Diff for /imach/src/imach.c between versions 1.6 and 1.97

version 1.6, 2001/05/02 17:47:10 version 1.97, 2004/02/20 13:25:42
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.97  2004/02/20 13:25:42  lievre
   individuals from different ages are interviewed on their health status    Version 0.96d. Population forecasting command line is (temporarily)
   or degree of  disability. At least a second wave of interviews    suppressed.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.96  2003/07/15 15:38:55  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   of life states). More degrees you consider, more time is necessary to    rewritten within the same printf. Workaround: many printfs.
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.95  2003/07/08 07:54:34  brouard
   the probabibility to be observed in state j at the second wave conditional    * imach.c (Repository):
   to be observed in state i at the first wave. Therefore the model is:    (Repository): Using imachwizard code to output a more meaningful covariance
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    matrix (cov(a12,c31) instead of numbers.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.94  2003/06/27 13:00:02  brouard
     *Covariates have to be included here again* invites you to do it.    Just cleaning
   More covariates you add, less is the speed of the convergence.  
     Revision 1.93  2003/06/25 16:33:55  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): On windows (cygwin) function asctime_r doesn't
   delay between waves is not identical for each individual, or if some    exist so I changed back to asctime which exists.
   individual missed an interview, the information is not rounded or lost, but    (Module): Version 0.96b
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.92  2003/06/25 16:30:45  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): On windows (cygwin) function asctime_r doesn't
   x. The delay 'h' can be split into an exact number (nh*stepm) of    exist so I changed back to asctime which exists.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.91  2003/06/25 15:30:29  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Duplicated warning errors corrected.
   and the contribution of each individual to the likelihood is simply hPijx.    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   Also this programme outputs the covariance matrix of the parameters but also    is stamped in powell.  We created a new html file for the graphs
   of the life expectancies. It also computes the prevalence limits.    concerning matrix of covariance. It has extension -cov.htm.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.90  2003/06/24 12:34:15  brouard
            Institut national d'études démographiques, Paris.    (Module): Some bugs corrected for windows. Also, when
   This software have been partly granted by Euro-REVES, a concerted action    mle=-1 a template is output in file "or"mypar.txt with the design
   from the European Union.    of the covariance matrix to be input.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.89  2003/06/24 12:30:52  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Some bugs corrected for windows. Also, when
   **********************************************************************/    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
 #include <math.h>  
 #include <stdio.h>    Revision 1.88  2003/06/23 17:54:56  brouard
 #include <stdlib.h>    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #include <unistd.h>  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define MAXLINE 256    Version 0.96
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.86  2003/06/17 20:04:08  brouard
 #define windows    (Module): Change position of html and gnuplot routines and added
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    routine fileappend.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Check when date of death was earlier that
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 #define NINTERVMAX 8    was wrong (infinity). We still send an "Error" but patch by
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    assuming that the date of death was just one stepm after the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    interview.
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): Because some people have very long ID (first column)
 #define MAXN 20000    we changed int to long in num[] and we added a new lvector for
 #define YEARM 12. /* Number of months per year */    memory allocation. But we also truncated to 8 characters (left
 #define AGESUP 130    truncation)
 #define AGEBASE 40    (Repository): No more line truncation errors.
   
     Revision 1.84  2003/06/13 21:44:43  brouard
 int nvar;    * imach.c (Repository): Replace "freqsummary" at a correct
 static int cptcov;    place. It differs from routine "prevalence" which may be called
 int cptcovn, cptcovage=0;    many times. Probs is memory consuming and must be used with
 int npar=NPARMAX;    parcimony.
 int nlstate=2; /* Number of live states */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.82  2003/06/05 15:57:20  brouard
 int mle, weightopt;    Add log in  imach.c and  fullversion number is now printed.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /*
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */     Interpolated Markov Chain
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Short summary of the programme:
 FILE *ficreseij;    
   char filerese[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
  FILE  *ficresvij;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   char fileresv[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
  FILE  *ficresvpl;    interviewed on their health status or degree of disability (in the
   char fileresvpl[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define NR_END 1    (if any) in individual health status.  Health expectancies are
 #define FREE_ARG char*    computed from the time spent in each health state according to a
 #define FTOL 1.0e-10    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define NRANSI    simplest model is the multinomial logistic model where pij is the
 #define ITMAX 200    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 #define TOL 2.0e-4    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define CGOLD 0.3819660    complex model than "constant and age", you should modify the program
 #define ZEPS 1.0e-10    where the markup *Covariates have to be included here again* invites
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    you to do it.  More covariates you add, slower the
     convergence.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    The advantage of this computer programme, compared to a simple
 #define TINY 1.0e-20    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 static double maxarg1,maxarg2;    intermediate interview, the information is lost, but taken into
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    account using an interpolation or extrapolation.  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      hPijx is the probability to be observed in state i at age x+h
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    conditional to the observed state i at age x. The delay 'h' can be
 #define rint(a) floor(a+0.5)    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 static double sqrarg;    semester or year) is modelled as a multinomial logistic.  The hPx
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    matrix is simply the matrix product of nh*stepm elementary matrices
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    and the contribution of each individual to the likelihood is simply
     hPijx.
 int imx;  
 int stepm;    Also this programme outputs the covariance matrix of the parameters but also
 /* Stepm, step in month: minimum step interpolation*/    of the life expectancies. It also computes the stable prevalence. 
     
 int m,nb;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;             Institut national d'études démographiques, Paris.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    This software have been partly granted by Euro-REVES, a concerted action
 double **pmmij;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 double *weight;    software can be distributed freely for non commercial use. Latest version
 int **s; /* Status */    can be accessed at http://euroreves.ined.fr/imach .
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    
 double ftolhess; /* Tolerance for computing hessian */    **********************************************************************/
   /*
     main
 static  int split( char *path, char *dirc, char *name )    read parameterfile
 {    read datafile
    char *s;                             /* pointer */    concatwav
    int  l1, l2;                         /* length counters */    freqsummary
     if (mle >= 1)
    l1 = strlen( path );                 /* length of path */      mlikeli
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    print results files
    s = strrchr( path, '\\' );           /* find last / */    if mle==1 
    if ( s == NULL ) {                   /* no directory, so use current */       computes hessian
 #if     defined(__bsd__)                /* get current working directory */    read end of parameter file: agemin, agemax, bage, fage, estepm
       extern char       *getwd( );        begin-prev-date,...
     open gnuplot file
       if ( getwd( dirc ) == NULL ) {    open html file
 #else    stable prevalence
       extern char       *getcwd( );     for age prevalim()
     h Pij x
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    variance of p varprob
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
          return( GLOCK_ERROR_GETCWD );    health expectancies
       }    Variance-covariance of DFLE
       strcpy( name, path );             /* we've got it */    prevalence()
    } else {                             /* strip direcotry from path */     movingaverage()
       s++;                              /* after this, the filename */    varevsij() 
       l2 = strlen( s );                 /* length of filename */    if popbased==1 varevsij(,popbased)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    total life expectancies
       strcpy( name, s );                /* save file name */    Variance of stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */   end
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */   
 }  #include <math.h>
   #include <stdio.h>
   #include <stdlib.h>
 /******************************************/  #include <unistd.h>
   
 void replace(char *s, char*t)  #include <sys/time.h>
 {  #include <time.h>
   int i;  #include "timeval.h"
   int lg=20;  
   i=0;  /* #include <libintl.h> */
   lg=strlen(t);  /* #define _(String) gettext (String) */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  #define MAXLINE 256
     if (t[i]== '\\') s[i]='/';  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 int nbocc(char *s, char occ)  /*#define windows*/
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int i,j=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int lg=20;  
   i=0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   lg=strlen(s);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return j;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 void cutv(char *u,char *v, char*t, char occ)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int i,lg,j,p=0;  #define AGEBASE 40
   i=0;  #ifdef unix
   for(j=0; j<=strlen(t)-1; j++) {  #define DIRSEPARATOR '/'
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define ODIRSEPARATOR '\\'
   }  #else
   #define DIRSEPARATOR '\\'
   lg=strlen(t);  #define ODIRSEPARATOR '/'
   for(j=0; j<p; j++) {  #endif
     (u[j] = t[j]);  
   }  /* $Id$ */
      u[p]='\0';  /* $State$ */
   
    for(j=0; j<= lg; j++) {  char version[]="Imach version 0.96d, February 2004, INED-EUROREVES ";
     if (j>=(p+1))(v[j-p-1] = t[j]);  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /********************** nrerror ********************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 void nrerror(char error_text[])  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   fprintf(stderr,"ERREUR ...\n");  int popbased=0;
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
 /*********************** vector *******************/  int jmin, jmax; /* min, max spacing between 2 waves */
 double *vector(int nl, int nh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   double *v;  int mle, weightopt;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!v) nrerror("allocation failure in vector");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return v-nl+NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /************************ free vector ******************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_vector(double*v, int nl, int nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /************************ivector *******************************/  long ipmx; /* Number of contributions */
 int *ivector(long nl,long nh)  double sw; /* Sum of weights */
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int *v;  FILE *ficresilk;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!v) nrerror("allocation failure in ivector");  FILE *ficresprobmorprev;
   return v-nl+NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /******************free ivector **************************/  FILE  *ficresvij;
 void free_ivector(int *v, long nl, long nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   free((FREE_ARG)(v+nl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************* imatrix *******************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
   /* allocate pointers to rows */  char filelog[FILENAMELENGTH]; /* Log file */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char filerest[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileregp[FILENAMELENGTH];
   m += NR_END;  char popfile[FILENAMELENGTH];
   m -= nrl;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
   /* allocate rows and set pointers to them */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  struct timezone tzp;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  extern int gettimeofday();
   m[nrl] += NR_END;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] -= ncl;  long time_value;
    extern long time();
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char strcurr[80], strfor[80];
    
   /* return pointer to array of pointers to rows */  #define NR_END 1
   return m;  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /****************** free_imatrix *************************/  #define NRANSI 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define ITMAX 200 
       int **m;  
       long nch,ncl,nrh,nrl;  #define TOL 2.0e-4 
      /* free an int matrix allocated by imatrix() */  
 {  #define CGOLD 0.3819660 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define ZEPS 1.0e-10 
   free((FREE_ARG) (m+nrl-NR_END));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /******************* matrix *******************************/  #define GLIMIT 100.0 
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define TINY 1.0e-20 
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  static double maxarg1,maxarg2;
   double **m;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m += NR_END;  #define rint(a) floor(a+0.5)
   m -= nrl;  
   static double sqrarg;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int imx; 
   int stepm;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* Stepm, step in month: minimum step interpolation*/
   return m;  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int m,nb;
 {  long *num;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   free((FREE_ARG)(m+nrl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double *weight;
 {  int **s; /* Status */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double *agedc, **covar, idx;
   double ***m;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m += NR_END;  
   m -= nrl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    char  *ss;                            /* pointer */
   m[nrl] += NR_END;    int   l1, l2;                         /* length counters */
   m[nrl] -= ncl;  
     l1 = strlen(path );                   /* length of path */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl][ncl] += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl][ncl] -= nll;      /* get current working directory */
   for (j=ncl+1; j<=nch; j++)      /*    extern  char* getcwd ( char *buf , int len);*/
     m[nrl][j]=m[nrl][j-1]+nlay;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   for (i=nrl+1; i<=nrh; i++) {      }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strcpy( name, path );               /* we've got it */
     for (j=ncl+1; j<=nch; j++)    } else {                              /* strip direcotry from path */
       m[i][j]=m[i][j-1]+nlay;      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   return m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*************************free ma3x ************************/      dirc[l1-l2] = 0;                    /* add zero */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    /*#ifdef windows
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m+nrl-NR_END));  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /***************** f1dim *************************/    */
 extern int ncom;    ss = strrchr( name, '.' );            /* find last / */
 extern double *pcom,*xicom;    ss++;
 extern double (*nrfunc)(double []);    strcpy(ext,ss);                       /* save extension */
      l1= strlen( name);
 double f1dim(double x)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   int j;    finame[l1-l2]= 0;
   double f;    return( 0 );                          /* we're done */
   double *xt;  }
    
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /******************************************/
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  void replace_back_to_slash(char *s, char*t)
   return f;  {
 }    int i;
     int lg=0;
 /*****************brent *************************/    i=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   int iter;      (s[i] = t[i]);
   double a,b,d,etemp;      if (t[i]== '\\') s[i]='/';
   double fu,fv,fw,fx;    }
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  int nbocc(char *s, char occ)
    {
   a=(ax < cx ? ax : cx);    int i,j=0;
   b=(ax > cx ? ax : cx);    int lg=20;
   x=w=v=bx;    i=0;
   fw=fv=fx=(*f)(x);    lg=strlen(s);
   for (iter=1;iter<=ITMAX;iter++) {    for(i=0; i<= lg; i++) {
     xm=0.5*(a+b);    if  (s[i] == occ ) j++;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return j;
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void cutv(char *u,char *v, char*t, char occ)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    /* cuts string t into u and v where u is ended by char occ excluding it
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       *xmin=x;       gives u="abcedf" and v="ghi2j" */
       return fx;    int i,lg,j,p=0;
     }    i=0;
     ftemp=fu;    for(j=0; j<=strlen(t)-1; j++) {
     if (fabs(e) > tol1) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    lg=strlen(t);
       q=2.0*(q-r);    for(j=0; j<p; j++) {
       if (q > 0.0) p = -p;      (u[j] = t[j]);
       q=fabs(q);    }
       etemp=e;       u[p]='\0';
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     for(j=0; j<= lg; j++) {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      if (j>=(p+1))(v[j-p-1] = t[j]);
       else {    }
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /********************** nrerror ********************/
           d=SIGN(tol1,xm-x);  
       }  void nrerror(char error_text[])
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    exit(EXIT_FAILURE);
     fu=(*f)(u);  }
     if (fu <= fx) {  /*********************** vector *******************/
       if (u >= x) a=x; else b=x;  double *vector(int nl, int nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    double *v;
         } else {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           if (u < x) a=u; else b=u;    if (!v) nrerror("allocation failure in vector");
           if (fu <= fw || w == x) {    return v-nl+NR_END;
             v=w;  }
             w=u;  
             fv=fw;  /************************ free vector ******************/
             fw=fu;  void free_vector(double*v, int nl, int nh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fu;  }
           }  
         }  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
   nrerror("Too many iterations in brent");  {
   *xmin=x;    int *v;
   return fx;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /******************free ivector **************************/
             double (*func)(double))  void free_ivector(int *v, long nl, long nh)
 {  {
   double ulim,u,r,q, dum;    free((FREE_ARG)(v+nl-NR_END));
   double fu;  }
    
   *fa=(*func)(*ax);  /************************lvector *******************************/
   *fb=(*func)(*bx);  long *lvector(long nl,long nh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    long *v;
       SHFT(dum,*fb,*fa,dum)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
   *cx=(*bx)+GOLD*(*bx-*ax);    return v-nl+NR_END;
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************free lvector **************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_lvector(long *v, long nl, long nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(v+nl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /******************* imatrix *******************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fu=(*func)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       if (fu < *fc) {  { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           SHFT(*fb,*fc,fu,(*func)(u))    int **m; 
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* allocate pointers to rows */ 
       u=ulim;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } else {    m += NR_END; 
       u=(*cx)+GOLD*(*cx-*bx);    m -= nrl; 
       fu=(*func)(u);    
     }    
     SHFT(*ax,*bx,*cx,u)    /* allocate rows and set pointers to them */ 
       SHFT(*fa,*fb,*fc,fu)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /*************** linmin ************************/    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 int ncom;    
 double *pcom,*xicom;    /* return pointer to array of pointers to rows */ 
 double (*nrfunc)(double []);    return m; 
    } 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /****************** free_imatrix *************************/
   double brent(double ax, double bx, double cx,  void free_imatrix(m,nrl,nrh,ncl,nch)
                double (*f)(double), double tol, double *xmin);        int **m;
   double f1dim(double x);        long nch,ncl,nrh,nrl; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,       /* free an int matrix allocated by imatrix() */ 
               double *fc, double (*func)(double));  { 
   int j;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double xx,xmin,bx,ax;    free((FREE_ARG) (m+nrl-NR_END)); 
   double fx,fb,fa;  } 
    
   ncom=n;  /******************* matrix *******************************/
   pcom=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   xicom=vector(1,n);  {
   nrfunc=func;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (j=1;j<=n;j++) {    double **m;
     pcom[j]=p[j];  
     xicom[j]=xi[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   ax=0.0;    m += NR_END;
   xx=1.0;    m -= nrl;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     p[j] += xi[j];    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   free_vector(xicom,1,n);     */
   free_vector(pcom,1,n);  }
 }  
   /*************************free matrix ************************/
 /*************** powell ************************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /******************* ma3x *******************************/
   double del,t,*pt,*ptt,*xit;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double fp,fptt;  {
   double *xits;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   pt=vector(1,n);    double ***m;
   ptt=vector(1,n);  
   xit=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xits=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   *fret=(*func)(p);    m += NR_END;
   for (j=1;j<=n;j++) pt[j]=p[j];    m -= nrl;
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ibig=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     del=0.0;    m[nrl] += NR_END;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] -= ncl;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("\n");  
     for (i=1;i<=n;i++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fptt=(*fret);    m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
       printf("fret=%lf \n",*fret);    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
       printf("%d",i);fflush(stdout);    
       linmin(p,xit,n,fret,func);    for (i=nrl+1; i<=nrh; i++) {
       if (fabs(fptt-(*fret)) > del) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         del=fabs(fptt-(*fret));      for (j=ncl+1; j<=nch; j++) 
         ibig=i;        m[i][j]=m[i][j-1]+nlay;
       }    }
 #ifdef DEBUG    return m; 
       printf("%d %.12e",i,(*fret));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (j=1;j<=n;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    */
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /*************************free ma3x ************************/
         printf(" p=%.12e",p[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("\n");  {
 #endif    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  /*************** function subdirf ***********/
       k[1]=-1;  char *subdirf(char fileres[])
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    /* Caution optionfilefiname is hidden */
         printf(" %.12e",p[j]);    strcpy(tmpout,optionfilefiname);
       printf("\n");    strcat(tmpout,"/"); /* Add to the right */
       for(l=0;l<=1;l++) {    strcat(tmpout,fileres);
         for (j=1;j<=n;j++) {    return tmpout;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /*************** function subdirf2 ***********/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *subdirf2(char fileres[], char *preop)
       }  {
 #endif    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       free_vector(xit,1,n);    strcat(tmpout,"/");
       free_vector(xits,1,n);    strcat(tmpout,preop);
       free_vector(ptt,1,n);    strcat(tmpout,fileres);
       free_vector(pt,1,n);    return tmpout;
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*************** function subdirf3 ***********/
     for (j=1;j<=n;j++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    
       pt[j]=p[j];    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     fptt=(*func)(ptt);    strcat(tmpout,"/");
     if (fptt < fp) {    strcat(tmpout,preop);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,preop2);
       if (t < 0.0) {    strcat(tmpout,fileres);
         linmin(p,xit,n,fret,func);    return tmpout;
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /***************** f1dim *************************/
         }  extern int ncom; 
 #ifdef DEBUG  extern double *pcom,*xicom;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern double (*nrfunc)(double []); 
         for(j=1;j<=n;j++)   
           printf(" %.12e",xit[j]);  double f1dim(double x) 
         printf("\n");  { 
 #endif    int j; 
       }    double f;
     }    double *xt; 
   }   
 }    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /**** Prevalence limit ****************/    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return f; 
 {  } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i, ii,j,k;  { 
   double min, max, maxmin, maxmax,sumnew=0.;    int iter; 
   double **matprod2();    double a,b,d,etemp;
   double **out, cov[NCOVMAX], **pmij();    double fu,fv,fw,fx;
   double **newm;    double ftemp;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   for (ii=1;ii<=nlstate+ndeath;ii++)   
     for (j=1;j<=nlstate+ndeath;j++){    a=(ax < cx ? ax : cx); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
    cov[1]=1.;    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     newm=savm;      printf(".");fflush(stdout);
     /* Covariates have to be included here again */      fprintf(ficlog,".");fflush(ficlog);
      cov[2]=agefin;  #ifdef DEBUG
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovn;k++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       for (k=1; k<=cptcovage;k++)        return fx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
          ftemp=fu;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
     savm=oldm;        q=(x-v)*(fx-fw); 
     oldm=newm;        p=(x-v)*q-(x-w)*r; 
     maxmax=0.;        q=2.0*(q-r); 
     for(j=1;j<=nlstate;j++){        if (q > 0.0) p = -p; 
       min=1.;        q=fabs(q); 
       max=0.;        etemp=e; 
       for(i=1; i<=nlstate; i++) {        e=d; 
         sumnew=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        else { 
         max=FMAX(max,prlim[i][j]);          d=p/q; 
         min=FMIN(min,prlim[i][j]);          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       maxmin=max-min;            d=SIGN(tol1,xm-x); 
       maxmax=FMAX(maxmax,maxmin);        } 
     }      } else { 
     if(maxmax < ftolpl){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return prlim;      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
 }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /*************** transition probabilities **********/        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          } else { 
 {            if (u < x) a=u; else b=u; 
   double s1, s2;            if (fu <= fw || w == x) { 
   /*double t34;*/              v=w; 
   int i,j,j1, nc, ii, jj;              w=u; 
               fv=fw; 
     for(i=1; i<= nlstate; i++){              fw=fu; 
     for(j=1; j<i;j++){            } else if (fu <= fv || v == x || v == w) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              v=u; 
         /*s2 += param[i][j][nc]*cov[nc];*/              fv=fu; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          } 
       }    } 
       ps[i][j]=s2;    nrerror("Too many iterations in brent"); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    *xmin=x; 
     }    return fx; 
     for(j=i+1; j<=nlstate+ndeath;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /****************** mnbrak ***********************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       ps[i][j]=s2;              double (*func)(double)) 
     }  { 
   }    double ulim,u,r,q, dum;
   for(i=1; i<= nlstate; i++){    double fu; 
      s1=0;   
     for(j=1; j<i; j++)    *fa=(*func)(*ax); 
       s1+=exp(ps[i][j]);    *fb=(*func)(*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)    if (*fb > *fa) { 
       s1+=exp(ps[i][j]);      SHFT(dum,*ax,*bx,dum) 
     ps[i][i]=1./(s1+1.);        SHFT(dum,*fb,*fa,dum) 
     for(j=1; j<i; j++)        } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fc=(*func)(*cx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    while (*fb > *fc) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      r=(*bx-*ax)*(*fb-*fc); 
   } /* end i */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       ps[ii][jj]=0;      if ((*bx-u)*(u-*cx) > 0.0) { 
       ps[ii][ii]=1;        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   }        fu=(*func)(u); 
         if (fu < *fc) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            SHFT(*fb,*fc,fu,(*func)(u)) 
      printf("%lf ",ps[ii][jj]);            } 
    }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     printf("\n ");        u=ulim; 
     }        fu=(*func)(u); 
     printf("\n ");printf("%lf ",cov[2]);*/      } else { 
 /*        u=(*cx)+GOLD*(*cx-*bx); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fu=(*func)(u); 
   goto end;*/      } 
     return ps;      SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 /**************** Product of 2 matrices ******************/  } 
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** linmin ************************/
 {  
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int ncom; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double *pcom,*xicom;
   /* in, b, out are matrice of pointers which should have been initialized  double (*nrfunc)(double []); 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    double brent(double ax, double bx, double cx, 
     for(k=ncolol; k<=ncoloh; k++)                 double (*f)(double), double tol, double *xmin); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double f1dim(double x); 
         out[i][k] +=in[i][j]*b[j][k];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
   return out;    int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
 /************* Higher Matrix Product ***************/    ncom=n; 
     pcom=vector(1,n); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    xicom=vector(1,n); 
 {    nrfunc=func; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (j=1;j<=n;j++) { 
      duration (i.e. until      pcom[j]=p[j]; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      xicom[j]=xi[j]; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    } 
      (typically every 2 years instead of every month which is too big).    ax=0.0; 
      Model is determined by parameters x and covariates have to be    xx=1.0; 
      included manually here.    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i, j, d, h, k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out, cov[NCOVMAX];  #endif
   double **newm;    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   /* Hstepm could be zero and should return the unit matrix */      p[j] += xi[j]; 
   for (i=1;i<=nlstate+ndeath;i++)    } 
     for (j=1;j<=nlstate+ndeath;j++){    free_vector(xicom,1,n); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free_vector(pcom,1,n); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  } 
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char *asc_diff_time(long time_sec, char ascdiff[])
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    long sec_left, days, hours, minutes;
       newm=savm;    days = (time_sec) / (60*60*24);
       /* Covariates have to be included here again */    sec_left = (time_sec) % (60*60*24);
       cov[1]=1.;    hours = (sec_left) / (60*60) ;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    sec_left = (sec_left) %(60*60);
       if (cptcovn>0){    minutes = (sec_left) /60;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return ascdiff;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** powell ************************/
       savm=oldm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       oldm=newm;              double (*func)(double [])) 
     }  { 
     for(i=1; i<=nlstate+ndeath; i++)    void linmin(double p[], double xi[], int n, double *fret, 
       for(j=1;j<=nlstate+ndeath;j++) {                double (*func)(double [])); 
         po[i][j][h]=newm[i][j];    int i,ibig,j; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double del,t,*pt,*ptt,*xit;
          */    double fp,fptt;
       }    double *xits;
   } /* end h */    int niterf, itmp;
   return po;  
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
     xit=vector(1,n); 
 /*************** log-likelihood *************/    xits=vector(1,n); 
 double func( double *x)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int i, ii, j, k, mi, d, kk;    for (*iter=1;;++(*iter)) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      fp=(*fret); 
   double **out;      ibig=0; 
   double sw; /* Sum of weights */      del=0.0; 
   double lli; /* Individual log likelihood */      last_time=curr_time;
   long ipmx;      (void) gettimeofday(&curr_time,&tzp);
   /*extern weight */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /* We are differentiating ll according to initial status */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /*for(i=1;i<imx;i++)      for (i=1;i<=n;i++) {
 printf(" %d\n",s[4][i]);        printf(" %d %.12f",i, p[i]);
   */        fprintf(ficlog," %d %.12lf",i, p[i]);
   cov[1]=1.;        fprintf(ficrespow," %.12lf", p[i]);
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      printf("\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      fprintf(ficlog,"\n");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      fprintf(ficrespow,"\n");fflush(ficrespow);
        for(mi=1; mi<= wav[i]-1; mi++){      if(*iter <=3){
       for (ii=1;ii<=nlstate+ndeath;ii++)        tm = *localtime(&curr_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        strcpy(strcurr,asctime(&tmf));
             for(d=0; d<dh[mi][i]; d++){  /*       asctime_r(&tm,strcurr); */
               newm=savm;        forecast_time=curr_time;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        itmp = strlen(strcurr);
               for (kk=1; kk<=cptcovage;kk++) {        if(strcurr[itmp-1]=='\n')
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          strcurr[itmp-1]='\0';
                  /*printf("%d %d",kk,Tage[kk]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
               }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/        for(niterf=10;niterf<=30;niterf+=10){
               /*cov[3]=pow(cov[2],2)/1000.;*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*      asctime_r(&tmf,strfor); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          strcpy(strfor,asctime(&tmf));
           savm=oldm;          itmp = strlen(strfor);
           oldm=newm;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       } /* end mult */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for (i=1;i<=n;i++) { 
       ipmx +=1;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       sw += weight[i];        fptt=(*fret); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
     } /* end of wave */        printf("fret=%lf \n",*fret);
   } /* end of individual */        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        printf("%d",i);fflush(stdout);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog,"%d",i);fflush(ficlog);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        linmin(p,xit,n,fret,func); 
   return -l;        if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
         } 
 /*********** Maximum Likelihood Estimation ***************/  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"%d %.12e",i,(*fret));
 {        for (j=1;j<=n;j++) {
   int i,j, iter;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **xi,*delti;          printf(" x(%d)=%.12e",j,xit[j]);
   double fret;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)        for(j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)          printf(" p=%.12e",p[j]);
       xi[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog," p=%.12e",p[j]);
   printf("Powell\n");        }
   powell(p,xi,npar,ftol,&iter,&fret,func);        printf("\n");
         fprintf(ficlog,"\n");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #endif
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
 /**** Computes Hessian and covariance matrix ***/        k[0]=1;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        k[1]=-1;
 {        printf("Max: %.12e",(*func)(p));
   double  **a,**y,*x,pd;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double **hess;        for (j=1;j<=n;j++) {
   int i, j,jk;          printf(" %.12e",p[j]);
   int *indx;          fprintf(ficlog," %.12e",p[j]);
         }
   double hessii(double p[], double delta, int theta, double delti[]);        printf("\n");
   double hessij(double p[], double delti[], int i, int j);        fprintf(ficlog,"\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for(l=0;l<=1;l++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   hess=matrix(1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   printf("\nCalculation of the hessian matrix. Wait...\n");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("%d",i);fflush(stdout);        }
     hess[i][i]=hessii(p,ftolhess,i,delti);  #endif
     /*printf(" %f ",p[i]);*/  
   }  
         free_vector(xit,1,n); 
   for (i=1;i<=npar;i++) {        free_vector(xits,1,n); 
     for (j=1;j<=npar;j++)  {        free_vector(ptt,1,n); 
       if (j>i) {        free_vector(pt,1,n); 
         printf(".%d%d",i,j);fflush(stdout);        return; 
         hess[i][j]=hessij(p,delti,i,j);      } 
         hess[j][i]=hess[i][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   printf("\n");        pt[j]=p[j]; 
       } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fptt=(*func)(ptt); 
        if (fptt < fp) { 
   a=matrix(1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   y=matrix(1,npar,1,npar);        if (t < 0.0) { 
   x=vector(1,npar);          linmin(p,xit,n,fret,func); 
   indx=ivector(1,npar);          for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++)            xi[j][ibig]=xi[j][n]; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            xi[j][n]=xit[j]; 
   ludcmp(a,npar,indx,&pd);          }
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     x[j]=1;          for(j=1;j<=n;j++){
     lubksb(a,npar,indx,x);            printf(" %.12e",xit[j]);
     for (i=1;i<=npar;i++){            fprintf(ficlog," %.12e",xit[j]);
       matcov[i][j]=x[i];          }
     }          printf("\n");
   }          fprintf(ficlog,"\n");
   #endif
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++) {    } 
       printf("%.3e ",hess[i][j]);  } 
     }  
     printf("\n");  /**** Prevalence limit (stable prevalence)  ****************/
   }  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       matrix by transitions matrix until convergence is reached */
   ludcmp(a,npar,indx,&pd);  
     int i, ii,j,k;
   /*  printf("\n#Hessian matrix recomputed#\n");    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   for (j=1;j<=npar;j++) {    double **out, cov[NCOVMAX], **pmij();
     for (i=1;i<=npar;i++) x[i]=0;    double **newm;
     x[j]=1;    double agefin, delaymax=50 ; /* Max number of years to converge */
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    for (ii=1;ii<=nlstate+ndeath;ii++)
       y[i][j]=x[i];      for (j=1;j<=nlstate+ndeath;j++){
       printf("%.3e ",y[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
     printf("\n");  
   }     cov[1]=1.;
   */   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_matrix(a,1,npar,1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   free_matrix(y,1,npar,1,npar);      newm=savm;
   free_vector(x,1,npar);      /* Covariates have to be included here again */
   free_ivector(indx,1,npar);       cov[2]=agefin;
   free_matrix(hess,1,npar,1,npar);    
         for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 /*************** hessian matrix ****************/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 double hessii( double x[], double delta, int theta, double delti[])        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i;  
   int l=1, lmax=20;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double k1,k2;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double p2[NPARMAX+1];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double res;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;      savm=oldm;
   int k=0,kmax=10;      oldm=newm;
   double l1;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   fx=func(x);        min=1.;
   for (i=1;i<=npar;i++) p2[i]=x[i];        max=0.;
   for(l=0 ; l <=lmax; l++){        for(i=1; i<=nlstate; i++) {
     l1=pow(10,l);          sumnew=0;
     delts=delt;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(k=1 ; k <kmax; k=k+1){          prlim[i][j]= newm[i][j]/(1-sumnew);
       delt = delta*(l1*k);          max=FMAX(max,prlim[i][j]);
       p2[theta]=x[theta] +delt;          min=FMIN(min,prlim[i][j]);
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;        maxmin=max-min;
       k2=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      if(maxmax < ftolpl){
              return prlim;
 #ifdef DEBUG      }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*************** transition probabilities ***************/ 
         k=kmax;  
       }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    double s1, s2;
       }    /*double t34;*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    int i,j,j1, nc, ii, jj;
         delts=delt;  
       }      for(i=1; i<= nlstate; i++){
     }      for(j=1; j<i;j++){
   }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   delti[theta]=delts;          /*s2 += param[i][j][nc]*cov[nc];*/
   return res;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
            /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 }        }
         ps[i][j]=s2;
 double hessij( double x[], double delti[], int thetai,int thetaj)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 {      }
   int i;      for(j=i+1; j<=nlstate+ndeath;j++){
   int l=1, l1, lmax=20;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double k1,k2,k3,k4,res,fx;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double p2[NPARMAX+1];          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   int k;        }
         ps[i][j]=s2;
   fx=func(x);      }
   for (k=1; k<=2; k++) {    }
     for (i=1;i<=npar;i++) p2[i]=x[i];      /*ps[3][2]=1;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(i=1; i<= nlstate; i++){
     k1=func(p2)-fx;       s1=0;
        for(j=1; j<i; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;        s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(j=i+1; j<=nlstate+ndeath; j++)
     k2=func(p2)-fx;        s1+=exp(ps[i][j]);
        ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     k3=func(p2)-fx;      for(j=i+1; j<=nlstate+ndeath; j++)
          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    } /* end i */
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 #ifdef DEBUG      for(jj=1; jj<= nlstate+ndeath; jj++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        ps[ii][jj]=0;
 #endif        ps[ii][ii]=1;
   }      }
   return res;    }
 }  
   
 /************** Inverse of matrix **************/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 void ludcmp(double **a, int n, int *indx, double *d)      for(jj=1; jj<= nlstate+ndeath; jj++){
 {       printf("%lf ",ps[ii][jj]);
   int i,imax,j,k;     }
   double big,dum,sum,temp;      printf("\n ");
   double *vv;      }
        printf("\n ");printf("%lf ",cov[2]);*/
   vv=vector(1,n);  /*
   *d=1.0;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=n;i++) {    goto end;*/
     big=0.0;      return ps;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /**************** Product of 2 matrices ******************/
     vv[i]=1.0/big;  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       sum=a[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    /* in, b, out are matrice of pointers which should have been initialized 
       a[i][j]=sum;       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     big=0.0;    long i, j, k;
     for (i=j;i<=n;i++) {    for(i=nrl; i<= nrh; i++)
       sum=a[i][j];      for(k=ncolol; k<=ncoloh; k++)
       for (k=1;k<j;k++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         sum -= a[i][k]*a[k][j];          out[i][k] +=in[i][j]*b[j][k];
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    return out;
         big=dum;  }
         imax=i;  
       }  
     }  /************* Higher Matrix Product ***************/
     if (j != imax) {  
       for (k=1;k<=n;k++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    /* Computes the transition matrix starting at age 'age' over 
         a[j][k]=dum;       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       *d = -(*d);       nhstepm*hstepm matrices. 
       vv[imax]=vv[j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     indx[j]=imax;       for the memory).
     if (a[j][j] == 0.0) a[j][j]=TINY;       Model is determined by parameters x and covariates have to be 
     if (j != n) {       included manually here. 
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       */
     }  
   }    int i, j, d, h, k;
   free_vector(vv,1,n);  /* Doesn't work */    double **out, cov[NCOVMAX];
 ;    double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 void lubksb(double **a, int n, int *indx, double b[])    for (i=1;i<=nlstate+ndeath;i++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double sum;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   for (i=1;i<=n;i++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     ip=indx[i];    for(h=1; h <=nhstepm; h++){
     sum=b[ip];      for(d=1; d <=hstepm; d++){
     b[ip]=b[i];        newm=savm;
     if (ii)        /* Covariates have to be included here again */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        cov[1]=1.;
     else if (sum) ii=i;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     b[i]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
   for (i=n;i>=1;i--) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     sum=b[i];        for (k=1; k<=cptcovprod;k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[i]=sum/a[i][i];  
   }  
 }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 /************ Frequencies ********************/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 {  /* Some frequencies */        savm=oldm;
          oldm=newm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      for(i=1; i<=nlstate+ndeath; i++)
   double *pp;        for(j=1;j<=nlstate+ndeath;j++) {
   double pos;          po[i][j][h]=newm[i][j];
   FILE *ficresp;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   char fileresp[FILENAMELENGTH];           */
         }
   pp=vector(1,nlstate);    } /* end h */
     return po;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*************** log-likelihood *************/
     exit(0);  double func( double *x)
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i, ii, j, k, mi, d, kk;
   j1=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   j=cptcovn;    double sw; /* Sum of weights */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double lli; /* Individual log likelihood */
     int s1, s2;
   for(k1=1; k1<=j;k1++){    double bbh, survp;
    for(i1=1; i1<=ncodemax[k1];i1++){    long ipmx;
        j1++;    /*extern weight */
     /* We are differentiating ll according to initial status */
         for (i=-1; i<=nlstate+ndeath; i++)      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)      /*for(i=1;i<imx;i++) 
            for(m=agemin; m <= agemax+3; m++)      printf(" %d\n",s[4][i]);
              freq[i][jk][m]=0;    */
            cov[1]=1.;
        for (i=1; i<=imx; i++) {  
          bool=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcovn; z1++)    if(mle==1){
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
            for(m=firstpass; m<=lastpass-1; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
              if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=1;j<=nlstate+ndeath;j++){
              if(agev[m][i]==1) agev[m][i]=agemax+2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            }
            }          for(d=0; d<dh[mi][i]; d++){
          }            newm=savm;
        }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
          fprintf(ficresp, "\n#Variable");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);            }
        }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        fprintf(ficresp, "\n#");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        for(i=1; i<=nlstate;i++)            savm=oldm;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            oldm=newm;
        fprintf(ficresp, "\n");          } /* end mult */
                
   for(i=(int)agemin; i <= (int)agemax+3; i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if(i==(int)agemax+3)          /* But now since version 0.9 we anticipate for bias and large stepm.
       printf("Total");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     else           * (in months) between two waves is not a multiple of stepm, we rounded to 
       printf("Age %d", i);           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(jk=1; jk <=nlstate ; jk++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         pp[jk] += freq[jk][m][i];           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for(jk=1; jk <=nlstate ; jk++){           * -stepm/2 to stepm/2 .
       for(m=-1, pos=0; m <=0 ; m++)           * For stepm=1 the results are the same as for previous versions of Imach.
         pos += freq[jk][m][i];           * For stepm > 1 the results are less biased than in previous versions. 
       if(pp[jk]>=1.e-10)           */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     for(jk=1; jk <=nlstate ; jk++){           * is higher than the multiple of stepm and negative otherwise.
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)           */
         pp[jk] += freq[jk][m][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
     for(jk=1,pos=0; jk <=nlstate ; jk++)            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       pos += pp[jk];               to the likelihood is the probability to die between last step unit time and current 
     for(jk=1; jk <=nlstate ; jk++){               step unit time, which is also the differences between probability to die before dh 
       if(pos>=1.e-5)               and probability to die before dh-stepm . 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);               In version up to 0.92 likelihood was computed
       else          as if date of death was unknown. Death was treated as any other
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          health state: the date of the interview describes the actual state
       if( i <= (int) agemax){          and not the date of a change in health state. The former idea was
         if(pos>=1.e-5)          to consider that at each interview the state was recorded
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          (healthy, disable or death) and IMaCh was corrected; but when we
       else          introduced the exact date of death then we should have modified
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
     }          stepm. It is no more the probability to die between last interview
     for(jk=-1; jk <=nlstate+ndeath; jk++)          and month of death but the probability to survive from last
       for(m=-1; m <=nlstate+ndeath; m++)          interview up to one month before death multiplied by the
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          probability to die within a month. Thanks to Chris
     if(i <= (int) agemax)          Jackson for correcting this bug.  Former versions increased
       fprintf(ficresp,"\n");          mortality artificially. The bad side is that we add another loop
     printf("\n");          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
     }            */
  }            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
   fclose(ficresp);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   free_vector(pp,1,nlstate);          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 }  /* End of Freq */          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 /************* Waves Concatenation ***************/          ipmx +=1;
           sw += weight[i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } /* end of individual */
      Death is a valid wave (if date is known).    }  else if(mle==2){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      and mw[mi+1][i]. dh depends on stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   int i, mi, m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 float sum=0.;            }
           for(d=0; d<=dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     mi=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     m=firstpass;            for (kk=1; kk<=cptcovage;kk++) {
     while(s[m][i] <= nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(m >=lastpass)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         break;            savm=oldm;
       else            oldm=newm;
         m++;          } /* end mult */
     }/* end while */        
     if (s[m][i] > nlstate){          s1=s[mw[mi][i]][i];
       mi++;     /* Death is another wave */          s2=s[mw[mi+1][i]][i];
       /* if(mi==0)  never been interviewed correctly before death */          bbh=(double)bh[mi][i]/(double)stepm; 
          /* Only death is a correct wave */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       mw[mi][i]=m;          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     wav[i]=mi;        } /* end of wave */
     if(mi==0)      } /* end of individual */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     for(mi=1; mi<wav[i];mi++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if (stepm <=0)            for (j=1;j<=nlstate+ndeath;j++){
         dh[mi][i]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          for(d=0; d<dh[mi][i]; d++){
           if(j=0) j=1;  /* Survives at least one month after exam */            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{            for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else if (j <= jmin)jmin=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          bbh=(double)bh[mi][i]/(double)stepm; 
         else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/        for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[80],ij=1, k, j, i, Ntvar[20];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<79; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for (j=1; j<=cptcovn; j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=imx; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       ij=(int)(covar[Tvar[j]][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;            }
       if (ij > cptcode) cptcode=ij;          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=0; i<=cptcode; i++) {            savm=oldm;
       if(Ndum[i]!=0) ncodemax[j]++;            oldm=newm;
     }          } /* end mult */
          
     ij=1;          s1=s[mw[mi][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {          s2=s[mw[mi+1][i]][i];
       for (k=0; k<=79; k++) {          if( s2 > nlstate){ 
         if (Ndum[k] != 0) {            lli=log(out[s1][s2] - savm[s1][s2]);
           nbcode[Tvar[j]][ij]=k;          }else{
           ij++;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         if (ij > ncodemax[j]) break;          ipmx +=1;
       }            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
 }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Health expectancies */            for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm, h;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;            }
            for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"# Health expectancies\n");            newm=savm;
   fprintf(ficreseij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficreseij," %1d-%1d",i,j);            }
   fprintf(ficreseij,"\n");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=1*YEARM; /*  Every j years of age (in month) */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            savm=oldm;
             oldm=newm;
   agelim=AGESUP;          } /* end mult */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        
     /* nhstepm age range expressed in number of stepm */          s1=s[mw[mi][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          s2=s[mw[mi+1][i]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     if (stepm >= YEARM) hstepm=1;          ipmx +=1;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          sw += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* end of wave */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        } /* end of individual */
     } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<=nlstate;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    return -l;
           eij[i][j][(int)age] +=p3mat[i][j][h];  }
         }  
      /*************** log-likelihood *************/
     hf=1;  double funcone( double *x)
     if (stepm >= YEARM) hf=stepm/YEARM;  {
     fprintf(ficreseij,"%.0f",age );    /* Same as likeli but slower because of a lot of printf and if */
     for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    double **out;
       }    double lli; /* Individual log likelihood */
     fprintf(ficreseij,"\n");    double llt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int s1, s2;
   }    double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************ Variance ******************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   /* Variance of health expectancies */    */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    cov[1]=1.;
   double **newm;  
   double **dnewm,**doldm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    double *xp;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gp, **gm;      for(mi=1; mi<= wav[i]-1; mi++){
   double ***gradg, ***trgradg;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat;          for (j=1;j<=nlstate+ndeath;j++){
   double age,agelim;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for(d=0; d<dh[mi][i]; d++){
   fprintf(ficresvij,"# Age");          newm=savm;
   for(i=1; i<=nlstate;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j<=nlstate;j++)          for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"\n");          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate,1,npar);          savm=oldm;
   doldm=matrix(1,nlstate,1,nlstate);          oldm=newm;
          } /* end mult */
   hstepm=1*YEARM; /* Every year of age */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        s1=s[mw[mi][i]][i];
   agelim = AGESUP;        s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* bias is positive if real duration
     if (stepm >= YEARM) hstepm=1;         * is higher than the multiple of stepm and negative otherwise.
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
     gp=matrix(0,nhstepm,1,nlstate);        } else if (mle==1){
     gm=matrix(0,nhstepm,1,nlstate);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
     for(theta=1; theta <=npar; theta++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } else if(mle==3){  /* exponential inter-extrapolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s1][s2]); /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2]); /* Original formula */
         for(h=0; h<=nhstepm; h++){        } /* End of if */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        ipmx +=1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
       for(i=1; i<=npar; i++) /* Computes gradient */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   %10.6f %10.6f %10.6f ", \
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=1; j<= nlstate; j++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(h=0; h<=nhstepm; h++){            llt +=ll[k]*gipmx/gsw;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
       for(j=1; j<= nlstate; j++)      } /* end of wave */
         for(h=0; h<=nhstepm; h++){    } /* end of individual */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     } /* End theta */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      gipmx=ipmx;
       gsw=sw;
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)    return -l;
         for(theta=1; theta <=npar; theta++)  }
           trgradg[h][j][theta]=gradg[h][theta][j];  
   
     for(i=1;i<=nlstate;i++)  /*************** function likelione ***********/
       for(j=1;j<=nlstate;j++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         vareij[i][j][(int)age] =0.;  {
     for(h=0;h<=nhstepm;h++){    /* This routine should help understanding what is done with 
       for(k=0;k<=nhstepm;k++){       the selection of individuals/waves and
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       to check the exact contribution to the likelihood.
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);       Plotting could be done.
         for(i=1;i<=nlstate;i++)     */
           for(j=1;j<=nlstate;j++)    int k;
             vareij[i][j][(int)age] += doldm[i][j];  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
     h=1;      strcat(fileresilk,fileres);
     if (stepm >= YEARM) h=stepm/YEARM;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficresvij,"%.0f ",age );        printf("Problem with resultfile: %s\n", fileresilk);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<=nlstate;j++){      }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     fprintf(ficresvij,"\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     free_matrix(gp,0,nhstepm,1,nlstate);      for(k=1; k<=nlstate; k++) 
     free_matrix(gm,0,nhstepm,1,nlstate);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    *fretone=(*funcone)(p);
      if(*globpri !=0){
   free_vector(xp,1,npar);      fclose(ficresilk);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_matrix(dnewm,1,nlstate,1,nlstate);      fflush(fichtm); 
     } 
 }    return;
   }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  /*********** Maximum Likelihood Estimation ***************/
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **newm;  {
   double **dnewm,**doldm;    int i,j, iter;
   int i, j, nhstepm, hstepm;    double **xi;
   int k, cptcode;    double fret;
   double *xp;    double fretone; /* Only one call to likelihood */
   double *gp, *gm;    char filerespow[FILENAMELENGTH];
   double **gradg, **trgradg;    xi=matrix(1,npar,1,npar);
   double age,agelim;    for (i=1;i<=npar;i++)
   int theta;      for (j=1;j<=npar;j++)
            xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresvpl,"# Age");    strcpy(filerespow,"pow"); 
   for(i=1; i<=nlstate;i++)    strcat(filerespow,fileres);
       fprintf(ficresvpl," %1d-%1d",i,i);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficresvpl,"\n");      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   hstepm=1*YEARM; /* Every year of age */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficrespow,"\n");
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    powell(p,xi,npar,ftol,&iter,&fret,func);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    fclose(ficrespow);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gp=vector(1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gm=vector(1,nlstate);  
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /**** Computes Hessian and covariance matrix ***/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double  **a,**y,*x,pd;
       for(i=1;i<=nlstate;i++)    double **hess;
         gp[i] = prlim[i][i];    int i, j,jk;
        int *indx;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double hessij(double p[], double delti[], int i, int j);
       for(i=1;i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         gm[i] = prlim[i][i];    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
       for(i=1;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     trgradg =matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"%d",i);fflush(ficlog);
       for(theta=1; theta <=npar; theta++)      hess[i][i]=hessii(p,ftolhess,i,delti);
         trgradg[j][theta]=gradg[theta][j];      /*printf(" %f ",p[i]);*/
       /*printf(" %lf ",hess[i][i]);*/
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for (j=1;j<=npar;j++)  {
     for(i=1;i<=nlstate;i++)        if (j>i) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     fprintf(ficresvpl,"%.0f ",age );          hess[i][j]=hessij(p,delti,i,j);
     for(i=1; i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    printf("\n");
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficlog,"\n");
   } /* End age */  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 }    x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /***********************************************/    ludcmp(a,npar,indx,&pd);
 /**************** Main Program *****************/  
 /***********************************************/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /*int main(int argc, char *argv[])*/      x[j]=1;
 int main()      lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      }
   double agedeb, agefin,hf;    }
   double agemin=1.e20, agemax=-1.e20;  
     printf("\n#Hessian matrix#\n");
   double fret;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **xi,tmp,delta;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   double dum; /* Dummy variable */        printf("%.3e ",hess[i][j]);
   double ***p3mat;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int *indx;      }
   char line[MAXLINE], linepar[MAXLINE];      printf("\n");
   char title[MAXLINE];      fprintf(ficlog,"\n");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  
   char filerest[FILENAMELENGTH];    /* Recompute Inverse */
   char fileregp[FILENAMELENGTH];    for (i=1;i<=npar;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int firstobs=1, lastobs=10;    ludcmp(a,npar,indx,&pd);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    /*  printf("\n#Hessian matrix recomputed#\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;    for (j=1;j<=npar;j++) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   int hstepm, nhstepm;      lubksb(a,npar,indx,x);
   double bage, fage, age, agelim, agebase;      for (i=1;i<=npar;i++){ 
   double ftolpl=FTOL;        y[i][j]=x[i];
   double **prlim;        printf("%.3e ",y[i][j]);
   double *severity;        fprintf(ficlog,"%.3e ",y[i][j]);
   double ***param; /* Matrix of parameters */      }
   double  *p;      printf("\n");
   double **matcov; /* Matrix of covariance */      fprintf(ficlog,"\n");
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    */
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    free_matrix(a,1,npar,1,npar);
   double *epj, vepp;    free_matrix(y,1,npar,1,npar);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    free_vector(x,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   char z[1]="c", occ;  
 #include <sys/time.h>  
 #include <time.h>  }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;  /*************** hessian matrix ****************/
   struct timeval start_time, end_time;  double hessii( double x[], double delta, int theta, double delti[])
    {
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int i;
     int l=1, lmax=20;
     double k1,k2;
   printf("\nIMACH, Version 0.64a");    double p2[NPARMAX+1];
   printf("\nEnter the parameter file name: ");    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 #ifdef windows    double fx;
   scanf("%s",pathtot);    int k=0,kmax=10;
   getcwd(pathcd, size);    double l1;
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fx=func(x);
   /* cutv(path,optionfile,pathtot,'\\');*/    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 split(pathtot, path,optionfile);      l1=pow(10,l);
   chdir(path);      delts=delt;
   replace(pathc,path);      for(k=1 ; k <kmax; k=k+1){
 #endif        delt = delta*(l1*k);
 #ifdef unix        p2[theta]=x[theta] +delt;
   scanf("%s",optionfile);        k1=func(p2)-fx;
 #endif        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 /*-------- arguments in the command line --------*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   strcpy(fileres,"r");        
   strcat(fileres, optionfile);  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /*---------arguments file --------*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     printf("Problem with optionfile %s\n",optionfile);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     goto end;          k=kmax;
   }        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   strcpy(filereso,"o");          k=kmax; l=lmax*10.;
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          delts=delt;
   }        }
       }
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    delti[theta]=delts;
     ungetc(c,ficpar);    return res; 
     fgets(line, MAXLINE, ficpar);    
     puts(line);  }
     fputs(line,ficparo);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj)
   ungetc(c,ficpar);  {
     int i;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int l=1, l1, lmax=20;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    double k1,k2,k3,k4,res,fx;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    double p2[NPARMAX+1];
     int k;
   covar=matrix(0,NCOVMAX,1,n);      
   if (strlen(model)<=1) cptcovn=0;    fx=func(x);
   else {    for (k=1; k<=2; k++) {
     j=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
     j=nbocc(model,'+');      p2[thetai]=x[thetai]+delti[thetai]/k;
     cptcovn=j+1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
     
   ncovmodel=2+cptcovn;      p2[thetai]=x[thetai]+delti[thetai]/k;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   /* Read guess parameters */    
   /* Reads comments: lines beginning with '#' */      p2[thetai]=x[thetai]-delti[thetai]/k;
   while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     ungetc(c,ficpar);      k3=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);    
     puts(line);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fputs(line,ficparo);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   ungetc(c,ficpar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1; i <=nlstate; i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(j=1; j <=nlstate+ndeath-1; j++){  #endif
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    return res;
       printf("%1d%1d",i,j);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  /************** Inverse of matrix **************/
         printf(" %lf",param[i][j][k]);  void ludcmp(double **a, int n, int *indx, double *d) 
         fprintf(ficparo," %lf",param[i][j][k]);  { 
       }    int i,imax,j,k; 
       fscanf(ficpar,"\n");    double big,dum,sum,temp; 
       printf("\n");    double *vv; 
       fprintf(ficparo,"\n");   
     }    vv=vector(1,n); 
      *d=1.0; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for (i=1;i<=n;i++) { 
   p=param[1][1];      big=0.0; 
        for (j=1;j<=n;j++) 
   /* Reads comments: lines beginning with '#' */        if ((temp=fabs(a[i][j])) > big) big=temp; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     ungetc(c,ficpar);      vv[i]=1.0/big; 
     fgets(line, MAXLINE, ficpar);    } 
     puts(line);    for (j=1;j<=n;j++) { 
     fputs(line,ficparo);      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
   ungetc(c,ficpar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      big=0.0; 
   for(i=1; i <=nlstate; i++){      for (i=j;i<=n;i++) { 
     for(j=1; j <=nlstate+ndeath-1; j++){        sum=a[i][j]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (k=1;k<j;k++) 
       printf("%1d%1d",i,j);          sum -= a[i][k]*a[k][j]; 
       fprintf(ficparo,"%1d%1d",i1,j1);        a[i][j]=sum; 
       for(k=1; k<=ncovmodel;k++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          big=dum; 
         printf(" %le",delti3[i][j][k]);          imax=i; 
         fprintf(ficparo," %le",delti3[i][j][k]);        } 
       }      } 
       fscanf(ficpar,"\n");      if (j != imax) { 
       printf("\n");        for (k=1;k<=n;k++) { 
       fprintf(ficparo,"\n");          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
   delti=delti3[1][1];        } 
          *d = -(*d); 
   /* Reads comments: lines beginning with '#' */        vv[imax]=vv[j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      indx[j]=imax; 
     fgets(line, MAXLINE, ficpar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     puts(line);      if (j != n) { 
     fputs(line,ficparo);        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   ungetc(c,ficpar);      } 
      } 
   matcov=matrix(1,npar,1,npar);    free_vector(vv,1,n);  /* Doesn't work */
   for(i=1; i <=npar; i++){  ;
     fscanf(ficpar,"%s",&str);  } 
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  void lubksb(double **a, int n, int *indx, double b[]) 
     for(j=1; j <=i; j++){  { 
       fscanf(ficpar," %le",&matcov[i][j]);    int i,ii=0,ip,j; 
       printf(" %.5le",matcov[i][j]);    double sum; 
       fprintf(ficparo," %.5le",matcov[i][j]);   
     }    for (i=1;i<=n;i++) { 
     fscanf(ficpar,"\n");      ip=indx[i]; 
     printf("\n");      sum=b[ip]; 
     fprintf(ficparo,"\n");      b[ip]=b[i]; 
   }      if (ii) 
   for(i=1; i <=npar; i++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(j=i+1;j<=npar;j++)      else if (sum) ii=i; 
       matcov[i][j]=matcov[j][i];      b[i]=sum; 
        } 
   printf("\n");    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     /*-------- data file ----------*/      b[i]=sum/a[i][i]; 
     if((ficres =fopen(fileres,"w"))==NULL) {    } 
       printf("Problem with resultfile: %s\n", fileres);goto end;  } 
     }  
     fprintf(ficres,"#%s\n",version);  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     if((fic=fopen(datafile,"r"))==NULL)    {  {  /* Some frequencies */
       printf("Problem with datafile: %s\n", datafile);goto end;    
     }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     n= lastobs;    double ***freq; /* Frequencies */
     severity = vector(1,maxwav);    double *pp, **prop;
     outcome=imatrix(1,maxwav+1,1,n);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     num=ivector(1,n);    FILE *ficresp;
     moisnais=vector(1,n);    char fileresp[FILENAMELENGTH];
     annais=vector(1,n);    
     moisdc=vector(1,n);    pp=vector(1,nlstate);
     andc=vector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     agedc=vector(1,n);    strcpy(fileresp,"p");
     cod=ivector(1,n);    strcat(fileresp,fileres);
     weight=vector(1,n);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("Problem with prevalence resultfile: %s\n", fileresp);
     mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     anint=matrix(1,maxwav,1,n);      exit(0);
     s=imatrix(1,maxwav+1,1,n);    }
     adl=imatrix(1,maxwav+1,1,n);        freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     tab=ivector(1,NCOVMAX);    j1=0;
     ncodemax=ivector(1,8);    
     j=cptcoveff;
     i=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    first=1;
          
         for (j=maxwav;j>=1;j--){    for(k1=1; k1<=j;k1++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for(i1=1; i1<=ncodemax[k1];i1++){
           strcpy(line,stra);        j1++;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          scanf("%d", i);*/
         }        for (i=-1; i<=nlstate+ndeath; i++)  
                  for (jk=-1; jk<=nlstate+ndeath; jk++)  
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=iagemin; m <= iagemax+3; m++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              freq[i][jk][m]=0;
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1; i<=nlstate; i++)  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        
         for (j=ncov;j>=1;j--){        dateintsum=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         num[i]=atol(stra);          bool=1;
           if  (cptcovn>0) {
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         i=i+1;                bool=0;
       }          }
     }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
     /*scanf("%d",i);*/              k2=anint[m][i]+(mint[m][i]/12.);
   imx=i-1; /* Number of individuals */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* Calculation of the number of parameter from char model*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   Tvar=ivector(1,15);                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   Tage=ivector(1,15);                      if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   if (strlen(model) >1){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     j=0, j1=0;                }
     j=nbocc(model,'+');                
     j1=nbocc(model,'*');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     cptcovn=j+1;                  dateintsum=dateintsum+k2;
                      k2cpt++;
     strcpy(modelsav,model);                }
     if (j==0) {                /*}*/
       if (j1==0){            }
        cutv(stra,strb,modelsav,'V');          }
        Tvar[1]=atoi(strb);        }
       }         
       else if (j1==1) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        cutv(stra,strb,modelsav,'*');  
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/        if  (cptcovn>0) {
        Tage[1]=1; cptcovage++;          fprintf(ficresp, "\n#********** Variable "); 
        if (strcmp(stra,"age")==0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          cutv(strd,strc,strb,'V');          fprintf(ficresp, "**********\n#");
          Tvar[1]=atoi(strc);        }
        }        for(i=1; i<=nlstate;i++) 
        else if (strcmp(strb,"age")==0) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          cutv(strd,strc,stra,'V');        fprintf(ficresp, "\n");
          Tvar[1]=atoi(strc);        
        }        for(i=iagemin; i <= iagemax+3; i++){
        else {printf("Error"); exit(0);}          if(i==iagemax+3){
       }            fprintf(ficlog,"Total");
     }          }else{
     else {            if(first==1){
       for(i=j; i>=1;i--){              first=0;
         cutv(stra,strb,modelsav,'+');              printf("See log file for details...\n");
         /*printf("%s %s %s\n", stra,strb,modelsav);*/            }
         if (strchr(strb,'*')) {            fprintf(ficlog,"Age %d", i);
           cutv(strd,strc,strb,'*');          }
           if (strcmp(strc,"age")==0) {          for(jk=1; jk <=nlstate ; jk++){
             cutv(strb,stre,strd,'V');            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             Tvar[i+1]=atoi(stre);              pp[jk] += freq[jk][m][i]; 
             cptcovage++;          }
             Tage[cptcovage]=i+1;          for(jk=1; jk <=nlstate ; jk++){
             printf("stre=%s ", stre);            for(m=-1, pos=0; m <=0 ; m++)
           }              pos += freq[jk][m][i];
           else if (strcmp(strd,"age")==0) {            if(pp[jk]>=1.e-10){
             cutv(strb,stre,strc,'V');              if(first==1){
             Tvar[i+1]=atoi(stre);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             cptcovage++;              }
             Tage[cptcovage]=i+1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
           else {              if(first==1)
             cutv(strb,stre,strc,'V');                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             Tvar[i+1]=ncov+1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             cutv(strb,strc,strd,'V');            }
             for (k=1; k<=lastobs;k++)          }
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           }          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         else {              pp[jk] += freq[jk][m][i];
           cutv(strd,strc,strb,'V');          }       
           /* printf("%s %s %s", strd,strc,strb);*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
         Tvar[i+1]=atoi(strc);            posprop += prop[jk][i];
         }          }
         strcpy(modelsav,stra);            for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
       cutv(strd,strc,stra,'V');              if(first==1)
       Tvar[1]=atoi(strc);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
               if(first==1)
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      scanf("%d ",i);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fclose(fic);            }
             if( i <= iagemax){
    if(mle==1){              if(pos>=1.e-5){
     if (weightopt != 1) { /* Maximisation without weights*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(i=1;i<=n;i++) weight[i]=1.0;                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     /*-calculation of age at interview from date of interview and age at death -*/              }
     agev=matrix(1,maxwav,1,imx);              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for (i=1; i<=imx; i++)  {            }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){          
         if(s[m][i] >0){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           if (s[m][i] == nlstate+1) {            for(m=-1; m <=nlstate+ndeath; m++)
             if(agedc[i]>0)              if(freq[jk][m][i] !=0 ) {
               if(moisdc[i]!=99 && andc[i]!=9999)              if(first==1)
               agev[m][i]=agedc[i];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             else{                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              }
               agev[m][i]=-1;          if(i <= iagemax)
             }            fprintf(ficresp,"\n");
           }          if(first==1)
           else if(s[m][i] !=9){ /* Should no more exist */            printf("Others in log...\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficlog,"\n");
             if(mint[m][i]==99 || anint[m][i]==9999)        }
               agev[m][i]=1;      }
             else if(agev[m][i] <agemin){    }
               agemin=agev[m][i];    dateintmean=dateintsum/k2cpt; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   
             }    fclose(ficresp);
             else if(agev[m][i] >agemax){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
               agemax=agev[m][i];    free_vector(pp,1,nlstate);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             }    /* End of Freq */
             /*agev[m][i]=anint[m][i]-annais[i];*/  }
             /*   agev[m][i] = age[i]+2*m;*/  
           }  /************ Prevalence ********************/
           else { /* =9 */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             agev[m][i]=1;  {  
             s[m][i]=-1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           }       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
         else /*= 0 Unknown */    */
           agev[m][i]=1;   
       }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        double ***freq; /* Frequencies */
     }    double *pp, **prop;
     for (i=1; i<=imx; i++)  {    double pos,posprop; 
       for(m=1; (m<= maxwav); m++){    double  y2; /* in fractional years */
         if (s[m][i] > (nlstate+ndeath)) {    int iagemin, iagemax;
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    iagemin= (int) agemin;
         }    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    j1=0;
     
     free_vector(severity,1,maxwav);    j=cptcoveff;
     free_imatrix(outcome,1,maxwav+1,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_vector(moisnais,1,n);    
     free_vector(annais,1,n);    for(k1=1; k1<=j;k1++){
     free_matrix(mint,1,maxwav,1,n);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(anint,1,maxwav,1,n);        j1++;
     free_vector(moisdc,1,n);        
     free_vector(andc,1,n);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
     wav=ivector(1,imx);       
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for (i=1; i<=imx; i++) { /* Each individual */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          bool=1;
              if  (cptcovn>0) {
     /* Concatenates waves */            for (z1=1; z1<=cptcoveff; z1++) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
       Tcode=ivector(1,100);          if (bool==1) { 
    nbcode=imatrix(1,nvar,1,8);              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    ncodemax[1]=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
    codtab=imatrix(1,100,1,10);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    h=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
    m=pow(2,cptcovn);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    for(k=1;k<=cptcovn; k++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      for(i=1; i <=(m/pow(2,k));i++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
        for(j=1; j <= ncodemax[k]; j++){                } 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              }
            h++;            } /* end selection of waves */
            if (h>m) h=1;codtab[h][k]=j;          }
          }        }
        }        for(i=iagemin; i <= iagemax+3; i++){  
      }          
    }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
    /* for(i=1; i <=m ;i++){          } 
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          for(jk=1; jk <=nlstate ; jk++){     
      }            if( i <=  iagemax){ 
      printf("\n");              if(posprop>=1.e-5){ 
    }                probs[i][jk][j1]= prop[jk][i]/posprop;
    scanf("%d",i);*/              } 
                } 
    /* Calculates basic frequencies. Computes observed prevalence at single age          }/* end jk */ 
        and prints on file fileres'p'. */        }/* end i */ 
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      } /* end i1 */
     } /* end k1 */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*free_vector(pp,1,nlstate);*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  }  /* End of prevalence */
      
     /* For Powell, parameters are in a vector p[] starting at p[1]  /************* Waves Concatenation ***************/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     /*--------- results files --------------*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);       and mw[mi+1][i]. dh depends on stepm.
           */
    jk=1;  
    fprintf(ficres,"# Parameters\n");    int i, mi, m;
    printf("# Parameters\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
    for(i=1,jk=1; i <=nlstate; i++){       double sum=0., jmean=0.;*/
      for(k=1; k <=(nlstate+ndeath); k++){    int first;
        if (k != i)    int j, k=0,jk, ju, jl;
          {    double sum=0.;
            printf("%d%d ",i,k);    first=0;
            fprintf(ficres,"%1d%1d ",i,k);    jmin=1e+5;
            for(j=1; j <=ncovmodel; j++){    jmax=-1;
              printf("%f ",p[jk]);    jmean=0.;
              fprintf(ficres,"%f ",p[jk]);    for(i=1; i<=imx; i++){
              jk++;      mi=0;
            }      m=firstpass;
            printf("\n");      while(s[m][i] <= nlstate){
            fprintf(ficres,"\n");        if(s[m][i]>=1)
          }          mw[++mi][i]=m;
      }        if(m >=lastpass)
    }          break;
         else
     /* Computing hessian and covariance matrix */          m++;
     ftolhess=ftol; /* Usually correct */      }/* end while */
     hesscov(matcov, p, npar, delti, ftolhess, func);      if (s[m][i] > nlstate){
     fprintf(ficres,"# Scales\n");        mi++;     /* Death is another wave */
     printf("# Scales\n");        /* if(mi==0)  never been interviewed correctly before death */
      for(i=1,jk=1; i <=nlstate; i++){           /* Only death is a correct wave */
       for(j=1; j <=nlstate+ndeath; j++){        mw[mi][i]=m;
         if (j!=i) {      }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);      wav[i]=mi;
           for(k=1; k<=ncovmodel;k++){      if(mi==0){
             printf(" %.5e",delti[jk]);        nbwarn++;
             fprintf(ficres," %.5e",delti[jk]);        if(first==0){
             jk++;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           }          first=1;
           printf("\n");        }
           fprintf(ficres,"\n");        if(first==1){
         }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       }        }
       }      } /* end mi==0 */
        } /* End individuals */
     k=1;  
     fprintf(ficres,"# Covariance\n");    for(i=1; i<=imx; i++){
     printf("# Covariance\n");      for(mi=1; mi<wav[i];mi++){
     for(i=1;i<=npar;i++){        if (stepm <=0)
       /*  if (k>nlstate) k=1;          dh[mi][i]=1;
       i1=(i-1)/(ncovmodel*nlstate)+1;        else{
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       printf("%s%d%d",alph[k],i1,tab[i]);*/            if (agedc[i] < 2*AGESUP) {
       fprintf(ficres,"%3d",i);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       printf("%3d",i);              if(j==0) j=1;  /* Survives at least one month after exam */
       for(j=1; j<=i;j++){              else if(j<0){
         fprintf(ficres," %.5e",matcov[i][j]);                nberr++;
         printf(" %.5e",matcov[i][j]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Temporary Dangerous patch */
       fprintf(ficres,"\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       printf("\n");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k++;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     }              }
                  k=k+1;
     while((c=getc(ficpar))=='#' && c!= EOF){              if (j >= jmax) jmax=j;
       ungetc(c,ficpar);              if (j <= jmin) jmin=j;
       fgets(line, MAXLINE, ficpar);              sum=sum+j;
       puts(line);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fputs(line,ficparo);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
     ungetc(c,ficpar);          }
            else{
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     if (fage <= 2) {            k=k+1;
       bage = agemin;            if (j >= jmax) jmax=j;
       fage = agemax;            else if (j <= jmin)jmin=j;
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            if(j<0){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              nberr++;
 /*------------ gnuplot -------------*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 chdir(pathcd);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficgp=fopen("graph.plt","w"))==NULL) {            }
     printf("Problem with file graph.gp");goto end;            sum=sum+j;
   }          }
 #ifdef windows          jk= j/stepm;
   fprintf(ficgp,"cd \"%s\" \n",pathc);          jl= j -jk*stepm;
 #endif          ju= j -(jk+1)*stepm;
 m=pow(2,cptcovn);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
  /* 1eme*/              dh[mi][i]=jk;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=0;
    for (k1=1; k1<= m ; k1 ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
 #ifdef windows              dh[mi][i]=jk+1;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              bh[mi][i]=ju;
 #endif            }
 #ifdef unix          }else{
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            if(jl <= -ju){
 #endif              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
 for (i=1; i<= nlstate ; i ++) {                                   * is higher than the multiple of stepm and negative otherwise.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                   */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            else{
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
     for (i=1; i<= nlstate ; i ++) {              bh[mi][i]=ju;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(dh[mi][i]==0){
 }              dh[mi][i]=1; /* At least one step */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju; /* At least one step */
      for (i=1; i<= nlstate ; i ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } /* end if mle */
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      } /* end wave */
 #ifdef unix    }
 fprintf(ficgp,"\nset ter gif small size 400,300");    jmean=sum/k;
 #endif    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }   }
   }  
   /*2 eme*/  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    
        int Ndum[20],ij=1, k, j, i, maxncov=19;
     for (i=1; i<= nlstate+1 ; i ++) {    int cptcode=0;
       k=2*i;    cptcoveff=0; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                                 modality*/ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for (j=1; j<= nlstate+1 ; j ++) {        Ndum[ij]++; /*store the modality */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 }                                           Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficgp,"\" t\"\" w l 0,");                                         female is 1, then  cptcode=1.*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=0; i<=cptcode; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }        }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
              nbcode[Tvar[j]][ij]=k; 
   /*3eme*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   for (k1=1; k1<= m ; k1 ++) {            ij++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(cpt-1);          if (ij > ncodemax[j]) break; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        }  
       for (i=1; i< nlstate ; i ++) {      } 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }  
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     }  
   }   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /* CV preval stat */     ij=Tvar[i];
   for (k1=1; k1<= m ; k1 ++) {     Ndum[ij]++;
     for (cpt=1; cpt<nlstate ; cpt ++) {   }
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);   ij=1;
       for (i=1; i< nlstate ; i ++)   for (i=1; i<= maxncov; i++) {
         fprintf(ficgp,"+$%d",k+i+1);     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       Tvaraff[ij]=i; /*For printing */
             ij++;
       l=3+(nlstate+ndeath)*cpt;     }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   }
       for (i=1; i< nlstate ; i ++) {   
         l=3+(nlstate+ndeath)*cpt;   cptcoveff=ij-1; /*Number of simple covariates*/
         fprintf(ficgp,"+$%d",l+i+1);  }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /*********** Health Expectancies ****************/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   }  
   {
   /* proba elementaires */    /* Health expectancies */
    for(i=1,jk=1; i <=nlstate; i++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for(k=1; k <=(nlstate+ndeath); k++){    double age, agelim, hf;
       if (k != i) {    double ***p3mat,***varhe;
         for(j=1; j <=ncovmodel; j++){    double **dnewm,**doldm;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    double *xp;
           /*fprintf(ficgp,"%s",alph[1]);*/    double **gp, **gm;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double ***gradg, ***trgradg;
           jk++;    int theta;
           fprintf(ficgp,"\n");  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   for(jk=1; jk <=m; jk++) {    fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    fprintf(ficreseij,"# Age");
    i=1;    for(i=1; i<=nlstate;i++)
    for(k2=1; k2<=nlstate; k2++) {      for(j=1; j<=nlstate;j++)
      k3=i;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficreseij,"\n");
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=3; j <=ncovmodel; j++)    }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    else  hstepm=estepm;   
         fprintf(ficgp,")/(1");    /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
         for(k1=1; k1 <=nlstate; k1++){       * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           for(j=3; j <=ncovmodel; j++)     * progression in between and thus overestimating or underestimating according
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,")");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);     * hypothesis. A more precise result, taking into account a more precise
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     * curvature will be obtained if estepm is as small as stepm. */
         i=i+ncovmodel;  
        }    /* For example we decided to compute the life expectancy with the smallest unit */
      }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    }       nhstepm is the number of hstepm from age to agelim 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like estepm months */
   fclose(ficgp);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
 chdir(path);       means that if the survival funtion is printed only each two years of age and if
     free_matrix(agev,1,maxwav,1,imx);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_ivector(wav,1,imx);       results. So we changed our mind and took the option of the best precision.
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
     free_imatrix(s,1,maxwav+1,1,n);    agelim=AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
     free_ivector(num,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     free_vector(agedc,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(weight,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fclose(ficparo);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(ficres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
          gm=matrix(0,nhstepm,1,nlstate*nlstate);
    /*________fin mle=1_________*/  
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     /* No more information from the sample is required now */   
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      /* Computing  Variances of health expectancies */
     puts(line);  
     fputs(line,ficparo);       for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        cptj=0;
 /*--------- index.htm --------*/        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   if((fichtm=fopen("index.htm","w"))==NULL)    {            cptj=cptj+1;
     printf("Problem with index.htm \n");goto end;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n          }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>       
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        for(i=1; i<=npar; i++) 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        cptj=0;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
  fprintf(fichtm," <li>Graphs</li>\n<p>");            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  m=cptcovn;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
  j1=0;          }
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1; j<= nlstate*nlstate; j++)
        j1++;          for(h=0; h<=nhstepm-1; h++){
        if (cptcovn > 0) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
          fprintf(fichtm,"<hr>************ Results for covariates");          }
          for (cpt=1; cpt<=cptcovn;cpt++)       } 
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);     
          fprintf(fichtm," ************\n<hr>");  /* End theta */
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){       for(h=0; h<=nhstepm-1; h++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(j=1; j<=nlstate*nlstate;j++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(theta=1; theta <=npar; theta++)
        }            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cpt=1; cpt<=nlstate;cpt++) {       
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>       for(i=1;i<=nlstate*nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1;j<=nlstate*nlstate;j++)
      }          varhe[i][j][(int)age] =0.;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       printf("%d|",(int)age);fflush(stdout);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      }       for(h=0;h<=nhstepm-1;h++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(k=0;k<=nhstepm-1;k++){
 health expectancies in states (1) and (2): e%s%d.gif<br>          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 fprintf(fichtm,"\n</body>");          for(i=1;i<=nlstate*nlstate;i++)
    }            for(j=1;j<=nlstate*nlstate;j++)
  }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 fclose(fichtm);        }
       }
   /*--------------- Prevalence limit --------------*/      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");        for(j=1; j<=nlstate;j++)
   strcat(filerespl,fileres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            
   }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");          }
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficreseij,"%3.0f",age );
   fprintf(ficrespl,"\n");      cptj=0;
        for(i=1; i<=nlstate;i++)
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          cptj++;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficreseij,"\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
   k=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   agebase=agemin;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   agelim=agemax;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   ftolpl=1.e-10;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   i1=cptcovn;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (cptcovn < 1){i1=1;}    }
     printf("\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    free_vector(xp,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for(j=1;j<=cptcovn;j++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  }
         fprintf(ficrespl,"******\n");  
          /************ Variance ******************/
         for (age=agebase; age<=agelim; age++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  {
           fprintf(ficrespl,"%.0f",age );    /* Variance of health expectancies */
           for(i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* double **newm;*/
           fprintf(ficrespl,"\n");    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
       }    int i, j, nhstepm, hstepm, h, nstepm ;
     }    int k, cptcode;
   fclose(ficrespl);    double *xp;
   /*------------- h Pij x at various ages ------------*/    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double **gradgp, **trgradgp; /* for var p point j */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double *gpp, *gmp; /* for var p point j */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
   printf("Computing pij: result on file '%s' \n", filerespij);    double age,agelim, hf;
      double ***mobaverage;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int theta;
   if (stepm<=24) stepsize=2;    char digit[4];
     char digitp[25];
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    char fileresprobmorprev[FILENAMELENGTH];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      if(popbased==1){
   k=0;      if(mobilav!=0)
   for(cptcov=1;cptcov<=i1;cptcov++){        strcpy(digitp,"-populbased-mobilav-");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      else strcpy(digitp,"-populbased-nomobil-");
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    else 
         for(j=1;j<=cptcovn;j++)      strcpy(digitp,"-stablbased-");
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    strcpy(fileresprobmorprev,"prmorprev"); 
           for(i=1; i<=nlstate;i++)    sprintf(digit,"%-d",ij);
             for(j=1; j<=nlstate+ndeath;j++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               fprintf(ficrespij," %1d-%1d",i,j);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           fprintf(ficrespij,"\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobmorprev,fileres);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           fprintf(ficrespij,"\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fclose(ficrespij);    }  
     fprintf(ficresprobmorprev,"\n");
   /*---------- Health expectancies and variances ------------*/    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   strcpy(filerest,"t");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   strcat(filerest,fileres);  /*   } */
   if((ficrest=fopen(filerest,"w"))==NULL) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   strcpy(filerese,"e");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   strcat(filerese,fileres);    fprintf(ficresvij,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  strcpy(fileresv,"v");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    gpp=vector(nlstate+1,nlstate+ndeath);
   }    gmp=vector(nlstate+1,nlstate+ndeath);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   k=0;    if(estepm < stepm){
   for(cptcov=1;cptcov<=i1;cptcov++){      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    else  hstepm=estepm;   
       fprintf(ficrest,"\n#****** ");    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1;j<=cptcovn;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficrest,"******\n");       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficreseij,"\n#****** ");       and note for a fixed period like k years */
       for(j=1;j<=cptcovn;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficreseij,"******\n");       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvij,"\n#****** ");       results. So we changed our mind and took the option of the best precision.
       for(j=1;j<=cptcovn;j++)    */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresvij,"******\n");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       oldm=oldms;savm=savms;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       oldm=oldms;savm=savms;      gp=matrix(0,nhstepm,1,nlstate);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      gm=matrix(0,nhstepm,1,nlstate);
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(theta=1; theta <=npar; theta++){
       fprintf(ficrest,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
       hf=1;        }
       if (stepm >= YEARM) hf=stepm/YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       epj=vector(1,nlstate+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        if (popbased==1) {
         fprintf(ficrest," %.0f",age);          if(mobilav ==0){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            for(i=1; i<=nlstate;i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              prlim[i][i]=probs[(int)age][i][ij];
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          }else{ /* mobilav */ 
           }            for(i=1; i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];              prlim[i][i]=mobaverage[(int)age][i][ij];
         }          }
         for(i=1, vepp=0.;i <=nlstate;i++)        }
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];        for(j=1; j<= nlstate; j++){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          for(h=0; h<=nhstepm; h++){
         for(j=1;j <=nlstate;j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
         fprintf(ficrest,"\n");        }
       }        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
                */
  fclose(ficreseij);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fclose(ficresvij);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fclose(ficrest);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fclose(ficpar);        }    
   free_vector(epj,1,nlstate+1);        /* end probability of death */
   /*  scanf("%d ",i); */  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*------- Variance limit prevalence------*/            xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 strcpy(fileresvpl,"vpl");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(fileresvpl,fileres);   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          if(mobilav ==0){
     exit(0);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  k=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
  for(cptcov=1;cptcov<=i1;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");        for(j=1; j<= nlstate; j++){
      for(j=1;j<=cptcovn;j++)          for(h=0; h<=nhstepm; h++){
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      fprintf(ficresvpl,"******\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;        /* This for computing probability of death (h=1 means
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
  }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficresvpl);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /*---------- End : free ----------------*/        }    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /* end probability of death */
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++) /* vareij */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
    
   free_matrix(matcov,1,npar,1,npar);      } /* End theta */
   free_vector(delti,1,npar);  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
       for(h=0; h<=nhstepm; h++) /* veij */
   printf("End of Imach\n");        for(j=1; j<=nlstate;j++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /*------ End -----------*/        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
  end:    
 #ifdef windows  
  chdir(pathcd);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #endif      for(i=1;i<=nlstate;i++)
  system("wgnuplot graph.plt");        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
 #ifdef windows  
   while (z[0] != 'q') {      for(h=0;h<=nhstepm;h++){
     chdir(pathcd);        for(k=0;k<=nhstepm;k++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     scanf("%s",z);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     if (z[0] == 'c') system("./imach");          for(i=1;i<=nlstate;i++)
     else if (z[0] == 'e') {            for(j=1;j<=nlstate;j++)
       chdir(path);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       system("index.htm");        }
     }      }
     else if (z[0] == 'q') exit(0);    
   }      /* pptj */
 #endif      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     /*  fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);*/
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)
         for(k=1;k<=NCOVMAX;k++)
           probs[i][j][k]=0.;
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.97


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>