failure 1 in matrix()");
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m += NR_END;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m -= nrl;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m[nrl] += NR_END;
       fu=(*func)(u);    m[nrl] -= ncl;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           SHFT(*fb,*fc,fu,(*func)(u))    return m;
           }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     */
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /*************************free matrix ************************/
       u=(*cx)+GOLD*(*cx-*bx);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(m+nrl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** linmin ************************/  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 int ncom;    double ***m;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END;
               double *fc, double (*func)(double));    m[nrl] -= ncl;
   int j;  
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx,fb,fa;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   ncom=n;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   pcom=vector(1,n);    m[nrl][ncl] += NR_END;
   xicom=vector(1,n);    m[nrl][ncl] -= nll;
   nrfunc=func;    for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
     pcom[j]=p[j];    
     xicom[j]=xi[j];    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   ax=0.0;      for (j=ncl+1; j<=nch; j++) 
   xx=1.0;        m[i][j]=m[i][j-1]+nlay;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return m; 
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /*************** function subdirf ***********/
 {  char *subdirf(char fileres[])
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    /* Caution optionfilefiname is hidden */
   int i,ibig,j;    strcpy(tmpout,optionfilefiname);
   double del,t,*pt,*ptt,*xit;    strcat(tmpout,"/"); /* Add to the right */
   double fp,fptt;    strcat(tmpout,fileres);
   double *xits;    return tmpout;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /*************** function subdirf2 ***********/
   xits=vector(1,n);  char *subdirf2(char fileres[], char *preop)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    /* Caution optionfilefiname is hidden */
     fp=(*fret);    strcpy(tmpout,optionfilefiname);
     ibig=0;    strcat(tmpout,"/");
     del=0.0;    strcat(tmpout,preop);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    strcat(tmpout,fileres);
     for (i=1;i<=n;i++)    return tmpout;
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  
     for (i=1;i<=n;i++) {  /*************** function subdirf3 ***********/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char *subdirf3(char fileres[], char *preop, char *preop2)
       fptt=(*fret);  {
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
       printf("%d",i);fflush(stdout);    strcat(tmpout,"/");
       linmin(p,xit,n,fret,func);    strcat(tmpout,preop);
       if (fabs(fptt-(*fret)) > del) {    strcat(tmpout,preop2);
         del=fabs(fptt-(*fret));    strcat(tmpout,fileres);
         ibig=i;    return tmpout;
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /***************** f1dim *************************/
       for (j=1;j<=n;j++) {  extern int ncom; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  extern double *pcom,*xicom;
         printf(" x(%d)=%.12e",j,xit[j]);  extern double (*nrfunc)(double []); 
       }   
       for(j=1;j<=n;j++)  double f1dim(double x) 
         printf(" p=%.12e",p[j]);  { 
       printf("\n");    int j; 
 #endif    double f;
     }    double *xt; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {   
 #ifdef DEBUG    xt=vector(1,ncom); 
       int k[2],l;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       k[0]=1;    f=(*nrfunc)(xt); 
       k[1]=-1;    free_vector(xt,1,ncom); 
       printf("Max: %.12e",(*func)(p));    return f; 
       for (j=1;j<=n;j++)  } 
         printf(" %.12e",p[j]);  
       printf("\n");  /*****************brent *************************/
       for(l=0;l<=1;l++) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         for (j=1;j<=n;j++) {  { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int iter; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double a,b,d,etemp;
         }    double fu,fv,fw,fx;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
    
     a=(ax < cx ? ax : cx); 
       free_vector(xit,1,n);    b=(ax > cx ? ax : cx); 
       free_vector(xits,1,n);    x=w=v=bx; 
       free_vector(ptt,1,n);    fw=fv=fx=(*f)(x); 
       free_vector(pt,1,n);    for (iter=1;iter<=ITMAX;iter++) { 
       return;      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (j=1;j<=n;j++) {      printf(".");fflush(stdout);
       ptt[j]=2.0*p[j]-pt[j];      fprintf(ficlog,".");fflush(ficlog);
       xit[j]=p[j]-pt[j];  #ifdef DEBUG
       pt[j]=p[j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fptt=(*func)(ptt);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     if (fptt < fp) {  #endif
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       if (t < 0.0) {        *xmin=x; 
         linmin(p,xit,n,fret,func);        return fx; 
         for (j=1;j<=n;j++) {      } 
           xi[j][ibig]=xi[j][n];      ftemp=fu;
           xi[j][n]=xit[j];      if (fabs(e) > tol1) { 
         }        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        p=(x-v)*q-(x-w)*r; 
         for(j=1;j<=n;j++)        q=2.0*(q-r); 
           printf(" %.12e",xit[j]);        if (q > 0.0) p = -p; 
         printf("\n");        q=fabs(q); 
 #endif        etemp=e; 
       }        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
 /**** Prevalence limit ****************/          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)            d=SIGN(tol1,xm-x); 
 {        } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else { 
      matrix by transitions matrix until convergence is reached */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   int i, ii,j,k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double min, max, maxmin, maxmax,sumnew=0.;      fu=(*f)(u); 
   double **matprod2();      if (fu <= fx) { 
   double **out, cov[NCOVMAX], **pmij();        if (u >= x) a=x; else b=x; 
   double **newm;        SHFT(v,w,x,u) 
   double agefin, delaymax=50 ; /* Max number of years to converge */          SHFT(fv,fw,fx,fu) 
           } else { 
   for (ii=1;ii<=nlstate+ndeath;ii++)            if (u < x) a=u; else b=u; 
     for (j=1;j<=nlstate+ndeath;j++){            if (fu <= fw || w == x) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);              v=w; 
     }              w=u; 
               fv=fw; 
    cov[1]=1.;              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */              v=u; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              fv=fu; 
     newm=savm;            } 
     /* Covariates have to be included here again */          } 
      cov[2]=agefin;    } 
      nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovn;k++) {    *xmin=x; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return fx; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  } 
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /****************** mnbrak ***********************/
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double ulim,u,r,q, dum;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double fu; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);   
     *fa=(*func)(*ax); 
     savm=oldm;    *fb=(*func)(*bx); 
     oldm=newm;    if (*fb > *fa) { 
     maxmax=0.;      SHFT(dum,*ax,*bx,dum) 
     for(j=1;j<=nlstate;j++){        SHFT(dum,*fb,*fa,dum) 
       min=1.;        } 
       max=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(i=1; i<=nlstate; i++) {    *fc=(*func)(*cx); 
         sumnew=0;    while (*fb > *fc) { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      r=(*bx-*ax)*(*fb-*fc); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      q=(*bx-*cx)*(*fb-*fa); 
         max=FMAX(max,prlim[i][j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         min=FMIN(min,prlim[i][j]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       maxmin=max-min;      if ((*bx-u)*(u-*cx) > 0.0) { 
       maxmax=FMAX(maxmax,maxmin);        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     if(maxmax < ftolpl){        fu=(*func)(u); 
       return prlim;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /*************** transition probabilities ***************/        u=ulim; 
         fu=(*func)(u); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } else { 
 {        u=(*cx)+GOLD*(*cx-*bx); 
   double s1, s2;        fu=(*func)(u); 
   /*double t34;*/      } 
   int i,j,j1, nc, ii, jj;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
     for(i=1; i<= nlstate; i++){        } 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /*************** linmin ************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  int ncom; 
       }  double *pcom,*xicom;
       ps[i][j]=s2;  double (*nrfunc)(double []); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double brent(double ax, double bx, double cx, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                 double (*f)(double), double tol, double *xmin); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ps[i][j]=s2;                double *fc, double (*func)(double)); 
     }    int j; 
   }    double xx,xmin,bx,ax; 
     /*ps[3][2]=1;*/    double fx,fb,fa;
    
   for(i=1; i<= nlstate; i++){    ncom=n; 
      s1=0;    pcom=vector(1,n); 
     for(j=1; j<i; j++)    xicom=vector(1,n); 
       s1+=exp(ps[i][j]);    nrfunc=func; 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) { 
       s1+=exp(ps[i][j]);      pcom[j]=p[j]; 
     ps[i][i]=1./(s1+1.);      xicom[j]=xi[j]; 
     for(j=1; j<i; j++)    } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    ax=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)    xx=1.0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   } /* end i */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;    for (j=1;j<=n;j++) { 
       ps[ii][ii]=1;      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   }    } 
     free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  char *asc_diff_time(long time_sec, char ascdiff[])
    }  {
     printf("\n ");    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
     printf("\n ");printf("%lf ",cov[2]);*/    sec_left = (time_sec) % (60*60*24);
 /*    hours = (sec_left) / (60*60) ;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    sec_left = (sec_left) %(60*60);
   goto end;*/    minutes = (sec_left) /60;
     return ps;    sec_left = (sec_left) % (60);
 }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              double (*func)(double [])) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    void linmin(double p[], double xi[], int n, double *fret, 
      before: only the contents of out is modified. The function returns                double (*func)(double [])); 
      a pointer to pointers identical to out */    int i,ibig,j; 
   long i, j, k;    double del,t,*pt,*ptt,*xit;
   for(i=nrl; i<= nrh; i++)    double fp,fptt;
     for(k=ncolol; k<=ncoloh; k++)    double *xits;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int niterf, itmp;
         out[i][k] +=in[i][j]*b[j][k];  
     pt=vector(1,n); 
   return out;    ptt=vector(1,n); 
 }    xit=vector(1,n); 
     xits=vector(1,n); 
     *fret=(*func)(p); 
 /************* Higher Matrix Product ***************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      fp=(*fret); 
 {      ibig=0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      del=0.0; 
      duration (i.e. until      last_time=curr_time;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      (void) gettimeofday(&curr_time,&tzp);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
      (typically every 2 years instead of every month which is too big).      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      Model is determined by parameters x and covariates have to be      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
      included manually here.      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
      */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   /* Hstepm could be zero and should return the unit matrix */      if(*iter <=3){
   for (i=1;i<=nlstate+ndeath;i++)        tm = *localtime(&curr_time.tv_sec);
     for (j=1;j<=nlstate+ndeath;j++){        strcpy(strcurr,asctime(&tmf));
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*       asctime_r(&tm,strcurr); */
       po[i][j][0]=(i==j ? 1.0 : 0.0);        forecast_time=curr_time;
     }        itmp = strlen(strcurr);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if(strcurr[itmp-1]=='\n')
   for(h=1; h <=nhstepm; h++){          strcurr[itmp-1]='\0';
     for(d=1; d <=hstepm; d++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       newm=savm;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /* Covariates have to be included here again */        for(niterf=10;niterf<=30;niterf+=10){
       cov[1]=1.;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          tmf = *localtime(&forecast_time.tv_sec);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*      asctime_r(&tmf,strfor); */
       for (k=1; k<=cptcovage;k++)          strcpy(strfor,asctime(&tmf));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          itmp = strlen(strfor);
       for (k=1; k<=cptcovprod;k++)          if(strfor[itmp-1]=='\n')
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for (i=1;i<=n;i++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       savm=oldm;        fptt=(*fret); 
       oldm=newm;  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
     for(i=1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"fret=%lf \n",*fret);
       for(j=1;j<=nlstate+ndeath;j++) {  #endif
         po[i][j][h]=newm[i][j];        printf("%d",i);fflush(stdout);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fprintf(ficlog,"%d",i);fflush(ficlog);
          */        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
   } /* end h */          del=fabs(fptt-(*fret)); 
   return po;          ibig=i; 
 }        } 
   #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 /*************** log-likelihood *************/        fprintf(ficlog,"%d %.12e",i,(*fret));
 double func( double *x)        for (j=1;j<=n;j++) {
 {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int i, ii, j, k, mi, d, kk;          printf(" x(%d)=%.12e",j,xit[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **out;        }
   double sw; /* Sum of weights */        for(j=1;j<=n;j++) {
   double lli; /* Individual log likelihood */          printf(" p=%.12e",p[j]);
   long ipmx;          fprintf(ficlog," p=%.12e",p[j]);
   /*extern weight */        }
   /* We are differentiating ll according to initial status */        printf("\n");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fprintf(ficlog,"\n");
   /*for(i=1;i<imx;i++)  #endif
     printf(" %d\n",s[4][i]);      } 
   */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   cov[1]=1.;  #ifdef DEBUG
         int k[2],l;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        k[0]=1;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        k[1]=-1;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("Max: %.12e",(*func)(p));
     for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (j=1;j<=n;j++) {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog," %.12e",p[j]);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("\n");
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficlog,"\n");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
                    ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         savm=oldm;          }
         oldm=newm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                  fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                }
       } /* end mult */  #endif
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        free_vector(xit,1,n); 
       ipmx +=1;        free_vector(xits,1,n); 
       sw += weight[i];        free_vector(ptt,1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        free_vector(pt,1,n); 
     } /* end of wave */        return; 
   } /* end of individual */      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for (j=1;j<=n;j++) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        ptt[j]=2.0*p[j]-pt[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        xit[j]=p[j]-pt[j]; 
   return -l;        pt[j]=p[j]; 
 }      } 
       fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /*********** Maximum Likelihood Estimation ***************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   int i,j, iter;            xi[j][ibig]=xi[j][n]; 
   double **xi,*delti;            xi[j][n]=xit[j]; 
   double fret;          }
   xi=matrix(1,npar,1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       xi[i][j]=(i==j ? 1.0 : 0.0);          for(j=1;j<=n;j++){
   printf("Powell\n");            printf(" %.12e",xit[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);            fprintf(ficlog," %.12e",xit[j]);
           }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf("\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog,"\n");
   #endif
 }        }
       } 
 /**** Computes Hessian and covariance matrix ***/    } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  } 
 {  
   double  **a,**y,*x,pd;  /**** Prevalence limit (stable prevalence)  ****************/
   double **hess;  
   int i, j,jk;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int *indx;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double hessii(double p[], double delta, int theta, double delti[]);       matrix by transitions matrix until convergence is reached */
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i, ii,j,k;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   hess=matrix(1,npar,1,npar);    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for (ii=1;ii<=nlstate+ndeath;ii++)
     hess[i][i]=hessii(p,ftolhess,i,delti);      for (j=1;j<=nlstate+ndeath;j++){
     /*printf(" %f ",p[i]);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*printf(" %lf ",hess[i][i]);*/      }
   }  
       cov[1]=1.;
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++)  {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if (j>i) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         printf(".%d%d",i,j);fflush(stdout);      newm=savm;
         hess[i][j]=hessij(p,delti,i,j);      /* Covariates have to be included here again */
         hess[j][i]=hess[i][j];           cov[2]=agefin;
         /*printf(" %lf ",hess[i][j]);*/    
       }        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   printf("\n");        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   x=vector(1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   indx=ivector(1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (i=1;i<=npar;i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);      savm=oldm;
       oldm=newm;
   for (j=1;j<=npar;j++) {      maxmax=0.;
     for (i=1;i<=npar;i++) x[i]=0;      for(j=1;j<=nlstate;j++){
     x[j]=1;        min=1.;
     lubksb(a,npar,indx,x);        max=0.;
     for (i=1;i<=npar;i++){        for(i=1; i<=nlstate; i++) {
       matcov[i][j]=x[i];          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   printf("\n#Hessian matrix#\n");          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {        maxmin=max-min;
       printf("%.3e ",hess[i][j]);        maxmax=FMAX(maxmax,maxmin);
     }      }
     printf("\n");      if(maxmax < ftolpl){
   }        return prlim;
       }
   /* Recompute Inverse */    }
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** transition probabilities ***************/ 
   
   /*  printf("\n#Hessian matrix recomputed#\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   for (j=1;j<=npar;j++) {    double s1, s2;
     for (i=1;i<=npar;i++) x[i]=0;    /*double t34;*/
     x[j]=1;    int i,j,j1, nc, ii, jj;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){      for(i=1; i<= nlstate; i++){
       y[i][j]=x[i];      for(j=1; j<i;j++){
       printf("%.3e ",y[i][j]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }          /*s2 += param[i][j][nc]*cov[nc];*/
     printf("\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   */        }
         ps[i][j]=s2;
   free_matrix(a,1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_matrix(y,1,npar,1,npar);      }
   free_vector(x,1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
   free_ivector(indx,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_matrix(hess,1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 }        ps[i][j]=s2;
       }
 /*************** hessian matrix ****************/    }
 double hessii( double x[], double delta, int theta, double delti[])      /*ps[3][2]=1;*/
 {  
   int i;    for(i=1; i<= nlstate; i++){
   int l=1, lmax=20;       s1=0;
   double k1,k2;      for(j=1; j<i; j++)
   double p2[NPARMAX+1];        s1+=exp(ps[i][j]);
   double res;      for(j=i+1; j<=nlstate+ndeath; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        s1+=exp(ps[i][j]);
   double fx;      ps[i][i]=1./(s1+1.);
   int k=0,kmax=10;      for(j=1; j<i; j++)
   double l1;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
   fx=func(x);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++) p2[i]=x[i];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(l=0 ; l <=lmax; l++){    } /* end i */
     l1=pow(10,l);  
     delts=delt;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(k=1 ; k <kmax; k=k+1){      for(jj=1; jj<= nlstate+ndeath; jj++){
       delt = delta*(l1*k);        ps[ii][jj]=0;
       p2[theta]=x[theta] +delt;        ps[ii][ii]=1;
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
            for(jj=1; jj<= nlstate+ndeath; jj++){
 #ifdef DEBUG       printf("%lf ",ps[ii][jj]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     }
 #endif      printf("\n ");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("\n ");printf("%lf ",cov[2]);*/
         k=kmax;  /*
       }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    goto end;*/
         k=kmax; l=lmax*10.;      return ps;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /**************** Product of 2 matrices ******************/
       }  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   delti[theta]=delts;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   return res;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 double hessij( double x[], double delti[], int thetai,int thetaj)    long i, j, k;
 {    for(i=nrl; i<= nrh; i++)
   int i;      for(k=ncolol; k<=ncoloh; k++)
   int l=1, l1, lmax=20;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double k1,k2,k3,k4,res,fx;          out[i][k] +=in[i][j]*b[j][k];
   double p2[NPARMAX+1];  
   int k;    return out;
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /************* Higher Matrix Product ***************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     k1=func(p2)-fx;  {
      /* Computes the transition matrix starting at age 'age' over 
     p2[thetai]=x[thetai]+delti[thetai]/k;       'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     k2=func(p2)-fx;       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     p2[thetai]=x[thetai]-delti[thetai]/k;       (typically every 2 years instead of every month which is too big 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       for the memory).
     k3=func(p2)-fx;       Model is determined by parameters x and covariates have to be 
         included manually here. 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       */
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i, j, d, h, k;
 #ifdef DEBUG    double **out, cov[NCOVMAX];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **newm;
 #endif  
   }    /* Hstepm could be zero and should return the unit matrix */
   return res;    for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /************** Inverse of matrix **************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,imax,j,k;    for(h=1; h <=nhstepm; h++){
   double big,dum,sum,temp;      for(d=1; d <=hstepm; d++){
   double *vv;        newm=savm;
          /* Covariates have to be included here again */
   vv=vector(1,n);        cov[1]=1.;
   *d=1.0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     big=0.0;        for (k=1; k<=cptcovage;k++)
     for (j=1;j<=n;j++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovprod;k++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     vv[i]=1.0/big;  
   }  
   for (j=1;j<=n;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (i=1;i<j;i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       sum=a[i][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       a[i][j]=sum;        savm=oldm;
     }        oldm=newm;
     big=0.0;      }
     for (i=j;i<=n;i++) {      for(i=1; i<=nlstate+ndeath; i++)
       sum=a[i][j];        for(j=1;j<=nlstate+ndeath;j++) {
       for (k=1;k<j;k++)          po[i][j][h]=newm[i][j];
         sum -= a[i][k]*a[k][j];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;    } /* end h */
         imax=i;    return po;
       }  }
     }  
     if (j != imax) {  
       for (k=1;k<=n;k++) {  /*************** log-likelihood *************/
         dum=a[imax][k];  double func( double *x)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       *d = -(*d);    double **out;
       vv[imax]=vv[j];    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     indx[j]=imax;    int s1, s2;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double bbh, survp;
     if (j != n) {    long ipmx;
       dum=1.0/(a[j][j]);    /*extern weight */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   free_vector(vv,1,n);  /* Doesn't work */      printf(" %d\n",s[4][i]);
 ;    */
 }    cov[1]=1.;
   
 void lubksb(double **a, int n, int *indx, double b[])    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   int i,ii=0,ip,j;    if(mle==1){
   double sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     ip=indx[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[ip];            for (j=1;j<=nlstate+ndeath;j++){
     b[ip]=b[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            }
     else if (sum) ii=i;          for(d=0; d<dh[mi][i]; d++){
     b[i]=sum;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=n;i>=1;i--) {            for (kk=1; kk<=cptcovage;kk++) {
     sum=b[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            }
     b[i]=sum/a[i][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Frequencies ********************/          } /* end mult */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        
 {  /* Some frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double ***freq; /* Frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *pp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double pos, k2, dateintsum=0,k2cpt=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   FILE *ficresp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   char fileresp[FILENAMELENGTH];           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   pp=vector(1,nlstate);           * -stepm/2 to stepm/2 .
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * For stepm=1 the results are the same as for previous versions of Imach.
   strcpy(fileresp,"p");           * For stepm > 1 the results are less biased than in previous versions. 
   strcat(fileresp,fileres);           */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s2=s[mw[mi+1][i]][i];
     exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcoveff;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                 to the likelihood is the probability to die between last step unit time and current 
   for(k1=1; k1<=j;k1++){               step unit time, which is also the differences between probability to die before dh 
     for(i1=1; i1<=ncodemax[k1];i1++){               and probability to die before dh-stepm . 
       j1++;               In version up to 0.92 likelihood was computed
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          as if date of death was unknown. Death was treated as any other
         scanf("%d", i);*/          health state: the date of the interview describes the actual state
       for (i=-1; i<=nlstate+ndeath; i++)            and not the date of a change in health state. The former idea was
         for (jk=-1; jk<=nlstate+ndeath; jk++)            to consider that at each interview the state was recorded
           for(m=agemin; m <= agemax+3; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
             freq[i][jk][m]=0;          introduced the exact date of death then we should have modified
                the contribution of an exact death to the likelihood. This new
       dateintsum=0;          contribution is smaller and very dependent of the step unit
       k2cpt=0;          stepm. It is no more the probability to die between last interview
       for (i=1; i<=imx; i++) {          and month of death but the probability to survive from last
         bool=1;          interview up to one month before death multiplied by the
         if  (cptcovn>0) {          probability to die within a month. Thanks to Chris
           for (z1=1; z1<=cptcoveff; z1++)          Jackson for correcting this bug.  Former versions increased
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          mortality artificially. The bad side is that we add another loop
               bool=0;          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
         if (bool==1) {            */
           for(m=firstpass; m<=lastpass; m++){            lli=log(out[s1][s2] - savm[s1][s2]);
             k2=anint[m][i]+(mint[m][i]/12.);          }else{
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } 
               if (m<lastpass) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*if(lli ==000.0)*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               }          ipmx +=1;
                        sw += weight[i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 dateintsum=dateintsum+k2;        } /* end of wave */
                 k2cpt++;      } /* end of individual */
               }    }  else if(mle==2){
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          for(d=0; d<=dh[mi][i]; d++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            newm=savm;
         fprintf(ficresp, "**********\n#");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=(int)agemin; i <= (int)agemax+3; i++){            savm=oldm;
         if(i==(int)agemax+3)            oldm=newm;
           printf("Total");          } /* end mult */
         else        
           printf("Age %d", i);          s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             pp[jk] += freq[jk][m][i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pos=0; m <=0 ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pos += freq[jk][m][i];        } /* end of wave */
           if(pp[jk]>=1.e-10)      } /* end of individual */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    }  else if(mle==3){  /* exponential inter-extrapolation */
           else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
           pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           if(pos>=1.e-5)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
               probs[i][jk][j1]= pp[jk]/pos;        
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
           
 /************ Prevalence ********************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {  /* Some frequencies */            savm=oldm;
              oldm=newm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          } /* end mult */
   double ***freq; /* Frequencies */        
   double *pp;          s1=s[mw[mi][i]][i];
   double pos, k2;          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   pp=vector(1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }
   j1=0;          ipmx +=1;
            sw += weight[i];
   j=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       j1++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=-1; i<=nlstate+ndeath; i++)          for(mi=1; mi<= wav[i]-1; mi++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=agemin; m <= agemax+3; m++)            for (j=1;j<=nlstate+ndeath;j++){
             freq[i][jk][m]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {            }
         bool=1;          for(d=0; d<dh[mi][i]; d++){
         if  (cptcovn>0) {            newm=savm;
           for (z1=1; z1<=cptcoveff; z1++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (kk=1; kk<=cptcovage;kk++) {
               bool=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (bool==1) {          
           for(m=firstpass; m<=lastpass; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k2=anint[m][i]+(mint[m][i]/12.);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
               if (m<lastpass) {        
                 if (calagedate>0)          s1=s[mw[mi][i]][i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          s2=s[mw[mi+1][i]][i];
                 else          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           }        } /* end of wave */
         }      } /* end of individual */
       }    } /* End of if */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(jk=1; jk <=nlstate ; jk++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             pp[jk] += freq[jk][m][i];    return -l;
         }  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  /*************** log-likelihood *************/
             pos += freq[jk][m][i];  double funcone( double *x)
         }  {
            /* Same as likeli but slower because of a lot of printf and if */
         for(jk=1; jk <=nlstate ; jk++){    int i, ii, j, k, mi, d, kk;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             pp[jk] += freq[jk][m][i];    double **out;
         }    double lli; /* Individual log likelihood */
            double llt;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int s1, s2;
            double bbh, survp;
         for(jk=1; jk <=nlstate ; jk++){        /*extern weight */
           if( i <= (int) agemax){    /* We are differentiating ll according to initial status */
             if(pos>=1.e-5){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               probs[i][jk][j1]= pp[jk]/pos;    /*for(i=1;i<imx;i++) 
             }      printf(" %d\n",s[4][i]);
           }    */
         }    cov[1]=1.;
          
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /************* Waves Concatenation ***************/        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {          for (kk=1; kk<=cptcovage;kk++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Death is a valid wave (if date is known).          }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and mw[mi+1][i]. dh depends on stepm.          savm=oldm;
      */          oldm=newm;
         } /* end mult */
   int i, mi, m;        
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        s1=s[mw[mi][i]][i];
      double sum=0., jmean=0.;*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   int j, k=0,jk, ju, jl;        /* bias is positive if real duration
   double sum=0.;         * is higher than the multiple of stepm and negative otherwise.
   jmin=1e+5;         */
   jmax=-1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   jmean=0.;          lli=log(out[s1][s2] - savm[s1][s2]);
   for(i=1; i<=imx; i++){        } else if (mle==1){
     mi=0;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     m=firstpass;        } else if(mle==2){
     while(s[m][i] <= nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if(s[m][i]>=1)        } else if(mle==3){  /* exponential inter-extrapolation */
         mw[++mi][i]=m;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if(m >=lastpass)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         break;          lli=log(out[s1][s2]); /* Original formula */
       else        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         m++;          lli=log(out[s1][s2]); /* Original formula */
     }/* end while */        } /* End of if */
     if (s[m][i] > nlstate){        ipmx +=1;
       mi++;     /* Death is another wave */        sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       mw[mi][i]=m;        if(globpr){
     }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
     wav[i]=mi;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     if(mi==0)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){          fprintf(ficresilk," %10.6f\n", -llt);
       if (stepm <=0)        }
         dh[mi][i]=1;      } /* end of wave */
       else{    } /* end of individual */
         if (s[mw[mi+1][i]][i] > nlstate) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           if (agedc[i] < 2*AGESUP) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if(j==0) j=1;  /* Survives at least one month after exam */    if(globpr==0){ /* First time we count the contributions and weights */
           k=k+1;      gipmx=ipmx;
           if (j >= jmax) jmax=j;      gsw=sw;
           if (j <= jmin) jmin=j;    }
           sum=sum+j;    return -l;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  }
           }  
         }  
         else{  /*************** function likelione ***********/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           k=k+1;  {
           if (j >= jmax) jmax=j;    /* This routine should help understanding what is done with 
           else if (j <= jmin)jmin=j;       the selection of individuals/waves and
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       to check the exact contribution to the likelihood.
           sum=sum+j;       Plotting could be done.
         }     */
         jk= j/stepm;    int k;
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;    if(*globpri !=0){ /* Just counts and sums, no printings */
         if(jl <= -ju)      strcpy(fileresilk,"ilk"); 
           dh[mi][i]=jk;      strcat(fileresilk,fileres);
         else      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           dh[mi][i]=jk+1;        printf("Problem with resultfile: %s\n", fileresilk);
         if(dh[mi][i]==0)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           dh[mi][i]=1; /* At least one step */      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   jmean=sum/k;      for(k=1; k<=nlstate; k++) 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
  }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 /*********** Tricode ****************************/    }
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    *fretone=(*funcone)(p);
   int Ndum[20],ij=1, k, j, i;    if(*globpri !=0){
   int cptcode=0;      fclose(ficresilk);
   cptcoveff=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   for (k=0; k<19; k++) Ndum[k]=0;    } 
   for (k=1; k<=7; k++) ncodemax[k]=0;    return;
   }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  /*********** Maximum Likelihood Estimation ***************/
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       if (ij > cptcode) cptcode=ij;  {
     }    int i,j, iter;
     double **xi;
     for (i=0; i<=cptcode; i++) {    double fret;
       if(Ndum[i]!=0) ncodemax[j]++;    double fretone; /* Only one call to likelihood */
     }    char filerespow[FILENAMELENGTH];
     ij=1;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     for (i=1; i<=ncodemax[j]; i++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         if (Ndum[k] != 0) {    strcpy(filerespow,"pow"); 
           nbcode[Tvar[j]][ij]=k;    strcat(filerespow,fileres);
              if((ficrespow=fopen(filerespow,"w"))==NULL) {
           ij++;      printf("Problem with resultfile: %s\n", filerespow);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         if (ij > ncodemax[j]) break;    }
       }      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficrespow,"\n");
   
  for (i=1; i<=ncovmodel-2; i++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
       ij=Tvar[i];  
       Ndum[ij]++;    fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  ij=1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  }
      Tvaraff[ij]=i;  
      ij++;  /**** Computes Hessian and covariance matrix ***/
    }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  }  {
      double  **a,**y,*x,pd;
     cptcoveff=ij-1;    double **hess;
 }    int i, j,jk;
     int *indx;
 /*********** Health Expectancies ****************/  
     double hessii(double p[], double delta, int theta, double delti[]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 {    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    hess=matrix(1,npar,1,npar);
   double age, agelim, hf;  
   double ***p3mat,***varhe;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double **dnewm,**doldm;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double *xp;    for (i=1;i<=npar;i++){
   double **gp, **gm;      printf("%d",i);fflush(stdout);
   double ***gradg, ***trgradg;      fprintf(ficlog,"%d",i);fflush(ficlog);
   int theta;      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      /*printf(" %lf ",hess[i][i]);*/
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate*2,1,npar);    
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   fprintf(ficreseij,"# Health expectancies\n");        if (j>i) { 
   fprintf(ficreseij,"# Age");          printf(".%d%d",i,j);fflush(stdout);
   for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(j=1; j<=nlstate;j++)          hess[i][j]=hessij(p,delti,i,j);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          hess[j][i]=hess[i][j];    
   fprintf(ficreseij,"\n");          /*printf(" %lf ",hess[i][j]);*/
         }
   if(estepm < stepm){      }
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    printf("\n");
   else  hstepm=estepm;      fprintf(ficlog,"\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression inbetween and thus overestimating or underestimating according    a=matrix(1,npar,1,npar);
    * to the curvature of the survival function. If, for the same date, we    y=matrix(1,npar,1,npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    x=vector(1,npar);
    * to compare the new estimate of Life expectancy with the same linear    indx=ivector(1,npar);
    * hypothesis. A more precise result, taking into account a more precise    for (i=1;i<=npar;i++)
    * curvature will be obtained if estepm is as small as stepm. */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (j=1;j<=npar;j++) {
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++) x[i]=0;
      nstepm is the number of stepm from age to agelin.      x[j]=1;
      Look at hpijx to understand the reason of that which relies in memory size      lubksb(a,npar,indx,x);
      and note for a fixed period like estepm months */      for (i=1;i<=npar;i++){ 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        matcov[i][j]=x[i];
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if    }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\n#Hessian matrix#\n");
   */    fprintf(ficlog,"\n#Hessian matrix#\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   agelim=AGESUP;        printf("%.3e ",hess[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",hess[i][j]);
     /* nhstepm age range expressed in number of stepm */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      printf("\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      fprintf(ficlog,"\n");
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Recompute Inverse */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++)
     gp=matrix(0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     gm=matrix(0,nhstepm,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  printf("\n#Hessian matrix recomputed#\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     /* Computing Variances of health expectancies */        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
      for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",y[i][j]);
       for(i=1; i<=npar; i++){      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
       }      fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
      */
       cptj=0;  
       for(j=1; j<= nlstate; j++){    free_matrix(a,1,npar,1,npar);
         for(i=1; i<=nlstate; i++){    free_matrix(y,1,npar,1,npar);
           cptj=cptj+1;    free_vector(x,1,npar);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    free_ivector(indx,1,npar);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    free_matrix(hess,1,npar,1,npar);
           }  
         }  
       }  }
        
        /*************** hessian matrix ****************/
       for(i=1; i<=npar; i++)  double hessii( double x[], double delta, int theta, double delti[])
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i;
          int l=1, lmax=20;
       cptj=0;    double k1,k2;
       for(j=1; j<= nlstate; j++){    double p2[NPARMAX+1];
         for(i=1;i<=nlstate;i++){    double res;
           cptj=cptj+1;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double fx;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int k=0,kmax=10;
           }    double l1;
         }  
       }    fx=func(x);
          for (i=1;i<=npar;i++) p2[i]=x[i];
        for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
       for(j=1; j<= nlstate*2; j++)      delts=delt;
         for(h=0; h<=nhstepm-1; h++){      for(k=1 ; k <kmax; k=k+1){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
      }        p2[theta]=x[theta]-delt;
            k2=func(p2)-fx;
 /* End theta */        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        
   #ifdef DEBUG
      for(h=0; h<=nhstepm-1; h++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<=nlstate*2;j++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(theta=1; theta <=npar; theta++)  #endif
         trgradg[h][j][theta]=gradg[h][theta][j];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
      for(i=1;i<=nlstate*2;i++)        }
       for(j=1;j<=nlstate*2;j++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         varhe[i][j][(int)age] =0.;          k=kmax; l=lmax*10.;
         }
      printf("%d|",(int)age);fflush(stdout);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(h=0;h<=nhstepm-1;h++){          delts=delt;
       for(k=0;k<=nhstepm-1;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    }
         for(i=1;i<=nlstate*2;i++)    delti[theta]=delts;
           for(j=1;j<=nlstate*2;j++)    return res; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }  }
     }  
   double hessij( double x[], double delti[], int thetai,int thetaj)
        {
     /* Computing expectancies */    int i;
     for(i=1; i<=nlstate;i++)    int l=1, l1, lmax=20;
       for(j=1; j<=nlstate;j++)    double k1,k2,k3,k4,res,fx;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double p2[NPARMAX+1];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int k;
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    fx=func(x);
     for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficreseij,"%3.0f",age );      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     cptj=0;      k1=func(p2)-fx;
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         cptj++;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      k2=func(p2)-fx;
       }    
     fprintf(ficreseij,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      k3=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k4=func(p2)-fx;
   }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }    }
     return res;
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {  /************** Inverse of matrix **************/
   /* Variance of health expectancies */  void ludcmp(double **a, int n, int *indx, double *d) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  { 
   double **newm;    int i,imax,j,k; 
   double **dnewm,**doldm;    double big,dum,sum,temp; 
   int i, j, nhstepm, hstepm, h, nstepm ;    double *vv; 
   int k, cptcode;   
   double *xp;    vv=vector(1,n); 
   double **gp, **gm;    *d=1.0; 
   double ***gradg, ***trgradg;    for (i=1;i<=n;i++) { 
   double ***p3mat;      big=0.0; 
   double age,agelim, hf;      for (j=1;j<=n;j++) 
   int theta;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      vv[i]=1.0/big; 
   fprintf(ficresvij,"# Age");    } 
   for(i=1; i<=nlstate;i++)    for (j=1;j<=n;j++) { 
     for(j=1; j<=nlstate;j++)      for (i=1;i<j;i++) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        sum=a[i][j]; 
   fprintf(ficresvij,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   xp=vector(1,npar);      } 
   dnewm=matrix(1,nlstate,1,npar);      big=0.0; 
   doldm=matrix(1,nlstate,1,nlstate);      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   if(estepm < stepm){        for (k=1;k<j;k++) 
     printf ("Problem %d lower than %d\n",estepm, stepm);          sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   else  hstepm=estepm;          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* For example we decided to compute the life expectancy with the smallest unit */          big=dum; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          imax=i; 
      nhstepm is the number of hstepm from age to agelim        } 
      nstepm is the number of stepm from age to agelin.      } 
      Look at hpijx to understand the reason of that which relies in memory size      if (j != imax) { 
      and note for a fixed period like k years */        for (k=1;k<=n;k++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          dum=a[imax][k]; 
      survival function given by stepm (the optimization length). Unfortunately it          a[imax][k]=a[j][k]; 
      means that if the survival funtion is printed only each two years of age and if          a[j][k]=dum; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        } 
      results. So we changed our mind and took the option of the best precision.        *d = -(*d); 
   */        vv[imax]=vv[j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } 
   agelim = AGESUP;      indx[j]=imax; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (j != n) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        dum=1.0/(a[j][j]); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      } 
     gp=matrix(0,nhstepm,1,nlstate);    } 
     gm=matrix(0,nhstepm,1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
   ;
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i,ii=0,ip,j; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double sum; 
    
       if (popbased==1) {    for (i=1;i<=n;i++) { 
         for(i=1; i<=nlstate;i++)      ip=indx[i]; 
           prlim[i][i]=probs[(int)age][i][ij];      sum=b[ip]; 
       }      b[ip]=b[i]; 
        if (ii) 
       for(j=1; j<= nlstate; j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(h=0; h<=nhstepm; h++){      else if (sum) ii=i; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      b[i]=sum; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    } 
         }    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */      b[i]=sum/a[i][i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    /************ Frequencies ********************/
       if (popbased==1) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         for(i=1; i<=nlstate;i++)  {  /* Some frequencies */
           prlim[i][i]=probs[(int)age][i][ij];    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
       for(j=1; j<= nlstate; j++){    double ***freq; /* Frequencies */
         for(h=0; h<=nhstepm; h++){    double *pp, **prop;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    FILE *ficresp;
         }    char fileresp[FILENAMELENGTH];
       }    
     pp=vector(1,nlstate);
       for(j=1; j<= nlstate; j++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(h=0; h<=nhstepm; h++){    strcpy(fileresp,"p");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     } /* End theta */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      exit(0);
     }
     for(h=0; h<=nhstepm; h++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       for(j=1; j<=nlstate;j++)    j1=0;
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    first=1;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     for(h=0;h<=nhstepm;h++){        j1++;
       for(k=0;k<=nhstepm;k++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          scanf("%d", i);*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for (i=-1; i<=nlstate+ndeath; i++)  
         for(i=1;i<=nlstate;i++)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           for(j=1;j<=nlstate;j++)            for(m=iagemin; m <= iagemax+3; m++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              freq[i][jk][m]=0;
       }  
     }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresvij,"%.0f ",age );          prop[i][m]=0;
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++){        dateintsum=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
     fprintf(ficresvij,"\n");          bool=1;
     free_matrix(gp,0,nhstepm,1,nlstate);          if  (cptcovn>0) {
     free_matrix(gm,0,nhstepm,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                bool=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   } /* End age */          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   free_vector(xp,1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
   free_matrix(doldm,1,nlstate,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   free_matrix(dnewm,1,nlstate,1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 /************ Variance of prevlim ******************/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 {                }
   /* Variance of prevalence limit */                
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double **newm;                  dateintsum=dateintsum+k2;
   double **dnewm,**doldm;                  k2cpt++;
   int i, j, nhstepm, hstepm;                }
   int k, cptcode;                /*}*/
   double *xp;            }
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double age,agelim;         
   int theta;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        if  (cptcovn>0) {
   fprintf(ficresvpl,"# Age");          fprintf(ficresp, "\n#********** Variable "); 
   for(i=1; i<=nlstate;i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvpl," %1d-%1d",i,i);          fprintf(ficresp, "**********\n#");
   fprintf(ficresvpl,"\n");        }
         for(i=1; i<=nlstate;i++) 
   xp=vector(1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresp, "\n");
   doldm=matrix(1,nlstate,1,nlstate);        
          for(i=iagemin; i <= iagemax+3; i++){
   hstepm=1*YEARM; /* Every year of age */          if(i==iagemax+3){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            fprintf(ficlog,"Total");
   agelim = AGESUP;          }else{
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(first==1){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              first=0;
     if (stepm >= YEARM) hstepm=1;              printf("See log file for details...\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);            fprintf(ficlog,"Age %d", i);
     gp=vector(1,nlstate);          }
     gm=vector(1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(theta=1; theta <=npar; theta++){              pp[jk] += freq[jk][m][i]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              pos += freq[jk][m][i];
       for(i=1;i<=nlstate;i++)            if(pp[jk]>=1.e-10){
         gp[i] = prlim[i][i];              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=npar; i++) /* Computes gradient */              }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }else{
       for(i=1;i<=nlstate;i++)              if(first==1)
         gm[i] = prlim[i][i];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          }
     } /* End theta */  
           for(jk=1; jk <=nlstate ; jk++){
     trgradg =matrix(1,nlstate,1,npar);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     for(j=1; j<=nlstate;j++)          }       
       for(theta=1; theta <=npar; theta++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         trgradg[j][theta]=gradg[theta][j];            pos += pp[jk];
             posprop += prop[jk][i];
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;          for(jk=1; jk <=nlstate ; jk++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            if(pos>=1.e-5){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              if(first==1)
     for(i=1;i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     fprintf(ficresvpl,"%.0f ",age );              if(first==1)
     for(i=1; i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficresvpl,"\n");            }
     free_vector(gp,1,nlstate);            if( i <= iagemax){
     free_vector(gm,1,nlstate);              if(pos>=1.e-5){
     free_matrix(gradg,1,npar,1,nlstate);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_matrix(trgradg,1,nlstate,1,npar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   } /* End age */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   free_vector(xp,1,npar);              else
   free_matrix(doldm,1,nlstate,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
           }
 }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 /************ Variance of one-step probabilities  ******************/            for(m=-1; m <=nlstate+ndeath; m++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if(freq[jk][m][i] !=0 ) {
 {              if(first==1)
   int i, j, i1, k1, j1, z1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int k=0, cptcode;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **dnewm,**doldm;              }
   double *xp;          if(i <= iagemax)
   double *gp, *gm;            fprintf(ficresp,"\n");
   double **gradg, **trgradg;          if(first==1)
   double age,agelim, cov[NCOVMAX];            printf("Others in log...\n");
   int theta;          fprintf(ficlog,"\n");
   char fileresprob[FILENAMELENGTH];        }
       }
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);    dateintmean=dateintsum/k2cpt; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprob);    fclose(ficresp);
   }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    /* End of Freq */
   fprintf(ficresprob,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)  /************ Prevalence ********************/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficresprob,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
   xp=vector(1,npar);   
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double ***freq; /* Frequencies */
      double *pp, **prop;
   cov[1]=1;    double pos,posprop; 
   j=cptcoveff;    double  y2; /* in fractional years */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int iagemin, iagemax;
   j1=0;  
   for(k1=1; k1<=1;k1++){    iagemin= (int) agemin;
     for(i1=1; i1<=ncodemax[k1];i1++){    iagemax= (int) agemax;
     j1++;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     if  (cptcovn>0) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       fprintf(ficresprob, "\n#********** Variable ");    j1=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficresprob, "**********\n#");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
       for (age=bage; age<=fage; age ++){    for(k1=1; k1<=j;k1++){
         cov[2]=age;      for(i1=1; i1<=ncodemax[k1];i1++){
         for (k=1; k<=cptcovn;k++) {        j1++;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        
                  for (i=1; i<=nlstate; i++)  
         }          for(m=iagemin; m <= iagemax+3; m++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            prop[i][m]=0.0;
         for (k=1; k<=cptcovprod;k++)       
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (i=1; i<=imx; i++) { /* Each individual */
                  bool=1;
         gradg=matrix(1,npar,1,9);          if  (cptcovn>0) {
         trgradg=matrix(1,9,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                bool=0;
              } 
         for(theta=1; theta <=npar; theta++){          if (bool==1) { 
           for(i=1; i<=npar; i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                        if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                          if(agev[m][i]==1) agev[m][i]=iagemax+2;
           k=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for(i=1; i<= (nlstate+ndeath); i++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             for(j=1; j<=(nlstate+ndeath);j++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               k=k+1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               gp[k]=pmmij[i][j];                  prop[s[m][i]][iagemax+3] += weight[i]; 
             }                } 
           }              }
                      } /* end selection of waves */
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            for(i=iagemin; i <= iagemax+3; i++){  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          
           k=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           for(i=1; i<=(nlstate+ndeath); i++){            posprop += prop[jk][i]; 
             for(j=1; j<=(nlstate+ndeath);j++){          } 
               k=k+1;  
               gm[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){     
             }            if( i <=  iagemax){ 
           }              if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              } 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              } 
         }          }/* end jk */ 
         }/* end i */ 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      } /* end i1 */
           for(theta=1; theta <=npar; theta++)    } /* end k1 */
             trgradg[j][theta]=gradg[theta][j];    
            /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    /*free_vector(pp,1,nlstate);*/
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
          /************* Waves Concatenation ***************/
         k=0;  
         for(i=1; i<=(nlstate+ndeath); i++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           for(j=1; j<=(nlstate+ndeath);j++){  {
             k=k+1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             gm[k]=pmmij[i][j];       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             and mw[mi+1][i]. dh depends on stepm.
      /*printf("\n%d ",(int)age);       */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int i, mi, m;
      }*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
         fprintf(ficresprob,"\n%d ",(int)age);    int first;
     int j, k=0,jk, ju, jl;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double sum=0.;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    first=0;
      jmin=1e+5;
       }    jmax=-1;
     }    jmean=0.;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for(i=1; i<=imx; i++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      mi=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      m=firstpass;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1)
   free_vector(xp,1,npar);          mw[++mi][i]=m;
   fclose(ficresprob);        if(m >=lastpass)
            break;
 }        else
           m++;
       }/* end while */
 /******************* Printing html file ***********/      if (s[m][i] > nlstate){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        mi++;     /* Death is another wave */
                   int lastpass, int stepm, int weightopt, char model[],\        /* if(mi==0)  never been interviewed correctly before death */
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \           /* Only death is a correct wave */
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        mw[mi][i]=m;
                   char version[], int popforecast, int estepm ,\      }
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){      wav[i]=mi;
   int jj1, k1, i1, cpt;      if(mi==0){
   FILE *fichtm;        nbwarn++;
   /*char optionfilehtm[FILENAMELENGTH];*/        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcpy(optionfilehtm,optionfile);          first=1;
   strcat(optionfilehtm,".htm");        }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        if(first==1){
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   }        }
       } /* end mi==0 */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    } /* End individuals */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    for(i=1; i<=imx; i++){
 Total number of observations=%d <br>\n      for(mi=1; mi<wav[i];mi++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        if (stepm <=0)
 <hr  size=\"2\" color=\"#EC5E5E\">          dh[mi][i]=1;
  <ul><li>Parameter files<br>\n        else{
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              else if(j<0){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                nberr++;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Life expectancies by age and initial health status (estepm=%2d months):                j=1; /* Temporary Dangerous patch */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              k=k+1;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              if (j >= jmax) jmax=j;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              if (j <= jmin) jmin=j;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              sum=sum+j;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  if(popforecast==1) fprintf(fichtm,"\n            }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          else{
         <br>",fileres,fileres,fileres,fileres);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  else            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            k=k+1;
 fprintf(fichtm," <li>Graphs</li><p>");            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
  m=cptcoveff;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
  jj1=0;              nberr++;
  for(k1=1; k1<=m;k1++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(i1=1; i1<=ncodemax[k1];i1++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      jj1++;            }
      if (cptcovn > 0) {            sum=sum+j;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
        for (cpt=1; cpt<=cptcoveff;cpt++)          jk= j/stepm;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          jl= j -jk*stepm;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          ju= j -(jk+1)*stepm;
      }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      /* Pij */            if(jl==0){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              dh[mi][i]=jk;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  bh[mi][i]=0;
      /* Quasi-incidences */            }else{ /* We want a negative bias in order to only have interpolation ie
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                    * at the price of an extra matrix product in likelihood */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              dh[mi][i]=jk+1;
        /* Stable prevalence in each health state */              bh[mi][i]=ju;
        for(cpt=1; cpt<nlstate;cpt++){            }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          }else{
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(jl <= -ju){
        }              dh[mi][i]=jk;
     for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=jl;       /* bias is positive if real duration
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                                   * is higher than the multiple of stepm and negative otherwise.
 interval) in state (%d): v%s%d%d.png <br>                                   */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }            else{
      for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk+1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              bh[mi][i]=ju;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
      }            if(dh[mi][i]==0){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=1; /* At least one step */
 health expectancies in states (1) and (2): e%s%d.png<br>              bh[mi][i]=ju; /* At least one step */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 fprintf(fichtm,"\n</body>");            }
    }          } /* end if mle */
  }        }
 fclose(fichtm);      } /* end wave */
 }    }
     jmean=sum/k;
 /******************* Gnuplot file **************/    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  /*********** Tricode ****************************/
   strcpy(optionfilegnuplot,optionfilefiname);  void tricode(int *Tvar, int **nbcode, int imx)
   strcat(optionfilegnuplot,".gp.txt");  {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
     cptcoveff=0; 
 #ifdef windows   
     fprintf(ficgp,"cd \"%s\" \n",pathc);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 #endif    for (k=1; k<=7; k++) ncodemax[k]=0;
 m=pow(2,cptcoveff);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  /* 1eme*/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   for (cpt=1; cpt<= nlstate ; cpt ++) {                                 modality*/ 
    for (k1=1; k1<= m ; k1 ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
 #ifdef windows        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                                         Tvar[j]. If V=sex and male is 0 and 
 #endif                                         female is 1, then  cptcode=1.*/
 #ifdef unix      }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      for (i=0; i<=cptcode; i++) {
 #endif        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      ij=1; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=ncodemax[j]; i++) {
 }        for (k=0; k<= maxncov; k++) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          if (Ndum[k] != 0) {
     for (i=1; i<= nlstate ; i ++) {            nbcode[Tvar[j]][ij]=k; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }            ij++;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
      for (i=1; i<= nlstate ; i ++) {          if (ij > ncodemax[j]) break; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }      }  
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix   for (k=0; k< maxncov; k++) Ndum[k]=0;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif   for (i=1; i<=ncovmodel-2; i++) { 
    }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
   /*2 eme*/     Ndum[ij]++;
    }
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);   ij=1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);   for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
     for (i=1; i<= nlstate+1 ; i ++) {       Tvaraff[ij]=i; /*For printing */
       k=2*i;       ij++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     }
       for (j=1; j<= nlstate+1 ; j ++) {   }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
 }    }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*********** Health Expectancies ****************/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Health expectancies */
       fprintf(ficgp,"\" t\"\" w l 0,");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***p3mat,***varhe;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }      double **gp, **gm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double ***gradg, ***trgradg;
       else fprintf(ficgp,"\" t\"\" w l 0,");    int theta;
     }  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   /*3eme*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficreseij,"# Health expectancies\n");
       k=2+nlstate*(2*cpt-2);    fprintf(ficreseij,"# Age");
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for(j=1; j<=nlstate;j++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(ficreseij,"\n");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    if(estepm < stepm){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    }
     else  hstepm=estepm;   
 */    /* We compute the life expectancy from trapezoids spaced every estepm months
       for (i=1; i< nlstate ; i ++) {     * This is mainly to measure the difference between two models: for example
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   /* CV preval stat */     * hypothesis. A more precise result, taking into account a more precise
     for (k1=1; k1<= m ; k1 ++) {     * curvature will be obtained if estepm is as small as stepm. */
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       for (i=1; i< nlstate ; i ++)       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficgp,"+$%d",k+i+1);       and note for a fixed period like estepm months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             survival function given by stepm (the optimization length). Unfortunately it
       l=3+(nlstate+ndeath)*cpt;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (i=1; i< nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
         l=3+(nlstate+ndeath)*cpt;    */
         fprintf(ficgp,"+$%d",l+i+1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      agelim=AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }        /* nhstepm age range expressed in number of stepm */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   /* proba elementaires */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for(i=1,jk=1; i <=nlstate; i++){      /* if (stepm >= YEARM) hstepm=1;*/
     for(k=1; k <=(nlstate+ndeath); k++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if (k != i) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1; j <=ncovmodel; j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
              gp=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           jk++;  
           fprintf(ficgp,"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     }   
    }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {      /* Computing Variances of health expectancies */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)       for(theta=1; theta <=npar; theta++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        for(i=1; i<=npar; i++){ 
        else          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          fprintf(ficgp,"\nset title \"Probability\"\n");        }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        i=1;    
        for(k2=1; k2<=nlstate; k2++) {        cptj=0;
          k3=i;        for(j=1; j<= nlstate; j++){
          for(k=1; k<=(nlstate+ndeath); k++) {          for(i=1; i<=nlstate; i++){
            if (k != k2){            cptj=cptj+1;
              if(ng==2)            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {       
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=1; i<=npar; i++) 
                  ij++;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                else        
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        cptj=0;
              }        for(j=1; j<= nlstate; j++){
              fprintf(ficgp,")/(1");          for(i=1;i<=nlstate;i++){
                          cptj=cptj+1;
              for(k1=1; k1 <=nlstate; k1++){              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                for(j=3; j <=ncovmodel; j++){            }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                    ij++;        for(j=1; j<= nlstate*nlstate; j++)
                  }          for(h=0; h<=nhstepm-1; h++){
                  else            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
                }       } 
                fprintf(ficgp,")");     
              }  /* End theta */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
              i=i+ncovmodel;  
            }       for(h=0; h<=nhstepm-1; h++)
          }        for(j=1; j<=nlstate*nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
      }            trgradg[h][j][theta]=gradg[h][theta][j];
    }       
    fclose(ficgp);  
 }  /* end gnuplot */       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int i, cpt, cptcod;       for(h=0;h<=nhstepm-1;h++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(k=0;k<=nhstepm-1;k++){
       for (i=1; i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           mobaverage[(int)agedeb][i][cptcod]=0.;          for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (i=1; i<=nlstate;i++){        }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
           for (cpt=0;cpt<=4;cpt++){      /* Computing expectancies */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
     }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
 }          }
   
       fprintf(ficreseij,"%3.0f",age );
 /************** Forecasting ******************/      cptj=0;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          cptj++;
   int *popage;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;      fprintf(ficreseij,"\n");
   double ***p3mat;     
   char fileresf[FILENAMELENGTH];      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  agelim=AGESUP;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
      printf("\n");
      fprintf(ficlog,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    free_vector(xp,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   if (mobilav==1) {  {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Variance of health expectancies */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
     double **dnewm,**doldm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **dnewmp,**doldmp;
   if (stepm<=12) stepsize=1;    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   agelim=AGESUP;    double *xp;
      double **gp, **gm;  /* for var eij */
   hstepm=1;    double ***gradg, ***trgradg; /*for var eij */
   hstepm=hstepm/stepm;    double **gradgp, **trgradgp; /* for var p point j */
   yp1=modf(dateintmean,&yp);    double *gpp, *gmp; /* for var p point j */
   anprojmean=yp;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   yp2=modf((yp1*12),&yp);    double ***p3mat;
   mprojmean=yp;    double age,agelim, hf;
   yp1=modf((yp2*30.5),&yp);    double ***mobaverage;
   jprojmean=yp;    int theta;
   if(jprojmean==0) jprojmean=1;    char digit[4];
   if(mprojmean==0) jprojmean=1;    char digitp[25];
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    char fileresprobmorprev[FILENAMELENGTH];
    
   for(cptcov=1;cptcov<=i2;cptcov++){    if(popbased==1){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      if(mobilav!=0)
       k=k+1;        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficresf,"\n#******");      else strcpy(digitp,"-populbased-nomobil-");
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    else 
       }      strcpy(digitp,"-stablbased-");
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    if (mobilav!=0) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
              fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresf,"\n");      }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      }
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    strcpy(fileresprobmorprev,"prmorprev"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    sprintf(digit,"%-d",ij);
           nhstepm = nhstepm/hstepm;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
              strcat(fileresprobmorprev,digit); /* Tvar to be done */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           oldm=oldms;savm=savms;    strcat(fileresprobmorprev,fileres);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for (h=0; h<=nhstepm; h++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               kk1=0.;kk2=0;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               for(i=1; i<=nlstate;i++) {                  for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 if (mobilav==1)      fprintf(ficresprobmorprev," p.%-d SE",j);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(i=1; i<=nlstate;i++)
                 else {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }  
                 }    fprintf(ficresprobmorprev,"\n");
                    fprintf(ficgp,"\n# Routine varevsij");
               }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                 fprintf(ficresf," %.3f", kk1);  /*   } */
                            varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }  
             }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           }    fprintf(ficresvij,"# Age");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     }    fprintf(ficresvij,"\n");
   }  
            xp=vector(1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   fclose(ficresf);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    gmp=vector(nlstate+1,nlstate+ndeath);
   int *popage;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;    if(estepm < stepm){
   double ***p3mat,***tabpop,***tabpopprev;      printf ("Problem %d lower than %d\n",estepm, stepm);
   char filerespop[FILENAMELENGTH];    }
     else  hstepm=estepm;   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* For example we decided to compute the life expectancy with the smallest unit */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   agelim=AGESUP;       nhstepm is the number of hstepm from age to agelim 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   strcpy(filerespop,"pop");       means that if the survival funtion is printed every two years of age and if
   strcat(filerespop,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with forecast resultfile: %s\n", filerespop);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("Computing forecasting: result on file '%s' \n", filerespop);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (mobilav==1) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   agelim=AGESUP;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   hstepm=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=hstepm/stepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   if (popforecast==1) {        if (popbased==1) {
     if((ficpop=fopen(popfile,"r"))==NULL) {          if(mobilav ==0){
       printf("Problem with population file : %s\n",popfile);exit(0);            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
     popage=ivector(0,AGESUP);          }else{ /* mobilav */ 
     popeffectif=vector(0,AGESUP);            for(i=1; i<=nlstate;i++)
     popcount=vector(0,AGESUP);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     i=1;          }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    
            for(j=1; j<= nlstate; j++){
     imx=i;          for(h=0; h<=nhstepm; h++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   for(cptcov=1;cptcov<=i2;cptcov++){        }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* This for computing probability of death (h=1 means
       k=k+1;           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficrespop,"\n#******");           as a weighted average of prlim.
       for(j=1;j<=cptcoveff;j++) {        */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficrespop,"******\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficrespop,"# Age");        }    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        /* end probability of death */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
              for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for (cpt=0; cpt<=0;cpt++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if (popbased==1) {
           nhstepm = nhstepm/hstepm;          if(mobilav ==0){
                      for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=probs[(int)age][i][ij];
           oldm=oldms;savm=savms;          }else{ /* mobilav */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=nlstate;i++)
                      prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }        for(j=1; j<= nlstate; j++){
             for(j=1; j<=nlstate+ndeath;j++) {          for(h=0; h<=nhstepm; h++){
               kk1=0.;kk2=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {        /* This for computing probability of death (h=1 means
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];           computed over hstepm matrices product = hstepm*stepm months) 
                 }           as a weighted average of prlim.
               }        */
               if (h==(int)(calagedate+12*cpt)){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   /*fprintf(ficrespop," %.3f", kk1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        }    
               }        /* end probability of death */
             }  
             for(i=1; i<=nlstate;i++){        for(j=1; j<= nlstate; j++) /* vareij */
               kk1=0.;          for(h=0; h<=nhstepm; h++){
                 for(j=1; j<=nlstate;j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      } /* End theta */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   /******/          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(theta=1; theta <=npar; theta++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          trgradgp[j][theta]=gradgp[theta][j];
           nhstepm = nhstepm/hstepm;    
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           oldm=oldms;savm=savms;      for(i=1;i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1;j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){          vareij[i][j][(int)age] =0.;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(h=0;h<=nhstepm;h++){
             }        for(k=0;k<=nhstepm;k++){
             for(j=1; j<=nlstate+ndeath;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
               kk1=0.;kk2=0;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               for(i=1; i<=nlstate;i++) {                        for(i=1;i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for(j=1;j<=nlstate;j++)
               }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }      }
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
    }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* end ppptj */
       /*  x centered again */
   if (popforecast==1) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     free_ivector(popage,0,AGESUP);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     free_vector(popeffectif,0,AGESUP);   
     free_vector(popcount,0,AGESUP);      if (popbased==1) {
   }        if(mobilav ==0){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate;i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficrespop);        }else{ /* mobilav */ 
 }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
 /***********************************************/        }
 /**************** Main Program *****************/      }
 /***********************************************/               
       /* This for computing probability of death (h=1 means
 int main(int argc, char *argv[])         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 {         as a weighted average of prlim.
       */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double agedeb, agefin,hf;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   double fret;      /* end probability of death */
   double **xi,tmp,delta;  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double dum; /* Dummy variable */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double ***p3mat;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int *indx;        for(i=1; i<=nlstate;i++){
   char line[MAXLINE], linepar[MAXLINE];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   char title[MAXLINE];        }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      } 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      fprintf(ficresprobmorprev,"\n");
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   char filerest[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
   char fileregp[FILENAMELENGTH];          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   char popfile[FILENAMELENGTH];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      fprintf(ficresvij,"\n");
   int firstobs=1, lastobs=10;      free_matrix(gp,0,nhstepm,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      free_matrix(gm,0,nhstepm,1,nlstate);
   int c,  h , cpt,l;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   int ju,jl, mi;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    } /* End age */
   int mobilav=0,popforecast=0;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   int hstepm, nhstepm;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double bage, fage, age, agelim, agebase;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double ftolpl=FTOL;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double **prlim;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double *severity;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double ***param; /* Matrix of parameters */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double  *p;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double **matcov; /* Matrix of covariance */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   double ***delti3; /* Scale */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   double *delti; /* Scale */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double ***eij, ***vareij;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double **varpl; /* Variances of prevalence limits by age */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double *epj, vepp;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double kk1, kk2;  */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   char version[80]="Imach version 0.8f, May 2002, INED-EUROREVES ";    free_vector(xp,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char z[1]="c", occ;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 #include <sys/time.h>    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #include <time.h>    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fclose(ficresprobmorprev);
      fflush(ficgp);
   /* long total_usecs;    fflush(fichtm); 
   struct timeval start_time, end_time;  }  /* end varevsij */
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /************ Variance of prevlim ******************/
   getcwd(pathcd, size);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   printf("\n%s",version);    /* Variance of prevalence limit */
   if(argc <=1){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("\nEnter the parameter file name: ");    double **newm;
     scanf("%s",pathtot);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   else{    int k, cptcode;
     strcpy(pathtot,argv[1]);    double *xp;
   }    double *gp, *gm;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **gradg, **trgradg;
   /*cygwin_split_path(pathtot,path,optionfile);    double age,agelim;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int theta;
   /* cutv(path,optionfile,pathtot,'\\');*/     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvpl,"# Age");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1; i<=nlstate;i++)
   chdir(path);        fprintf(ficresvpl," %1d-%1d",i,i);
   replace(pathc,path);    fprintf(ficresvpl,"\n");
   
 /*-------- arguments in the command line --------*/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   strcpy(fileres,"r");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(fileres, optionfilefiname);    
   strcat(fileres,".txt");    /* Other files have txt extension */    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /*---------arguments file --------*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Problem with optionfile %s\n",optionfile);      if (stepm >= YEARM) hstepm=1;
     goto end;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   strcpy(filereso,"o");      gm=vector(1,nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /* Reads comments: lines beginning with '#' */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gp[i] = prlim[i][i];
     fgets(line, MAXLINE, ficpar);      
     puts(line);        for(i=1; i<=npar; i++) /* Computes gradient */
     fputs(line,ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 while((c=getc(ficpar))=='#' && c!= EOF){      } /* End theta */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      trgradg =matrix(1,nlstate,1,npar);
     puts(line);  
     fputs(line,ficparo);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);          trgradg[j][theta]=gradg[theta][j];
    
          for(i=1;i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);        varpl[i][(int)age] =0.;
   cptcovn=0;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   ncovmodel=2+cptcovn;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        fprintf(ficresvpl,"%.0f ",age );
   /* Read guess parameters */      for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);      free_vector(gp,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_vector(gm,1,nlstate);
     puts(line);      free_matrix(gradg,1,npar,1,nlstate);
     fputs(line,ficparo);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   ungetc(c,ficpar);  
      free_vector(xp,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(doldm,1,nlstate,1,npar);
     for(i=1; i <=nlstate; i++)    free_matrix(dnewm,1,nlstate,1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /************ Variance of one-step probabilities  ******************/
       for(k=1; k<=ncovmodel;k++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         fscanf(ficpar," %lf",&param[i][j][k]);  {
         printf(" %lf",param[i][j][k]);    int i, j=0,  i1, k1, l1, t, tj;
         fprintf(ficparo," %lf",param[i][j][k]);    int k2, l2, j1,  z1;
       }    int k=0,l, cptcode;
       fscanf(ficpar,"\n");    int first=1, first1;
       printf("\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficparo,"\n");    double **dnewm,**doldm;
     }    double *xp;
      double *gp, *gm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double **gradg, **trgradg;
     double **mu;
   p=param[1][1];    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* Reads comments: lines beginning with '#' */    int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      printf("Problem with resultfile: %s\n", fileresprob);
   for(i=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcpy(fileresprobcov,"probcov"); 
       printf("%1d%1d",i,j);    strcat(fileresprobcov,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for(k=1; k<=ncovmodel;k++){      printf("Problem with resultfile: %s\n", fileresprobcov);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    strcpy(fileresprobcor,"probcor"); 
       }    strcat(fileresprobcor,fileres);
       fscanf(ficpar,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   delti=delti3[1][1];    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fgets(line, MAXLINE, ficpar);    
     puts(line);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fputs(line,ficparo);    fprintf(ficresprob,"# Age");
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   ungetc(c,ficpar);    fprintf(ficresprobcov,"# Age");
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   matcov=matrix(1,npar,1,npar);    fprintf(ficresprobcov,"# Age");
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);    for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"%s",str);      for(j=1; j<=(nlstate+ndeath);j++){
     for(j=1; j <=i; j++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fscanf(ficpar," %le",&matcov[i][j]);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       printf(" %.5le",matcov[i][j]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficparo," %.5le",matcov[i][j]);      }  
     }   /* fprintf(ficresprob,"\n");
     fscanf(ficpar,"\n");    fprintf(ficresprobcov,"\n");
     printf("\n");    fprintf(ficresprobcor,"\n");
     fprintf(ficparo,"\n");   */
   }   xp=vector(1,npar);
   for(i=1; i <=npar; i++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=i+1;j<=npar;j++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       matcov[i][j]=matcov[j][i];    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   printf("\n");    first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     /*-------- Rewriting paramater file ----------*/    fprintf(fichtm,"\n");
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
      strcat(rfileres,".");    /* */    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    file %s<br>\n",optionfilehtmcov);
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(ficres,"#%s\n",version);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     /*-------- data file ----------*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     if((fic=fopen(datafile,"r"))==NULL)    {  standard deviations wide on each axis. <br>\
       printf("Problem with datafile: %s\n", datafile);goto end;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     n= lastobs;  
     severity = vector(1,maxwav);    cov[1]=1;
     outcome=imatrix(1,maxwav+1,1,n);    tj=cptcoveff;
     num=ivector(1,n);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     moisnais=vector(1,n);    j1=0;
     annais=vector(1,n);    for(t=1; t<=tj;t++){
     moisdc=vector(1,n);      for(i1=1; i1<=ncodemax[t];i1++){ 
     andc=vector(1,n);        j1++;
     agedc=vector(1,n);        if  (cptcovn>0) {
     cod=ivector(1,n);          fprintf(ficresprob, "\n#********** Variable "); 
     weight=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresprob, "**********\n#\n");
     mint=matrix(1,maxwav,1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
     anint=matrix(1,maxwav,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobcov, "**********\n#\n");
     adl=imatrix(1,maxwav+1,1,n);              
     tab=ivector(1,NCOVMAX);          fprintf(ficgp, "\n#********** Variable "); 
     ncodemax=ivector(1,8);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
     i=1;          
     while (fgets(line, MAXLINE, fic) != NULL)    {          
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (j=maxwav;j>=1;j--){          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          
           strcpy(line,stra);          fprintf(ficresprobcor, "\n#********** Variable ");    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "**********\n#");    
         }        }
                
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (age=bage; age<=fage; age ++){ 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovprod;k++)
         for (j=ncovcol;j>=1;j--){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
         }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         num[i]=atol(stra);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                  gp=vector(1,(nlstate)*(nlstate+ndeath));
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          gm=vector(1,(nlstate)*(nlstate+ndeath));
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      
           for(theta=1; theta <=npar; theta++){
         i=i+1;            for(i=1; i<=npar; i++)
       }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
     /* printf("ii=%d", ij);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        scanf("%d",i);*/            
   imx=i-1; /* Number of individuals */            k=0;
             for(i=1; i<= (nlstate); i++){
   /* for (i=1; i<=imx; i++){              for(j=1; j<=(nlstate+ndeath);j++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                k=k+1;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                gp[k]=pmmij[i][j];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              }
     }*/            }
    /*  for (i=1; i<=imx; i++){            
      if (s[4][i]==9)  s[4][i]=-1;            for(i=1; i<=npar; i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /* Calculation of the number of parameter from char model*/            k=0;
   Tvar=ivector(1,15);            for(i=1; i<=(nlstate); i++){
   Tprod=ivector(1,15);              for(j=1; j<=(nlstate+ndeath);j++){
   Tvaraff=ivector(1,15);                k=k+1;
   Tvard=imatrix(1,15,1,2);                gm[k]=pmmij[i][j];
   Tage=ivector(1,15);                    }
                }
   if (strlen(model) >1){       
     j=0, j1=0, k1=1, k2=1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     j=nbocc(model,'+');              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     j1=nbocc(model,'*');          }
     cptcovn=j+1;  
     cptcovprod=j1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
     strcpy(modelsav,model);              trgradg[j][theta]=gradg[theta][j];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          
       printf("Error. Non available option model=%s ",model);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       goto end;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     for(i=(j+1); i>=1;i--){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       cutv(stra,strb,modelsav,'+');          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
       /*scanf("%d",i);*/          
       if (strchr(strb,'*')) {          k=0;
         cutv(strd,strc,strb,'*');          for(i=1; i<=(nlstate); i++){
         if (strcmp(strc,"age")==0) {            for(j=1; j<=(nlstate+ndeath);j++){
           cptcovprod--;              k=k+1;
           cutv(strb,stre,strd,'V');              mu[k][(int) age]=pmmij[i][j];
           Tvar[i]=atoi(stre);            }
           cptcovage++;          }
             Tage[cptcovage]=i;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             /*printf("stre=%s ", stre);*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         }              varpij[i][j][(int)age] = doldm[i][j];
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;          /*printf("\n%d ",(int)age);
           cutv(strb,stre,strc,'V');            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tvar[i]=atoi(stre);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           cptcovage++;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           Tage[cptcovage]=i;            }*/
         }  
         else {          fprintf(ficresprob,"\n%d ",(int)age);
           cutv(strb,stre,strc,'V');          fprintf(ficresprobcov,"\n%d ",(int)age);
           Tvar[i]=ncovcol+k1;          fprintf(ficresprobcor,"\n%d ",(int)age);
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           Tvard[k1][1]=atoi(strc);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           Tvard[k1][2]=atoi(stre);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tvar[cptcovn+k2]=Tvard[k1][1];            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           for (k=1; k<=lastobs;k++)          }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          i=0;
           k1++;          for (k=1; k<=(nlstate);k++){
           k2=k2+2;            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       else {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              for (j=1; j<=i;j++){
        /*  scanf("%d",i);*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       cutv(strd,strc,strb,'V');                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       Tvar[i]=atoi(strc);              }
       }            }
       strcpy(modelsav,stra);            }/* end of loop for state */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        } /* end of loop for age */
         scanf("%d",i);*/  
     }        /* Confidence intervalle of pij  */
 }        /*
            fprintf(ficgp,"\nset noparametric;unset label");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   scanf("%d ",i);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fclose(fic);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     /*  if(mle==1){*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     if (weightopt != 1) { /* Maximisation without weights*/        */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     /*-calculation of age at interview from date of interview and age at death -*/        first1=1;
     agev=matrix(1,maxwav,1,imx);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     for (i=1; i<=imx; i++) {            if(l2==k2) continue;
       for(m=2; (m<= maxwav); m++) {            j=(k2-1)*(nlstate+ndeath)+l2;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for (k1=1; k1<=(nlstate);k1++){
          anint[m][i]=9999;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
          s[m][i]=-1;                if(l1==k1) continue;
        }                i=(k1-1)*(nlstate+ndeath)+l1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
     }                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     for (i=1; i<=imx; i++)  {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       for(m=1; (m<= maxwav); m++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
         if(s[m][i] >0){                    mu2=mu[j][(int) age]/stepm*YEARM;
           if (s[m][i] >= nlstate+1) {                    c12=cv12/sqrt(v1*v2);
             if(agedc[i]>0)                    /* Computing eigen value of matrix of covariance */
               if(moisdc[i]!=99 && andc[i]!=9999)                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                 agev[m][i]=agedc[i];                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    /* Eigen vectors */
            else {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               if (andc[i]!=9999){                    /*v21=sqrt(1.-v11*v11); *//* error */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    v21=(lc1-v1)/cv12*v11;
               agev[m][i]=-1;                    v12=-v21;
               }                    v22=v11;
             }                    tnalp=v21/v11;
           }                    if(first1==1){
           else if(s[m][i] !=9){ /* Should no more exist */                      first1=0;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             if(mint[m][i]==99 || anint[m][i]==9999)                    }
               agev[m][i]=1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             else if(agev[m][i] <agemin){                    /*printf(fignu*/
               agemin=agev[m][i];                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             }                    if(first==1){
             else if(agev[m][i] >agemax){                      first=0;
               agemax=agev[m][i];                      fprintf(ficgp,"\nset parametric;unset label");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             /*agev[m][i]=anint[m][i]-annais[i];*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             /*   agev[m][i] = age[i]+2*m;*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           else { /* =9 */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             agev[m][i]=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             s[m][i]=-1;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else /*= 0 Unknown */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           agev[m][i]=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for (i=1; i<=imx; i++)  {                    }else{
       for(m=1; (m<= maxwav); m++){                      first=0;
         if (s[m][i] > (nlstate+ndeath)) {                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           printf("Error: Wrong value in nlstate or ndeath\n");                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                  } /* age mod 5 */
                 } /* end loop age */
     free_vector(severity,1,maxwav);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_imatrix(outcome,1,maxwav+1,1,n);                first=1;
     free_vector(moisnais,1,n);              } /*l12 */
     free_vector(annais,1,n);            } /* k12 */
     /* free_matrix(mint,1,maxwav,1,n);          } /*l1 */
        free_matrix(anint,1,maxwav,1,n);*/        }/* k1 */
     free_vector(moisdc,1,n);      } /* loop covariates */
     free_vector(andc,1,n);    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     wav=ivector(1,imx);    free_vector(xp,1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fclose(ficresprob);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    fclose(ficresprobcov);
        fclose(ficresprobcor);
     /* Concatenates waves */    fflush(ficgp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fflush(fichtmcov);
   }
   
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /******************* Printing html file ***********/
       ncodemax[1]=1;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    int lastpass, int stepm, int weightopt, char model[],\
                          int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    codtab=imatrix(1,100,1,10);                    int popforecast, int estepm ,\
    h=0;                    double jprev1, double mprev1,double anprev1, \
    m=pow(2,cptcoveff);                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
    for(k=1;k<=cptcoveff; k++){    /*char optionfilehtm[FILENAMELENGTH];*/
      for(i=1; i <=(m/pow(2,k));i++){  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
        for(j=1; j <= ncodemax[k]; j++){  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
            h++;  /*   } */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
          }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
        }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
      }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    }   - Life expectancies by age and initial health status (estepm=%2d months): \
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     <a href=\"%s\">%s</a> <br>\n</li>", \
       codtab[1][2]=1;codtab[2][2]=2; */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
    /* for(i=1; i <=m ;i++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
       for(k=1; k <=cptcovn; k++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       }  
       printf("\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       }  
       scanf("%d",i);*/   m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */   jj1=0;
    for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       if (cptcovn > 0) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         for (cpt=1; cpt<=cptcoveff;cpt++) 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             }
     /* For Powell, parameters are in a vector p[] starting at p[1]       /* Pij */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
     if(mle==1){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             /* Stable prevalence in each health state */
     /*--------- results files --------------*/         for(cpt=1; cpt<nlstate;cpt++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
    jk=1;       for(cpt=1; cpt<=nlstate;cpt++) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
    for(i=1,jk=1; i <=nlstate; i++){       }
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
        if (k != i)  health expectancies in states (1) and (2): %s%d.png<br>\
          {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
            printf("%d%d ",i,k);     } /* end i1 */
            fprintf(ficres,"%1d%1d ",i,k);   }/* End k1 */
            for(j=1; j <=ncovmodel; j++){   fprintf(fichtm,"</ul>");
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  
              jk++;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
            }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
            printf("\n");   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
            fprintf(ficres,"\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
          }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
      }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
  if(mle==1){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     /* Computing hessian and covariance matrix */           rfileres,rfileres,\
     ftolhess=ftol; /* Usually correct */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     hesscov(matcov, p, npar, delti, ftolhess, func);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
  }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     printf("# Scales (for hessian or gradient estimation)\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
      for(i=1,jk=1; i <=nlstate; i++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {  /*  if(popforecast==1) fprintf(fichtm,"\n */
           fprintf(ficres,"%1d%1d",i,j);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           printf("%1d%1d",i,j);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           for(k=1; k<=ncovmodel;k++){  /*      <br>",fileres,fileres,fileres,fileres); */
             printf(" %.5e",delti[jk]);  /*  else  */
             fprintf(ficres," %.5e",delti[jk]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
             jk++;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           }  
           printf("\n");   m=cptcoveff;
           fprintf(ficres,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         }  
       }   jj1=0;
      }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     k=1;       jj1++;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       if (cptcovn > 0) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(i=1;i<=npar;i++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
       /*  if (k>nlstate) k=1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       i1=(i-1)/(ncovmodel*nlstate)+1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       }
       printf("%s%d%d",alph[k],i1,tab[i]);*/       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficres,"%3d",i);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
       printf("%3d",i);  interval) in state (%d): %s%d%d.png <br>\
       for(j=1; j<=i;j++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficres," %.5e",matcov[i][j]);       }
         printf(" %.5e",matcov[i][j]);     } /* end i1 */
       }   }/* End k1 */
       fprintf(ficres,"\n");   fprintf(fichtm,"</ul>");
       printf("\n");   fflush(fichtm);
       k++;  }
     }  
      /******************* Gnuplot file **************/
     while((c=getc(ficpar))=='#' && c!= EOF){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    char dirfileres[132],optfileres[132];
       puts(line);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fputs(line,ficparo);    int ng;
     }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     ungetc(c,ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
     estepm=0;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*   } */
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {    /*#ifdef windows */
       bage = ageminpar;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fage = agemaxpar;      /*#endif */
     }    m=pow(2,cptcoveff);
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    strcpy(dirfileres,optionfilefiname);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    strcpy(optfileres,"vpl");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){     for (k1=1; k1<= m ; k1 ++) {
     ungetc(c,ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     puts(line);       fprintf(ficgp,"set xlabel \"Age\" \n\
     fputs(line,ficparo);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   ungetc(c,ficpar);  set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       for (i=1; i<= nlstate ; i ++) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         else fprintf(ficgp," \%%*lf (\%%*lf)");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fscanf(ficpar,"pop_based=%d\n",&popbased);     }
   fprintf(ficparo,"pop_based=%d\n",popbased);      }
   fprintf(ficres,"pop_based=%d\n",popbased);      /*2 eme*/
      
   while((c=getc(ficpar))=='#' && c!= EOF){    for (k1=1; k1<= m ; k1 ++) { 
     ungetc(c,ficpar);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fgets(line, MAXLINE, ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     puts(line);      
     fputs(line,ficparo);      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   ungetc(c,ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
     fgets(line, MAXLINE, ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);        }   
   }        fprintf(ficgp,"\" t\"\" w l 0,");
   ungetc(c,ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        else fprintf(ficgp,"\" t\"\" w l 0,");
       }
 /*------------ gnuplot -------------*/    }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    
      /*3eme*/
 /*------------ free_vector  -------------*/    
  chdir(path);    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
  free_ivector(wav,1,imx);        k=2+nlstate*(2*cpt-2);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"set ter png small\n\
  free_ivector(num,1,n);  set size 0.65,0.65\n\
  free_vector(agedc,1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  fclose(ficparo);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  fclose(ficres);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 /*--------- index.htm --------*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          
         */
          for (i=1; i< nlstate ; i ++) {
   /*--------------- Prevalence limit --------------*/          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
            
   strcpy(filerespl,"pl");        } 
   strcat(filerespl,fileres);      }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    /* CV preval stable (period) */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficrespl,"#Prevalence limit\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
   fprintf(ficrespl,"#Age ");        k=3;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fprintf(ficrespl,"\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   prlim=matrix(1,nlstate,1,nlstate);  unset log y\n\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i< nlstate ; i ++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"+$%d",k+i+1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   k=0;        
   agebase=ageminpar;        l=3+(nlstate+ndeath)*cpt;
   agelim=agemaxpar;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   ftolpl=1.e-10;        for (i=1; i< nlstate ; i ++) {
   i1=cptcoveff;          l=3+(nlstate+ndeath)*cpt;
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"+$%d",l+i+1);
         }
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
         k=k+1;    }  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");    /* proba elementaires */
         for(j=1;j<=cptcoveff;j++)    for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrespl,"******\n");        if (k != i) {
                  for(j=1; j <=ncovmodel; j++){
         for (age=agebase; age<=agelim; age++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            jk++; 
           fprintf(ficrespl,"%.0f",age );            fprintf(ficgp,"\n");
           for(i=1; i<=nlstate;i++)          }
           fprintf(ficrespl," %.5f", prlim[i][i]);        }
           fprintf(ficrespl,"\n");      }
         }     }
       }  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fclose(ficrespl);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   /*------------- h Pij x at various ages ------------*/         if (ng==2)
             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);         else
   if((ficrespij=fopen(filerespij,"w"))==NULL) {           fprintf(ficgp,"\nset title \"Probability\"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   }         i=1;
   printf("Computing pij: result on file '%s' \n", filerespij);         for(k2=1; k2<=nlstate; k2++) {
             k3=i;
   stepsize=(int) (stepm+YEARM-1)/YEARM;           for(k=1; k<=(nlstate+ndeath); k++) {
   /*if (stepm<=24) stepsize=2;*/             if (k != k2){
                if(ng==2)
   agelim=AGESUP;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   hstepm=stepsize*YEARM; /* Every year of age */               else
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
   k=0;               for(j=3; j <=ncovmodel; j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k=k+1;                   ij++;
         fprintf(ficrespij,"\n#****** ");                 }
         for(j=1;j<=cptcoveff;j++)                 else
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficrespij,"******\n");               }
                       fprintf(ficgp,")/(1");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */               
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               for(k1=1; k1 <=nlstate; k1++){   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 ij=1;
           oldm=oldms;savm=savms;                 for(j=3; j <=ncovmodel; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           fprintf(ficrespij,"# Age");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           for(i=1; i<=nlstate;i++)                     ij++;
             for(j=1; j<=nlstate+ndeath;j++)                   }
               fprintf(ficrespij," %1d-%1d",i,j);                   else
           fprintf(ficrespij,"\n");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            for (h=0; h<=nhstepm; h++){                 }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                 fprintf(ficgp,")");
             for(i=1; i<=nlstate;i++)               }
               for(j=1; j<=nlstate+ndeath;j++)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
             fprintf(ficrespij,"\n");               i=i+ncovmodel;
              }             }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           } /* end k */
           fprintf(ficrespij,"\n");         } /* end k2 */
         }       } /* end jk */
     }     } /* end ng */
   }     fflush(ficgp); 
   }  /* end gnuplot */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
   
   fclose(ficrespij);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   /*---------- Forecasting ------------------*/    int i, cpt, cptcod;
   if((stepm == 1) && (strcmp(model,".")==0)){    int modcovmax =1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int mobilavrange, mob;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double age;
   }  
   else{    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     erreur=108;                             a covariate has 2 modalities */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   /*---------- Health expectancies and variances ------------*/      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   strcpy(filerest,"t");        for (i=1; i<=nlstate;i++)
   strcat(filerest,fileres);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if((ficrest=fopen(filerest,"w"))==NULL) {            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* We keep the original values on the extreme ages bage, fage and for 
   }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcpy(filerese,"e");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   strcat(filerese,fileres);          for (i=1; i<=nlstate;i++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  strcpy(fileresv,"v");                }
   strcat(fileresv,fileres);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          }
   }        }/* end age */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }/* end mob */
   calagedate=-1;    }else return -1;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    return 0;
   }/* End movingaverage */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /************** Forecasting ******************/
       k=k+1;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       fprintf(ficrest,"\n#****** ");    /* proj1, year, month, day of starting projection 
       for(j=1;j<=cptcoveff;j++)       agemin, agemax range of age
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       dateprev1 dateprev2 range of dates during which prevalence is computed
       fprintf(ficrest,"******\n");       anproj2 year of en of projection (same day and month as proj1).
     */
       fprintf(ficreseij,"\n#****** ");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       for(j=1;j<=cptcoveff;j++)    int *popage;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agec; /* generic age */
       fprintf(ficreseij,"******\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
       fprintf(ficresvij,"\n#****** ");    double ***p3mat;
       for(j=1;j<=cptcoveff;j++)    double ***mobaverage;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresf[FILENAMELENGTH];
       fprintf(ficresvij,"******\n");  
     agelim=AGESUP;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       oldm=oldms;savm=savms;   
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      strcpy(fileresf,"f"); 
      strcat(fileresf,fileres);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem with forecast resultfile: %s\n", fileresf);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
        }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficrest,"\n");  
     if (mobilav!=0) {
       epj=vector(1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(age=bage; age <=fage ;age++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         if (popbased==1) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<=nlstate;i++)      }
             prlim[i][i]=probs[(int)age][i][k];    }
         }  
            stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest," %4.0f",age);    if (stepm<=12) stepsize=1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    if(estepm < stepm){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    else  hstepm=estepm;   
           }  
           epj[nlstate+1] +=epj[j];    hstepm=hstepm/stepm; 
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
         for(i=1, vepp=0.;i <=nlstate;i++)    anprojmean=yp;
           for(j=1;j <=nlstate;j++)    yp2=modf((yp1*12),&yp);
             vepp += vareij[i][j][(int)age];    mprojmean=yp;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    yp1=modf((yp2*30.5),&yp);
         for(j=1;j <=nlstate;j++){    jprojmean=yp;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    if(jprojmean==0) jprojmean=1;
         }    if(mprojmean==0) jprojmean=1;
         fprintf(ficrest,"\n");  
       }    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
   }    
 free_matrix(mint,1,maxwav,1,n);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   fclose(ficreseij);  
   fclose(ficresvij);  /*            if (h==(int)(YEARM*yearp)){ */
   fclose(ficrest);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fclose(ficpar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_vector(epj,1,nlstate+1);        k=k+1;
          fprintf(ficresf,"\n#******");
   /*------- Variance limit prevalence------*/          for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);        fprintf(ficresf,"******\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(j=1; j<=nlstate+ndeath;j++){ 
     exit(0);          for(i=1; i<=nlstate;i++)              
   }            fprintf(ficresf," p%d%d",i,j);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficresf," p.%d",j);
         }
   k=0;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresf,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       for(j=1;j<=cptcoveff;j++)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm = nhstepm/hstepm; 
       fprintf(ficresvpl,"******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  oldm=oldms;savm=savms;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for (h=0; h<=nhstepm; h++){
     }              if (h*hstepm/YEARM*stepm ==yearp) {
  }                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
   fclose(ficresvpl);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /*---------- End : free ----------------*/              } 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                for(i=1; i<=nlstate;i++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                    else {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                  if (h*hstepm/YEARM*stepm== yearp) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   free_matrix(matcov,1,npar,1,npar);                } /* end i */
   free_vector(delti,1,npar);                if (h*hstepm/YEARM*stepm==yearp) {
   free_matrix(agev,1,maxwav,1,imx);                  fprintf(ficresf," %.3f", ppij);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                }
               }/* end j */
   if(erreur >0)            } /* end h */
     printf("End of Imach with error or warning %d\n",erreur);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else   printf("End of Imach\n");          } /* end agec */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        } /* end yearp */
        } /* end cptcod */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    } /* end  cptcov */
   /*printf("Total time was %d uSec.\n", total_usecs);*/         
   /*------ End -----------*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
  end:  }
 #ifdef windows  
   /* chdir(pathcd);*/  /************** Forecasting *****not tested NB*************/
 #endif  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
  /*system("wgnuplot graph.plt");*/    
  /*system("../gp37mgw/wgnuplot graph.plt");*/    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
  /*system("cd ../gp37mgw");*/    int *popage;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    double calagedatem, agelim, kk1, kk2;
  strcpy(plotcmd,GNUPLOTPROGRAM);    double *popeffectif,*popcount;
  strcat(plotcmd," ");    double ***p3mat,***tabpop,***tabpopprev;
  strcat(plotcmd,optionfilegnuplot);    double ***mobaverage;
  system(plotcmd);    char filerespop[FILENAMELENGTH];
   
 #ifdef windows    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while (z[0] != 'q') {    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* chdir(path); */    agelim=AGESUP;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     scanf("%s",z);    
     if (z[0] == 'c') system("./imach");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     else if (z[0] == 'e') system(optionfilehtm);    
     else if (z[0] == 'g') system(plotcmd);    
     else if (z[0] == 'q') exit(0);    strcpy(filerespop,"pop"); 
   }    strcat(filerespop,fileres);
 #endif    if((ficrespop=fopen(filerespop,"w"))==NULL) {
 }      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.45  
changed lines
  Added in v.1.94


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>