Diff for /imach/src/imach.c between versions 1.96 and 1.125

version 1.96, 2003/07/15 15:38:55 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Errors in calculation of health expectancies. Age was not initialized.
   rewritten within the same printf. Workaround: many printfs.    Forecasting file added.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   * imach.c (Repository):    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Repository): Using imachwizard code to output a more meaningful covariance    The log-likelihood is printed in the log file
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   Just cleaning    name. <head> headers where missing.
   
   Revision 1.93  2003/06/25 16:33:55  brouard    * imach.c (Module): Weights can have a decimal point as for
   (Module): On windows (cygwin) function asctime_r doesn't    English (a comma might work with a correct LC_NUMERIC environment,
   exist so I changed back to asctime which exists.    otherwise the weight is truncated).
   (Module): Version 0.96b    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.92  2003/06/25 16:30:45  brouard    Version 0.98g
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.91  2003/06/25 15:30:29  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   * imach.c (Repository): Duplicated warning errors corrected.    otherwise the weight is truncated).
   (Repository): Elapsed time after each iteration is now output. It    Modification of warning when the covariates values are not 0 or
   helps to forecast when convergence will be reached. Elapsed time    1.
   is stamped in powell.  We created a new html file for the graphs    Version 0.98g
   concerning matrix of covariance. It has extension -cov.htm.  
     Revision 1.121  2006/03/16 17:45:01  lievre
   Revision 1.90  2003/06/24 12:34:15  brouard    * imach.c (Module): Comments concerning covariates added
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    * imach.c (Module): refinements in the computation of lli if
   of the covariance matrix to be input.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.89  2003/06/24 12:30:52  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.120  2006/03/16 15:10:38  lievre
   mle=-1 a template is output in file "or"mypar.txt with the design    (Module): refinements in the computation of lli if
   of the covariance matrix to be input.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.88  2003/06/23 17:54:56  brouard  
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Revision 1.87  2003/06/18 12:26:01  brouard    computed as likelihood omitting the logarithm. Version O.98e
   Version 0.96  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): varevsij Comments added explaining the second
   (Module): Change position of html and gnuplot routines and added    table of variances if popbased=1 .
   routine fileappend.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.85  2003/06/17 13:12:43  brouard    (Module): Version 0.98d
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.117  2006/03/14 17:16:22  brouard
   prior to the death. In this case, dh was negative and likelihood    (Module): varevsij Comments added explaining the second
   was wrong (infinity). We still send an "Error" but patch by    table of variances if popbased=1 .
   assuming that the date of death was just one stepm after the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   interview.    (Module): Function pstamp added
   (Repository): Because some people have very long ID (first column)    (Module): Version 0.98d
   we changed int to long in num[] and we added a new lvector for  
   memory allocation. But we also truncated to 8 characters (left    Revision 1.116  2006/03/06 10:29:27  brouard
   truncation)    (Module): Variance-covariance wrong links and
   (Repository): No more line truncation errors.    varian-covariance of ej. is needed (Saito).
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    (Module): One freematrix added in mlikeli! 0.98c
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Revision 1.114  2006/02/26 12:57:58  brouard
   parcimony.    (Module): Some improvements in processing parameter
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    filename with strsep.
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.113  2006/02/24 14:20:24  brouard
   *** empty log message ***    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Revision 1.82  2003/06/05 15:57:20  brouard    allocation too.
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.112  2006/01/30 09:55:26  brouard
 */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /*  
    Interpolated Markov Chain    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Short summary of the programme:    (Module): Comments can be added in data file. Missing date values
       can be a simple dot '.'.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.110  2006/01/25 00:51:50  brouard
   first survey ("cross") where individuals from different ages are    (Module): Lots of cleaning and bugs added (Gompertz)
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.109  2006/01/24 19:37:15  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Comments (lines starting with a #) are allowed in data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.108  2006/01/19 18:05:42  lievre
   model. More health states you consider, more time is necessary to reach the    Gnuplot problem appeared...
   Maximum Likelihood of the parameters involved in the model.  The    To be fixed
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.107  2006/01/19 16:20:37  brouard
   conditional to be observed in state i at the first wave. Therefore    Test existence of gnuplot in imach path
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.106  2006/01/19 13:24:36  brouard
   complex model than "constant and age", you should modify the program    Some cleaning and links added in html output
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.105  2006/01/05 20:23:19  lievre
   convergence.    *** empty log message ***
   
   The advantage of this computer programme, compared to a simple    Revision 1.104  2005/09/30 16:11:43  lievre
   multinomial logistic model, is clear when the delay between waves is not    (Module): sump fixed, loop imx fixed, and simplifications.
   identical for each individual. Also, if a individual missed an    (Module): If the status is missing at the last wave but we know
   intermediate interview, the information is lost, but taken into    that the person is alive, then we can code his/her status as -2
   account using an interpolation or extrapolation.      (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   hPijx is the probability to be observed in state i at age x+h    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   conditional to the observed state i at age x. The delay 'h' can be    the healthy state at last known wave). Version is 0.98
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.103  2005/09/30 15:54:49  lievre
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): sump fixed, loop imx fixed, and simplifications.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.102  2004/09/15 17:31:30  brouard
   hPijx.    Add the possibility to read data file including tab characters.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.101  2004/09/15 10:38:38  brouard
   of the life expectancies. It also computes the stable prevalence.     Fix on curr_time
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.100  2004/07/12 18:29:06  brouard
            Institut national d'études démographiques, Paris.    Add version for Mac OS X. Just define UNIX in Makefile
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.99  2004/06/05 08:57:40  brouard
   It is copyrighted identically to a GNU software product, ie programme and    *** empty log message ***
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    directly from the data i.e. without the need of knowing the health
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    state at each age, but using a Gompertz model: log u =a + b*age .
       This is the basic analysis of mortality and should be done before any
   **********************************************************************/    other analysis, in order to test if the mortality estimated from the
 /*    cross-longitudinal survey is different from the mortality estimated
   main    from other sources like vital statistic data.
   read parameterfile  
   read datafile    The same imach parameter file can be used but the option for mle should be -3.
   concatwav  
   freqsummary    Agnès, who wrote this part of the code, tried to keep most of the
   if (mle >= 1)    former routines in order to include the new code within the former code.
     mlikeli  
   print results files    The output is very simple: only an estimate of the intercept and of
   if mle==1     the slope with 95% confident intervals.
      computes hessian  
   read end of parameter file: agemin, agemax, bage, fage, estepm    Current limitations:
       begin-prev-date,...    A) Even if you enter covariates, i.e. with the
   open gnuplot file    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   open html file    B) There is no computation of Life Expectancy nor Life Table.
   stable prevalence  
    for age prevalim()    Revision 1.97  2004/02/20 13:25:42  lievre
   h Pij x    Version 0.96d. Population forecasting command line is (temporarily)
   variance of p varprob    suppressed.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.96  2003/07/15 15:38:55  brouard
   Variance-covariance of DFLE    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   prevalence()    rewritten within the same printf. Workaround: many printfs.
    movingaverage()  
   varevsij()     Revision 1.95  2003/07/08 07:54:34  brouard
   if popbased==1 varevsij(,popbased)    * imach.c (Repository):
   total life expectancies    (Repository): Using imachwizard code to output a more meaningful covariance
   Variance of stable prevalence    matrix (cov(a12,c31) instead of numbers.
  end  
 */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   
     Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
 #include <math.h>    exist so I changed back to asctime which exists.
 #include <stdio.h>    (Module): Version 0.96b
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #include <sys/time.h>    exist so I changed back to asctime which exists.
 #include <time.h>  
 #include "timeval.h"    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /* #include <libintl.h> */    (Repository): Elapsed time after each iteration is now output. It
 /* #define _(String) gettext (String) */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define MAXLINE 256    concerning matrix of covariance. It has extension -cov.htm.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.90  2003/06/24 12:34:15  brouard
 #define FILENAMELENGTH 132    (Module): Some bugs corrected for windows. Also, when
 /*#define DEBUG*/    mle=-1 a template is output in file "or"mypar.txt with the design
 /*#define windows*/    of the covariance matrix to be input.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    of the covariance matrix to be input.
   
 #define NINTERVMAX 8    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define MAXN 20000    Version 0.96
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.86  2003/06/17 20:04:08  brouard
 #define AGEBASE 40    (Module): Change position of html and gnuplot routines and added
 #ifdef unix    routine fileappend.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.85  2003/06/17 13:12:43  brouard
 #else    * imach.c (Repository): Check when date of death was earlier that
 #define DIRSEPARATOR '\\'    current date of interview. It may happen when the death was just
 #define ODIRSEPARATOR '/'    prior to the death. In this case, dh was negative and likelihood
 #endif    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /* $Id$ */    interview.
 /* $State$ */    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 char version[]="Imach version 0.96c, July 2003, INED-EUROREVES ";    memory allocation. But we also truncated to 8 characters (left
 char fullversion[]="$Revision$ $Date$";     truncation)
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    (Repository): No more line truncation errors.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.84  2003/06/13 21:44:43  brouard
 int npar=NPARMAX;    * imach.c (Repository): Replace "freqsummary" at a correct
 int nlstate=2; /* Number of live states */    place. It differs from routine "prevalence" which may be called
 int ndeath=1; /* Number of dead states */    many times. Probs is memory consuming and must be used with
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    parcimony.
 int popbased=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.83  2003/06/10 13:39:11  lievre
 int maxwav; /* Maxim number of waves */    *** empty log message ***
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int gipmx, gsw; /* Global variables on the number of contributions     Revision 1.82  2003/06/05 15:57:20  brouard
                    to the likelihood and the sum of weights (done by funcone)*/    Add log in  imach.c and  fullversion number is now printed.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  /*
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between     Interpolated Markov Chain
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */    Short summary of the programme:
 double **oldm, **newm, **savm; /* Working pointers to matrices */   
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    This program computes Healthy Life Expectancies from
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 FILE *ficlog, *ficrespow;    first survey ("cross") where individuals from different ages are
 int globpr; /* Global variable for printing or not */    interviewed on their health status or degree of disability (in the
 double fretone; /* Only one call to likelihood */    case of a health survey which is our main interest) -2- at least a
 long ipmx; /* Number of contributions */    second wave of interviews ("longitudinal") which measure each change
 double sw; /* Sum of weights */    (if any) in individual health status.  Health expectancies are
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    computed from the time spent in each health state according to a
 FILE *ficresilk;    model. More health states you consider, more time is necessary to reach the
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Maximum Likelihood of the parameters involved in the model.  The
 FILE *ficresprobmorprev;    simplest model is the multinomial logistic model where pij is the
 FILE *fichtm, *fichtmcov; /* Html File */    probability to be observed in state j at the second wave
 FILE *ficreseij;    conditional to be observed in state i at the first wave. Therefore
 char filerese[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 FILE  *ficresvij;    'age' is age and 'sex' is a covariate. If you want to have a more
 char fileresv[FILENAMELENGTH];    complex model than "constant and age", you should modify the program
 FILE  *ficresvpl;    where the markup *Covariates have to be included here again* invites
 char fileresvpl[FILENAMELENGTH];    you to do it.  More covariates you add, slower the
 char title[MAXLINE];    convergence.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    The advantage of this computer programme, compared to a simple
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];     multinomial logistic model, is clear when the delay between waves is not
 char command[FILENAMELENGTH];    identical for each individual. Also, if a individual missed an
 int  outcmd=0;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     hPijx is the probability to be observed in state i at age x+h
 char filelog[FILENAMELENGTH]; /* Log file */    conditional to the observed state i at age x. The delay 'h' can be
 char filerest[FILENAMELENGTH];    split into an exact number (nh*stepm) of unobserved intermediate
 char fileregp[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
 char popfile[FILENAMELENGTH];    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    and the contribution of each individual to the likelihood is simply
     hPijx.
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  
 struct timezone tzp;    Also this programme outputs the covariance matrix of the parameters but also
 extern int gettimeofday();    of the life expectancies. It also computes the period (stable) prevalence.
 struct tm tmg, tm, tmf, *gmtime(), *localtime();   
 long time_value;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 extern long time();             Institut national d'études démographiques, Paris.
 char strcurr[80], strfor[80];    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define NR_END 1    It is copyrighted identically to a GNU software product, ie programme and
 #define FREE_ARG char*    software can be distributed freely for non commercial use. Latest version
 #define FTOL 1.0e-10    can be accessed at http://euroreves.ined.fr/imach .
   
 #define NRANSI     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define ITMAX 200     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    
 #define TOL 2.0e-4     **********************************************************************/
   /*
 #define CGOLD 0.3819660     main
 #define ZEPS 1.0e-10     read parameterfile
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     read datafile
     concatwav
 #define GOLD 1.618034     freqsummary
 #define GLIMIT 100.0     if (mle >= 1)
 #define TINY 1.0e-20       mlikeli
     print results files
 static double maxarg1,maxarg2;    if mle==1
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))       computes hessian
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    read end of parameter file: agemin, agemax, bage, fage, estepm
           begin-prev-date,...
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    open gnuplot file
 #define rint(a) floor(a+0.5)    open html file
     period (stable) prevalence
 static double sqrarg;     for age prevalim()
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    h Pij x
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 int imx;     health expectancies
 int stepm;    Variance-covariance of DFLE
 /* Stepm, step in month: minimum step interpolation*/    prevalence()
      movingaverage()
 int estepm;    varevsij()
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    if popbased==1 varevsij(,popbased)
     total life expectancies
 int m,nb;    Variance of period (stable) prevalence
 long *num;   end
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;  
 double dateintmean=0;  
    
 double *weight;  #include <math.h>
 int **s; /* Status */  #include <stdio.h>
 double *agedc, **covar, idx;  #include <stdlib.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include <string.h>
   #include <unistd.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #include <limits.h>
   #include <sys/types.h>
 /**************** split *************************/  #include <sys/stat.h>
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include <errno.h>
 {  extern int errno;
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  /* #include <sys/time.h> */
   #include <time.h>
   l1 = strlen(path );                   /* length of path */  #include "timeval.h"
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  /* #include <libintl.h> */
   if ( ss == NULL ) {                   /* no directory, so use current */  /* #define _(String) gettext (String) */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define MAXLINE 256
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  #define GNUPLOTPROGRAM "gnuplot"
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       return( GLOCK_ERROR_GETCWD );  #define FILENAMELENGTH 132
     }  
     strcpy( name, path );               /* we've got it */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   } else {                              /* strip direcotry from path */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define NINTERVMAX 8
     dirc[l1-l2] = 0;                    /* add zero */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   l1 = strlen( dirc );                  /* length of directory */  #define NCOVMAX 8 /* Maximum number of covariates */
   /*#ifdef windows  #define MAXN 20000
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define YEARM 12. /* Number of months per year */
 #else  #define AGESUP 130
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define AGEBASE 40
 #endif  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   */  #ifdef UNIX
   ss = strrchr( name, '.' );            /* find last / */  #define DIRSEPARATOR '/'
   ss++;  #define CHARSEPARATOR "/"
   strcpy(ext,ss);                       /* save extension */  #define ODIRSEPARATOR '\\'
   l1= strlen( name);  #else
   l2= strlen(ss)+1;  #define DIRSEPARATOR '\\'
   strncpy( finame, name, l1-l2);  #define CHARSEPARATOR "\\"
   finame[l1-l2]= 0;  #define ODIRSEPARATOR '/'
   return( 0 );                          /* we're done */  #endif
 }  
   /* $Id$ */
   /* $State$ */
 /******************************************/  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 void replace_back_to_slash(char *s, char*t)  char fullversion[]="$Revision$ $Date$";
 {  char strstart[80];
   int i;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int lg=0;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   i=0;  int nvar;
   lg=strlen(t);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(i=0; i<= lg; i++) {  int npar=NPARMAX;
     (s[i] = t[i]);  int nlstate=2; /* Number of live states */
     if (t[i]== '\\') s[i]='/';  int ndeath=1; /* Number of dead states */
   }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 int nbocc(char *s, char occ)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   int i,j=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   int lg=20;  int ijmin, ijmax; /* Individuals having jmin and jmax */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions
   lg=strlen(s);                     to the likelihood and the sum of weights (done by funcone)*/
   for(i=0; i<= lg; i++) {  int mle, weightopt;
   if  (s[i] == occ ) j++;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return j;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 void cutv(char *u,char *v, char*t, char occ)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /* cuts string t into u and v where u is ended by char occ excluding it  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  FILE *ficlog, *ficrespow;
      gives u="abcedf" and v="ghi2j" */  int globpr; /* Global variable for printing or not */
   int i,lg,j,p=0;  double fretone; /* Only one call to likelihood */
   i=0;  long ipmx; /* Number of contributions */
   for(j=0; j<=strlen(t)-1; j++) {  double sw; /* Sum of weights */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char filerespow[FILENAMELENGTH];
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   lg=strlen(t);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for(j=0; j<p; j++) {  FILE *ficresprobmorprev;
     (u[j] = t[j]);  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
      u[p]='\0';  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
    for(j=0; j<= lg; j++) {  char fileresstde[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *ficrescveij;
   }  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /********************** nrerror ********************/  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 void nrerror(char error_text[])  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   exit(EXIT_FAILURE);  char command[FILENAMELENGTH];
 }  int  outcmd=0;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   double *v;  char filelog[FILENAMELENGTH]; /* Log file */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char filerest[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  char fileregp[FILENAMELENGTH];
   return v-nl+NR_END;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   free((FREE_ARG)(v+nl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /************************ivector *******************************/  extern long time();
 int *ivector(long nl,long nh)  char strcurr[80], strfor[80];
 {  
   int *v;  char *endptr;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  long lval;
   if (!v) nrerror("allocation failure in ivector");  double dval;
   return v-nl+NR_END;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /******************free ivector **************************/  #define FTOL 1.0e-10
 void free_ivector(int *v, long nl, long nh)  
 {  #define NRANSI
   free((FREE_ARG)(v+nl-NR_END));  #define ITMAX 200
 }  
   #define TOL 2.0e-4
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  #define CGOLD 0.3819660
 {  #define ZEPS 1.0e-10
   long *v;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  #define GOLD 1.618034
   return v-nl+NR_END;  #define GLIMIT 100.0
 }  #define TINY 1.0e-20
   
 /******************free lvector **************************/  static double maxarg1,maxarg2;
 void free_lvector(long *v, long nl, long nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(v+nl-NR_END));   
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   static double sqrarg;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   int agegomp= AGEGOMP;
   int **m;   
     int imx;
   /* allocate pointers to rows */   int stepm=1;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   /* Stepm, step in month: minimum step interpolation*/
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;   int estepm;
   m -= nrl;   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     
     int m,nb;
   /* allocate rows and set pointers to them */   long *num;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl] += NR_END;   double **pmmij, ***probs;
   m[nrl] -= ncl;   double *ageexmed,*agecens;
     double dateintmean=0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
     double *weight;
   /* return pointer to array of pointers to rows */   int **s; /* Status */
   return m;   double *agedc, **covar, idx;
 }   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       int **m;  double ftolhess; /* Tolerance for computing hessian */
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   /**************** split *************************/
 {   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   {
   free((FREE_ARG) (m+nrl-NR_END));     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }        the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */
 /******************* matrix *******************************/    char  *ss;                            /* pointer */
 double **matrix(long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l1 = strlen(path );                   /* length of path */
   double **m;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, path );               /* we got the fullname name because no directory */
   m += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m -= nrl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] += NR_END;        return( GLOCK_ERROR_GETCWD );
   m[nrl] -= ncl;      }
       /* got dirc from getcwd*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      printf(" DIRC = %s \n",dirc);
   return m;    } else {                              /* strip direcotry from path */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])       ss++;                               /* after this, the filename */
    */      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /*************************free matrix ************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      dirc[l1-l2] = 0;                    /* add zero */
 {      printf(" DIRC2 = %s \n",dirc);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /******************* ma3x *******************************/      dirc[l1] =  DIRSEPARATOR;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      dirc[l1+1] = 0;
 {      printf(" DIRC3 = %s \n",dirc);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      ss++;
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy(ext,ss);                     /* save extension */
   m += NR_END;      l1= strlen( name);
   m -= nrl;      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      finame[l1-l2]= 0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    return( 0 );                          /* we're done */
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /******************************************/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  void replace_back_to_slash(char *s, char*t)
   m[nrl][ncl] -= nll;  {
   for (j=ncl+1; j<=nch; j++)     int i;
     m[nrl][j]=m[nrl][j-1]+nlay;    int lg=0;
       i=0;
   for (i=nrl+1; i<=nrh; i++) {    lg=strlen(t);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for(i=0; i<= lg; i++) {
     for (j=ncl+1; j<=nch; j++)       (s[i] = t[i]);
       m[i][j]=m[i][j-1]+nlay;      if (t[i]== '\\') s[i]='/';
   }    }
   return m;   }
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  int nbocc(char *s, char occ)
   */  {
 }    int i,j=0;
     int lg=20;
 /*************************free ma3x ************************/    i=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if  (s[i] == occ ) j++;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    return j;
 }  }
   
 /*************** function subdirf ***********/  void cutv(char *u,char *v, char*t, char occ)
 char *subdirf(char fileres[])  {
 {    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   /* Caution optionfilefiname is hidden */       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   strcpy(tmpout,optionfilefiname);       gives u="abcedf" and v="ghi2j" */
   strcat(tmpout,"/"); /* Add to the right */    int i,lg,j,p=0;
   strcat(tmpout,fileres);    i=0;
   return tmpout;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /*************** function subdirf2 ***********/  
 char *subdirf2(char fileres[], char *preop)    lg=strlen(t);
 {    for(j=0; j<p; j++) {
         (u[j] = t[j]);
   /* Caution optionfilefiname is hidden */    }
   strcpy(tmpout,optionfilefiname);       u[p]='\0';
   strcat(tmpout,"/");  
   strcat(tmpout,preop);     for(j=0; j<= lg; j++) {
   strcat(tmpout,fileres);      if (j>=(p+1))(v[j-p-1] = t[j]);
   return tmpout;    }
 }  }
   
 /*************** function subdirf3 ***********/  /********************** nrerror ********************/
 char *subdirf3(char fileres[], char *preop, char *preop2)  
 {  void nrerror(char error_text[])
     {
   /* Caution optionfilefiname is hidden */    fprintf(stderr,"ERREUR ...\n");
   strcpy(tmpout,optionfilefiname);    fprintf(stderr,"%s\n",error_text);
   strcat(tmpout,"/");    exit(EXIT_FAILURE);
   strcat(tmpout,preop);  }
   strcat(tmpout,preop2);  /*********************** vector *******************/
   strcat(tmpout,fileres);  double *vector(int nl, int nh)
   return tmpout;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!v) nrerror("allocation failure in vector");
 extern int ncom;     return v-nl+NR_END;
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);   
    /************************ free vector ******************/
 double f1dim(double x)   void free_vector(double*v, int nl, int nh)
 {   {
   int j;     free((FREE_ARG)(v+nl-NR_END));
   double f;  }
   double *xt;   
    /************************ivector *******************************/
   xt=vector(1,ncom);   int *ivector(long nl,long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   {
   f=(*nrfunc)(xt);     int *v;
   free_vector(xt,1,ncom);     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   return f;     if (!v) nrerror("allocation failure in ivector");
 }     return v-nl+NR_END;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   /******************free ivector **************************/
 {   void free_ivector(int *v, long nl, long nh)
   int iter;   {
   double a,b,d,etemp;    free((FREE_ARG)(v+nl-NR_END));
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;   /************************lvector *******************************/
   double e=0.0;   long *lvector(long nl,long nh)
    {
   a=(ax < cx ? ax : cx);     long *v;
   b=(ax > cx ? ax : cx);     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   x=w=v=bx;     if (!v) nrerror("allocation failure in ivector");
   fw=fv=fx=(*f)(x);     return v-nl+NR_END;
   for (iter=1;iter<=ITMAX;iter++) {   }
     xm=0.5*(a+b);   
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   /******************free lvector **************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_lvector(long *v, long nl, long nh)
     printf(".");fflush(stdout);  {
     fprintf(ficlog,".");fflush(ficlog);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************* imatrix *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **imatrix(long nrl, long nrh, long ncl, long nch)
 #endif       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   {
       *xmin=x;     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       return fx;     int **m;
     }    
     ftemp=fu;    /* allocate pointers to rows */
     if (fabs(e) > tol1) {     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       r=(x-w)*(fx-fv);     if (!m) nrerror("allocation failure 1 in matrix()");
       q=(x-v)*(fx-fw);     m += NR_END;
       p=(x-v)*q-(x-w)*r;     m -= nrl;
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    
       q=fabs(q);     /* allocate rows and set pointers to them */
       etemp=e;     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
       e=d;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     m[nrl] += NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     m[nrl] -= ncl;
       else {    
         d=p/q;     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)     /* return pointer to array of pointers to rows */
           d=SIGN(tol1,xm-x);     return m;
       }   }
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   /****************** free_imatrix *************************/
     }   void free_imatrix(m,nrl,nrh,ncl,nch)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));         int **m;
     fu=(*f)(u);         long nch,ncl,nrh,nrl;
     if (fu <= fx) {        /* free an int matrix allocated by imatrix() */
       if (u >= x) a=x; else b=x;   {
       SHFT(v,w,x,u)     free((FREE_ARG) (m[nrl]+ncl-NR_END));
         SHFT(fv,fw,fx,fu)     free((FREE_ARG) (m+nrl-NR_END));
         } else {   }
           if (u < x) a=u; else b=u;   
           if (fu <= fw || w == x) {   /******************* matrix *******************************/
             v=w;   double **matrix(long nrl, long nrh, long ncl, long nch)
             w=u;   {
             fv=fw;     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             fw=fu;     double **m;
           } else if (fu <= fv || v == x || v == w) {   
             v=u;     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             fv=fu;     if (!m) nrerror("allocation failure 1 in matrix()");
           }     m += NR_END;
         }     m -= nrl;
   }   
   nrerror("Too many iterations in brent");     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *xmin=x;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return fx;     m[nrl] += NR_END;
 }     m[nrl] -= ncl;
   
 /****************** mnbrak ***********************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
             double (*func)(double))      */
 {   }
   double ulim,u,r,q, dum;  
   double fu;   /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *fa=(*func)(*ax);   {
   *fb=(*func)(*bx);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   if (*fb > *fa) {     free((FREE_ARG)(m+nrl-NR_END));
     SHFT(dum,*ax,*bx,dum)   }
       SHFT(dum,*fb,*fa,dum)   
       }   /******************* ma3x *******************************/
   *cx=(*bx)+GOLD*(*bx-*ax);   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fc=(*func)(*cx);   {
   while (*fb > *fc) {     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     r=(*bx-*ax)*(*fb-*fc);     double ***m;
     q=(*bx-*cx)*(*fb-*fa);   
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     if (!m) nrerror("allocation failure 1 in matrix()");
     ulim=(*bx)+GLIMIT*(*cx-*bx);     m += NR_END;
     if ((*bx-u)*(u-*cx) > 0.0) {     m -= nrl;
       fu=(*func)(u);   
     } else if ((*cx-u)*(u-ulim) > 0.0) {     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fu=(*func)(u);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fu < *fc) {     m[nrl] += NR_END;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     m[nrl] -= ncl;
           SHFT(*fb,*fc,fu,(*func)(u))   
           }     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fu=(*func)(u);     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else {     m[nrl][ncl] += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);     m[nrl][ncl] -= nll;
       fu=(*func)(u);     for (j=ncl+1; j<=nch; j++)
     }       m[nrl][j]=m[nrl][j-1]+nlay;
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)     for (i=nrl+1; i<=nrh; i++) {
       }       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }       for (j=ncl+1; j<=nch; j++)
         m[i][j]=m[i][j-1]+nlay;
 /*************** linmin ************************/    }
     return m;
 int ncom;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double *pcom,*xicom;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double (*nrfunc)(double []);     */
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   
 {   /*************************free ma3x ************************/
   double brent(double ax, double bx, double cx,   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                double (*f)(double), double tol, double *xmin);   {
   double f1dim(double x);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     free((FREE_ARG)(m[nrl]+ncl-NR_END));
               double *fc, double (*func)(double));     free((FREE_ARG)(m+nrl-NR_END));
   int j;   }
   double xx,xmin,bx,ax;   
   double fx,fb,fa;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   ncom=n;   {
   pcom=vector(1,n);     /* Caution optionfilefiname is hidden */
   xicom=vector(1,n);     strcpy(tmpout,optionfilefiname);
   nrfunc=func;     strcat(tmpout,"/"); /* Add to the right */
   for (j=1;j<=n;j++) {     strcat(tmpout,fileres);
     pcom[j]=p[j];     return tmpout;
     xicom[j]=xi[j];   }
   }   
   ax=0.0;   /*************** function subdirf2 ***********/
   xx=1.0;   char *subdirf2(char fileres[], char *preop)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    strcpy(tmpout,optionfilefiname);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    strcat(tmpout,"/");
 #endif    strcat(tmpout,preop);
   for (j=1;j<=n;j++) {     strcat(tmpout,fileres);
     xi[j] *= xmin;     return tmpout;
     p[j] += xi[j];   }
   }   
   free_vector(xicom,1,n);   /*************** function subdirf3 ***********/
   free_vector(pcom,1,n);   char *subdirf3(char fileres[], char *preop, char *preop2)
 }   {
    
 char *asc_diff_time(long time_sec, char ascdiff[])    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   long sec_left, days, hours, minutes;    strcat(tmpout,"/");
   days = (time_sec) / (60*60*24);    strcat(tmpout,preop);
   sec_left = (time_sec) % (60*60*24);    strcat(tmpout,preop2);
   hours = (sec_left) / (60*60) ;    strcat(tmpout,fileres);
   sec_left = (sec_left) %(60*60);    return tmpout;
   minutes = (sec_left) /60;  }
   sec_left = (sec_left) % (60);  
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    /***************** f1dim *************************/
   return ascdiff;  extern int ncom;
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []);
 /*************** powell ************************/   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   double f1dim(double x)
             double (*func)(double []))   {
 {     int j;
   void linmin(double p[], double xi[], int n, double *fret,     double f;
               double (*func)(double []));     double *xt;
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    xt=vector(1,ncom);
   double fp,fptt;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   double *xits;    f=(*nrfunc)(xt);
   int niterf, itmp;    free_vector(xt,1,ncom);
     return f;
   pt=vector(1,n);   }
   ptt=vector(1,n);   
   xit=vector(1,n);   /*****************brent *************************/
   xits=vector(1,n);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   *fret=(*func)(p);   {
   for (j=1;j<=n;j++) pt[j]=p[j];     int iter;
   for (*iter=1;;++(*iter)) {     double a,b,d,etemp;
     fp=(*fret);     double fu,fv,fw,fx;
     ibig=0;     double ftemp;
     del=0.0;     double p,q,r,tol1,tol2,u,v,w,x,xm;
     last_time=curr_time;    double e=0.0;
     (void) gettimeofday(&curr_time,&tzp);   
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    a=(ax < cx ? ax : cx);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    b=(ax > cx ? ax : cx);
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    x=w=v=bx;
     for (i=1;i<=n;i++) {    fw=fv=fx=(*f)(x);
       printf(" %d %.12f",i, p[i]);    for (iter=1;iter<=ITMAX;iter++) {
       fprintf(ficlog," %d %.12lf",i, p[i]);      xm=0.5*(a+b);
       fprintf(ficrespow," %.12lf", p[i]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf("\n");      printf(".");fflush(stdout);
     fprintf(ficlog,"\n");      fprintf(ficlog,".");fflush(ficlog);
     fprintf(ficrespow,"\n");fflush(ficrespow);  #ifdef DEBUG
     if(*iter <=3){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       tm = *localtime(&curr_time.tv_sec);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       strcpy(strcurr,asctime(&tmf));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*       asctime_r(&tm,strcurr); */  #endif
       forecast_time=curr_time;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       itmp = strlen(strcurr);        *xmin=x;
       if(strcurr[itmp-1]=='\n')        return fx;
         strcurr[itmp-1]='\0';      }
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      ftemp=fu;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      if (fabs(e) > tol1) {
       for(niterf=10;niterf<=30;niterf+=10){        r=(x-w)*(fx-fv);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);        q=(x-v)*(fx-fw);
         tmf = *localtime(&forecast_time.tv_sec);        p=(x-v)*q-(x-w)*r;
 /*      asctime_r(&tmf,strfor); */        q=2.0*(q-r);
         strcpy(strfor,asctime(&tmf));        if (q > 0.0) p = -p;
         itmp = strlen(strfor);        q=fabs(q);
         if(strfor[itmp-1]=='\n')        etemp=e;
         strfor[itmp-1]='\0';        e=d;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          d=CGOLD*(e=(x >= xm ? a-x : b-x));
       }        else {
     }          d=p/q;
     for (i=1;i<=n;i++) {           u=x+d;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];           if (u-a < tol2 || b-u < tol2)
       fptt=(*fret);             d=SIGN(tol1,xm-x);
 #ifdef DEBUG        }
       printf("fret=%lf \n",*fret);      } else {
       fprintf(ficlog,"fret=%lf \n",*fret);        d=CGOLD*(e=(x >= xm ? a-x : b-x));
 #endif      }
       printf("%d",i);fflush(stdout);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       fprintf(ficlog,"%d",i);fflush(ficlog);      fu=(*f)(u);
       linmin(p,xit,n,fret,func);       if (fu <= fx) {
       if (fabs(fptt-(*fret)) > del) {         if (u >= x) a=x; else b=x;
         del=fabs(fptt-(*fret));         SHFT(v,w,x,u)
         ibig=i;           SHFT(fv,fw,fx,fu)
       }           } else {
 #ifdef DEBUG            if (u < x) a=u; else b=u;
       printf("%d %.12e",i,(*fret));            if (fu <= fw || w == x) {
       fprintf(ficlog,"%d %.12e",i,(*fret));              v=w;
       for (j=1;j<=n;j++) {              w=u;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              fv=fw;
         printf(" x(%d)=%.12e",j,xit[j]);              fw=fu;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);            } else if (fu <= fv || v == x || v == w) {
       }              v=u;
       for(j=1;j<=n;j++) {              fv=fu;
         printf(" p=%.12e",p[j]);            }
         fprintf(ficlog," p=%.12e",p[j]);          }
       }    }
       printf("\n");    nrerror("Too many iterations in brent");
       fprintf(ficlog,"\n");    *xmin=x;
 #endif    return fx;
     }   }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** mnbrak ***********************/
       int k[2],l;  
       k[0]=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       k[1]=-1;              double (*func)(double))
       printf("Max: %.12e",(*func)(p));  {
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double ulim,u,r,q, dum;
       for (j=1;j<=n;j++) {    double fu;
         printf(" %.12e",p[j]);   
         fprintf(ficlog," %.12e",p[j]);    *fa=(*func)(*ax);
       }    *fb=(*func)(*bx);
       printf("\n");    if (*fb > *fa) {
       fprintf(ficlog,"\n");      SHFT(dum,*ax,*bx,dum)
       for(l=0;l<=1;l++) {        SHFT(dum,*fb,*fa,dum)
         for (j=1;j<=n;j++) {        }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *cx=(*bx)+GOLD*(*bx-*ax);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *fc=(*func)(*cx);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    while (*fb > *fc) {
         }      r=(*bx-*ax)*(*fb-*fc);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      q=(*bx-*cx)*(*fb-*fa);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
 #endif      ulim=(*bx)+GLIMIT*(*cx-*bx);
       if ((*bx-u)*(u-*cx) > 0.0) {
         fu=(*func)(u);
       free_vector(xit,1,n);       } else if ((*cx-u)*(u-ulim) > 0.0) {
       free_vector(xits,1,n);         fu=(*func)(u);
       free_vector(ptt,1,n);         if (fu < *fc) {
       free_vector(pt,1,n);           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       return;             SHFT(*fb,*fc,fu,(*func)(u))
     }             }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     for (j=1;j<=n;j++) {         u=ulim;
       ptt[j]=2.0*p[j]-pt[j];         fu=(*func)(u);
       xit[j]=p[j]-pt[j];       } else {
       pt[j]=p[j];         u=(*cx)+GOLD*(*cx-*bx);
     }         fu=(*func)(u);
     fptt=(*func)(ptt);       }
     if (fptt < fp) {       SHFT(*ax,*bx,*cx,u)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         SHFT(*fa,*fb,*fc,fu)
       if (t < 0.0) {         }
         linmin(p,xit,n,fret,func);   }
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n];   /*************** linmin ************************/
           xi[j][n]=xit[j];   
         }  int ncom;
 #ifdef DEBUG  double *pcom,*xicom;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double (*nrfunc)(double []);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
           printf(" %.12e",xit[j]);  {
           fprintf(ficlog," %.12e",xit[j]);    double brent(double ax, double bx, double cx,
         }                 double (*f)(double), double tol, double *xmin);
         printf("\n");    double f1dim(double x);
         fprintf(ficlog,"\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
 #endif                double *fc, double (*func)(double));
       }    int j;
     }     double xx,xmin,bx,ax;
   }     double fx,fb,fa;
 }    
     ncom=n;
 /**** Prevalence limit (stable prevalence)  ****************/    pcom=vector(1,n);
     xicom=vector(1,n);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    nrfunc=func;
 {    for (j=1;j<=n;j++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      pcom[j]=p[j];
      matrix by transitions matrix until convergence is reached */      xicom[j]=xi[j];
     }
   int i, ii,j,k;    ax=0.0;
   double min, max, maxmin, maxmax,sumnew=0.;    xx=1.0;
   double **matprod2();    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   double **out, cov[NCOVMAX], **pmij();    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   double **newm;  #ifdef DEBUG
   double agefin, delaymax=50 ; /* Max number of years to converge */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xi[j] *= xmin;
     }      p[j] += xi[j];
     }
    cov[1]=1.;    free_vector(xicom,1,n);
      free_vector(pcom,1,n);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  char *asc_diff_time(long time_sec, char ascdiff[])
     /* Covariates have to be included here again */  {
      cov[2]=agefin;    long sec_left, days, hours, minutes;
       days = (time_sec) / (60*60*24);
       for (k=1; k<=cptcovn;k++) {    sec_left = (time_sec) % (60*60*24);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    hours = (sec_left) / (60*60) ;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    sec_left = (sec_left) %(60*60);
       }    minutes = (sec_left) /60;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    sec_left = (sec_left) % (60);
       for (k=1; k<=cptcovprod;k++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return ascdiff;
   }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*************** powell ************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);              double (*func)(double []))
   {
     savm=oldm;    void linmin(double p[], double xi[], int n, double *fret,
     oldm=newm;                double (*func)(double []));
     maxmax=0.;    int i,ibig,j;
     for(j=1;j<=nlstate;j++){    double del,t,*pt,*ptt,*xit;
       min=1.;    double fp,fptt;
       max=0.;    double *xits;
       for(i=1; i<=nlstate; i++) {    int niterf, itmp;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    pt=vector(1,n);
         prlim[i][j]= newm[i][j]/(1-sumnew);    ptt=vector(1,n);
         max=FMAX(max,prlim[i][j]);    xit=vector(1,n);
         min=FMIN(min,prlim[i][j]);    xits=vector(1,n);
       }    *fret=(*func)(p);
       maxmin=max-min;    for (j=1;j<=n;j++) pt[j]=p[j];
       maxmax=FMAX(maxmax,maxmin);    for (*iter=1;;++(*iter)) {
     }      fp=(*fret);
     if(maxmax < ftolpl){      ibig=0;
       return prlim;      del=0.0;
     }      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
 }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 /*************** transition probabilities ***************/   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   double s1, s2;        fprintf(ficrespow," %.12lf", p[i]);
   /*double t34;*/      }
   int i,j,j1, nc, ii, jj;      printf("\n");
       fprintf(ficlog,"\n");
     for(i=1; i<= nlstate; i++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(j=1; j<i;j++){      if(*iter <=3){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        tm = *localtime(&curr_time.tv_sec);
         /*s2 += param[i][j][nc]*cov[nc];*/        strcpy(strcurr,asctime(&tm));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*       asctime_r(&tm,strcurr); */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        forecast_time=curr_time;
       }        itmp = strlen(strcurr);
       ps[i][j]=s2;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          strcurr[itmp-1]='\0';
     }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(j=i+1; j<=nlstate+ndeath;j++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for(niterf=10;niterf<=30;niterf+=10){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
       ps[i][j]=s2;          strcpy(strfor,asctime(&tmf));
     }          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
     /*ps[3][2]=1;*/          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(i=1; i<= nlstate; i++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      s1=0;        }
     for(j=1; j<i; j++)      }
       s1+=exp(ps[i][j]);      for (i=1;i<=n;i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       s1+=exp(ps[i][j]);        fptt=(*fret);
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("fret=%lf \n",*fret);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"fret=%lf \n",*fret);
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("%d",i);fflush(stdout);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* end i */        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          del=fabs(fptt-(*fret));
     for(jj=1; jj<= nlstate+ndeath; jj++){          ibig=i;
       ps[ii][jj]=0;        }
       ps[ii][ii]=1;  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          printf(" x(%d)=%.12e",j,xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      printf("%lf ",ps[ii][jj]);        }
    }        for(j=1;j<=n;j++) {
     printf("\n ");          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*        printf("\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficlog,"\n");
   goto end;*/  #endif
     return ps;      }
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/        int k[2],l;
         k[0]=1;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        k[1]=-1;
 {        printf("Max: %.12e",(*func)(p));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fprintf(ficlog,"Max: %.12e",(*func)(p));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        for (j=1;j<=n;j++) {
   /* in, b, out are matrice of pointers which should have been initialized           printf(" %.12e",p[j]);
      before: only the contents of out is modified. The function returns          fprintf(ficlog," %.12e",p[j]);
      a pointer to pointers identical to out */        }
   long i, j, k;        printf("\n");
   for(i=nrl; i<= nrh; i++)        fprintf(ficlog,"\n");
     for(k=ncolol; k<=ncoloh; k++)        for(l=0;l<=1;l++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          for (j=1;j<=n;j++) {
         out[i][k] +=in[i][j]*b[j][k];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   return out;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /************* Higher Matrix Product ***************/        }
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  
   /* Computes the transition matrix starting at age 'age' over         free_vector(xit,1,n);
      'nhstepm*hstepm*stepm' months (i.e. until        free_vector(xits,1,n);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         free_vector(ptt,1,n);
      nhstepm*hstepm matrices.         free_vector(pt,1,n);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         return;
      (typically every 2 years instead of every month which is too big       }
      for the memory).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
      Model is determined by parameters x and covariates have to be       for (j=1;j<=n;j++) {
      included manually here.         ptt[j]=2.0*p[j]-pt[j];
         xit[j]=p[j]-pt[j];
      */        pt[j]=p[j];
       }
   int i, j, d, h, k;      fptt=(*func)(ptt);
   double **out, cov[NCOVMAX];      if (fptt < fp) {
   double **newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         if (t < 0.0) {
   /* Hstepm could be zero and should return the unit matrix */          linmin(p,xit,n,fret,func);
   for (i=1;i<=nlstate+ndeath;i++)          for (j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){            xi[j][ibig]=xi[j][n];
       oldm[i][j]=(i==j ? 1.0 : 0.0);            xi[j][n]=xit[j];
       po[i][j][0]=(i==j ? 1.0 : 0.0);          }
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(h=1; h <=nhstepm; h++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(d=1; d <=hstepm; d++){          for(j=1;j<=n;j++){
       newm=savm;            printf(" %.12e",xit[j]);
       /* Covariates have to be included here again */            fprintf(ficlog," %.12e",xit[j]);
       cov[1]=1.;          }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          printf("\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)  #endif
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /**** Prevalence limit (stable or period prevalence)  ****************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  {
       savm=oldm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       oldm=newm;       matrix by transitions matrix until convergence is reached */
     }  
     for(i=1; i<=nlstate+ndeath; i++)    int i, ii,j,k;
       for(j=1;j<=nlstate+ndeath;j++) {    double min, max, maxmin, maxmax,sumnew=0.;
         po[i][j][h]=newm[i][j];    double **matprod2();
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double **out, cov[NCOVMAX], **pmij();
          */    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
   } /* end h */  
   return po;    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 /*************** log-likelihood *************/  
 double func( double *x)     cov[1]=1.;
 {   
   int i, ii, j, k, mi, d, kk;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double **out;      newm=savm;
   double sw; /* Sum of weights */      /* Covariates have to be included here again */
   double lli; /* Individual log likelihood */       cov[2]=agefin;
   int s1, s2;   
   double bbh, survp;        for (k=1; k<=cptcovn;k++) {
   long ipmx;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /*extern weight */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   /* We are differentiating ll according to initial status */        }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /*for(i=1;i<imx;i++)         for (k=1; k<=cptcovprod;k++)
     printf(" %d\n",s[4][i]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   */  
   cov[1]=1.;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   if(mle==1){  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      savm=oldm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      oldm=newm;
       for(mi=1; mi<= wav[i]-1; mi++){      maxmax=0.;
         for (ii=1;ii<=nlstate+ndeath;ii++)      for(j=1;j<=nlstate;j++){
           for (j=1;j<=nlstate+ndeath;j++){        min=1.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        max=0.;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(i=1; i<=nlstate; i++) {
           }          sumnew=0;
         for(d=0; d<dh[mi][i]; d++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           newm=savm;          prlim[i][j]= newm[i][j]/(1-sumnew);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          max=FMAX(max,prlim[i][j]);
           for (kk=1; kk<=cptcovage;kk++) {          min=FMIN(min,prlim[i][j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
           }        maxmin=max-min;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        maxmax=FMAX(maxmax,maxmin);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;      if(maxmax < ftolpl){
           oldm=newm;        return prlim;
         } /* end mult */      }
           }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  }
         /* But now since version 0.9 we anticipate for bias and large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay   /*************** transition probabilities ***************/
          * (in months) between two waves is not a multiple of stepm, we rounded to   
          * the nearest (and in case of equal distance, to the lowest) interval but now  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  {
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    double s1, s2;
          * probability in order to take into account the bias as a fraction of the way    /*double t34;*/
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    int i,j,j1, nc, ii, jj;
          * -stepm/2 to stepm/2 .  
          * For stepm=1 the results are the same as for previous versions of Imach.      for(i=1; i<= nlstate; i++){
          * For stepm > 1 the results are less biased than in previous versions.         for(j=1; j<i;j++){
          */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         s1=s[mw[mi][i]][i];            /*s2 += param[i][j][nc]*cov[nc];*/
         s2=s[mw[mi+1][i]][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         bbh=(double)bh[mi][i]/(double)stepm;   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         /* bias is positive if real duration          }
          * is higher than the multiple of stepm and negative otherwise.          ps[i][j]=s2;
          */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        }
         if( s2 > nlstate){         for(j=i+1; j<=nlstate+ndeath;j++){
           /* i.e. if s2 is a death state and if the date of death is known then the contribution          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              to the likelihood is the probability to die between last step unit time and current             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
              step unit time, which is also the differences between probability to die before dh   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
              and probability to die before dh-stepm .           }
              In version up to 0.92 likelihood was computed          ps[i][j]=s2;
         as if date of death was unknown. Death was treated as any other        }
         health state: the date of the interview describes the actual state      }
         and not the date of a change in health state. The former idea was      /*ps[3][2]=1;*/
         to consider that at each interview the state was recorded     
         (healthy, disable or death) and IMaCh was corrected; but when we      for(i=1; i<= nlstate; i++){
         introduced the exact date of death then we should have modified        s1=0;
         the contribution of an exact death to the likelihood. This new        for(j=1; j<i; j++)
         contribution is smaller and very dependent of the step unit          s1+=exp(ps[i][j]);
         stepm. It is no more the probability to die between last interview        for(j=i+1; j<=nlstate+ndeath; j++)
         and month of death but the probability to survive from last          s1+=exp(ps[i][j]);
         interview up to one month before death multiplied by the        ps[i][i]=1./(s1+1.);
         probability to die within a month. Thanks to Chris        for(j=1; j<i; j++)
         Jackson for correcting this bug.  Former versions increased          ps[i][j]= exp(ps[i][j])*ps[i][i];
         mortality artificially. The bad side is that we add another loop        for(j=i+1; j<=nlstate+ndeath; j++)
         which slows down the processing. The difference can be up to 10%          ps[i][j]= exp(ps[i][j])*ps[i][i];
         lower mortality.        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           */      } /* end i */
           lli=log(out[s1][s2] - savm[s1][s2]);     
         }else{      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        for(jj=1; jj<= nlstate+ndeath; jj++){
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          ps[ii][jj]=0;
         }           ps[ii][ii]=1;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */     
         ipmx +=1;  
         sw += weight[i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       } /* end of wave */  /*         printf("ddd %lf ",ps[ii][jj]); */
     } /* end of individual */  /*       } */
   }  else if(mle==2){  /*       printf("\n "); */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*        } */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*        printf("\n ");printf("%lf ",cov[2]); */
       for(mi=1; mi<= wav[i]-1; mi++){         /*
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for (j=1;j<=nlstate+ndeath;j++){        goto end;*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      return ps;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
           }  
         for(d=0; d<=dh[mi][i]; d++){  /**************** Product of 2 matrices ******************/
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           for (kk=1; kk<=cptcovage;kk++) {  {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* in, b, out are matrice of pointers which should have been initialized
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       before: only the contents of out is modified. The function returns
           savm=oldm;       a pointer to pointers identical to out */
           oldm=newm;    long i, j, k;
         } /* end mult */    for(i=nrl; i<= nrh; i++)
             for(k=ncolol; k<=ncoloh; k++)
         s1=s[mw[mi][i]][i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         s2=s[mw[mi+1][i]][i];          out[i][k] +=in[i][j]*b[j][k];
         bbh=(double)bh[mi][i]/(double)stepm;   
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    return out;
         ipmx +=1;  }
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */  /************* Higher Matrix Product ***************/
     } /* end of individual */  
   }  else if(mle==3){  /* exponential inter-extrapolation */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* Computes the transition matrix starting at age 'age' over
       for(mi=1; mi<= wav[i]-1; mi++){       'nhstepm*hstepm*stepm' months (i.e. until
         for (ii=1;ii<=nlstate+ndeath;ii++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           for (j=1;j<=nlstate+ndeath;j++){       nhstepm*hstepm matrices.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       (typically every 2 years instead of every month which is too big
           }       for the memory).
         for(d=0; d<dh[mi][i]; d++){       Model is determined by parameters x and covariates have to be
           newm=savm;       included manually here.
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {       */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }    int i, j, d, h, k;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **out, cov[NCOVMAX];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **newm;
           savm=oldm;  
           oldm=newm;    /* Hstepm could be zero and should return the unit matrix */
         } /* end mult */    for (i=1;i<=nlstate+ndeath;i++)
             for (j=1;j<=nlstate+ndeath;j++){
         s1=s[mw[mi][i]][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         s2=s[mw[mi+1][i]][i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
         bbh=(double)bh[mi][i]/(double)stepm;       }
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         ipmx +=1;    for(h=1; h <=nhstepm; h++){
         sw += weight[i];      for(d=1; d <=hstepm; d++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        newm=savm;
       } /* end of wave */        /* Covariates have to be included here again */
     } /* end of individual */        cov[1]=1.;
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovage;k++)
       for(mi=1; mi<= wav[i]-1; mi++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovprod;k++)
           for (j=1;j<=nlstate+ndeath;j++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for(d=0; d<dh[mi][i]; d++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           newm=savm;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (kk=1; kk<=cptcovage;kk++) {        savm=oldm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        oldm=newm;
           }      }
               for(i=1; i<=nlstate+ndeath; i++)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=1;j<=nlstate+ndeath;j++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          po[i][j][h]=newm[i][j];
           savm=oldm;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           oldm=newm;           */
         } /* end mult */        }
           } /* end h */
         s1=s[mw[mi][i]][i];    return po;
         s2=s[mw[mi+1][i]][i];  }
         if( s2 > nlstate){   
           lli=log(out[s1][s2] - savm[s1][s2]);  
         }else{  /*************** log-likelihood *************/
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  double func( double *x)
         }  {
         ipmx +=1;    int i, ii, j, k, mi, d, kk;
         sw += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    double sw; /* Sum of weights */
       } /* end of wave */    double lli; /* Individual log likelihood */
     } /* end of individual */    int s1, s2;
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    double bbh, survp;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    long ipmx;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /*extern weight */
       for(mi=1; mi<= wav[i]-1; mi++){    /* We are differentiating ll according to initial status */
         for (ii=1;ii<=nlstate+ndeath;ii++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for (j=1;j<=nlstate+ndeath;j++){    /*for(i=1;i<imx;i++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf(" %d\n",s[4][i]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    */
           }    cov[1]=1.;
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {    if(mle==1){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 for(mi=1; mi<= wav[i]-1; mi++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for (ii=1;ii<=nlstate+ndeath;ii++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (j=1;j<=nlstate+ndeath;j++){
           savm=oldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           oldm=newm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         } /* end mult */            }
                 for(d=0; d<dh[mi][i]; d++){
         s1=s[mw[mi][i]][i];            newm=savm;
         s2=s[mw[mi+1][i]][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            for (kk=1; kk<=cptcovage;kk++) {
         ipmx +=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         sw += weight[i];            }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       } /* end of wave */            savm=oldm;
     } /* end of individual */            oldm=newm;
   } /* End of if */          } /* end mult */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /* But now since version 0.9 we anticipate for bias at large stepm.
   return -l;           * If stepm is larger than one month (smallest stepm) and if the exact delay
 }           * (in months) between two waves is not a multiple of stepm, we rounded to
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /*************** log-likelihood *************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 double funcone( double *x)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   /* Same as likeli but slower because of a lot of printf and if */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, ii, j, k, mi, d, kk;           * -stepm/2 to stepm/2 .
   double l, ll[NLSTATEMAX], cov[NCOVMAX];           * For stepm=1 the results are the same as for previous versions of Imach.
   double **out;           * For stepm > 1 the results are less biased than in previous versions.
   double lli; /* Individual log likelihood */           */
   double llt;          s1=s[mw[mi][i]][i];
   int s1, s2;          s2=s[mw[mi+1][i]][i];
   double bbh, survp;          bbh=(double)bh[mi][i]/(double)stepm;
   /*extern weight */          /* bias bh is positive if real duration
   /* We are differentiating ll according to initial status */           * is higher than the multiple of stepm and negative otherwise.
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/           */
   /*for(i=1;i<imx;i++)           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     printf(" %d\n",s[4][i]);          if( s2 > nlstate){
   */            /* i.e. if s2 is a death state and if the date of death is known
   cov[1]=1.;               then the contribution to the likelihood is the probability to
                die between last step unit time and current  step unit time,
   for(k=1; k<=nlstate; k++) ll[k]=0.;               which is also equal to probability to die before dh
                minus probability to die before dh-stepm .
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){               In version up to 0.92 likelihood was computed
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          as if date of death was unknown. Death was treated as any other
     for(mi=1; mi<= wav[i]-1; mi++){          health state: the date of the interview describes the actual state
       for (ii=1;ii<=nlstate+ndeath;ii++)          and not the date of a change in health state. The former idea was
         for (j=1;j<=nlstate+ndeath;j++){          to consider that at each interview the state was recorded
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          (healthy, disable or death) and IMaCh was corrected; but when we
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
       for(d=0; d<dh[mi][i]; d++){          contribution is smaller and very dependent of the step unit
         newm=savm;          stepm. It is no more the probability to die between last interview
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          and month of death but the probability to survive from last
         for (kk=1; kk<=cptcovage;kk++) {          interview up to one month before death multiplied by the
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          mortality artificially. The bad side is that we add another loop
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          which slows down the processing. The difference can be up to 10%
         savm=oldm;          lower mortality.
         oldm=newm;            */
       } /* end mult */            lli=log(out[s1][s2] - savm[s1][s2]);
         
       s1=s[mw[mi][i]][i];  
       s2=s[mw[mi+1][i]][i];          } else if  (s2==-2) {
       bbh=(double)bh[mi][i]/(double)stepm;             for (j=1,survp=0. ; j<=nlstate; j++)
       /* bias is positive if real duration              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        * is higher than the multiple of stepm and negative otherwise.            /*survp += out[s1][j]; */
        */            lli= log(survp);
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          }
         lli=log(out[s1][s2] - savm[s1][s2]);         
       } else if (mle==1){          else if  (s2==-4) {
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            for (j=3,survp=0. ; j<=nlstate; j++)  
       } else if(mle==2){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            lli= log(survp);
       } else if(mle==3){  /* exponential inter-extrapolation */          }
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          else if  (s2==-5) {
         lli=log(out[s1][s2]); /* Original formula */            for (j=1,survp=0. ; j<=2; j++)  
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli=log(out[s1][s2]); /* Original formula */            lli= log(survp);
       } /* End of if */          }
       ipmx +=1;         
       sw += weight[i];          else{
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if(globpr){          }
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  %10.6f %10.6f %10.6f ", \          /*if(lli ==000.0)*/
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          ipmx +=1;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          sw += weight[i];
           llt +=ll[k]*gipmx/gsw;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);        } /* end of wave */
         }      } /* end of individual */
         fprintf(ficresilk," %10.6f\n", -llt);    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end of wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* end of individual */        for(mi=1; mi<= wav[i]-1; mi++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            for (j=1;j<=nlstate+ndeath;j++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(globpr==0){ /* First time we count the contributions and weights */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gipmx=ipmx;            }
     gsw=sw;          for(d=0; d<=dh[mi][i]; d++){
   }            newm=savm;
   return -l;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*************** function likelione ***********/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* This routine should help understanding what is done with             oldm=newm;
      the selection of individuals/waves and          } /* end mult */
      to check the exact contribution to the likelihood.       
      Plotting could be done.          s1=s[mw[mi][i]][i];
    */          s2=s[mw[mi+1][i]][i];
   int k;          bbh=(double)bh[mi][i]/(double)stepm;
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if(*globpri !=0){ /* Just counts and sums, no printings */          ipmx +=1;
     strcpy(fileresilk,"ilk");           sw += weight[i];
     strcat(fileresilk,fileres);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {        } /* end of wave */
       printf("Problem with resultfile: %s\n", fileresilk);      } /* end of individual */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        for(mi=1; mi<= wav[i]-1; mi++){
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(k=1; k<=nlstate; k++)             for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   *fretone=(*funcone)(p);            newm=savm;
   if(*globpri !=0){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fclose(ficresilk);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fflush(fichtm);             }
   }             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   return;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
           } /* end mult */
 /*********** Maximum Likelihood Estimation ***************/       
           s1=s[mw[mi][i]][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm;
   int i,j, iter;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **xi;          ipmx +=1;
   double fret;          sw += weight[i];
   double fretone; /* Only one call to likelihood */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char filerespow[FILENAMELENGTH];        } /* end of wave */
   xi=matrix(1,npar,1,npar);      } /* end of individual */
   for (i=1;i<=npar;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (j=1;j<=npar;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       xi[i][j]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        for(mi=1; mi<= wav[i]-1; mi++){
   strcpy(filerespow,"pow");           for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(filerespow,fileres);            for (j=1;j<=nlstate+ndeath;j++){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", filerespow);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            }
   }          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            newm=savm;
   for (i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1;j<=nlstate+ndeath;j++)            for (kk=1; kk<=cptcovage;kk++) {
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficrespow,"\n");            }
          
   powell(p,xi,npar,ftol,&iter,&fret,func);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fclose(ficrespow);            savm=oldm;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            oldm=newm;
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          } /* end mult */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       
           s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
 /**** Computes Hessian and covariance matrix ***/            lli=log(out[s1][s2] - savm[s1][s2]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }else{
 {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double  **a,**y,*x,pd;          }
   double **hess;          ipmx +=1;
   int i, j,jk;          sw += weight[i];
   int *indx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double hessii(double p[], double delta, int theta, double delti[]);        } /* end of wave */
   double hessij(double p[], double delti[], int i, int j);      } /* end of individual */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hess=matrix(1,npar,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\nCalculation of the hessian matrix. Wait...\n");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("%d",i);fflush(stdout);            }
     fprintf(ficlog,"%d",i);fflush(ficlog);          for(d=0; d<dh[mi][i]; d++){
     hess[i][i]=hessii(p,ftolhess,i,delti);            newm=savm;
     /*printf(" %f ",p[i]);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /*printf(" %lf ",hess[i][i]);*/            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               }
   for (i=1;i<=npar;i++) {         
     for (j=1;j<=npar;j++)  {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (j>i) {                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(".%d%d",i,j);fflush(stdout);            savm=oldm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);            oldm=newm;
         hess[i][j]=hessij(p,delti,i,j);          } /* end mult */
         hess[j][i]=hess[i][j];           
         /*printf(" %lf ",hess[i][j]);*/          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          ipmx +=1;
   printf("\n");          sw += weight[i];
   fprintf(ficlog,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        } /* end of wave */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      } /* end of individual */
       } /* End of if */
   a=matrix(1,npar,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   y=matrix(1,npar,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   x=vector(1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   indx=ivector(1,npar);    return -l;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** log-likelihood *************/
   double funcone( double *x)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    /* Same as likeli but slower because of a lot of printf and if */
     x[j]=1;    int i, ii, j, k, mi, d, kk;
     lubksb(a,npar,indx,x);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=1;i<=npar;i++){     double **out;
       matcov[i][j]=x[i];    double lli; /* Individual log likelihood */
     }    double llt;
   }    int s1, s2;
     double bbh, survp;
   printf("\n#Hessian matrix#\n");    /*extern weight */
   fprintf(ficlog,"\n#Hessian matrix#\n");    /* We are differentiating ll according to initial status */
   for (i=1;i<=npar;i++) {     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (j=1;j<=npar;j++) {     /*for(i=1;i<imx;i++)
       printf("%.3e ",hess[i][j]);      printf(" %d\n",s[4][i]);
       fprintf(ficlog,"%.3e ",hess[i][j]);    */
     }    cov[1]=1.;
     printf("\n");  
     fprintf(ficlog,"\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Recompute Inverse */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++)      for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (ii=1;ii<=nlstate+ndeath;ii++)
   ludcmp(a,npar,indx,&pd);          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  printf("\n#Hessian matrix recomputed#\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   for (j=1;j<=npar;j++) {        for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++) x[i]=0;          newm=savm;
     x[j]=1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     lubksb(a,npar,indx,x);          for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<=npar;i++){             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       y[i][j]=x[i];          }
       printf("%.3e ",y[i][j]);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficlog,"%.3e ",y[i][j]);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
     printf("\n");          oldm=newm;
     fprintf(ficlog,"\n");        } /* end mult */
   }       
   */        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
   free_matrix(a,1,npar,1,npar);        bbh=(double)bh[mi][i]/(double)stepm;
   free_matrix(y,1,npar,1,npar);        /* bias is positive if real duration
   free_vector(x,1,npar);         * is higher than the multiple of stepm and negative otherwise.
   free_ivector(indx,1,npar);         */
   free_matrix(hess,1,npar,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
 }          for (j=1,survp=0. ; j<=nlstate; j++)
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*************** hessian matrix ****************/          lli= log(survp);
 double hessii( double x[], double delta, int theta, double delti[])        }else if (mle==1){
 {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int i;        } else if(mle==2){
   int l=1, lmax=20;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double k1,k2;        } else if(mle==3){  /* exponential inter-extrapolation */
   double p2[NPARMAX+1];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double res;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          lli=log(out[s1][s2]); /* Original formula */
   double fx;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int k=0,kmax=10;          lli=log(out[s1][s2]); /* Original formula */
   double l1;        } /* End of if */
         ipmx +=1;
   fx=func(x);        sw += weight[i];
   for (i=1;i<=npar;i++) p2[i]=x[i];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(l=0 ; l <=lmax; l++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     l1=pow(10,l);        if(globpr){
     delts=delt;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(k=1 ; k <kmax; k=k+1){   %11.6f %11.6f %11.6f ", \
       delt = delta*(l1*k);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       p2[theta]=x[theta] +delt;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       k1=func(p2)-fx;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       p2[theta]=x[theta]-delt;            llt +=ll[k]*gipmx/gsw;
       k2=func(p2)-fx;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          fprintf(ficresilk," %10.6f\n", -llt);
               }
 #ifdef DEBUG      } /* end of wave */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    } /* end of individual */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 #endif    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    if(globpr==0){ /* First time we count the contributions and weights */
         k=kmax;      gipmx=ipmx;
       }      gsw=sw;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    }
         k=kmax; l=lmax*10.;    return -l;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;  
       }  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   delti[theta]=delts;    /* This routine should help understanding what is done with
   return res;        the selection of individuals/waves and
          to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 double hessij( double x[], double delti[], int thetai,int thetaj)    int k;
 {  
   int i;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int l=1, l1, lmax=20;      strcpy(fileresilk,"ilk");
   double k1,k2,k3,k4,res,fx;      strcat(fileresilk,fileres);
   double p2[NPARMAX+1];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int k;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fx=func(x);      }
   for (k=1; k<=2; k++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     p2[thetai]=x[thetai]+delti[thetai]/k;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(k=1; k<=nlstate; k++)
     k1=func(p2)-fx;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    *fretone=(*funcone)(p);
       if(*globpri !=0){
     p2[thetai]=x[thetai]-delti[thetai]/k;      fclose(ficresilk);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     k3=func(p2)-fx;      fflush(fichtm);
       }
     p2[thetai]=x[thetai]-delti[thetai]/k;    return;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  /*********** Maximum Likelihood Estimation ***************/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 #endif  {
   }    int i,j, iter;
   return res;    double **xi;
 }    double fret;
     double fretone; /* Only one call to likelihood */
 /************** Inverse of matrix **************/    /*  char filerespow[FILENAMELENGTH];*/
 void ludcmp(double **a, int n, int *indx, double *d)     xi=matrix(1,npar,1,npar);
 {     for (i=1;i<=npar;i++)
   int i,imax,j,k;       for (j=1;j<=npar;j++)
   double big,dum,sum,temp;         xi[i][j]=(i==j ? 1.0 : 0.0);
   double *vv;     printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow");
   vv=vector(1,n);     strcat(filerespow,fileres);
   *d=1.0;     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (i=1;i<=n;i++) {       printf("Problem with resultfile: %s\n", filerespow);
     big=0.0;       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (j=1;j<=n;j++)     }
       if ((temp=fabs(a[i][j])) > big) big=temp;     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     for (i=1;i<=nlstate;i++)
     vv[i]=1.0/big;       for(j=1;j<=nlstate+ndeath;j++)
   }         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   for (j=1;j<=n;j++) {     fprintf(ficrespow,"\n");
     for (i=1;i<j;i++) {   
       sum=a[i][j];     powell(p,xi,npar,ftol,&iter,&fret,func);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;     free_matrix(xi,1,npar,1,npar);
     }     fclose(ficrespow);
     big=0.0;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for (i=j;i<=n;i++) {     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       sum=a[i][j];     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for (k=1;k<j;k++)   
         sum -= a[i][k]*a[k][j];   }
       a[i][j]=sum;   
       if ( (dum=vv[i]*fabs(sum)) >= big) {   /**** Computes Hessian and covariance matrix ***/
         big=dum;   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         imax=i;   {
       }     double  **a,**y,*x,pd;
     }     double **hess;
     if (j != imax) {     int i, j,jk;
       for (k=1;k<=n;k++) {     int *indx;
         dum=a[imax][k];   
         a[imax][k]=a[j][k];     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         a[j][k]=dum;     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       }     void lubksb(double **a, int npar, int *indx, double b[]) ;
       *d = -(*d);     void ludcmp(double **a, int npar, int *indx, double *d) ;
       vv[imax]=vv[j];     double gompertz(double p[]);
     }     hess=matrix(1,npar,1,npar);
     indx[j]=imax;   
     if (a[j][j] == 0.0) a[j][j]=TINY;     printf("\nCalculation of the hessian matrix. Wait...\n");
     if (j != n) {     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       dum=1.0/(a[j][j]);     for (i=1;i<=npar;i++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       printf("%d",i);fflush(stdout);
     }       fprintf(ficlog,"%d",i);fflush(ficlog);
   }      
   free_vector(vv,1,n);  /* Doesn't work */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 ;     
 }       /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void lubksb(double **a, int n, int *indx, double b[])     }
 {    
   int i,ii=0,ip,j;     for (i=1;i<=npar;i++) {
   double sum;       for (j=1;j<=npar;j++)  {
          if (j>i) {
   for (i=1;i<=n;i++) {           printf(".%d%d",i,j);fflush(stdout);
     ip=indx[i];           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     sum=b[ip];           hess[i][j]=hessij(p,delti,i,j,func,npar);
     b[ip]=b[i];          
     if (ii)           hess[j][i]=hess[i][j];    
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           /*printf(" %lf ",hess[i][j]);*/
     else if (sum) ii=i;         }
     b[i]=sum;       }
   }     }
   for (i=n;i>=1;i--) {     printf("\n");
     sum=b[i];     fprintf(ficlog,"\n");
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   
     b[i]=sum/a[i][i];     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    
     a=matrix(1,npar,1,npar);
 /************ Frequencies ********************/    y=matrix(1,npar,1,npar);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    x=vector(1,npar);
 {  /* Some frequencies */    indx=ivector(1,npar);
       for (i=1;i<=npar;i++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int first;    ludcmp(a,npar,indx,&pd);
   double ***freq; /* Frequencies */  
   double *pp, **prop;    for (j=1;j<=npar;j++) {
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      for (i=1;i<=npar;i++) x[i]=0;
   FILE *ficresp;      x[j]=1;
   char fileresp[FILENAMELENGTH];      lubksb(a,npar,indx,x);
         for (i=1;i<=npar;i++){
   pp=vector(1,nlstate);        matcov[i][j]=x[i];
   prop=matrix(1,nlstate,iagemin,iagemax+3);      }
   strcpy(fileresp,"p");    }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    printf("\n#Hessian matrix#\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    for (i=1;i<=npar;i++) {
     exit(0);      for (j=1;j<=npar;j++) {
   }        printf("%.3e ",hess[i][j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);        fprintf(ficlog,"%.3e ",hess[i][j]);
   j1=0;      }
         printf("\n");
   j=cptcoveff;      fprintf(ficlog,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
   
   first=1;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   for(k1=1; k1<=j;k1++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(i1=1; i1<=ncodemax[k1];i1++){    ludcmp(a,npar,indx,&pd);
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /*  printf("\n#Hessian matrix recomputed#\n");
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)      for (j=1;j<=npar;j++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (i=1;i<=npar;i++) x[i]=0;
           for(m=iagemin; m <= iagemax+3; m++)      x[j]=1;
             freq[i][jk][m]=0;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){
     for (i=1; i<=nlstate; i++)          y[i][j]=x[i];
       for(m=iagemin; m <= iagemax+3; m++)        printf("%.3e ",y[i][j]);
         prop[i][m]=0;        fprintf(ficlog,"%.3e ",y[i][j]);
             }
       dateintsum=0;      printf("\n");
       k2cpt=0;      fprintf(ficlog,"\n");
       for (i=1; i<=imx; i++) {    }
         bool=1;    */
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)     free_matrix(a,1,npar,1,npar);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     free_matrix(y,1,npar,1,npar);
               bool=0;    free_vector(x,1,npar);
         }    free_ivector(indx,1,npar);
         if (bool==1){    free_matrix(hess,1,npar,1,npar);
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  /*************** hessian matrix ****************/
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               if (m<lastpass) {  {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    int l=1, lmax=20;
               }    double k1,k2;
                   double p2[NPARMAX+1];
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    double res;
                 dateintsum=dateintsum+k2;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                 k2cpt++;    double fx;
               }    int k=0,kmax=10;
               /*}*/    double l1;
           }  
         }    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
            for(l=0 ; l <=lmax; l++){
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      l1=pow(10,l);
       delts=delt;
       if  (cptcovn>0) {      for(k=1 ; k <kmax; k=k+1){
         fprintf(ficresp, "\n#********** Variable ");         delt = delta*(l1*k);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        p2[theta]=x[theta] +delt;
         fprintf(ficresp, "**********\n#");        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
       for(i=1; i<=nlstate;i++)         k2=func(p2)-fx;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresp, "\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
              
       for(i=iagemin; i <= iagemax+3; i++){  #ifdef DEBUG
         if(i==iagemax+3){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           fprintf(ficlog,"Total");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }else{  #endif
           if(first==1){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             first=0;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             printf("See log file for details...\n");          k=kmax;
           }        }
           fprintf(ficlog,"Age %d", i);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
             pp[jk] += freq[jk][m][i];           delts=delt;
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pos=0; m <=0 ; m++)    }
             pos += freq[jk][m][i];    delti[theta]=delts;
           if(pp[jk]>=1.e-10){    return res;
             if(first==1){   
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           }else{  {
             if(first==1)    int i;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int l=1, l1, lmax=20;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double k1,k2,k3,k4,res,fx;
           }    double p2[NPARMAX+1];
         }    int k;
   
         for(jk=1; jk <=nlstate ; jk++){    fx=func(x);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (k=1; k<=2; k++) {
             pp[jk] += freq[jk][m][i];      for (i=1;i<=npar;i++) p2[i]=x[i];
         }             p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           pos += pp[jk];      k1=func(p2)-fx;
           posprop += prop[jk][i];   
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           if(pos>=1.e-5){      k2=func(p2)-fx;
             if(first==1)   
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      p2[thetai]=x[thetai]-delti[thetai]/k;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }else{      k3=func(p2)-fx;
             if(first==1)   
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetai]=x[thetai]-delti[thetai]/k;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           }      k4=func(p2)-fx;
           if( i <= iagemax){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             if(pos>=1.e-5){  #ifdef DEBUG
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               /*probs[i][jk][j1]= pp[jk]/pos;*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  #endif
             }    }
             else    return res;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  }
           }  
         }  /************** Inverse of matrix **************/
           void ludcmp(double **a, int n, int *indx, double *d)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    int i,imax,j,k;
             if(freq[jk][m][i] !=0 ) {    double big,dum,sum,temp;
             if(first==1)    double *vv;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);   
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    vv=vector(1,n);
             }    *d=1.0;
         if(i <= iagemax)    for (i=1;i<=n;i++) {
           fprintf(ficresp,"\n");      big=0.0;
         if(first==1)      for (j=1;j<=n;j++)
           printf("Others in log...\n");        if ((temp=fabs(a[i][j])) > big) big=temp;
         fprintf(ficlog,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       }      vv[i]=1.0/big;
     }    }
   }    for (j=1;j<=n;j++) {
   dateintmean=dateintsum/k2cpt;       for (i=1;i<j;i++) {
          sum=a[i][j];
   fclose(ficresp);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);        a[i][j]=sum;
   free_vector(pp,1,nlstate);      }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      big=0.0;
   /* End of Freq */      for (i=j;i<=n;i++) {
 }        sum=a[i][j];
         for (k=1;k<j;k++)
 /************ Prevalence ********************/          sum -= a[i][k]*a[k][j];
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        a[i][j]=sum;
 {          if ( (dum=vv[i]*fabs(sum)) >= big) {
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          big=dum;
      in each health status at the date of interview (if between dateprev1 and dateprev2).          imax=i;
      We still use firstpass and lastpass as another selection.        }
   */      }
        if (j != imax) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for (k=1;k<=n;k++) {
   double ***freq; /* Frequencies */          dum=a[imax][k];
   double *pp, **prop;          a[imax][k]=a[j][k];
   double pos,posprop;           a[j][k]=dum;
   double  y2; /* in fractional years */        }
   int iagemin, iagemax;        *d = -(*d);
         vv[imax]=vv[j];
   iagemin= (int) agemin;      }
   iagemax= (int) agemax;      indx[j]=imax;
   /*pp=vector(1,nlstate);*/      if (a[j][j] == 0.0) a[j][j]=TINY;
   prop=matrix(1,nlstate,iagemin,iagemax+3);       if (j != n) {
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        dum=1.0/(a[j][j]);
   j1=0;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
         }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_vector(vv,1,n);  /* Doesn't work */
     ;
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  void lubksb(double **a, int n, int *indx, double b[])
         {
       for (i=1; i<=nlstate; i++)      int i,ii=0,ip,j;
         for(m=iagemin; m <= iagemax+3; m++)    double sum;
           prop[i][m]=0.0;   
          for (i=1;i<=n;i++) {
       for (i=1; i<=imx; i++) { /* Each individual */      ip=indx[i];
         bool=1;      sum=b[ip];
         if  (cptcovn>0) {      b[ip]=b[i];
           for (z1=1; z1<=cptcoveff; z1++)       if (ii)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
               bool=0;      else if (sum) ii=i;
         }       b[i]=sum;
         if (bool==1) {     }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    for (i=n;i>=1;i--) {
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      sum=b[i];
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      b[i]=sum/a[i][i];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   }
               if (s[m][i]>0 && s[m][i]<=nlstate) {   
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  void pstamp(FILE *fichier)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];  {
                 prop[s[m][i]][iagemax+3] += weight[i];     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
               }   }
             }  
           } /* end selection of waves */  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       }  {  /* Some frequencies */
       for(i=iagemin; i <= iagemax+3; i++){     
             int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     int first;
           posprop += prop[jk][i];     double ***freq; /* Frequencies */
         }     double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(jk=1; jk <=nlstate ; jk++){         char fileresp[FILENAMELENGTH];
           if( i <=  iagemax){    
             if(posprop>=1.e-5){     pp=vector(1,nlstate);
               probs[i][jk][j1]= prop[jk][i]/posprop;    prop=matrix(1,nlstate,iagemin,iagemax+3);
             }     strcpy(fileresp,"p");
           }     strcat(fileresp,fileres);
         }/* end jk */     if((ficresp=fopen(fileresp,"w"))==NULL) {
       }/* end i */       printf("Problem with prevalence resultfile: %s\n", fileresp);
     } /* end i1 */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   } /* end k1 */      exit(0);
       }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /*free_vector(pp,1,nlstate);*/    j1=0;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);   
 }  /* End of prevalence */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************* Waves Concatenation ***************/  
     first=1;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {    for(k1=1; k1<=j;k1++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(i1=1; i1<=ncodemax[k1];i1++){
      Death is a valid wave (if date is known).        j1++;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          scanf("%d", i);*/
      and mw[mi+1][i]. dh depends on stepm.        for (i=-5; i<=nlstate+ndeath; i++)  
      */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
   int i, mi, m;              freq[i][jk][m]=0;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/      for (i=1; i<=nlstate; i++)  
   int first;        for(m=iagemin; m <= iagemax+3; m++)
   int j, k=0,jk, ju, jl;          prop[i][m]=0;
   double sum=0.;       
   first=0;        dateintsum=0;
   jmin=1e+5;        k2cpt=0;
   jmax=-1;        for (i=1; i<=imx; i++) {
   jmean=0.;          bool=1;
   for(i=1; i<=imx; i++){          if  (cptcovn>0) {
     mi=0;            for (z1=1; z1<=cptcoveff; z1++)
     m=firstpass;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     while(s[m][i] <= nlstate){                bool=0;
       if(s[m][i]>=1)          }
         mw[++mi][i]=m;          if (bool==1){
       if(m >=lastpass)            for(m=firstpass; m<=lastpass; m++){
         break;              k2=anint[m][i]+(mint[m][i]/12.);
       else              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         m++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }/* end while */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if (s[m][i] > nlstate){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       mi++;     /* Death is another wave */                if (m<lastpass) {
       /* if(mi==0)  never been interviewed correctly before death */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
          /* Only death is a correct wave */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       mw[mi][i]=m;                }
     }               
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     wav[i]=mi;                  dateintsum=dateintsum+k2;
     if(mi==0){                  k2cpt++;
       nbwarn++;                }
       if(first==0){                /*}*/
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);            }
         first=1;          }
       }        }
       if(first==1){         
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }        pstamp(ficresp);
     } /* end mi==0 */        if  (cptcovn>0) {
   } /* End individuals */          fprintf(ficresp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i<=imx; i++){          fprintf(ficresp, "**********\n#");
     for(mi=1; mi<wav[i];mi++){        }
       if (stepm <=0)        for(i=1; i<=nlstate;i++)
         dh[mi][i]=1;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       else{        fprintf(ficresp, "\n");
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */       
           if (agedc[i] < 2*AGESUP) {        for(i=iagemin; i <= iagemax+3; i++){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           if(i==iagemax+3){
             if(j==0) j=1;  /* Survives at least one month after exam */            fprintf(ficlog,"Total");
             else if(j<0){          }else{
               nberr++;            if(first==1){
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              first=0;
               j=1; /* Temporary Dangerous patch */              printf("See log file for details...\n");
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            fprintf(ficlog,"Age %d", i);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          }
             }          for(jk=1; jk <=nlstate ; jk++){
             k=k+1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             if (j >= jmax) jmax=j;              pp[jk] += freq[jk][m][i];
             if (j <= jmin) jmin=j;          }
             sum=sum+j;          for(jk=1; jk <=nlstate ; jk++){
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/            for(m=-1, pos=0; m <=0 ; m++)
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              pos += freq[jk][m][i];
           }            if(pp[jk]>=1.e-10){
         }              if(first==1){
         else{              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              }
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           k=k+1;            }else{
           if (j >= jmax) jmax=j;              if(first==1)
           else if (j <= jmin)jmin=j;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            }
           if(j<0){          }
             nberr++;  
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
           sum=sum+j;          }      
         }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         jk= j/stepm;            pos += pp[jk];
         jl= j -jk*stepm;            posprop += prop[jk][i];
         ju= j -(jk+1)*stepm;          }
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */          for(jk=1; jk <=nlstate ; jk++){
           if(jl==0){            if(pos>=1.e-5){
             dh[mi][i]=jk;              if(first==1)
             bh[mi][i]=0;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{ /* We want a negative bias in order to only have interpolation ie              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   * at the price of an extra matrix product in likelihood */            }else{
             dh[mi][i]=jk+1;              if(first==1)
             bh[mi][i]=ju;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }else{            }
           if(jl <= -ju){            if( i <= iagemax){
             dh[mi][i]=jk;              if(pos>=1.e-5){
             bh[mi][i]=jl;       /* bias is positive if real duration                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                                  * is higher than the multiple of stepm and negative otherwise.                /*probs[i][jk][j1]= pp[jk]/pos;*/
                                  */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
           else{              else
             dh[mi][i]=jk+1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             bh[mi][i]=ju;            }
           }          }
           if(dh[mi][i]==0){         
             dh[mi][i]=1; /* At least one step */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             bh[mi][i]=ju; /* At least one step */            for(m=-1; m <=nlstate+ndeath; m++)
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              if(freq[jk][m][i] !=0 ) {
           }              if(first==1)
         } /* end if mle */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     } /* end wave */              }
   }          if(i <= iagemax)
   jmean=sum/k;            fprintf(ficresp,"\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          if(first==1)
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            printf("Others in log...\n");
  }          fprintf(ficlog,"\n");
         }
 /*********** Tricode ****************************/      }
 void tricode(int *Tvar, int **nbcode, int imx)    }
 {    dateintmean=dateintsum/k2cpt;
      
   int Ndum[20],ij=1, k, j, i, maxncov=19;    fclose(ficresp);
   int cptcode=0;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   cptcoveff=0;     free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for (k=0; k<maxncov; k++) Ndum[k]=0;    /* End of Freq */
   for (k=1; k<=7; k++) ncodemax[k]=0;  }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /************ Prevalence ********************/
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                                modality*/   {  
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       Ndum[ij]++; /*store the modality */       in each health status at the date of interview (if between dateprev1 and dateprev2).
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/       We still use firstpass and lastpass as another selection.
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable     */
                                        Tvar[j]. If V=sex and male is 0 and    
                                        female is 1, then  cptcode=1.*/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }    double ***freq; /* Frequencies */
     double *pp, **prop;
     for (i=0; i<=cptcode; i++) {    double pos,posprop;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */    double  y2; /* in fractional years */
     }    int iagemin, iagemax;
   
     ij=1;     iagemin= (int) agemin;
     for (i=1; i<=ncodemax[j]; i++) {    iagemax= (int) agemax;
       for (k=0; k<= maxncov; k++) {    /*pp=vector(1,nlstate);*/
         if (Ndum[k] != 0) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
           nbcode[Tvar[j]][ij]=k;     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    j1=0;
              
           ij++;    j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         if (ij > ncodemax[j]) break;    
       }      for(k1=1; k1<=j;k1++){
     }       for(i1=1; i1<=ncodemax[k1];i1++){
   }          j1++;
        
  for (k=0; k< maxncov; k++) Ndum[k]=0;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
  for (i=1; i<=ncovmodel-2; i++) {             prop[i][m]=0.0;
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/       
    ij=Tvar[i];        for (i=1; i<=imx; i++) { /* Each individual */
    Ndum[ij]++;          bool=1;
  }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++)
  ij=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
  for (i=1; i<= maxncov; i++) {                bool=0;
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i; /*For printing */          if (bool==1) {
      ij++;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
  cptcoveff=ij-1; /*Number of simple covariates*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                 if (s[m][i]>0 && s[m][i]<=nlstate) {
 /*********** Health Expectancies ****************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                  prop[s[m][i]][iagemax+3] += weight[i];
                 }
 {              }
   /* Health expectancies */            } /* end selection of waves */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          }
   double age, agelim, hf;        }
   double ***p3mat,***varhe;        for(i=iagemin; i <= iagemax+3; i++){  
   double **dnewm,**doldm;         
   double *xp;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   double **gp, **gm;            posprop += prop[jk][i];
   double ***gradg, ***trgradg;          }
   int theta;  
           for(jk=1; jk <=nlstate ; jk++){    
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);            if( i <=  iagemax){
   xp=vector(1,npar);              if(posprop>=1.e-5){
   dnewm=matrix(1,nlstate*nlstate,1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);              }
               }
   fprintf(ficreseij,"# Health expectancies\n");          }/* end jk */
   fprintf(ficreseij,"# Age");        }/* end i */
   for(i=1; i<=nlstate;i++)      } /* end i1 */
     for(j=1; j<=nlstate;j++)    } /* end k1 */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);   
   fprintf(ficreseij,"\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   if(estepm < stepm){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     printf ("Problem %d lower than %d\n",estepm, stepm);  }  /* End of prevalence */
   }  
   else  hstepm=estepm;     /************* Waves Concatenation ***************/
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    * if stepm=24 months pijx are given only every 2 years and by summing them  {
    * we are calculating an estimate of the Life Expectancy assuming a linear     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    * progression in between and thus overestimating or underestimating according       Death is a valid wave (if date is known).
    * to the curvature of the survival function. If, for the same date, we        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    * estimate the model with stepm=1 month, we can keep estepm to 24 months       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    * to compare the new estimate of Life expectancy with the same linear        and mw[mi+1][i]. dh depends on stepm.
    * hypothesis. A more precise result, taking into account a more precise       */
    * curvature will be obtained if estepm is as small as stepm. */  
     int i, mi, m;
   /* For example we decided to compute the life expectancy with the smallest unit */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        double sum=0., jmean=0.;*/
      nhstepm is the number of hstepm from age to agelim     int first;
      nstepm is the number of stepm from age to agelin.     int j, k=0,jk, ju, jl;
      Look at hpijx to understand the reason of that which relies in memory size    double sum=0.;
      and note for a fixed period like estepm months */    first=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    jmin=1e+5;
      survival function given by stepm (the optimization length). Unfortunately it    jmax=-1;
      means that if the survival funtion is printed only each two years of age and if    jmean=0.;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     for(i=1; i<=imx; i++){
      results. So we changed our mind and took the option of the best precision.      mi=0;
   */      m=firstpass;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   agelim=AGESUP;          mw[++mi][i]=m;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(m >=lastpass)
     /* nhstepm age range expressed in number of stepm */          break;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         else
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           m++;
     /* if (stepm >= YEARM) hstepm=1;*/      }/* end while */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if (s[m][i] > nlstate){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        mi++;     /* Death is another wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        /* if(mi==0)  never been interviewed correctly before death */
     gp=matrix(0,nhstepm,1,nlstate*nlstate);           /* Only death is a correct wave */
     gm=matrix(0,nhstepm,1,nlstate*nlstate);        mw[mi][i]=m;
       }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      wav[i]=mi;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        if(mi==0){
          nbwarn++;
         if(first==0){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
     /* Computing  Variances of health expectancies */        }
         if(first==1){
      for(theta=1; theta <=npar; theta++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       for(i=1; i<=npar; i++){         }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end mi==0 */
       }    } /* End individuals */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       for(i=1; i<=imx; i++){
       cptj=0;      for(mi=1; mi<wav[i];mi++){
       for(j=1; j<= nlstate; j++){        if (stepm <=0)
         for(i=1; i<=nlstate; i++){          dh[mi][i]=1;
           cptj=cptj+1;        else{
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            if (agedc[i] < 2*AGESUP) {
           }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
         }              if(j==0) j=1;  /* Survives at least one month after exam */
       }              else if(j<0){
                      nberr++;
                      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<=npar; i++)                 j=1; /* Temporary Dangerous patch */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                       fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       cptj=0;              }
       for(j=1; j<= nlstate; j++){              k=k+1;
         for(i=1;i<=nlstate;i++){              if (j >= jmax){
           cptj=cptj+1;                jmax=j;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                ijmax=i;
               }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              if (j <= jmin){
           }                jmin=j;
         }                ijmin=i;
       }              }
       for(j=1; j<= nlstate*nlstate; j++)              sum=sum+j;
         for(h=0; h<=nhstepm-1; h++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
      }           }
              else{
 /* End theta */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
             k=k+1;
      for(h=0; h<=nhstepm-1; h++)            if (j >= jmax) {
       for(j=1; j<=nlstate*nlstate;j++)              jmax=j;
         for(theta=1; theta <=npar; theta++)              ijmax=i;
           trgradg[h][j][theta]=gradg[h][theta][j];            }
                  else if (j <= jmin){
               jmin=j;
      for(i=1;i<=nlstate*nlstate;i++)              ijmin=i;
       for(j=1;j<=nlstate*nlstate;j++)            }
         varhe[i][j][(int)age] =0.;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      printf("%d|",(int)age);fflush(stdout);            if(j<0){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);              nberr++;
      for(h=0;h<=nhstepm-1;h++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=0;k<=nhstepm-1;k++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);            sum=sum+j;
         for(i=1;i<=nlstate*nlstate;i++)          }
           for(j=1;j<=nlstate*nlstate;j++)          jk= j/stepm;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     /* Computing expectancies */            if(jl==0){
     for(i=1; i<=nlstate;i++)              dh[mi][i]=jk;
       for(j=1; j<=nlstate;j++)              bh[mi][i]=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            }else{ /* We want a negative bias in order to only have interpolation ie
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                    * at the price of an extra matrix product in likelihood */
                         dh[mi][i]=jk+1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              bh[mi][i]=ju;
             }
         }          }else{
             if(jl <= -ju){
     fprintf(ficreseij,"%3.0f",age );              dh[mi][i]=jk;
     cptj=0;              bh[mi][i]=jl;       /* bias is positive if real duration
     for(i=1; i<=nlstate;i++)                                   * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate;j++){                                   */
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            else{
       }              dh[mi][i]=jk+1;
     fprintf(ficreseij,"\n");              bh[mi][i]=ju;
                }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            if(dh[mi][i]==0){
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);              dh[mi][i]=1; /* At least one step */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);              bh[mi][i]=ju; /* At least one step */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          } /* end if mle */
   printf("\n");        }
   fprintf(ficlog,"\n");      } /* end wave */
     }
   free_vector(xp,1,npar);    jmean=sum/k;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);   }
 }  
   /*********** Tricode ****************************/
 /************ Variance ******************/  void tricode(int *Tvar, int **nbcode, int imx)
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)  {
 {   
   /* Variance of health expectancies */    int Ndum[20],ij=1, k, j, i, maxncov=19;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int cptcode=0;
   /* double **newm;*/    cptcoveff=0;
   double **dnewm,**doldm;   
   double **dnewmp,**doldmp;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int i, j, nhstepm, hstepm, h, nstepm ;    for (k=1; k<=7; k++) ncodemax[k]=0;
   int k, cptcode;  
   double *xp;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double **gp, **gm;  /* for var eij */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   double ***gradg, ***trgradg; /*for var eij */                                 modality*/
   double **gradgp, **trgradgp; /* for var p point j */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double *gpp, *gmp; /* for var p point j */        Ndum[ij]++; /*store the modality */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double ***p3mat;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   double age,agelim, hf;                                         Tvar[j]. If V=sex and male is 0 and
   double ***mobaverage;                                         female is 1, then  cptcode=1.*/
   int theta;      }
   char digit[4];  
   char digitp[25];      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   char fileresprobmorprev[FILENAMELENGTH];      }
   
   if(popbased==1){      ij=1;
     if(mobilav!=0)      for (i=1; i<=ncodemax[j]; i++) {
       strcpy(digitp,"-populbased-mobilav-");        for (k=0; k<= maxncov; k++) {
     else strcpy(digitp,"-populbased-nomobil-");          if (Ndum[k] != 0) {
   }            nbcode[Tvar[j]][ij]=k;
   else             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     strcpy(digitp,"-stablbased-");           
             ij++;
   if (mobilav!=0) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (ij > ncodemax[j]) break;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        }  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    }  
     }  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   strcpy(fileresprobmorprev,"prmorprev");    for (i=1; i<=ncovmodel-2; i++) {
   sprintf(digit,"%-d",ij);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     ij=Tvar[i];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     Ndum[ij]++;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */   }
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {   ij=1;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);   for (i=1; i<= maxncov; i++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);     if((Ndum[i]!=0) && (i<=ncovcol)){
   }       Tvaraff[ij]=i; /*For printing */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       ij++;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);     }
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);   }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);   
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){   cptcoveff=ij-1; /*Number of simple covariates*/
     fprintf(ficresprobmorprev," p.%-d SE",j);  }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  /*********** Health Expectancies ****************/
   }    
   fprintf(ficresprobmorprev,"\n");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fprintf(ficgp,"\n# Routine varevsij");  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  {
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    /* Health expectancies, no variances */
 /*   } */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double age, agelim, hf;
     double ***p3mat;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double eip;
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    pstamp(ficreseij);
     for(j=1; j<=nlstate;j++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    fprintf(ficreseij,"# Age");
   fprintf(ficresvij,"\n");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   xp=vector(1,npar);        fprintf(ficreseij," e%1d%1d ",i,j);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficreseij," e%1d. ",i);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficreseij,"\n");
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);   
   gpp=vector(nlstate+1,nlstate+ndeath);    if(estepm < stepm){
   gmp=vector(nlstate+1,nlstate+ndeath);      printf ("Problem %d lower than %d\n",estepm, stepm);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
       else  hstepm=estepm;  
   if(estepm < stepm){    /* We compute the life expectancy from trapezoids spaced every estepm months
     printf ("Problem %d lower than %d\n",estepm, stepm);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   else  hstepm=estepm;        * we are calculating an estimate of the Life Expectancy assuming a linear
   /* For example we decided to compute the life expectancy with the smallest unit */     * progression in between and thus overestimating or underestimating according
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      * to the curvature of the survival function. If, for the same date, we
      nhstepm is the number of hstepm from age to agelim      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      nstepm is the number of stepm from age to agelin.      * to compare the new estimate of Life expectancy with the same linear
      Look at hpijx to understand the reason of that which relies in memory size     * hypothesis. A more precise result, taking into account a more precise
      and note for a fixed period like k years */     * curvature will be obtained if estepm is as small as stepm. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    /* For example we decided to compute the life expectancy with the smallest unit */
      means that if the survival funtion is printed every two years of age and if    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        nhstepm is the number of hstepm from age to agelim
      results. So we changed our mind and took the option of the best precision.       nstepm is the number of stepm from age to agelin.
   */       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        and note for a fixed period like estepm months */
   agelim = AGESUP;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        means that if the survival funtion is printed only each two years of age and if
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    */
     gp=matrix(0,nhstepm,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     gm=matrix(0,nhstepm,1,nlstate);  
     agelim=AGESUP;
     /* If stepm=6 months */
     for(theta=1; theta <=npar; theta++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     
       }  /* nhstepm age range expressed in number of stepm */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
       if (popbased==1) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         if(mobilav ==0){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];    for (age=bage; age<=fage; age ++){
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }     
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
       for(j=1; j<= nlstate; j++){      printf("%d|",(int)age);fflush(stdout);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)     
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }      /* Computing expectancies */
       }      for(i=1; i<=nlstate;i++)
       /* This for computing probability of death (h=1 means        for(j=1; j<=nlstate;j++)
          computed over hstepm matrices product = hstepm*stepm months)           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
          as a weighted average of prlim.            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       */           
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }         
       /* end probability of death */      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */        eip=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(j=1; j<=nlstate;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            eip +=eij[i][j][(int)age];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
       if (popbased==1) {        fprintf(ficreseij,"%9.4f", eip );
         if(mobilav ==0){      }
           for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"\n");
             prlim[i][i]=probs[(int)age][i][ij];     
         }else{ /* mobilav */     }
           for(i=1; i<=nlstate;i++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             prlim[i][i]=mobaverage[(int)age][i][ij];    printf("\n");
         }    fprintf(ficlog,"\n");
       }   
   }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  {
         }    /* Covariances of health expectancies eij and of total life expectancies according
       }     to initial status i, ei. .
       /* This for computing probability of death (h=1 means    */
          computed over hstepm matrices product = hstepm*stepm months)     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
          as a weighted average of prlim.    double age, agelim, hf;
       */    double ***p3matp, ***p3matm, ***varhe;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    double **dnewm,**doldm;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    double *xp, *xm;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    double **gp, **gm;
       }        double ***gradg, ***trgradg;
       /* end probability of death */    int theta;
   
       for(j=1; j<= nlstate; j++) /* vareij */    double eip, vip;
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         }    xp=vector(1,npar);
     xm=vector(1,npar);
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    dnewm=matrix(1,nlstate*nlstate,1,npar);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       }   
     pstamp(ficresstdeij);
     } /* End theta */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
     for(h=0; h<=nhstepm; h++) /* veij */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(j=1; j<=nlstate;j++)      fprintf(ficresstdeij," e%1d. ",i);
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficresstdeij,"\n");
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    pstamp(ficrescveij);
       for(theta=1; theta <=npar; theta++)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         trgradgp[j][theta]=gradgp[theta][j];    fprintf(ficrescveij,"# Age");
       for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        cptj= (j-1)*nlstate+i;
     for(i=1;i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
       for(j=1;j<=nlstate;j++)          for(j2=1; j2<=nlstate;j2++){
         vareij[i][j][(int)age] =0.;            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
     for(h=0;h<=nhstepm;h++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficrescveij,"\n");
         for(i=1;i<=nlstate;i++)   
           for(j=1;j<=nlstate;j++)    if(estepm < stepm){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;  
       /* We compute the life expectancy from trapezoids spaced every estepm months
     /* pptj */     * This is mainly to measure the difference between two models: for example
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);     * if stepm=24 months pijx are given only every 2 years and by summing them
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);     * we are calculating an estimate of the Life Expectancy assuming a linear
     for(j=nlstate+1;j<=nlstate+ndeath;j++)     * progression in between and thus overestimating or underestimating according
       for(i=nlstate+1;i<=nlstate+ndeath;i++)     * to the curvature of the survival function. If, for the same date, we
         varppt[j][i]=doldmp[j][i];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     /* end ppptj */     * to compare the new estimate of Life expectancy with the same linear
     /*  x centered again */     * hypothesis. A more precise result, taking into account a more precise
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);       * curvature will be obtained if estepm is as small as stepm. */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
      /* For example we decided to compute the life expectancy with the smallest unit */
     if (popbased==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       if(mobilav ==0){       nhstepm is the number of hstepm from age to agelim
         for(i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin.
           prlim[i][i]=probs[(int)age][i][ij];       Look at hpijx to understand the reason of that which relies in memory size
       }else{ /* mobilav */        and note for a fixed period like estepm months */
         for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           prlim[i][i]=mobaverage[(int)age][i][ij];       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
                     results. So we changed our mind and took the option of the best precision.
     /* This for computing probability of death (h=1 means    */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
        as a weighted average of prlim.  
     */    /* If stepm=6 months */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* nhstepm age range expressed in number of stepm */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     agelim=AGESUP;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     }        /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* end probability of death */    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);   
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1; i<=nlstate;i++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficresprobmorprev,"\n");  
     for (age=bage; age<=fage; age ++){
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(j=1; j<=nlstate;j++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);   
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);      /* Computing  Variances of health expectancies */
     free_matrix(gm,0,nhstepm,1,nlstate);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);         decrease memory allocation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(theta=1; theta <=npar; theta++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++){
   } /* End age */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_vector(gpp,nlstate+1,nlstate+ndeath);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   free_vector(gmp,nlstate+1,nlstate+ndeath);        }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");   
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        for(j=1; j<= nlstate; j++){
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          for(i=1; i<=nlstate; i++){
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */            for(h=0; h<=nhstepm-1; h++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));            }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));       
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        for(ij=1; ij<= nlstate*nlstate; ij++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          for(h=0; h<=nhstepm-1; h++){
 */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */          }
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      }/* End theta */
      
   free_vector(xp,1,npar);     
   free_matrix(doldm,1,nlstate,1,nlstate);      for(h=0; h<=nhstepm-1; h++)
   free_matrix(dnewm,1,nlstate,1,npar);        for(j=1; j<=nlstate*nlstate;j++)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(theta=1; theta <=npar; theta++)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);       for(ij=1;ij<=nlstate*nlstate;ij++)
   fflush(ficgp);        for(ji=1;ji<=nlstate*nlstate;ji++)
   fflush(fichtm);           varhe[ij][ji][(int)age] =0.;
 }  /* end varevsij */  
        printf("%d|",(int)age);fflush(stdout);
 /************ Variance of prevlim ******************/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       for(h=0;h<=nhstepm-1;h++){
 {        for(k=0;k<=nhstepm-1;k++){
   /* Variance of prevalence limit */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double **newm;          for(ij=1;ij<=nlstate*nlstate;ij++)
   double **dnewm,**doldm;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int i, j, nhstepm, hstepm;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int k, cptcode;        }
   double *xp;      }
   double *gp, *gm;  
   double **gradg, **trgradg;      /* Computing expectancies */
   double age,agelim;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int theta;      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresvpl,"# Age");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   for(i=1; i<=nlstate;i++)           
       fprintf(ficresvpl," %1d-%1d",i,i);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficresvpl,"\n");  
           }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficresstdeij,"%3.0f",age );
   doldm=matrix(1,nlstate,1,nlstate);      for(i=1; i<=nlstate;i++){
           eip=0.;
   hstepm=1*YEARM; /* Every year of age */        vip=0.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         for(j=1; j<=nlstate;j++){
   agelim = AGESUP;          eip += eij[i][j][(int)age];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     if (stepm >= YEARM) hstepm=1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     gp=vector(1,nlstate);      }
     gm=vector(1,nlstate);      fprintf(ficresstdeij,"\n");
   
     for(theta=1; theta <=npar; theta++){      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(i=1; i<=nlstate;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<=nlstate;j++){
       }          cptj= (j-1)*nlstate+i;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(i2=1; i2<=nlstate;i2++)
       for(i=1;i<=nlstate;i++)            for(j2=1; j2<=nlstate;j2++){
         gp[i] = prlim[i][i];              cptj2= (j2-1)*nlstate+i2;
                   if(cptj2 <= cptj)
       for(i=1; i<=npar; i++) /* Computes gradient */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)      fprintf(ficrescveij,"\n");
         gm[i] = prlim[i][i];     
     }
       for(i=1;i<=nlstate;i++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     } /* End theta */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=1; j<=nlstate;j++)    printf("\n");
       for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n");
         trgradg[j][theta]=gradg[theta][j];  
     free_vector(xm,1,npar);
     for(i=1;i<=nlstate;i++)    free_vector(xp,1,npar);
       varpl[i][(int)age] =0.;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /************ Variance ******************/
     fprintf(ficresvpl,"%.0f ",age );  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    /* Variance of health expectancies */
     fprintf(ficresvpl,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_vector(gp,1,nlstate);    /* double **newm;*/
     free_vector(gm,1,nlstate);    double **dnewm,**doldm;
     free_matrix(gradg,1,npar,1,nlstate);    double **dnewmp,**doldmp;
     free_matrix(trgradg,1,nlstate,1,npar);    int i, j, nhstepm, hstepm, h, nstepm ;
   } /* End age */    int k, cptcode;
     double *xp;
   free_vector(xp,1,npar);    double **gp, **gm;  /* for var eij */
   free_matrix(doldm,1,nlstate,1,npar);    double ***gradg, ***trgradg; /*for var eij */
   free_matrix(dnewm,1,nlstate,1,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
 }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
 /************ Variance of one-step probabilities  ******************/    double age,agelim, hf;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double ***mobaverage;
 {    int theta;
   int i, j=0,  i1, k1, l1, t, tj;    char digit[4];
   int k2, l2, j1,  z1;    char digitp[25];
   int k=0,l, cptcode;  
   int first=1, first1;    char fileresprobmorprev[FILENAMELENGTH];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;    if(popbased==1){
   double *xp;      if(mobilav!=0)
   double *gp, *gm;        strcpy(digitp,"-populbased-mobilav-");
   double **gradg, **trgradg;      else strcpy(digitp,"-populbased-nomobil-");
   double **mu;    }
   double age,agelim, cov[NCOVMAX];    else
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      strcpy(digitp,"-stablbased-");
   int theta;  
   char fileresprob[FILENAMELENGTH];    if (mobilav!=0) {
   char fileresprobcov[FILENAMELENGTH];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char fileresprobcor[FILENAMELENGTH];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double ***varpij;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   strcpy(fileresprob,"prob");     }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    strcpy(fileresprobmorprev,"prmorprev");
     printf("Problem with resultfile: %s\n", fileresprob);    sprintf(digit,"%-d",ij);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcpy(fileresprobcov,"probcov");     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   strcat(fileresprobcov,fileres);    strcat(fileresprobmorprev,fileres);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcov);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
   strcpy(fileresprobcor,"probcor");     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(fileresprobcor,fileres);   
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with resultfile: %s\n", fileresprobcor);    pstamp(ficresprobmorprev);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      fprintf(ficresprobmorprev," p.%-d SE",j);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    }  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   fprintf(ficresprob,"# Age");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fprintf(ficresprobcov,"# Age");  /*   } */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficresprobcov,"# Age");    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     for(j=1; j<=(nlstate+ndeath);j++){    else
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(ficresvij,"# Age");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
  /* fprintf(ficresprob,"\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fprintf(ficresprobcov,"\n");    fprintf(ficresvij,"\n");
   fprintf(ficresprobcor,"\n");  
  */    xp=vector(1,npar);
  xp=vector(1,npar);    dnewm=matrix(1,nlstate,1,npar);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    doldm=matrix(1,nlstate,1,nlstate);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\n# Routine varprob");    gpp=vector(nlstate+1,nlstate+ndeath);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    gmp=vector(nlstate+1,nlstate+ndeath);
   fprintf(fichtm,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    if(estepm < stepm){
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      printf ("Problem %d lower than %d\n",estepm, stepm);
   file %s<br>\n",optionfilehtmcov);    }
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    else  hstepm=estepm;  
 and drawn. It helps understanding how is the covariance between two incidences.\    /* For example we decided to compute the life expectancy with the smallest unit */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \       nhstepm is the number of hstepm from age to agelim
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \       nstepm is the number of stepm from age to agelin.
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \       Look at hpijx to understand the reason of that which relies in memory size
 standard deviations wide on each axis. <br>\       and note for a fixed period like k years */
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\       survival function given by stepm (the optimization length). Unfortunately it
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
   cov[1]=1;       results. So we changed our mind and took the option of the best precision.
   tj=cptcoveff;    */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   j1=0;    agelim = AGESUP;
   for(t=1; t<=tj;t++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i1=1; i1<=ncodemax[t];i1++){       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       j1++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if  (cptcovn>0) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresprob, "\n#********** Variable ");       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresprob, "**********\n#\n");      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#\n");      for(theta=1; theta <=npar; theta++){
                 for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficgp, "\n#********** Variable ");           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficgp, "**********\n#\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         if (popbased==1) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if(mobilav ==0){
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            for(i=1; i<=nlstate;i++)
                       prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficresprobcor, "\n#********** Variable ");              }else{ /* mobilav */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(i=1; i<=nlstate;i++)
         fprintf(ficresprobcor, "**********\n#");                  prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
               }
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;        for(j=1; j<= nlstate; j++){
         for (k=1; k<=cptcovn;k++) {          for(h=0; h<=nhstepm; h++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          }
         for (k=1; k<=cptcovprod;k++)        }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        /* This for computing probability of death (h=1 means
                    computed over hstepm matrices product = hstepm*stepm months)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));           as a weighted average of prlim.
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        */
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                 gpp[j] += prlim[i][i]*p3mat[i][j][1];
         for(theta=1; theta <=npar; theta++){        }    
           for(i=1; i<=npar; i++)        /* end probability of death */
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
                   for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(i=1; i<= (nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){        if (popbased==1) {
               k=k+1;          if(mobilav ==0){
               gp[k]=pmmij[i][j];            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */
                       for(i=1; i<=nlstate;i++)
           for(i=1; i<=npar; i++)              prlim[i][i]=mobaverage[(int)age][i][ij];
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          }
             }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;        for(j=1; j<= nlstate; j++){
           for(i=1; i<=(nlstate); i++){          for(h=0; h<=nhstepm; h++){
             for(j=1; j<=(nlstate+ndeath);j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               k=k+1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               gm[k]=pmmij[i][j];          }
             }        }
           }        /* This for computing probability of death (h=1 means
                 computed over hstepm matrices product = hstepm*stepm months)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            as a weighted average of prlim.
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];          */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           for(theta=1; theta <=npar; theta++)        }    
             trgradg[j][theta]=gradg[theta][j];        /* end probability of death */
           
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         for(j=1; j<= nlstate; j++) /* vareij */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for(h=0; h<=nhstepm; h++){
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }
           
         k=0;      } /* End theta */
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            trgradg[h][j][theta]=gradg[h][theta][j];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
         /*printf("\n%d ",(int)age);          trgradgp[j][theta]=gradgp[theta][j];
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){   
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }*/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
         fprintf(ficresprob,"\n%d ",(int)age);          vareij[i][j][(int)age] =0.;
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i=1;i<=nlstate;i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            for(j=1;j<=nlstate;j++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
         i=0;      }
         for (k=1; k<=(nlstate);k++){   
           for (l=1; l<=(nlstate+ndeath);l++){       /* pptj */
             i=i++;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             for (j=1; j<=i;j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          varppt[j][i]=doldmp[j][i];
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      /* end ppptj */
             }      /*  x centered again */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         }/* end of loop for state */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       } /* end of loop for age */   
       if (popbased==1) {
       /* Confidence intervalle of pij  */        if(mobilav ==0){
       /*          for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset noparametric;unset label");            prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        }else{ /* mobilav */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for(i=1; i<=nlstate;i++)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      }
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);               
       */      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/         as a weighted average of prlim.
       first1=1;      */
       for (k2=1; k2<=(nlstate);k2++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (l2=1; l2<=(nlstate+ndeath);l2++){         for(i=1,gmp[j]=0.;i<= nlstate; i++)
           if(l2==k2) continue;          gmp[j] += prlim[i][i]*p3mat[i][j][1];
           j=(k2-1)*(nlstate+ndeath)+l2;      }    
           for (k1=1; k1<=(nlstate);k1++){      /* end probability of death */
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               i=(k1-1)*(nlstate+ndeath)+l1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               if(i<=j) continue;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
               for (age=bage; age<=fage; age ++){         for(i=1; i<=nlstate;i++){
                 if ((int)age %5==0){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficresprobmorprev,"\n");
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;      fprintf(ficresvij,"%.0f ",age );
                   c12=cv12/sqrt(v1*v2);      for(i=1; i<=nlstate;i++)
                   /* Computing eigen value of matrix of covariance */        for(j=1; j<=nlstate;j++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }
                   /* Eigen vectors */      fprintf(ficresvij,"\n");
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      free_matrix(gp,0,nhstepm,1,nlstate);
                   /*v21=sqrt(1.-v11*v11); *//* error */      free_matrix(gm,0,nhstepm,1,nlstate);
                   v21=(lc1-v1)/cv12*v11;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   v12=-v21;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   v22=v11;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   tnalp=v21/v11;    } /* End age */
                   if(first1==1){    free_vector(gpp,nlstate+1,nlstate+ndeath);
                     first1=0;    free_vector(gmp,nlstate+1,nlstate+ndeath);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   /*printf(fignu*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   if(first==1){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     first=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     fprintf(ficgp,"\nset parametric;unset label");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);  
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_vector(xp,1,npar);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    free_matrix(doldm,1,nlstate,1,nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    free_matrix(dnewm,1,nlstate,1,npar);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   }else{    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     first=0;    fclose(ficresprobmorprev);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    fflush(ficgp);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fflush(fichtm);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  }  /* end varevsij */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  /************ Variance of prevlim ******************/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   }/* if first */  {
                 } /* age mod 5 */    /* Variance of prevalence limit */
               } /* end loop age */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    double **newm;
               first=1;    double **dnewm,**doldm;
             } /*l12 */    int i, j, nhstepm, hstepm;
           } /* k12 */    int k, cptcode;
         } /*l1 */    double *xp;
       }/* k1 */    double *gp, *gm;
     } /* loop covariates */    double **gradg, **trgradg;
   }    double age,agelim;
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    int theta;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);   
   free_vector(xp,1,npar);    pstamp(ficresvpl);
   fclose(ficresprob);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   fclose(ficresprobcov);    fprintf(ficresvpl,"# Age");
   fclose(ficresprobcor);    for(i=1; i<=nlstate;i++)
   fflush(ficgp);        fprintf(ficresvpl," %1d-%1d",i,i);
   fflush(fichtmcov);    fprintf(ficresvpl,"\n");
 }  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 /******************* Printing html file ***********/    doldm=matrix(1,nlstate,1,nlstate);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   
                   int lastpass, int stepm, int weightopt, char model[],\    hstepm=1*YEARM; /* Every year of age */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                   int popforecast, int estepm ,\    agelim = AGESUP;
                   double jprev1, double mprev1,double anprev1, \    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   double jprev2, double mprev2,double anprev2){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   int jj1, k1, i1, cpt;      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \      gradg=matrix(1,npar,1,nlstate);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",      gp=vector(1,nlstate);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));      gm=vector(1,nlstate);
    fprintf(fichtm,"\  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",      for(theta=1; theta <=npar; theta++){
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));        for(i=1; i<=npar; i++){ /* Computes gradient */
    fprintf(fichtm,"\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",        }
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    fprintf(fichtm,"\        for(i=1;i<=nlstate;i++)
  - Life expectancies by age and initial health status (estepm=%2d months): \          gp[i] = prlim[i][i];
    <a href=\"%s\">%s</a> <br>\n</li>",     
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
  m=cptcoveff;          gm[i] = prlim[i][i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
         for(i=1;i<=nlstate;i++)
  jj1=0;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  for(k1=1; k1<=m;k1++){      } /* End theta */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;      trgradg =matrix(1,nlstate,1,npar);
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(j=1; j<=nlstate;j++)
        for (cpt=1; cpt<=cptcoveff;cpt++)         for(theta=1; theta <=npar; theta++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          trgradg[j][theta]=gradg[theta][j];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      for(i=1;i<=nlstate;i++)
      /* Pij */        varpl[i][(int)age] =0.;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      /* Quasi-incidences */      for(i=1;i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       fprintf(ficresvpl,"%.0f ",age );
        /* Stable prevalence in each health state */      for(i=1; i<=nlstate;i++)
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      fprintf(ficresvpl,"\n");
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);      free_vector(gp,1,nlstate);
        }      free_vector(gm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \      free_matrix(trgradg,1,nlstate,1,npar);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    } /* End age */
      }  
    } /* end i1 */    free_vector(xp,1,npar);
  }/* End k1 */    free_matrix(doldm,1,nlstate,1,npar);
  fprintf(fichtm,"</ul>");    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
  fprintf(fichtm,"\  
 \n<br><li><h4> Result files (second order: variances)</h4>\n\  /************ Variance of one-step probabilities  ******************/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    int i, j=0,  i1, k1, l1, t, tj;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    int k2, l2, j1,  z1;
  fprintf(fichtm,"\    int k=0,l, cptcode;
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    int first=1, first1;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
  fprintf(fichtm,"\    double *xp;
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double *gp, *gm;
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    double **gradg, **trgradg;
  fprintf(fichtm,"\    double **mu;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    double age,agelim, cov[NCOVMAX];
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  fprintf(fichtm,"\    int theta;
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",    char fileresprob[FILENAMELENGTH];
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    char fileresprobcov[FILENAMELENGTH];
  fprintf(fichtm,"\    char fileresprobcor[FILENAMELENGTH];
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\  
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    double ***varpij;
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */    strcpy(fileresprob,"prob");
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    strcat(fileresprob,fileres);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 /*      <br>",fileres,fileres,fileres,fileres); */      printf("Problem with resultfile: %s\n", fileresprob);
 /*  else  */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    }
  fflush(fichtm);    strcpy(fileresprobcov,"probcov");
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  m=cptcoveff;      printf("Problem with resultfile: %s\n", fileresprobcov);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
  jj1=0;    strcpy(fileresprobcor,"probcor");
  for(k1=1; k1<=m;k1++){    strcat(fileresprobcor,fileres);
    for(i1=1; i1<=ncodemax[k1];i1++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
      jj1++;      printf("Problem with resultfile: %s\n", fileresprobcor);
      if (cptcovn > 0) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      for(cpt=1; cpt<=nlstate;cpt++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    pstamp(ficresprob);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      }    fprintf(ficresprob,"# Age");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    pstamp(ficresprobcov);
 health expectancies in states (1) and (2): %s%d.png<br>\    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    fprintf(ficresprobcov,"# Age");
    } /* end i1 */    pstamp(ficresprobcor);
  }/* End k1 */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  fprintf(fichtm,"</ul>");    fprintf(ficresprobcor,"# Age");
  fflush(fichtm);  
 }  
     for(i=1; i<=nlstate;i++)
 /******************* Gnuplot file **************/      for(j=1; j<=(nlstate+ndeath);j++){
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   char dirfileres[132],optfileres[132];        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      }  
   int ng;   /* fprintf(ficresprob,"\n");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    fprintf(ficresprobcov,"\n");
 /*     printf("Problem with file %s",optionfilegnuplot); */    fprintf(ficresprobcor,"\n");
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */   */
 /*   } */   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /*#ifdef windows */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fprintf(ficgp,"cd \"%s\" \n",pathc);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     /*#endif */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   m=pow(2,cptcoveff);    first=1;
     fprintf(ficgp,"\n# Routine varprob");
   strcpy(dirfileres,optionfilefiname);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   strcpy(optfileres,"vpl");    fprintf(fichtm,"\n");
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    file %s<br>\n",optionfilehtmcov);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      fprintf(ficgp,"set xlabel \"Age\" \n\  and drawn. It helps understanding how is the covariance between two incidences.\
 set ylabel \"Probability\" \n\   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 set ter png small\n\    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 set size 0.65,0.65\n\  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
      for (i=1; i<= nlstate ; i ++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
        else fprintf(ficgp," \%%*lf (\%%*lf)");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      }  
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    cov[1]=1;
      for (i=1; i<= nlstate ; i ++) {    tj=cptcoveff;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        else fprintf(ficgp," \%%*lf (\%%*lf)");    j1=0;
      }     for(t=1; t<=tj;t++){
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);       for(i1=1; i1<=ncodemax[t];i1++){
      for (i=1; i<= nlstate ; i ++) {        j1++;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if  (cptcovn>0) {
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprob, "\n#********** Variable ");
      }            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          fprintf(ficresprob, "**********\n#\n");
    }          fprintf(ficresprobcov, "\n#********** Variable ");
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*2 eme*/          fprintf(ficresprobcov, "**********\n#\n");
            
   for (k1=1; k1<= m ; k1 ++) {           fprintf(ficgp, "\n#********** Variable ");
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          fprintf(ficgp, "**********\n#\n");
              
     for (i=1; i<= nlstate+1 ; i ++) {         
       k=2*i;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");         
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobcor, "\n#********** Variable ");    
       }             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          fprintf(ficresprobcor, "**********\n#");    
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);       
       for (j=1; j<= nlstate+1 ; j ++) {        for (age=bage; age<=fage; age ++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          cov[2]=age;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for (k=1; k<=cptcovn;k++) {
       }               cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fprintf(ficgp,"\" t\"\" w l 0,");          }
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (j=1; j<= nlstate+1 ; j ++) {          for (k=1; k<=cptcovprod;k++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else fprintf(ficgp," \%%*lf (\%%*lf)");         
       }             gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");          gp=vector(1,(nlstate)*(nlstate+ndeath));
     }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   }     
             for(theta=1; theta <=npar; theta++){
   /*3eme*/            for(i=1; i<=npar; i++)
                 xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   for (k1=1; k1<= m ; k1 ++) {            
     for (cpt=1; cpt<= nlstate ; cpt ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       k=2+nlstate*(2*cpt-2);           
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);            k=0;
       fprintf(ficgp,"set ter png small\n\            for(i=1; i<= (nlstate); i++){
 set size 0.65,0.65\n\              for(j=1; j<=(nlstate+ndeath);j++){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                k=k+1;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                gp[k]=pmmij[i][j];
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);           
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(i=1; i<=npar; i++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
              
       */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for (i=1; i< nlstate ; i ++) {            k=0;
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);            for(i=1; i<=(nlstate); i++){
                       for(j=1; j<=(nlstate+ndeath);j++){
       }                 k=k+1;
     }                gm[k]=pmmij[i][j];
   }              }
               }
   /* CV preval stable (period) */       
   for (k1=1; k1<= m ; k1 ++) {             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
     for (cpt=1; cpt<=nlstate ; cpt ++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       k=3;          }
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 set ter png small\nset size 0.65,0.65\n\            for(theta=1; theta <=npar; theta++)
 unset log y\n\              trgradg[j][theta]=gradg[theta][j];
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);         
                 matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
       for (i=1; i< nlstate ; i ++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         fprintf(ficgp,"+$%d",k+i+1);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                 free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       l=3+(nlstate+ndeath)*cpt;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
         l=3+(nlstate+ndeath)*cpt;         
         fprintf(ficgp,"+$%d",l+i+1);          k=0;
       }          for(i=1; i<=(nlstate); i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);               for(j=1; j<=(nlstate+ndeath);j++){
     }               k=k+1;
   }                mu[k][(int) age]=pmmij[i][j];
               }
   /* proba elementaires */          }
   for(i=1,jk=1; i <=nlstate; i++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     for(k=1; k <=(nlstate+ndeath); k++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       if (k != i) {              varpij[i][j][(int)age] = doldm[i][j];
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          /*printf("\n%d ",(int)age);
           jk++;             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficgp,"\n");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            }*/
     }  
    }          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(ficresprobcor,"\n%d ",(int)age);
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
        if (ng==2)            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        else            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
          fprintf(ficgp,"\nset title \"Probability\"\n");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }
        i=1;          i=0;
        for(k2=1; k2<=nlstate; k2++) {          for (k=1; k<=(nlstate);k++){
          k3=i;            for (l=1; l<=(nlstate+ndeath);l++){
          for(k=1; k<=(nlstate+ndeath); k++) {              i=i++;
            if (k != k2){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              if(ng==2)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              for (j=1; j<=i;j++){
              else                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              ij=1;              }
              for(j=3; j <=ncovmodel; j++) {            }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }/* end of loop for state */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        } /* end of loop for age */
                  ij++;  
                }        /* Confidence intervalle of pij  */
                else        /*
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficgp,"\nset noparametric;unset label");
              }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              fprintf(ficgp,")/(1");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              for(k1=1; k1 <=nlstate; k1++){             fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                ij=1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                for(j=3; j <=ncovmodel; j++){        */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                    ij++;        first1=1;
                  }        for (k2=1; k2<=(nlstate);k2++){
                  else          for (l2=1; l2<=(nlstate+ndeath);l2++){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(l2==k2) continue;
                }            j=(k2-1)*(nlstate+ndeath)+l2;
                fprintf(ficgp,")");            for (k1=1; k1<=(nlstate);k1++){
              }              for (l1=1; l1<=(nlstate+ndeath);l1++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                if(l1==k1) continue;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                i=(k1-1)*(nlstate+ndeath)+l1;
              i=i+ncovmodel;                if(i<=j) continue;
            }                for (age=bage; age<=fage; age ++){
          } /* end k */                  if ((int)age %5==0){
        } /* end k2 */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      } /* end jk */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    } /* end ng */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    fflush(ficgp);                     mu1=mu[i][(int) age]/stepm*YEARM ;
 }  /* end gnuplot */                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
 /*************** Moving average **************/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   int i, cpt, cptcod;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   int modcovmax =1;                    /*v21=sqrt(1.-v11*v11); *//* error */
   int mobilavrange, mob;                    v21=(lc1-v1)/cv12*v11;
   double age;                    v12=-v21;
                     v22=v11;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                     tnalp=v21/v11;
                            a covariate has 2 modalities */                    if(first1==1){
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    }
     if(mobilav==1) mobilavrange=5; /* default */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     else mobilavrange=mobilav;                    /*printf(fignu*/
     for (age=bage; age<=fage; age++)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       for (i=1; i<=nlstate;i++)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                    if(first==1){
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                      first=0;
     /* We keep the original values on the extreme ages bage, fage and for                       fprintf(ficgp,"\nset parametric;unset label");
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
        we use a 5 terms etc. until the borders are no more concerned.                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     */                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     for (mob=3;mob <=mobilavrange;mob=mob+2){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         for (i=1; i<=nlstate;i++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }/* end age */                    }else{
     }/* end mob */                      first=0;
   }else return -1;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   return 0;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 }/* End movingaverage */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /************** Forecasting ******************/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                    }/* if first */
   /* proj1, year, month, day of starting projection                   } /* age mod 5 */
      agemin, agemax range of age                } /* end loop age */
      dateprev1 dateprev2 range of dates during which prevalence is computed                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      anproj2 year of en of projection (same day and month as proj1).                first=1;
   */              } /*l12 */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;            } /* k12 */
   int *popage;          } /*l1 */
   double agec; /* generic age */        }/* k1 */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      } /* loop covariates */
   double *popeffectif,*popcount;    }
   double ***p3mat;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double ***mobaverage;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   char fileresf[FILENAMELENGTH];    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   agelim=AGESUP;    free_vector(xp,1,npar);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fclose(ficresprob);
      fclose(ficresprobcov);
   strcpy(fileresf,"f");     fclose(ficresprobcor);
   strcat(fileresf,fileres);    fflush(ficgp);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fflush(fichtmcov);
     printf("Problem with forecast resultfile: %s\n", fileresf);  }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /******************* Printing html file ***********/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   if (mobilav!=0) {                    double jprev1, double mprev1,double anprev1, \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    double jprev2, double mprev2,double anprev2){
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    int jj1, k1, i1, cpt;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if (stepm<=12) stepsize=1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   if(estepm < stepm){     fprintf(fichtm,"\
     printf ("Problem %d lower than %d\n",estepm, stepm);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   else  hstepm=estepm;        fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   hstepm=hstepm/stepm;              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and     fprintf(fichtm,"\
                                fractional in yp1 */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   anprojmean=yp;     <a href=\"%s\">%s</a> <br>\n",
   yp2=modf((yp1*12),&yp);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   mprojmean=yp;     fprintf(fichtm,"\
   yp1=modf((yp2*30.5),&yp);   - Population projections by age and states: \
   jprojmean=yp;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   i1=cptcoveff;   m=cptcoveff;
   if (cptcovn < 1){i1=1;}   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    jj1=0;
      for(k1=1; k1<=m;k1++){
   fprintf(ficresf,"#****** Routine prevforecast **\n");     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
 /*            if (h==(int)(YEARM*yearp)){ */       if (cptcovn > 0) {
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         for (cpt=1; cpt<=cptcoveff;cpt++)
       k=k+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficresf,"\n#******");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1;j<=cptcoveff;j++) {       }
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       /* Pij */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       fprintf(ficresf,"******\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");       /* Quasi-incidences */
       for(j=1; j<=nlstate+ndeath;j++){        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         for(i=1; i<=nlstate;i++)                 before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
           fprintf(ficresf," p%d%d",i,j);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
         fprintf(ficresf," p.%d",j);         /* Period (stable) prevalence in each health state */
       }         for(cpt=1; cpt<nlstate;cpt++){
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
         fprintf(ficresf,"\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);            }
        for(cpt=1; cpt<=nlstate;cpt++) {
         for (agec=fage; agec>=(ageminpar-1); agec--){           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           nhstepm = nhstepm/hstepm;        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     } /* end i1 */
           oldm=oldms;savm=savms;   }/* End k1 */
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm,"</ul>");
           
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {   fprintf(fichtm,"\
               fprintf(ficresf,"\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
               for(j=1;j<=cptcoveff;j++)    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             }            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
             for(j=1; j<=nlstate+ndeath;j++) {   fprintf(fichtm,"\
               ppij=0.;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               for(i=1; i<=nlstate;i++) {           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                 if (mobilav==1)   
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   fprintf(fichtm,"\
                 else {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                 }   fprintf(fichtm,"\
                 if (h*hstepm/YEARM*stepm== yearp) {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);     <a href=\"%s\">%s</a> <br>\n</li>",
                 }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
               } /* end i */   fprintf(fichtm,"\
               if (h*hstepm/YEARM*stepm==yearp) {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                 fprintf(ficresf," %.3f", ppij);     <a href=\"%s\">%s</a> <br>\n</li>",
               }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
             }/* end j */   fprintf(fichtm,"\
           } /* end h */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         } /* end agec */   fprintf(fichtm,"\
       } /* end yearp */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     } /* end cptcod */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   } /* end  cptcov */   fprintf(fichtm,"\
           - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   fclose(ficresf);  /*  if(popforecast==1) fprintf(fichtm,"\n */
 }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 /************** Forecasting *****not tested NB*************/  /*      <br>",fileres,fileres,fileres,fileres); */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*  else  */
     /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   fflush(fichtm);
   int *popage;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   double calagedatem, agelim, kk1, kk2;  
   double *popeffectif,*popcount;   m=cptcoveff;
   double ***p3mat,***tabpop,***tabpopprev;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double ***mobaverage;  
   char filerespop[FILENAMELENGTH];   jj1=0;
    for(k1=1; k1<=m;k1++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     for(i1=1; i1<=ncodemax[k1];i1++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       jj1++;
   agelim=AGESUP;       if (cptcovn > 0) {
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            for (cpt=1; cpt<=cptcoveff;cpt++)
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          }
   strcpy(filerespop,"pop");        for(cpt=1; cpt<=nlstate;cpt++) {
   strcat(filerespop,fileres);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     printf("Problem with forecast resultfile: %s\n", filerespop);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       }
   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   printf("Computing forecasting: result on file '%s' \n", filerespop);  health expectancies in states (1) and (2): %s%d.png<br>\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   }/* End k1 */
    fprintf(fichtm,"</ul>");
   if (mobilav!=0) {   fflush(fichtm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  /******************* Gnuplot file **************/
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     }  
   }    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int ng;
   if (stepm<=12) stepsize=1;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     /*     printf("Problem with file %s",optionfilegnuplot); */
   agelim=AGESUP;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     /*   } */
   hstepm=1;  
   hstepm=hstepm/stepm;     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
   if (popforecast==1) {      /*#endif */
     if((ficpop=fopen(popfile,"r"))==NULL) {    m=pow(2,cptcoveff);
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    strcpy(dirfileres,optionfilefiname);
     }     strcpy(optfileres,"vpl");
     popage=ivector(0,AGESUP);   /* 1eme*/
     popeffectif=vector(0,AGESUP);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     popcount=vector(0,AGESUP);     for (k1=1; k1<= m ; k1 ++) {
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     i=1;          fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       fprintf(ficgp,"set xlabel \"Age\" \n\
      set ylabel \"Probability\" \n\
     imx=i;  set ter png small\n\
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){       for (i=1; i<= nlstate ; i ++) {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       k=k+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrespop,"\n#******");       }
       for(j=1;j<=cptcoveff;j++) {       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrespop,"******\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrespop,"# Age");       }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       if (popforecast==1)  fprintf(ficrespop," [Population]");       for (i=1; i<= nlstate ; i ++) {
                if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for (cpt=0; cpt<=0;cpt++) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }  
                fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     }
           nhstepm = nhstepm/hstepm;     /*2 eme*/
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k1=1; k1<= m ; k1 ++) {
           oldm=oldms;savm=savms;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
              
           for (h=0; h<=nhstepm; h++){      for (i=1; i<= nlstate+1 ; i ++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {        k=2*i;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             }         for (j=1; j<= nlstate+1 ; j ++) {
             for(j=1; j<=nlstate+ndeath;j++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               kk1=0.;kk2=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(i=1; i<=nlstate;i++) {                      }  
                 if (mobilav==1)         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                 else {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for (j=1; j<= nlstate+1 ; j ++) {
                 }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               }          else fprintf(ficgp," \%%*lf (\%%*lf)");
               if (h==(int)(calagedatem+12*cpt)){        }  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        fprintf(ficgp,"\" t\"\" w l 0,");
                   /*fprintf(ficrespop," %.3f", kk1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for (j=1; j<= nlstate+1 ; j ++) {
               }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }          else fprintf(ficgp," \%%*lf (\%%*lf)");
             for(i=1; i<=nlstate;i++){        }  
               kk1=0.;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                 for(j=1; j<=nlstate;j++){        else fprintf(ficgp,"\" t\"\" w l 0,");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       }
                 }    }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];   
             }    /*3eme*/
    
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     for (k1=1; k1<= m ; k1 ++) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      for (cpt=1; cpt<= nlstate ; cpt ++) {
           }        /*       k=2+nlstate*(2*cpt-2); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k=2+(nlstate+1)*(cpt-1);
         }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       }        fprintf(ficgp,"set ter png small\n\
    set size 0.65,0.65\n\
   /******/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           nhstepm = nhstepm/hstepm;           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
           oldm=oldms;savm=savms;        for (i=1; i< nlstate ; i ++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           for (h=0; h<=nhstepm; h++){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
             if (h==(int) (calagedatem+YEARM*cpt)) {         
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             for(j=1; j<=nlstate+ndeath;j++) {      }
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        /* CV preval stable (period) */
               }    for (k1=1; k1<= m ; k1 ++) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);              for (cpt=1; cpt<=nlstate ; cpt ++) {
             }        k=3;
           }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         }  set ter png small\nset size 0.65,0.65\n\
       }  unset log y\n\
    }   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   }       
          for (i=1; i< nlstate ; i ++)
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if (popforecast==1) {       
     free_ivector(popage,0,AGESUP);        l=3+(nlstate+ndeath)*cpt;
     free_vector(popeffectif,0,AGESUP);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     free_vector(popcount,0,AGESUP);        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"+$%d",l+i+1);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   fclose(ficrespop);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
 } /* End of popforecast */      }
     }  
 int fileappend(FILE *fichier, char *optionfich)   
 {    /* proba elementaires */
   if((fichier=fopen(optionfich,"a"))==NULL) {    for(i=1,jk=1; i <=nlstate; i++){
     printf("Problem with file: %s\n", optionfich);      for(k=1; k <=(nlstate+ndeath); k++){
     fprintf(ficlog,"Problem with file: %s\n", optionfich);        if (k != i) {
     return (0);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   fflush(fichier);            jk++;
   return (1);            fprintf(ficgp,"\n");
 }          }
         }
       }
 /**************** function prwizard **********************/     }
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  
 {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   /* Wizard to print covariance matrix template */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
          if (ng==2)
   char ca[32], cb[32], cc[32];           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;         else
   int numlinepar;           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         i=1;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         for(k2=1; k2<=nlstate; k2++) {
   for(i=1; i <=nlstate; i++){           k3=i;
     jj=0;           for(k=1; k<=(nlstate+ndeath); k++) {
     for(j=1; j <=nlstate+ndeath; j++){             if (k != k2){
       if(j==i) continue;               if(ng==2)
       jj++;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/               else
       printf("%1d%1d",i,j);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       fprintf(ficparo,"%1d%1d",i,j);               ij=1;
       for(k=1; k<=ncovmodel;k++){               for(j=3; j <=ncovmodel; j++) {
         /*        printf(" %lf",param[i][j][k]); */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         printf(" 0.");                   ij++;
         fprintf(ficparo," 0.");                 }
       }                 else
       printf("\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficparo,"\n");               }
     }               fprintf(ficgp,")/(1");
   }               
   printf("# Scales (for hessian or gradient estimation)\n");               for(k1=1; k1 <=nlstate; k1++){  
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                  ij=1;
   for(i=1; i <=nlstate; i++){                 for(j=3; j <=ncovmodel; j++){
     jj=0;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(j=1; j <=nlstate+ndeath; j++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       if(j==i) continue;                     ij++;
       jj++;                   }
       fprintf(ficparo,"%1d%1d",i,j);                   else
       printf("%1d%1d",i,j);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fflush(stdout);                 }
       for(k=1; k<=ncovmodel;k++){                 fprintf(ficgp,")");
         /*      printf(" %le",delti3[i][j][k]); */               }
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         printf(" 0.");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fprintf(ficparo," 0.");               i=i+ncovmodel;
       }             }
       numlinepar++;           } /* end k */
       printf("\n");         } /* end k2 */
       fprintf(ficparo,"\n");       } /* end jk */
     }     } /* end ng */
   }     fflush(ficgp);
   printf("# Covariance matrix\n");  }  /* end gnuplot */
 /* # 121 Var(a12)\n\ */  
 /* # 122 Cov(b12,a12) Var(b12)\n\ */  
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  /*************** Moving average **************/
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    int i, cpt, cptcod;
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    int modcovmax =1;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    int mobilavrange, mob;
   fflush(stdout);    double age;
   fprintf(ficparo,"# Covariance matrix\n");  
   /* # 121 Var(a12)\n\ */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   /* # 122 Cov(b12,a12) Var(b12)\n\ */                             a covariate has 2 modalities */
   /* #   ...\n\ */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */  
       if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   for(itimes=1;itimes<=2;itimes++){      if(mobilav==1) mobilavrange=5; /* default */
     jj=0;      else mobilavrange=mobilav;
     for(i=1; i <=nlstate; i++){      for (age=bage; age<=fage; age++)
       for(j=1; j <=nlstate+ndeath; j++){        for (i=1; i<=nlstate;i++)
         if(j==i) continue;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         for(k=1; k<=ncovmodel;k++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           jj++;      /* We keep the original values on the extreme ages bage, fage and for
           ca[0]= k+'a'-1;ca[1]='\0';         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           if(itimes==1){         we use a 5 terms etc. until the borders are no more concerned.
             printf("#%1d%1d%d",i,j,k);      */
             fprintf(ficparo,"#%1d%1d%d",i,j,k);      for (mob=3;mob <=mobilavrange;mob=mob+2){
           }else{        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             printf("%1d%1d%d",i,j,k);          for (i=1; i<=nlstate;i++){
             fprintf(ficparo,"%1d%1d%d",i,j,k);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             /*  printf(" %.5le",matcov[i][j]); */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           ll=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           for(li=1;li <=nlstate; li++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             for(lj=1;lj <=nlstate+ndeath; lj++){                }
               if(lj==li) continue;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               for(lk=1;lk<=ncovmodel;lk++){            }
                 ll++;          }
                 if(ll<=jj){        }/* end age */
                   cb[0]= lk +'a'-1;cb[1]='\0';      }/* end mob */
                   if(ll<jj){    }else return -1;
                     if(itimes==1){    return 0;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  }/* End movingaverage */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                     }else{  
                       printf(" 0.");  /************** Forecasting ******************/
                       fprintf(ficparo," 0.");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                     }    /* proj1, year, month, day of starting projection
                   }else{       agemin, agemax range of age
                     if(itimes==1){       dateprev1 dateprev2 range of dates during which prevalence is computed
                       printf(" Var(%s%1d%1d)",ca,i,j);       anproj2 year of en of projection (same day and month as proj1).
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    */
                     }else{    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
                       printf(" 0.");    int *popage;
                       fprintf(ficparo," 0.");    double agec; /* generic age */
                     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                   }    double *popeffectif,*popcount;
                 }    double ***p3mat;
               } /* end lk */    double ***mobaverage;
             } /* end lj */    char fileresf[FILENAMELENGTH];
           } /* end li */  
           printf("\n");    agelim=AGESUP;
           fprintf(ficparo,"\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           numlinepar++;   
         } /* end k*/    strcpy(fileresf,"f");
       } /*end j */    strcat(fileresf,fileres);
     } /* end i */    if((ficresf=fopen(fileresf,"w"))==NULL) {
   } /* end itimes */      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 } /* end of prwizard */    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 /***********************************************/  
 /**************** Main Program *****************/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /***********************************************/  
     if (mobilav!=0) {
 int main(int argc, char *argv[])      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int jj, ll, li, lj, lk, imk;      }
   int numlinepar=0; /* Current linenumber of parameter file */    }
   int itimes;  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   char ca[32], cb[32], cc[32];    if (stepm<=12) stepsize=1;
   /*  FILE *fichtm; *//* Html File */    if(estepm < stepm){
   /* FILE *ficgp;*/ /*Gnuplot File */      printf ("Problem %d lower than %d\n",estepm, stepm);
   double agedeb, agefin,hf;    }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    else  hstepm=estepm;  
   
   double fret;    hstepm=hstepm/stepm;
   double **xi,tmp,delta;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   double dum; /* Dummy variable */    anprojmean=yp;
   double ***p3mat;    yp2=modf((yp1*12),&yp);
   double ***mobaverage;    mprojmean=yp;
   int *indx;    yp1=modf((yp2*30.5),&yp);
   char line[MAXLINE], linepar[MAXLINE];    jprojmean=yp;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    if(jprojmean==0) jprojmean=1;
   char pathr[MAXLINE];     if(mprojmean==0) jprojmean=1;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    i1=cptcoveff;
   int c,  h , cpt,l;    if (cptcovn < 1){i1=1;}
   int ju,jl, mi;   
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    fprintf(ficresf,"#****** Routine prevforecast **\n");
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  /*            if (h==(int)(YEARM*yearp)){ */
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   double bage, fage, age, agelim, agebase;        fprintf(ficresf,"\n#******");
   double ftolpl=FTOL;        for(j=1;j<=cptcoveff;j++) {
   double **prlim;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double *severity;        }
   double ***param; /* Matrix of parameters */        fprintf(ficresf,"******\n");
   double  *p;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double **matcov; /* Matrix of covariance */        for(j=1; j<=nlstate+ndeath;j++){
   double ***delti3; /* Scale */          for(i=1; i<=nlstate;i++)              
   double *delti; /* Scale */            fprintf(ficresf," p%d%d",i,j);
   double ***eij, ***vareij;          fprintf(ficresf," p.%d",j);
   double **varpl; /* Variances of prevalence limits by age */        }
   double *epj, vepp;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   double kk1, kk2;          fprintf(ficresf,"\n");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for (agec=fage; agec>=(ageminpar-1); agec--){
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   char z[1]="c", occ;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   char strstart[80], *strt, strtend[80];         
   char *stratrunc;            for (h=0; h<=nhstepm; h++){
   int lstra;              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   long total_usecs;                for(j=1;j<=cptcoveff;j++)
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /*   setlocale (LC_ALL, ""); */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */              }
 /*   textdomain (PACKAGE); */              for(j=1; j<=nlstate+ndeath;j++) {
 /*   setlocale (LC_CTYPE, ""); */                ppij=0.;
 /*   setlocale (LC_MESSAGES, ""); */                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1)
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   (void) gettimeofday(&start_time,&tzp);                  else {
   curr_time=start_time;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   tm = *localtime(&start_time.tv_sec);                  }
   tmg = *gmtime(&start_time.tv_sec);                  if (h*hstepm/YEARM*stepm== yearp) {
   strcpy(strstart,asctime(&tm));                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
 /*  printf("Localtime (at start)=%s",strstart); */                } /* end i */
 /*  tp.tv_sec = tp.tv_sec +86400; */                if (h*hstepm/YEARM*stepm==yearp) {
 /*  tm = *localtime(&start_time.tv_sec); */                  fprintf(ficresf," %.3f", ppij);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */              }/* end j */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */            } /* end h */
 /*   tp.tv_sec = mktime(&tmg); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   strt=asctime(&tmg); */          } /* end agec */
 /*   printf("Time(after) =%s",strstart);  */        } /* end yearp */
 /*  (void) time (&time_value);      } /* end cptcod */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    } /* end  cptcov */
 *  tm = *localtime(&time_value);         
 *  strstart=asctime(&tm);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);   
 */    fclose(ficresf);
   }
   nberr=0; /* Number of errors and warnings */  
   nbwarn=0;  /************** Forecasting *****not tested NB*************/
   getcwd(pathcd, size);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
   printf("\n%s\n%s",version,fullversion);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   if(argc <=1){    int *popage;
     printf("\nEnter the parameter file name: ");    double calagedatem, agelim, kk1, kk2;
     scanf("%s",pathtot);    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
   else{    double ***mobaverage;
     strcpy(pathtot,argv[1]);    char filerespop[FILENAMELENGTH];
   }  
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*cygwin_split_path(pathtot,path,optionfile);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    agelim=AGESUP;
   /* cutv(path,optionfile,pathtot,'\\');*/    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   
   chdir(path);   
   strcpy(command,"mkdir ");    strcpy(filerespop,"pop");
   strcat(command,optionfilefiname);    strcat(filerespop,fileres);
   if((outcmd=system(command)) != 0){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);      printf("Problem with forecast resultfile: %s\n", filerespop);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     /* fclose(ficlog); */    }
 /*     exit(1); */    printf("Computing forecasting: result on file '%s' \n", filerespop);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 /*   if((imk=mkdir(optionfilefiname))<0){ */  
 /*     perror("mkdir"); */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*   } */  
     if (mobilav!=0) {
   /*-------- arguments in the command line --------*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /* Log file */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(filelog, optionfilefiname);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(filelog,".log");    /* */      }
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);  
     goto end;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   }    if (stepm<=12) stepsize=1;
   fprintf(ficlog,"Log filename:%s\n",filelog);   
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    agelim=AGESUP;
   fprintf(ficlog,"\nEnter the parameter file name: ");   
   fprintf(ficlog,"pathtot=%s\n\    hstepm=1;
  path=%s \n\    hstepm=hstepm/stepm;
  optionfile=%s\n\   
  optionfilext=%s\n\    if (popforecast==1) {
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   printf("Local time (at start):%s",strstart);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fprintf(ficlog,"Local time (at start): %s",strstart);      }
   fflush(ficlog);      popage=ivector(0,AGESUP);
 /*   (void) gettimeofday(&curr_time,&tzp); */      popeffectif=vector(0,AGESUP);
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */      popcount=vector(0,AGESUP);
      
   /* */      i=1;  
   strcpy(fileres,"r");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   strcat(fileres, optionfilefiname);     
   strcat(fileres,".txt");    /* Other files have txt extension */      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   /*---------arguments file --------*/    }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     printf("Problem with optionfile %s\n",optionfile);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        k=k+1;
     fflush(ficlog);        fprintf(ficrespop,"\n#******");
     goto end;        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
   strcpy(filereso,"o");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   strcat(filereso,fileres);        if (popforecast==1)  fprintf(ficrespop," [Population]");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */       
     printf("Problem with Output resultfile: %s\n", filereso);        for (cpt=0; cpt<=0;cpt++) {
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     fflush(ficlog);         
     goto end;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   /* Reads comments: lines beginning with '#' */           
   numlinepar=0;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){            oldm=oldms;savm=savms;
     ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fgets(line, MAXLINE, ficpar);         
     numlinepar++;            for (h=0; h<=nhstepm; h++){
     puts(line);              if (h==(int) (calagedatem+YEARM*cpt)) {
     fputs(line,ficparo);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fputs(line,ficlog);              }
   }              for(j=1; j<=nlstate+ndeath;j++) {
   ungetc(c,ficpar);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                  if (mobilav==1)
   numlinepar++;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                  else {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                  }
   fflush(ficlog);                }
   while((c=getc(ficpar))=='#' && c!= EOF){                if (h==(int)(calagedatem+12*cpt)){
     ungetc(c,ficpar);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fgets(line, MAXLINE, ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
     numlinepar++;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     puts(line);                }
     fputs(line,ficparo);              }
     fputs(line,ficlog);              for(i=1; i<=nlstate;i++){
   }                kk1=0.;
   ungetc(c,ficpar);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                      }
   covar=matrix(0,NCOVMAX,1,n);                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/              }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */          }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);        }
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);   
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    /******/
     fclose (ficparo);  
     fclose (ficlog);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
     exit(0);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   /* Read guess parameters */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   /* Reads comments: lines beginning with '#' */            nhstepm = nhstepm/hstepm;
   while((c=getc(ficpar))=='#' && c!= EOF){           
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
     numlinepar++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     puts(line);            for (h=0; h<=nhstepm; h++){
     fputs(line,ficparo);              if (h==(int) (calagedatem+YEARM*cpt)) {
     fputs(line,ficlog);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   }              }
   ungetc(c,ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                for(i=1; i<=nlstate;i++) {              
   for(i=1; i <=nlstate; i++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     j=0;                }
     for(jj=1; jj <=nlstate+ndeath; jj++){                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       if(jj==i) continue;              }
       j++;            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if ((i1 != i) && (j1 != j)){          }
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        }
         exit(1);     }
       }    }
       fprintf(ficparo,"%1d%1d",i1,j1);   
       if(mle==1)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf("%1d%1d",i,j);  
       fprintf(ficlog,"%1d%1d",i,j);    if (popforecast==1) {
       for(k=1; k<=ncovmodel;k++){      free_ivector(popage,0,AGESUP);
         fscanf(ficpar," %lf",&param[i][j][k]);      free_vector(popeffectif,0,AGESUP);
         if(mle==1){      free_vector(popcount,0,AGESUP);
           printf(" %lf",param[i][j][k]);    }
           fprintf(ficlog," %lf",param[i][j][k]);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else    fclose(ficrespop);
           fprintf(ficlog," %lf",param[i][j][k]);  } /* End of popforecast */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  int fileappend(FILE *fichier, char *optionfich)
       fscanf(ficpar,"\n");  {
       numlinepar++;    if((fichier=fopen(optionfich,"a"))==NULL) {
       if(mle==1)      printf("Problem with file: %s\n", optionfich);
         printf("\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       fprintf(ficlog,"\n");      return (0);
       fprintf(ficparo,"\n");    }
     }    fflush(fichier);
   }      return (1);
   fflush(ficlog);  }
   
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
   /**************** function prwizard **********************/
   p=param[1][1];  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     {
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    /* Wizard to print covariance matrix template */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    char ca[32], cb[32], cc[32];
     numlinepar++;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     puts(line);    int numlinepar;
     fputs(line,ficparo);  
     fputs(line,ficlog);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   ungetc(c,ficpar);    for(i=1; i <=nlstate; i++){
       jj=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(j=1; j <=nlstate+ndeath; j++){
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */        if(j==i) continue;
   for(i=1; i <=nlstate; i++){        jj++;
     for(j=1; j <=nlstate+ndeath-1; j++){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);        printf("%1d%1d",i,j);
       if ((i1-i)*(j1-j)!=0){        fprintf(ficparo,"%1d%1d",i,j);
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        for(k=1; k<=ncovmodel;k++){
         exit(1);          /*        printf(" %lf",param[i][j][k]); */
       }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       printf("%1d%1d",i,j);          printf(" 0.");
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficparo," 0.");
       fprintf(ficlog,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        printf("\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);        fprintf(ficparo,"\n");
         printf(" %le",delti3[i][j][k]);      }
         fprintf(ficparo," %le",delti3[i][j][k]);    }
         fprintf(ficlog," %le",delti3[i][j][k]);    printf("# Scales (for hessian or gradient estimation)\n");
       }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
       fscanf(ficpar,"\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       numlinepar++;    for(i=1; i <=nlstate; i++){
       printf("\n");      jj=0;
       fprintf(ficparo,"\n");      for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficlog,"\n");        if(j==i) continue;
     }        jj++;
   }        fprintf(ficparo,"%1d%1d",i,j);
   fflush(ficlog);        printf("%1d%1d",i,j);
         fflush(stdout);
   delti=delti3[1][1];        for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          printf(" 0.");
             fprintf(ficparo," 0.");
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        numlinepar++;
     ungetc(c,ficpar);        printf("\n");
     fgets(line, MAXLINE, ficpar);        fprintf(ficparo,"\n");
     numlinepar++;      }
     puts(line);    }
     fputs(line,ficparo);    printf("# Covariance matrix\n");
     fputs(line,ficlog);  /* # 121 Var(a12)\n\ */
   }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   ungetc(c,ficpar);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   matcov=matrix(1,npar,1,npar);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   for(i=1; i <=npar; i++){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     fscanf(ficpar,"%s",&str);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     if(mle==1)  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       printf("%s",str);    fflush(stdout);
     fprintf(ficlog,"%s",str);    fprintf(ficparo,"# Covariance matrix\n");
     fprintf(ficparo,"%s",str);    /* # 121 Var(a12)\n\ */
     for(j=1; j <=i; j++){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       fscanf(ficpar," %le",&matcov[i][j]);    /* #   ...\n\ */
       if(mle==1){    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
         printf(" %.5le",matcov[i][j]);   
       }    for(itimes=1;itimes<=2;itimes++){
       fprintf(ficlog," %.5le",matcov[i][j]);      jj=0;
       fprintf(ficparo," %.5le",matcov[i][j]);      for(i=1; i <=nlstate; i++){
     }        for(j=1; j <=nlstate+ndeath; j++){
     fscanf(ficpar,"\n");          if(j==i) continue;
     numlinepar++;          for(k=1; k<=ncovmodel;k++){
     if(mle==1)            jj++;
       printf("\n");            ca[0]= k+'a'-1;ca[1]='\0';
     fprintf(ficlog,"\n");            if(itimes==1){
     fprintf(ficparo,"\n");              printf("#%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   for(i=1; i <=npar; i++)            }else{
     for(j=i+1;j<=npar;j++)              printf("%1d%1d%d",i,j,k);
       matcov[i][j]=matcov[j][i];              fprintf(ficparo,"%1d%1d%d",i,j,k);
                  /*  printf(" %.5le",matcov[i][j]); */
   if(mle==1)            }
     printf("\n");            ll=0;
   fprintf(ficlog,"\n");            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   fflush(ficlog);                if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
   /*-------- Rewriting paramater file ----------*/                  ll++;
   strcpy(rfileres,"r");    /* "Rparameterfile */                  if(ll<=jj){
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                    cb[0]= lk +'a'-1;cb[1]='\0';
   strcat(rfileres,".");    /* */                    if(ll<jj){
   strcat(rfileres,optionfilext);    /* Other files have txt extension */                      if(itimes==1){
   if((ficres =fopen(rfileres,"w"))==NULL) {                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     printf("Problem writing new parameter file: %s\n", fileres);goto end;                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                      }else{
   }                        printf(" 0.");
   fprintf(ficres,"#%s\n",version);                        fprintf(ficparo," 0.");
                           }
   /*-------- data file ----------*/                    }else{
   if((fic=fopen(datafile,"r"))==NULL)    {                      if(itimes==1){
     printf("Problem with datafile: %s\n", datafile);goto end;                        printf(" Var(%s%1d%1d)",ca,i,j);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   }                      }else{
                         printf(" 0.");
   n= lastobs;                        fprintf(ficparo," 0.");
   severity = vector(1,maxwav);                      }
   outcome=imatrix(1,maxwav+1,1,n);                    }
   num=lvector(1,n);                  }
   moisnais=vector(1,n);                } /* end lk */
   annais=vector(1,n);              } /* end lj */
   moisdc=vector(1,n);            } /* end li */
   andc=vector(1,n);            printf("\n");
   agedc=vector(1,n);            fprintf(ficparo,"\n");
   cod=ivector(1,n);            numlinepar++;
   weight=vector(1,n);          } /* end k*/
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        } /*end j */
   mint=matrix(1,maxwav,1,n);      } /* end i */
   anint=matrix(1,maxwav,1,n);    } /* end itimes */
   s=imatrix(1,maxwav+1,1,n);  
   tab=ivector(1,NCOVMAX);  } /* end of prwizard */
   ncodemax=ivector(1,8);  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   i=1;  {
   while (fgets(line, MAXLINE, fic) != NULL)    {    double A,B,L=0.0,sump=0.,num=0.;
     if ((i >= firstobs) && (i <=lastobs)) {    int i,n=0; /* n is the size of the sample */
           
       for (j=maxwav;j>=1;j--){    for (i=0;i<=imx-1 ; i++) {
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       sump=sump+weight[i];
         strcpy(line,stra);      /*    sump=sump+1;*/
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      num=num+1;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
       }   
            
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* for (i=0; i<=imx; i++)
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=imx ; i++)
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      {
         if (cens[i] == 1 && wav[i]>1)
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
       for (j=ncovcol;j>=1;j--){       
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if (cens[i] == 0 && wav[i]>1)
       }           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       lstra=strlen(stra);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */       
         stratrunc = &(stra[lstra-9]);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         num[i]=atol(stratrunc);        if (wav[i] > 1 ) { /* ??? */
       }          L=L+A*weight[i];
       else          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         num[i]=atol(stra);        }
               }
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
       i=i+1;    return -2*L*num/sump;
     }  }
   }  
   /* printf("ii=%d", ij);  /******************* Printing html file ***********/
      scanf("%d",i);*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   imx=i-1; /* Number of individuals */                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   /* for (i=1; i<=imx; i++){    int i,k;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     }*/    for (i=1;i<=2;i++)
    /*  for (i=1; i<=imx; i++){      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      if (s[4][i]==9)  s[4][i]=-1;     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(fichtm,"</ul>");
     
  for (i=1; i<=imx; i++)  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
    
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
      else weight[i]=1;*/  
    for (k=agegomp;k<(agemortsup-2);k++)
   /* Calculation of the number of parameter from char model*/     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);     fflush(fichtm);
   Tvard=imatrix(1,15,1,2);  }
   Tage=ivector(1,15);        
      /******************* Gnuplot file **************/
   if (strlen(model) >1){ /* If there is at least 1 covariate */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */    char dirfileres[132],optfileres[132];
     j1=nbocc(model,'*'); /* j1=Number of '*' */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     cptcovn=j+1;     int ng;
     cptcovprod=j1; /*Number of products */  
       
     strcpy(modelsav,model);     /*#ifdef windows */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficgp,"cd \"%s\" \n",pathc);
       printf("Error. Non available option model=%s ",model);      /*#endif */
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;  
     }    strcpy(dirfileres,optionfilefiname);
         strcpy(optfileres,"vpl");
     /* This loop fills the array Tvar from the string 'model'.*/    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     for(i=(j+1); i>=1;i--){    fprintf(ficgp, "set ter png small\n set log y\n");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     fprintf(ficgp, "set size 0.65,0.65\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  }
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  /***********************************************/
           cptcovage++;  /**************** Main Program *****************/
             Tage[cptcovage]=i;  /***********************************************/
             /*printf("stre=%s ", stre);*/  
         }  int main(int argc, char *argv[])
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  {
           cptcovprod--;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           cutv(strb,stre,strc,'V');    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           Tvar[i]=atoi(stre);    int linei, month, year,iout;
           cptcovage++;    int jj, ll, li, lj, lk, imk;
           Tage[cptcovage]=i;    int numlinepar=0; /* Current linenumber of parameter file */
         }    int itimes;
         else {  /* Age is not in the model */    int NDIM=2;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;    char ca[32], cb[32], cc[32];
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    char dummy[]="                         ";
           Tprod[k1]=i;    /*  FILE *fichtm; *//* Html File */
           Tvard[k1][1]=atoi(strc); /* m*/    /* FILE *ficgp;*/ /*Gnuplot File */
           Tvard[k1][2]=atoi(stre); /* n */    struct stat info;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double agedeb, agefin,hf;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           for (k=1; k<=lastobs;k++)   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double fret;
           k1++;    double **xi,tmp,delta;
           k2=k2+2;  
         }    double dum; /* Dummy variable */
       }    double ***p3mat;
       else { /* no more sum */    double ***mobaverage;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int *indx;
        /*  scanf("%d",i);*/    char line[MAXLINE], linepar[MAXLINE];
       cutv(strd,strc,strb,'V');    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       Tvar[i]=atoi(strc);    char pathr[MAXLINE], pathimach[MAXLINE];
       }    char **bp, *tok, *val; /* pathtot */
       strcpy(modelsav,stra);      int firstobs=1, lastobs=10;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int sdeb, sfin; /* Status at beginning and end */
         scanf("%d",i);*/    int c,  h , cpt,l;
     } /* end of loop + */    int ju,jl, mi;
   } /* end model */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int agemortsup;
   printf("cptcovprod=%d ", cptcovprod);    float  sumlpop=0.;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   scanf("%d ",i);  
   fclose(fic);*/    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     /*  if(mle==1){*/    double **prlim;
   if (weightopt != 1) { /* Maximisation without weights*/    double *severity;
     for(i=1;i<=n;i++) weight[i]=1.0;    double ***param; /* Matrix of parameters */
   }    double  *p;
     /*-calculation of age at interview from date of interview and age at death -*/    double **matcov; /* Matrix of covariance */
   agev=matrix(1,maxwav,1,imx);    double ***delti3; /* Scale */
     double *delti; /* Scale */
   for (i=1; i<=imx; i++) {    double ***eij, ***vareij;
     for(m=2; (m<= maxwav); m++) {    double **varpl; /* Variances of prevalence limits by age */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    double *epj, vepp;
         anint[m][i]=9999;    double kk1, kk2;
         s[m][i]=-1;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }    double **ximort;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    char *alph[]={"a","a","b","c","d","e"}, str[4];
         nberr++;    int *dcwave;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    char z[1]="c", occ;
         s[m][i]=-1;  
       }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    char  *strt, strtend[80];
         nberr++;    char *stratrunc;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     int lstra;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    long total_usecs;
       }   
     }  /*   setlocale (LC_ALL, ""); */
   }  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   for (i=1; i<=imx; i++)  {  /*   setlocale (LC_CTYPE, ""); */
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /*   setlocale (LC_MESSAGES, ""); */
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         if (s[m][i] >= nlstate+1) {    (void) gettimeofday(&start_time,&tzp);
           if(agedc[i]>0)    curr_time=start_time;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    tm = *localtime(&start_time.tv_sec);
               agev[m][i]=agedc[i];    tmg = *gmtime(&start_time.tv_sec);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcpy(strstart,asctime(&tm));
             else {  
               if ((int)andc[i]!=9999){  /*  printf("Localtime (at start)=%s",strstart); */
                 nbwarn++;  /*  tp.tv_sec = tp.tv_sec +86400; */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  /*  tm = *localtime(&start_time.tv_sec); */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                 agev[m][i]=-1;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
               }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
             }  /*   tp.tv_sec = mktime(&tmg); */
         }  /*   strt=asctime(&tmg); */
         else if(s[m][i] !=9){ /* Standard case, age in fractional  /*   printf("Time(after) =%s",strstart);  */
                                  years but with the precision of a  /*  (void) time (&time_value);
                                  month */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  *  tm = *localtime(&time_value);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  *  strstart=asctime(&tm);
             agev[m][i]=1;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
           else if(agev[m][i] <agemin){   */
             agemin=agev[m][i];  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    nberr=0; /* Number of errors and warnings */
           }    nbwarn=0;
           else if(agev[m][i] >agemax){    getcwd(pathcd, size);
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    printf("\n%s\n%s",version,fullversion);
           }    if(argc <=1){
           /*agev[m][i]=anint[m][i]-annais[i];*/      printf("\nEnter the parameter file name: ");
           /*     agev[m][i] = age[i]+2*m;*/      fgets(pathr,FILENAMELENGTH,stdin);
         }      i=strlen(pathr);
         else { /* =9 */      if(pathr[i-1]=='\n')
           agev[m][i]=1;        pathr[i-1]='\0';
           s[m][i]=-1;     for (tok = pathr; tok != NULL; ){
         }        printf("Pathr |%s|\n",pathr);
       }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       else /*= 0 Unknown */        printf("val= |%s| pathr=%s\n",val,pathr);
         agev[m][i]=1;        strcpy (pathtot, val);
     }        if(pathr[0] == '\0') break; /* Dirty */
           }
   }    }
   for (i=1; i<=imx; i++)  {    else{
     for(m=firstpass; (m<=lastpass); m++){      strcpy(pathtot,argv[1]);
       if (s[m][i] > (nlstate+ndeath)) {    }
         nberr++;    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /*cygwin_split_path(pathtot,path,optionfile);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         goto end;    /* cutv(path,optionfile,pathtot,'\\');*/
       }  
     }    /* Split argv[0], imach program to get pathimach */
   }    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   /*for (i=1; i<=imx; i++){    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   for (m=firstpass; (m<lastpass); m++){   /*   strcpy(pathimach,argv[0]); */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 }*/    chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf("Current directory %s!\n",pathcd);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
   free_vector(severity,1,maxwav);    if((outcmd=system(command)) != 0){
   free_imatrix(outcome,1,maxwav+1,1,n);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   free_vector(moisnais,1,n);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   free_vector(annais,1,n);      /* fclose(ficlog); */
   /* free_matrix(mint,1,maxwav,1,n);  /*     exit(1); */
      free_matrix(anint,1,maxwav,1,n);*/    }
   free_vector(moisdc,1,n);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   free_vector(andc,1,n);  /*     perror("mkdir"); */
   /*   } */
      
   wav=ivector(1,imx);    /*-------- arguments in the command line --------*/
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /* Log file */
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(filelog, optionfilefiname);
        strcat(filelog,".log");    /* */
   /* Concatenates waves */    if((ficlog=fopen(filelog,"w"))==NULL)    {
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      printf("Problem with logfile %s\n",filelog);
       goto end;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   Tcode=ivector(1,100);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     fprintf(ficlog,"\nEnter the parameter file name: \n");
   ncodemax[1]=1;    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);   path=%s \n\
          optionfile=%s\n\
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    optionfilext=%s\n\
                                  the estimations*/   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   h=0;  
   m=pow(2,cptcoveff);    printf("Local time (at start):%s",strstart);
      fprintf(ficlog,"Local time (at start): %s",strstart);
   for(k=1;k<=cptcoveff; k++){    fflush(ficlog);
     for(i=1; i <=(m/pow(2,k));i++){  /*   (void) gettimeofday(&curr_time,&tzp); */
       for(j=1; j <= ncodemax[k]; j++){  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
           h++;    /* */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    strcpy(fileres,"r");
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    strcat(fileres, optionfilefiname);
         }     strcat(fileres,".txt");    /* Other files have txt extension */
       }  
     }    /*---------arguments file --------*/
   }   
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     if((ficpar=fopen(optionfile,"r"))==NULL)    {
      codtab[1][2]=1;codtab[2][2]=2; */      printf("Problem with optionfile %s\n",optionfile);
   /* for(i=1; i <=m ;i++){       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
      for(k=1; k <=cptcovn; k++){      fflush(ficlog);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      goto end;
      }    }
      printf("\n");  
      }  
      scanf("%d",i);*/  
         strcpy(filereso,"o");
   /*------------ gnuplot -------------*/    strcat(filereso,fileres);
   strcpy(optionfilegnuplot,optionfilefiname);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   strcat(optionfilegnuplot,".gp");      printf("Problem with Output resultfile: %s\n", filereso);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     printf("Problem with file %s",optionfilegnuplot);      fflush(ficlog);
   }      goto end;
   else{    }
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     /* Reads comments: lines beginning with '#' */
     fprintf(ficgp,"set missing 'NaNq'\n");    numlinepar=0;
   }    while((c=getc(ficpar))=='#' && c!= EOF){
   /*  fclose(ficgp);*/      ungetc(c,ficpar);
   /*--------- index.htm --------*/      fgets(line, MAXLINE, ficpar);
       numlinepar++;
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      puts(line);
   strcat(optionfilehtm,".htm");      fputs(line,ficparo);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fputs(line,ficlog);
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    ungetc(c,ficpar);
   
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   strcat(optionfilehtmcov,"-cov.htm");    numlinepar++;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   }    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   else{    fflush(ficlog);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    while((c=getc(ficpar))=='#' && c!= EOF){
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      ungetc(c,ficpar);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      fgets(line, MAXLINE, ficpar);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      numlinepar++;
   }      puts(line);
       fputs(line,ficparo);
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      fputs(line,ficlog);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    ungetc(c,ficpar);
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\     
  <ul><li><h4>Parameter files</h4>\n\    covar=matrix(0,NCOVMAX,1,n);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  
  - Date and time at start: %s</ul>\n",\    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
           fileres,fileres,\    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  
   fflush(fichtm);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
   strcpy(pathr,path);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   strcat(pathr,optionfilefiname);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   chdir(optionfilefiname); /* Move to directory named optionfile */      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   /* Calculates basic frequencies. Computes observed prevalence at single age      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
      and prints on file fileres'p'. */      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      fclose (ficparo);
       fclose (ficlog);
   fprintf(fichtm,"\n");      goto end;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      exit(0);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    else if(mle==-3) {
           imx,agemin,agemax,jmin,jmax,jmean);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matcov=matrix(1,npar,1,npar);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
         else{
          /* Read guess parameters */
   /* For Powell, parameters are in a vector p[] starting at p[1]      /* Reads comments: lines beginning with '#' */
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      while((c=getc(ficpar))=='#' && c!= EOF){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        numlinepar++;
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        puts(line);
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        fputs(line,ficparo);
   for (k=1; k<=npar;k++)        fputs(line,ficlog);
     printf(" %d %8.5f",k,p[k]);      }
   printf("\n");      ungetc(c,ficpar);
   globpr=1; /* to print the contributions */     
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      for(i=1; i <=nlstate; i++){
   for (k=1; k<=npar;k++)        j=0;
     printf(" %d %8.5f",k,p[k]);        for(jj=1; jj <=nlstate+ndeath; jj++){
   printf("\n");          if(jj==i) continue;
   if(mle>=1){ /* Could be 1 or 2 */          j++;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   }          if ((i1 != i) && (j1 != j)){
                 printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   /*--------- results files --------------*/  It might be a problem of design; if ncovcol and the model are correct\n \
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
               exit(1);
           }
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficparo,"%1d%1d",i1,j1);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          if(mle==1)
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            printf("%1d%1d",i,j);
   for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficlog,"%1d%1d",i,j);
     for(k=1; k <=(nlstate+ndeath); k++){          for(k=1; k<=ncovmodel;k++){
       if (k != i) {            fscanf(ficpar," %lf",&param[i][j][k]);
         printf("%d%d ",i,k);            if(mle==1){
         fprintf(ficlog,"%d%d ",i,k);              printf(" %lf",param[i][j][k]);
         fprintf(ficres,"%1d%1d ",i,k);              fprintf(ficlog," %lf",param[i][j][k]);
         for(j=1; j <=ncovmodel; j++){            }
           printf("%f ",p[jk]);            else
           fprintf(ficlog,"%f ",p[jk]);              fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficres,"%f ",p[jk]);            fprintf(ficparo," %lf",param[i][j][k]);
           jk++;           }
         }          fscanf(ficpar,"\n");
         printf("\n");          numlinepar++;
         fprintf(ficlog,"\n");          if(mle==1)
         fprintf(ficres,"\n");            printf("\n");
       }          fprintf(ficlog,"\n");
     }          fprintf(ficparo,"\n");
   }        }
   if(mle!=0){      }  
     /* Computing hessian and covariance matrix */      fflush(ficlog);
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);      p=param[1][1];
   }     
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      /* Reads comments: lines beginning with '#' */
   printf("# Scales (for hessian or gradient estimation)\n");      while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        ungetc(c,ficpar);
   for(i=1,jk=1; i <=nlstate; i++){        fgets(line, MAXLINE, ficpar);
     for(j=1; j <=nlstate+ndeath; j++){        numlinepar++;
       if (j!=i) {        puts(line);
         fprintf(ficres,"%1d%1d",i,j);        fputs(line,ficparo);
         printf("%1d%1d",i,j);        fputs(line,ficlog);
         fprintf(ficlog,"%1d%1d",i,j);      }
         for(k=1; k<=ncovmodel;k++){      ungetc(c,ficpar);
           printf(" %.5e",delti[jk]);  
           fprintf(ficlog," %.5e",delti[jk]);      for(i=1; i <=nlstate; i++){
           fprintf(ficres," %.5e",delti[jk]);        for(j=1; j <=nlstate+ndeath-1; j++){
           jk++;          fscanf(ficpar,"%1d%1d",&i1,&j1);
         }          if ((i1-i)*(j1-j)!=0){
         printf("\n");            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
         fprintf(ficlog,"\n");            exit(1);
         fprintf(ficres,"\n");          }
       }          printf("%1d%1d",i,j);
     }          fprintf(ficparo,"%1d%1d",i1,j1);
   }          fprintf(ficlog,"%1d%1d",i1,j1);
              for(k=1; k<=ncovmodel;k++){
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fscanf(ficpar,"%le",&delti3[i][j][k]);
   if(mle>=1)            printf(" %le",delti3[i][j][k]);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fprintf(ficparo," %le",delti3[i][j][k]);
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fprintf(ficlog," %le",delti3[i][j][k]);
 /* # 121 Var(a12)\n\ */          }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */          fscanf(ficpar,"\n");
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */          numlinepar++;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          printf("\n");
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          fprintf(ficparo,"\n");
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          fprintf(ficlog,"\n");
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        }
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      }
       fflush(ficlog);
   
 /* Just to have a covariance matrix which will be more understandable      delti=delti3[1][1];
    even is we still don't want to manage dictionary of variables  
 */  
   for(itimes=1;itimes<=2;itimes++){      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     jj=0;   
     for(i=1; i <=nlstate; i++){      /* Reads comments: lines beginning with '#' */
       for(j=1; j <=nlstate+ndeath; j++){      while((c=getc(ficpar))=='#' && c!= EOF){
         if(j==i) continue;        ungetc(c,ficpar);
         for(k=1; k<=ncovmodel;k++){        fgets(line, MAXLINE, ficpar);
           jj++;        numlinepar++;
           ca[0]= k+'a'-1;ca[1]='\0';        puts(line);
           if(itimes==1){        fputs(line,ficparo);
             if(mle>=1)        fputs(line,ficlog);
               printf("#%1d%1d%d",i,j,k);      }
             fprintf(ficlog,"#%1d%1d%d",i,j,k);      ungetc(c,ficpar);
             fprintf(ficres,"#%1d%1d%d",i,j,k);   
           }else{      matcov=matrix(1,npar,1,npar);
             if(mle>=1)      for(i=1; i <=npar; i++){
               printf("%1d%1d%d",i,j,k);        fscanf(ficpar,"%s",&str);
             fprintf(ficlog,"%1d%1d%d",i,j,k);        if(mle==1)
             fprintf(ficres,"%1d%1d%d",i,j,k);          printf("%s",str);
           }        fprintf(ficlog,"%s",str);
           ll=0;        fprintf(ficparo,"%s",str);
           for(li=1;li <=nlstate; li++){        for(j=1; j <=i; j++){
             for(lj=1;lj <=nlstate+ndeath; lj++){          fscanf(ficpar," %le",&matcov[i][j]);
               if(lj==li) continue;          if(mle==1){
               for(lk=1;lk<=ncovmodel;lk++){            printf(" %.5le",matcov[i][j]);
                 ll++;          }
                 if(ll<=jj){          fprintf(ficlog," %.5le",matcov[i][j]);
                   cb[0]= lk +'a'-1;cb[1]='\0';          fprintf(ficparo," %.5le",matcov[i][j]);
                   if(ll<jj){        }
                     if(itimes==1){        fscanf(ficpar,"\n");
                       if(mle>=1)        numlinepar++;
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        if(mle==1)
                       fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          printf("\n");
                       fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        fprintf(ficlog,"\n");
                     }else{        fprintf(ficparo,"\n");
                       if(mle>=1)      }
                         printf(" %.5e",matcov[jj][ll]);       for(i=1; i <=npar; i++)
                       fprintf(ficlog," %.5e",matcov[jj][ll]);         for(j=i+1;j<=npar;j++)
                       fprintf(ficres," %.5e",matcov[jj][ll]);           matcov[i][j]=matcov[j][i];
                     }     
                   }else{      if(mle==1)
                     if(itimes==1){        printf("\n");
                       if(mle>=1)      fprintf(ficlog,"\n");
                         printf(" Var(%s%1d%1d)",ca,i,j);     
                       fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      fflush(ficlog);
                       fprintf(ficres," Var(%s%1d%1d)",ca,i,j);     
                     }else{      /*-------- Rewriting parameter file ----------*/
                       if(mle>=1)      strcpy(rfileres,"r");    /* "Rparameterfile */
                         printf(" %.5e",matcov[jj][ll]);       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                       fprintf(ficlog," %.5e",matcov[jj][ll]);       strcat(rfileres,".");    /* */
                       fprintf(ficres," %.5e",matcov[jj][ll]);       strcat(rfileres,optionfilext);    /* Other files have txt extension */
                     }      if((ficres =fopen(rfileres,"w"))==NULL) {
                   }        printf("Problem writing new parameter file: %s\n", fileres);goto end;
                 }        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
               } /* end lk */      }
             } /* end lj */      fprintf(ficres,"#%s\n",version);
           } /* end li */    }    /* End of mle != -3 */
           if(mle>=1)  
             printf("\n");    /*-------- data file ----------*/
           fprintf(ficlog,"\n");    if((fic=fopen(datafile,"r"))==NULL)    {
           fprintf(ficres,"\n");      printf("Problem while opening datafile: %s\n", datafile);goto end;
           numlinepar++;      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
         } /* end k*/    }
       } /*end j */  
     } /* end i */    n= lastobs;
   } /* end itimes */    severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
   fflush(ficlog);    num=lvector(1,n);
   fflush(ficres);    moisnais=vector(1,n);
     annais=vector(1,n);
   while((c=getc(ficpar))=='#' && c!= EOF){    moisdc=vector(1,n);
     ungetc(c,ficpar);    andc=vector(1,n);
     fgets(line, MAXLINE, ficpar);    agedc=vector(1,n);
     puts(line);    cod=ivector(1,n);
     fputs(line,ficparo);    weight=vector(1,n);
   }    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   ungetc(c,ficpar);    mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
   estepm=0;    s=imatrix(1,maxwav+1,1,n);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    tab=ivector(1,NCOVMAX);
   if (estepm==0 || estepm < stepm) estepm=stepm;    ncodemax=ivector(1,8);
   if (fage <= 2) {  
     bage = ageminpar;    i=1;
     fage = agemaxpar;    linei=0;
   }    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
          linei=linei+1;
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if(line[j] == '\t')
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          line[j] = ' ';
          }
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     ungetc(c,ficpar);        ;
     fgets(line, MAXLINE, ficpar);      };
     puts(line);      line[j+1]=0;  /* Trims blanks at end of line */
     fputs(line,ficparo);      if(line[0]=='#'){
   }        fprintf(ficlog,"Comment line\n%s\n",line);
   ungetc(c,ficpar);        printf("Comment line\n%s\n",line);
           continue;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for (j=maxwav;j>=1;j--){
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        cutv(stra, strb,line,' ');
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        errno=0;
            lval=strtol(strb,&endptr,10);
   while((c=getc(ficpar))=='#' && c!= EOF){        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     ungetc(c,ficpar);        if( strb[0]=='\0' || (*endptr != '\0')){
     fgets(line, MAXLINE, ficpar);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     puts(line);          exit(1);
     fputs(line,ficparo);        }
   }        s[j][i]=lval;
   ungetc(c,ficpar);       
          strcpy(line,stra);
         cutv(stra, strb,line,' ');
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        }
         else  if(iout=sscanf(strb,"%s.") != 0){
   fscanf(ficpar,"pop_based=%d\n",&popbased);          month=99;
   fprintf(ficparo,"pop_based=%d\n",popbased);             year=9999;
   fprintf(ficres,"pop_based=%d\n",popbased);           }else{
             printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   while((c=getc(ficpar))=='#' && c!= EOF){          exit(1);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        anint[j][i]= (double) year;
     puts(line);        mint[j][i]= (double)month;
     fputs(line,ficparo);        strcpy(line,stra);
   }      } /* ENd Waves */
   ungetc(c,ficpar);     
       cutv(stra, strb,line,' ');
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      }
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        month=99;
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        year=9999;
   /* day and month of proj2 are not used but only year anproj2.*/      }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   while((c=getc(ficpar))=='#' && c!= EOF){        exit(1);
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      andc[i]=(double) year;
     puts(line);      moisdc[i]=(double) month;
     fputs(line,ficparo);      strcpy(line,stra);
   }     
   ungetc(c,ficpar);      cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      else  if(iout=sscanf(strb,"%s.") != 0){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        month=99;
         year=9999;
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      }else{
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      }
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      annais[i]=(double)(year);
       moisnais[i]=(double)(month);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      strcpy(line,stra);
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\     
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      cutv(stra, strb,line,' ');
        errno=0;
   /*------------ free_vector  -------------*/      dval=strtod(strb,&endptr);
   /*  chdir(path); */      if( strb[0]=='\0' || (*endptr != '\0')){
          printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   free_ivector(wav,1,imx);        exit(1);
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      }
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      weight[i]=dval;
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         strcpy(line,stra);
   free_lvector(num,1,n);     
   free_vector(agedc,1,n);      for (j=ncovcol;j>=1;j--){
   /*free_matrix(covar,0,NCOVMAX,1,n);*/        cutv(stra, strb,line,' ');
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        errno=0;
   fclose(ficparo);        lval=strtol(strb,&endptr,10);
   fclose(ficres);        if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
   /*--------------- Prevalence limit  (stable prevalence) --------------*/        }
           if(lval <-1 || lval >1){
   strcpy(filerespl,"pl");          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   strcat(filerespl,fileres);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;   For example, for multinomial values like 1, 2 and 3,\n \
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;   build V1=0 V2=0 for the reference value (1),\n \
   }          V1=1 V2=0 for (2) \n \
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);   output of IMaCh is often meaningless.\n \
   fprintf(ficrespl,"#Stable prevalence \n");   Exiting.\n",lval,linei, i,line,j);
   fprintf(ficrespl,"#Age ");          exit(1);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        covar[j][i]=(double)(lval);
           strcpy(line,stra);
   prlim=matrix(1,nlstate,1,nlstate);      }
       lstra=strlen(stra);
   agebase=ageminpar;     
   agelim=agemaxpar;      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   ftolpl=1.e-10;        stratrunc = &(stra[lstra-9]);
   i1=cptcoveff;        num[i]=atol(stratrunc);
   if (cptcovn < 1){i1=1;}      }
       else
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        num[i]=atol(stra);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
       k=k+1;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     
       fprintf(ficrespl,"\n#******");      i=i+1;
       printf("\n#******");    } /* End loop reading  data */
       fprintf(ficlog,"\n#******");    fclose(fic);
       for(j=1;j<=cptcoveff;j++) {    /* printf("ii=%d", ij);
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       scanf("%d",i);*/
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    imx=i-1; /* Number of individuals */
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    /* for (i=1; i<=imx; i++){
       fprintf(ficrespl,"******\n");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       printf("******\n");      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       fprintf(ficlog,"******\n");      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
               }*/
       for (age=agebase; age<=agelim; age++){     /*  for (i=1; i<=imx; i++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       if (s[4][i]==9)  s[4][i]=-1;
         fprintf(ficrespl,"%.0f ",age );       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for (i=1; i<=imx; i++) */
         for(i=1; i<=nlstate;i++)   
           fprintf(ficrespl," %.5f", prlim[i][i]);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
         fprintf(ficrespl,"\n");       else weight[i]=1;*/
       }  
     }    /* Calculation of the number of parameters from char model */
   }    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   fclose(ficrespl);    Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
   /*------------- h Pij x at various ages ------------*/    Tvard=imatrix(1,15,1,2);
       Tage=ivector(1,15);      
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if (strlen(model) >1){ /* If there is at least 1 covariate */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      j=0, j1=0, k1=1, k2=1;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      j=nbocc(model,'+'); /* j=Number of '+' */
   }      j1=nbocc(model,'*'); /* j1=Number of '*' */
   printf("Computing pij: result on file '%s' \n", filerespij);      cptcovn=j+1;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      cptcovprod=j1; /*Number of products */
        
   stepsize=(int) (stepm+YEARM-1)/YEARM;      strcpy(modelsav,model);
   /*if (stepm<=24) stepsize=2;*/      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
   agelim=AGESUP;        fprintf(ficlog,"Error. Non available option model=%s ",model);
   hstepm=stepsize*YEARM; /* Every year of age */        goto end;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       }
      
   /* hstepm=1;   aff par mois*/      /* This loop fills the array Tvar from the string 'model'.*/
   
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      for(i=(j+1); i>=1;i--){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
       k=k+1;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
       fprintf(ficrespij,"\n#****** ");        /*scanf("%d",i);*/
       for(j=1;j<=cptcoveff;j++)         if (strchr(strb,'*')) {  /* Model includes a product */
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
       fprintf(ficrespij,"******\n");          if (strcmp(strc,"age")==0) { /* Vn*age */
                     cptcovprod--;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            cutv(strb,stre,strd,'V');
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            cptcovage++;
               Tage[cptcovage]=i;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/              /*printf("stre=%s ", stre);*/
           }
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
         oldm=oldms;savm=savms;            cptcovprod--;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              cutv(strb,stre,strc,'V');
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");            Tvar[i]=atoi(stre);
         for(i=1; i<=nlstate;i++)            cptcovage++;
           for(j=1; j<=nlstate+ndeath;j++)            Tage[cptcovage]=i;
             fprintf(ficrespij," %1d-%1d",i,j);          }
         fprintf(ficrespij,"\n");          else {  /* Age is not in the model */
         for (h=0; h<=nhstepm; h++){            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            Tvar[i]=ncovcol+k1;
           for(i=1; i<=nlstate;i++)            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             for(j=1; j<=nlstate+ndeath;j++)            Tprod[k1]=i;
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);            Tvard[k1][1]=atoi(strc); /* m*/
           fprintf(ficrespij,"\n");            Tvard[k1][2]=atoi(stre); /* n */
         }            Tvar[cptcovn+k2]=Tvard[k1][1];
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
         fprintf(ficrespij,"\n");            for (k=1; k<=lastobs;k++)
       }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     }            k1++;
   }            k2=k2+2;
           }
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);        }
         else { /* no more sum */
   fclose(ficrespij);          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        cutv(strd,strc,strb,'V');
   for(i=1;i<=AGESUP;i++)        Tvar[i]=atoi(strc);
     for(j=1;j<=NCOVMAX;j++)        }
       for(k=1;k<=NCOVMAX;k++)        strcpy(modelsav,stra);  
         probs[i][j][k]=0.;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
   /*---------- Forecasting ------------------*/      } /* end of loop + */
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    } /* end model */
   if(prevfcast==1){   
     /*    if(stepm ==1){*/    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  
 /*      }  */    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 /*      else{ */    printf("cptcovprod=%d ", cptcovprod);
 /*        erreur=108; */    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    scanf("%d ",i);*/
 /*      } */  
   }      /*  if(mle==1){*/
       if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
   /*---------- Health expectancies and variances ------------*/    }
       /*-calculation of age at interview from date of interview and age at death -*/
   strcpy(filerest,"t");    agev=matrix(1,maxwav,1,imx);
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    for (i=1; i<=imx; i++) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(m=2; (m<= maxwav); m++) {
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   }          anint[m][i]=9999;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           s[m][i]=-1;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
   strcpy(filerese,"e");          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   strcat(filerese,fileres);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          s[m][i]=-1;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   }          nberr++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
   strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    for (i=1; i<=imx; i++)  {
   }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(m=firstpass; (m<= lastpass); m++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */            if(agedc[i]>0)
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\                agev[m][i]=agedc[i];
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   */              else {
                 if ((int)andc[i]!=9999){
   if (mobilav!=0) {                  nbwarn++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                  agev[m][i]=-1;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                }
     }              }
   }          }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){                                   years but with the precision of a month */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
       k=k+1;             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       fprintf(ficrest,"\n#****** ");              agev[m][i]=1;
       for(j=1;j<=cptcoveff;j++)             else if(agev[m][i] <agemin){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              agemin=agev[m][i];
       fprintf(ficrest,"******\n");              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
       fprintf(ficreseij,"\n#****** ");            else if(agev[m][i] >agemax){
       for(j=1;j<=cptcoveff;j++)               agemax=agev[m][i];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
       fprintf(ficreseij,"******\n");            }
             /*agev[m][i]=anint[m][i]-annais[i];*/
       fprintf(ficresvij,"\n#****** ");            /*     agev[m][i] = age[i]+2*m;*/
       for(j=1;j<=cptcoveff;j++)           }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else { /* =9 */
       fprintf(ficresvij,"******\n");            agev[m][i]=1;
             s[m][i]=-1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          else /*= 0 Unknown */
            agev[m][i]=1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;     
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    }
       if(popbased==1){    for (i=1; i<=imx; i++)  {
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);      for(m=firstpass; (m<=lastpass); m++){
       }        if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
            printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          goto end;
       fprintf(ficrest,"\n");        }
       }
       epj=vector(1,nlstate+1);    }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*for (i=1; i<=imx; i++){
         if (popbased==1) {    for (m=firstpass; (m<lastpass); m++){
           if(mobilav ==0){       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
             for(i=1; i<=nlstate;i++)  }
               prlim[i][i]=probs[(int)age][i][k];  
           }else{ /* mobilav */   }*/
             for(i=1; i<=nlstate;i++)  
               prlim[i][i]=mobaverage[(int)age][i][k];  
           }    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
         }    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
           
         fprintf(ficrest," %4.0f",age);    agegomp=(int)agemin;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_vector(severity,1,maxwav);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_imatrix(outcome,1,maxwav+1,1,n);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    free_vector(moisnais,1,n);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    free_vector(annais,1,n);
           }    /* free_matrix(mint,1,maxwav,1,n);
           epj[nlstate+1] +=epj[j];       free_matrix(anint,1,maxwav,1,n);*/
         }    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)     
             vepp += vareij[i][j][(int)age];    wav=ivector(1,imx);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    dh=imatrix(1,lastpass-firstpass+1,1,imx);
         for(j=1;j <=nlstate;j++){    bh=imatrix(1,lastpass-firstpass+1,1,imx);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    mw=imatrix(1,lastpass-firstpass+1,1,imx);
         }     
         fprintf(ficrest,"\n");    /* Concatenates waves */
       }    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
       free_vector(epj,1,nlstate+1);  
     }    Tcode=ivector(1,100);
   }    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
   free_vector(weight,1,n);    ncodemax[1]=1;
   free_imatrix(Tvard,1,15,1,2);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   free_imatrix(s,1,maxwav+1,1,n);       
   free_matrix(anint,1,maxwav,1,n);     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
   free_matrix(mint,1,maxwav,1,n);                                   the estimations*/
   free_ivector(cod,1,n);    h=0;
   free_ivector(tab,1,NCOVMAX);    m=pow(2,cptcoveff);
   fclose(ficreseij);   
   fclose(ficresvij);    for(k=1;k<=cptcoveff; k++){
   fclose(ficrest);      for(i=1; i <=(m/pow(2,k));i++){
   fclose(ficpar);        for(j=1; j <= ncodemax[k]; j++){
             for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   /*------- Variance of stable prevalence------*/               h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   strcpy(fileresvpl,"vpl");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   strcat(fileresvpl,fileres);          }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      }
     exit(0);    }
   }    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);       codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){       for(k=1; k <=cptcovn; k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
       k=k+1;       }
       fprintf(ficresvpl,"\n#****** ");       printf("\n");
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       scanf("%d",i);*/
       fprintf(ficresvpl,"******\n");     
           /*------------ gnuplot -------------*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(optionfilegnuplot,optionfilefiname);
       oldm=oldms;savm=savms;    if(mle==-3)
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      strcat(optionfilegnuplot,"-mort");
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    strcat(optionfilegnuplot,".gp");
     }  
   }    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
   fclose(ficresvpl);    }
     else{
   /*---------- End : free ----------------*/      fprintf(ficgp,"\n# %s\n", version);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficgp,"set missing 'NaNq'\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*  fclose(ficgp);*/
       /*--------- index.htm --------*/
   free_matrix(covar,0,NCOVMAX,1,n);  
   free_matrix(matcov,1,npar,1,npar);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   /*free_vector(delti,1,npar);*/    if(mle==-3)
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       strcat(optionfilehtm,"-mort");
   free_matrix(agev,1,maxwav,1,imx);    strcat(optionfilehtm,".htm");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with %s \n",optionfilehtm), exit(0);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   
   free_ivector(ncodemax,1,8);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
   free_ivector(Tvar,1,15);    strcat(optionfilehtmcov,"-cov.htm");
   free_ivector(Tprod,1,15);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
   free_ivector(Tvaraff,1,15);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
   free_ivector(Tage,1,15);    }
   free_ivector(Tcode,1,100);    else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   fflush(fichtm);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   fflush(ficgp);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
               optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   if((nberr >0) || (nbwarn>0)){  
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   }else{  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     printf("End of Imach\n");  \n\
     fprintf(ficlog,"End of Imach\n");  <hr  size=\"2\" color=\"#EC5E5E\">\
   }   <ul><li><h4>Parameter files</h4>\n\
   printf("See log file on %s\n",filelog);   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
   (void) gettimeofday(&end_time,&tzp);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
   tm = *localtime(&end_time.tv_sec);   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
   tmg = *gmtime(&end_time.tv_sec);   - Date and time at start: %s</ul>\n",\
   strcpy(strtend,asctime(&tm));            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);             fileres,fileres,\
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    strcpy(pathr,path);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    strcat(pathr,optionfilefiname);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/    chdir(optionfilefiname); /* Move to directory named optionfile */
 /*   if(fileappend(fichtm,optionfilehtm)){ */   
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);    /* Calculates basic frequencies. Computes observed prevalence at single age
   fclose(fichtm);       and prints on file fileres'p'. */
   fclose(fichtmcov);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   fclose(ficgp);  
   fclose(ficlog);    fprintf(fichtm,"\n");
   /*------ End -----------*/    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   chdir(path);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
   strcpy(plotcmd,GNUPLOTPROGRAM);            imx,agemin,agemax,jmin,jmax,jmean);
   strcat(plotcmd," ");    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   strcat(plotcmd,optionfilegnuplot);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   if((outcmd=system(plotcmd)) != 0){      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     printf(" Problem with gnuplot\n");      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   }     
   printf(" Wait...");     
   while (z[0] != 'q') {    /* For Powell, parameters are in a vector p[] starting at p[1]
     /* chdir(path); */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     scanf("%s",z);  
 /*     if (z[0] == 'c') system("./imach"); */    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    if (mle==-3){
     else if (z[0] == 'q') exit(0);      ximort=matrix(1,NDIM,1,NDIM);
   }      cens=ivector(1,n);
   end:      ageexmed=vector(1,n);
   while (z[0] != 'q') {      agecens=vector(1,n);
     printf("\nType  q for exiting: ");      dcwave=ivector(1,n);
     scanf("%s",z);   
   }      for (i=1; i<=imx; i++){
 }        dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.96  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>