Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.98

version 1.41.2.1, 2003/06/12 10:43:20 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Some bugs corrected for windows. Also, when
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FILENAMELENGTH 80    of the covariance matrix to be input.
 /*#define DEBUG*/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /*#define windows*/    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    of the covariance matrix to be input.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define NINTERVMAX 8    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Version 0.96
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.86  2003/06/17 20:04:08  brouard
 #define MAXN 20000    (Module): Change position of html and gnuplot routines and added
 #define YEARM 12. /* Number of months per year */    routine fileappend.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 int erreur; /* Error number */    prior to the death. In this case, dh was negative and likelihood
 int nvar;    was wrong (infinity). We still send an "Error" but patch by
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    assuming that the date of death was just one stepm after the
 int npar=NPARMAX;    interview.
 int nlstate=2; /* Number of live states */    (Repository): Because some people have very long ID (first column)
 int ndeath=1; /* Number of dead states */    we changed int to long in num[] and we added a new lvector for
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    memory allocation. But we also truncated to 8 characters (left
 int popbased=0;    truncation)
     (Repository): No more line truncation errors.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.84  2003/06/13 21:44:43  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Replace "freqsummary" at a correct
 int mle, weightopt;    place. It differs from routine "prevalence" which may be called
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    many times. Probs is memory consuming and must be used with
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    parcimony.
 double jmean; /* Mean space between 2 waves */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.82  2003/06/05 15:57:20  brouard
   char filerese[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  */
  FILE  *ficresvpl;  /*
   char fileresvpl[FILENAMELENGTH];     Interpolated Markov Chain
   
 #define NR_END 1    Short summary of the programme:
 #define FREE_ARG char*    
 #define FTOL 1.0e-10    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NRANSI    first survey ("cross") where individuals from different ages are
 #define ITMAX 200    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define TOL 2.0e-4    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define CGOLD 0.3819660    computed from the time spent in each health state according to a
 #define ZEPS 1.0e-10    model. More health states you consider, more time is necessary to reach the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define GOLD 1.618034    probability to be observed in state j at the second wave
 #define GLIMIT 100.0    conditional to be observed in state i at the first wave. Therefore
 #define TINY 1.0e-20    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 static double maxarg1,maxarg2;    complex model than "constant and age", you should modify the program
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    where the markup *Covariates have to be included here again* invites
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    you to do it.  More covariates you add, slower the
      convergence.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 static double sqrarg;    identical for each individual. Also, if a individual missed an
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    intermediate interview, the information is lost, but taken into
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    account using an interpolation or extrapolation.  
   
 int imx;    hPijx is the probability to be observed in state i at age x+h
 int stepm;    conditional to the observed state i at age x. The delay 'h' can be
 /* Stepm, step in month: minimum step interpolation*/    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int estepm;    semester or year) is modelled as a multinomial logistic.  The hPx
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int m,nb;    hPijx.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Also this programme outputs the covariance matrix of the parameters but also
 double **pmmij, ***probs, ***mobaverage;    of the life expectancies. It also computes the stable prevalence. 
 double dateintmean=0;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double *weight;             Institut national d'études démographiques, Paris.
 int **s; /* Status */    This software have been partly granted by Euro-REVES, a concerted action
 double *agedc, **covar, idx;    from the European Union.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    can be accessed at http://euroreves.ined.fr/imach .
 double ftolhess; /* Tolerance for computing hessian */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /**************** split *************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    
 {    **********************************************************************/
    char *s;                             /* pointer */  /*
    int  l1, l2;                         /* length counters */    main
     read parameterfile
    l1 = strlen( path );                 /* length of path */    read datafile
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    concatwav
 #ifdef windows    freqsummary
    s = strrchr( path, '\\' );           /* find last / */    if (mle >= 1)
 #else      mlikeli
    s = strrchr( path, '/' );            /* find last / */    print results files
 #endif    if mle==1 
    if ( s == NULL ) {                   /* no directory, so use current */       computes hessian
 #if     defined(__bsd__)                /* get current working directory */    read end of parameter file: agemin, agemax, bage, fage, estepm
       extern char       *getwd( );        begin-prev-date,...
     open gnuplot file
       if ( getwd( dirc ) == NULL ) {    open html file
 #else    stable prevalence
       extern char       *getcwd( );     for age prevalim()
     h Pij x
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    variance of p varprob
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
          return( GLOCK_ERROR_GETCWD );    health expectancies
       }    Variance-covariance of DFLE
       strcpy( name, path );             /* we've got it */    prevalence()
    } else {                             /* strip direcotry from path */     movingaverage()
       s++;                              /* after this, the filename */    varevsij() 
       l2 = strlen( s );                 /* length of filename */    if popbased==1 varevsij(,popbased)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    total life expectancies
       strcpy( name, s );                /* save file name */    Variance of stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */   end
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }   
 #else  #include <math.h>
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include <stdio.h>
 #endif  #include <stdlib.h>
    s = strrchr( name, '.' );            /* find last / */  #include <unistd.h>
    s++;  
    strcpy(ext,s);                       /* save extension */  #include <sys/time.h>
    l1= strlen( name);  #include <time.h>
    l2= strlen( s)+1;  #include "timeval.h"
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /* #include <libintl.h> */
    return( 0 );                         /* we're done */  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /******************************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void replace(char *s, char*t)  /*#define DEBUG*/
 {  /*#define windows*/
   int i;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int lg=20;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   i=0;  
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(i=0; i<= lg; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 int nbocc(char *s, char occ)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i,j=0;  #define AGESUP 130
   int lg=20;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(s);  #ifdef unix
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '/'
   if  (s[i] == occ ) j++;  #define ODIRSEPARATOR '\\'
   }  #else
   return j;  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* $Id$ */
   int i,lg,j,p=0;  /* $State$ */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   lg=strlen(t);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(j=0; j<p; j++) {  int npar=NPARMAX;
     (u[j] = t[j]);  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
      u[p]='\0';  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 /********************** nrerror ********************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 void nrerror(char error_text[])  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   fprintf(stderr,"ERREUR ...\n");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   fprintf(stderr,"%s\n",error_text);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   exit(1);  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 /*********************** vector *******************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double *vector(int nl, int nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   double *v;  int globpr; /* Global variable for printing or not */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in vector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ free vector ******************/  FILE *ficresilk;
 void free_vector(double*v, int nl, int nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /************************ivector *******************************/  FILE  *ficresvij;
 int *ivector(long nl,long nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int *v;  char fileresvpl[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char title[MAXLINE];
   if (!v) nrerror("allocation failure in ivector");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return v-nl+NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************free ivector **************************/  int  outcmd=0;
 void free_ivector(int *v, long nl, long nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************* imatrix *******************************/  char fileregp[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   /* allocate pointers to rows */  extern int gettimeofday();
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m) nrerror("allocation failure 1 in matrix()");  long time_value;
   m += NR_END;  extern long time();
   m -= nrl;  char strcurr[80], strfor[80];
    
    #define NR_END 1
   /* allocate rows and set pointers to them */  #define FREE_ARG char*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FTOL 1.0e-10
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NRANSI 
   m[nrl] -= ncl;  #define ITMAX 200 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define TOL 2.0e-4 
    
   /* return pointer to array of pointers to rows */  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /****************** free_imatrix *************************/  #define GOLD 1.618034 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLIMIT 100.0 
       int **m;  #define TINY 1.0e-20 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m+nrl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **m;  int agegomp= AGEGOMP;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int imx; 
   if (!m) nrerror("allocation failure 1 in matrix()");  int stepm=1;
   m += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m -= nrl;  
   int estepm;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int m,nb;
   m[nrl] -= ncl;  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return m;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *agedc, **covar, idx;
   free((FREE_ARG)(m+nrl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************* ma3x *******************************/  double ftolhess; /* Tolerance for computing hessian */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /**************** split *************************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double ***m;  {
     char  *ss;                            /* pointer */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int   l1, l2;                         /* length counters */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    l1 = strlen(path );                   /* length of path */
   m -= nrl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl] -= ncl;      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      strcpy( name, path );               /* we've got it */
   m[nrl][ncl] += NR_END;    } else {                              /* strip direcotry from path */
   m[nrl][ncl] -= nll;      ss++;                               /* after this, the filename */
   for (j=ncl+1; j<=nch; j++)      l2 = strlen( ss );                  /* length of filename */
     m[nrl][j]=m[nrl][j-1]+nlay;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   for (i=nrl+1; i<=nrh; i++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      dirc[l1-l2] = 0;                    /* add zero */
     for (j=ncl+1; j<=nch; j++)    }
       m[i][j]=m[i][j-1]+nlay;    l1 = strlen( dirc );                  /* length of directory */
   }    /*#ifdef windows
   return m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /*************************free ma3x ************************/  #endif
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    */
 {    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    ss++;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(m+nrl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /***************** f1dim *************************/    finame[l1-l2]= 0;
 extern int ncom;    return( 0 );                          /* we're done */
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    
 double f1dim(double x)  /******************************************/
 {  
   int j;  void replace_back_to_slash(char *s, char*t)
   double f;  {
   double *xt;    int i;
      int lg=0;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    lg=strlen(t);
   f=(*nrfunc)(xt);    for(i=0; i<= lg; i++) {
   free_vector(xt,1,ncom);      (s[i] = t[i]);
   return f;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int nbocc(char *s, char occ)
 {  {
   int iter;    int i,j=0;
   double a,b,d,etemp;    int lg=20;
   double fu,fv,fw,fx;    i=0;
   double ftemp;    lg=strlen(s);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(i=0; i<= lg; i++) {
   double e=0.0;    if  (s[i] == occ ) j++;
      }
   a=(ax < cx ? ax : cx);    return j;
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  void cutv(char *u,char *v, char*t, char occ)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    /* cuts string t into u and v where u is ended by char occ excluding it
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       gives u="abcedf" and v="ghi2j" */
     printf(".");fflush(stdout);    int i,lg,j,p=0;
 #ifdef DEBUG    i=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for(j=0; j<=strlen(t)-1; j++) {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    lg=strlen(t);
       return fx;    for(j=0; j<p; j++) {
     }      (u[j] = t[j]);
     ftemp=fu;    }
     if (fabs(e) > tol1) {       u[p]='\0';
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);     for(j=0; j<= lg; j++) {
       p=(x-v)*q-(x-w)*r;      if (j>=(p+1))(v[j-p-1] = t[j]);
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /********************** nrerror ********************/
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void nrerror(char error_text[])
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    fprintf(stderr,"ERREUR ...\n");
         d=p/q;    fprintf(stderr,"%s\n",error_text);
         u=x+d;    exit(EXIT_FAILURE);
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (!v) nrerror("allocation failure in vector");
     fu=(*f)(u);    return v-nl+NR_END;
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /************************ free vector ******************/
         SHFT(fv,fw,fx,fu)  void free_vector(double*v, int nl, int nh)
         } else {  {
           if (u < x) a=u; else b=u;    free((FREE_ARG)(v+nl-NR_END));
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /************************ivector *******************************/
             fv=fw;  int *ivector(long nl,long nh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    int *v;
             v=u;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             fv=fu;    if (!v) nrerror("allocation failure in ivector");
           }    return v-nl+NR_END;
         }  }
   }  
   nrerror("Too many iterations in brent");  /******************free ivector **************************/
   *xmin=x;  void free_ivector(int *v, long nl, long nh)
   return fx;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /****************** mnbrak ***********************/  
   /************************lvector *******************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  long *lvector(long nl,long nh)
             double (*func)(double))  {
 {    long *v;
   double ulim,u,r,q, dum;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double fu;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /******************free lvector **************************/
     SHFT(dum,*ax,*bx,dum)  void free_lvector(long *v, long nl, long nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    free((FREE_ARG)(v+nl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /******************* imatrix *******************************/
     r=(*bx-*ax)*(*fb-*fc);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     q=(*bx-*cx)*(*fb-*fa);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  { 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int **m; 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    /* allocate pointers to rows */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (fu < *fc) {    m += NR_END; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m -= nrl; 
           SHFT(*fb,*fc,fu,(*func)(u))    
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* allocate rows and set pointers to them */ 
       u=ulim;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     } else {    m[nrl] += NR_END; 
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] -= ncl; 
       fu=(*func)(u);    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    /* return pointer to array of pointers to rows */ 
       }    return m; 
 }  } 
   
 /*************** linmin ************************/  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 int ncom;        int **m;
 double *pcom,*xicom;        long nch,ncl,nrh,nrl; 
 double (*nrfunc)(double []);       /* free an int matrix allocated by imatrix() */ 
    { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   double brent(double ax, double bx, double cx,  } 
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /******************* matrix *******************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double **matrix(long nrl, long nrh, long ncl, long nch)
               double *fc, double (*func)(double));  {
   int j;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double xx,xmin,bx,ax;    double **m;
   double fx,fb,fa;  
      m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ncom=n;    if (!m) nrerror("allocation failure 1 in matrix()");
   pcom=vector(1,n);    m += NR_END;
   xicom=vector(1,n);    m -= nrl;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     pcom[j]=p[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     xicom[j]=xi[j];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   ax=0.0;  
   xx=1.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    return m;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /*************************free matrix ************************/
     xi[j] *= xmin;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     p[j] += xi[j];  {
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free_vector(xicom,1,n);    free((FREE_ARG)(m+nrl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /******************* ma3x *******************************/
 /*************** powell ************************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i,ibig,j;    if (!m) nrerror("allocation failure 1 in matrix()");
   double del,t,*pt,*ptt,*xit;    m += NR_END;
   double fp,fptt;    m -= nrl;
   double *xits;  
   pt=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   ptt=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xit=vector(1,n);    m[nrl] += NR_END;
   xits=vector(1,n);    m[nrl] -= ncl;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     ibig=0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     del=0.0;    m[nrl][ncl] += NR_END;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl][ncl] -= nll;
     for (i=1;i<=n;i++)    for (j=ncl+1; j<=nch; j++) 
       printf(" %d %.12f",i, p[i]);      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("\n");    
     for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fptt=(*fret);      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
       printf("fret=%lf \n",*fret);    }
 #endif    return m; 
       printf("%d",i);fflush(stdout);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       linmin(p,xit,n,fret,func);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if (fabs(fptt-(*fret)) > del) {    */
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /*************************free ma3x ************************/
 #ifdef DEBUG  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*************** function subdirf ***********/
       printf("\n");  char *subdirf(char fileres[])
 #endif  {
     }    /* Caution optionfilefiname is hidden */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
       int k[2],l;    strcat(tmpout,fileres);
       k[0]=1;    return tmpout;
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /*************** function subdirf2 ***********/
         printf(" %.12e",p[j]);  char *subdirf2(char fileres[], char *preop)
       printf("\n");  {
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcpy(tmpout,optionfilefiname);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,fileres);
       }    return tmpout;
 #endif  }
   
   /*************** function subdirf3 ***********/
       free_vector(xit,1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    
       free_vector(pt,1,n);    /* Caution optionfilefiname is hidden */
       return;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,preop);
     for (j=1;j<=n;j++) {    strcat(tmpout,preop2);
       ptt[j]=2.0*p[j]-pt[j];    strcat(tmpout,fileres);
       xit[j]=p[j]-pt[j];    return tmpout;
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /***************** f1dim *************************/
     if (fptt < fp) {  extern int ncom; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  extern double *pcom,*xicom;
       if (t < 0.0) {  extern double (*nrfunc)(double []); 
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {  double f1dim(double x) 
           xi[j][ibig]=xi[j][n];  { 
           xi[j][n]=xit[j];    int j; 
         }    double f;
 #ifdef DEBUG    double *xt; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++)    xt=vector(1,ncom); 
           printf(" %.12e",xit[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         printf("\n");    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
       }    return f; 
     }  } 
   }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /**** Prevalence limit ****************/  { 
     int iter; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double ftemp;
      matrix by transitions matrix until convergence is reached */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   int i, ii,j,k;   
   double min, max, maxmin, maxmax,sumnew=0.;    a=(ax < cx ? ax : cx); 
   double **matprod2();    b=(ax > cx ? ax : cx); 
   double **out, cov[NCOVMAX], **pmij();    x=w=v=bx; 
   double **newm;    fw=fv=fx=(*f)(x); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=nlstate+ndeath;j++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
    cov[1]=1.;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #endif
     newm=savm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     /* Covariates have to be included here again */        *xmin=x; 
      cov[2]=agefin;        return fx; 
        } 
       for (k=1; k<=cptcovn;k++) {      ftemp=fu;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (fabs(e) > tol1) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovprod;k++)        q=2.0*(q-r); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (q > 0.0) p = -p; 
         q=fabs(q); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        etemp=e; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        e=d; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
     savm=oldm;          d=p/q; 
     oldm=newm;          u=x+d; 
     maxmax=0.;          if (u-a < tol2 || b-u < tol2) 
     for(j=1;j<=nlstate;j++){            d=SIGN(tol1,xm-x); 
       min=1.;        } 
       max=0.;      } else { 
       for(i=1; i<=nlstate; i++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      fu=(*f)(u); 
         max=FMAX(max,prlim[i][j]);      if (fu <= fx) { 
         min=FMIN(min,prlim[i][j]);        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       maxmin=max-min;          SHFT(fv,fw,fx,fu) 
       maxmax=FMAX(maxmax,maxmin);          } else { 
     }            if (u < x) a=u; else b=u; 
     if(maxmax < ftolpl){            if (fu <= fw || w == x) { 
       return prlim;              v=w; 
     }              w=u; 
   }              fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** transition probabilities ***************/              v=u; 
               fv=fu; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            } 
 {          } 
   double s1, s2;    } 
   /*double t34;*/    nrerror("Too many iterations in brent"); 
   int i,j,j1, nc, ii, jj;    *xmin=x; 
     return fx; 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /****************** mnbrak ***********************/
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              double (*func)(double)) 
       }  { 
       ps[i][j]=s2;    double ulim,u,r,q, dum;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu; 
     }   
     for(j=i+1; j<=nlstate+ndeath;j++){    *fa=(*func)(*ax); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fb=(*func)(*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (*fb > *fa) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
       ps[i][j]=s2;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
     /*ps[3][2]=1;*/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   for(i=1; i<= nlstate; i++){      q=(*bx-*cx)*(*fb-*fa); 
      s1=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=1; j<i; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       s1+=exp(ps[i][j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     ps[i][i]=1./(s1+1.);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fu < *fc) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            SHFT(*fb,*fc,fu,(*func)(u)) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
       ps[ii][jj]=0;        u=(*cx)+GOLD*(*cx-*bx); 
       ps[ii][ii]=1;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*************** linmin ************************/
    }  
     printf("\n ");  int ncom; 
     }  double *pcom,*xicom;
     printf("\n ");printf("%lf ",cov[2]);*/  double (*nrfunc)(double []); 
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   goto end;*/  { 
     return ps;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /**************** Product of 2 matrices ******************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int j; 
 {    double xx,xmin,bx,ax; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double fx,fb,fa;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized    ncom=n; 
      before: only the contents of out is modified. The function returns    pcom=vector(1,n); 
      a pointer to pointers identical to out */    xicom=vector(1,n); 
   long i, j, k;    nrfunc=func; 
   for(i=nrl; i<= nrh; i++)    for (j=1;j<=n;j++) { 
     for(k=ncolol; k<=ncoloh; k++)      pcom[j]=p[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      xicom[j]=xi[j]; 
         out[i][k] +=in[i][j]*b[j][k];    } 
     ax=0.0; 
   return out;    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 /************* Higher Matrix Product ***************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #endif
 {    for (j=1;j<=n;j++) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xi[j] *= xmin; 
      duration (i.e. until      p[j] += xi[j]; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free_vector(xicom,1,n); 
      (typically every 2 years instead of every month which is too big).    free_vector(pcom,1,n); 
      Model is determined by parameters x and covariates have to be  } 
      included manually here.  
   char *asc_diff_time(long time_sec, char ascdiff[])
      */  {
     long sec_left, days, hours, minutes;
   int i, j, d, h, k;    days = (time_sec) / (60*60*24);
   double **out, cov[NCOVMAX];    sec_left = (time_sec) % (60*60*24);
   double **newm;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   /* Hstepm could be zero and should return the unit matrix */    minutes = (sec_left) /60;
   for (i=1;i<=nlstate+ndeath;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=nlstate+ndeath;j++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return ascdiff;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** powell ************************/
   for(h=1; h <=nhstepm; h++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(d=1; d <=hstepm; d++){              double (*func)(double [])) 
       newm=savm;  { 
       /* Covariates have to be included here again */    void linmin(double p[], double xi[], int n, double *fret, 
       cov[1]=1.;                double (*func)(double [])); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int i,ibig,j; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovage;k++)    double fp,fptt;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double *xits;
       for (k=1; k<=cptcovprod;k++)    int niterf, itmp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     pt=vector(1,n); 
     ptt=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xit=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xits=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fret=(*func)(p); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) pt[j]=p[j]; 
       savm=oldm;    for (*iter=1;;++(*iter)) { 
       oldm=newm;      fp=(*fret); 
     }      ibig=0; 
     for(i=1; i<=nlstate+ndeath; i++)      del=0.0; 
       for(j=1;j<=nlstate+ndeath;j++) {      last_time=curr_time;
         po[i][j][h]=newm[i][j];      (void) gettimeofday(&curr_time,&tzp);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
          */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   } /* end h */      */
   return po;     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*************** log-likelihood *************/      }
 double func( double *x)      printf("\n");
 {      fprintf(ficlog,"\n");
   int i, ii, j, k, mi, d, kk;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if(*iter <=3){
   double **out;        tm = *localtime(&curr_time.tv_sec);
   double sw; /* Sum of weights */        strcpy(strcurr,asctime(&tmf));
   double lli; /* Individual log likelihood */  /*       asctime_r(&tm,strcurr); */
   long ipmx;        forecast_time=curr_time;
   /*extern weight */        itmp = strlen(strcurr);
   /* We are differentiating ll according to initial status */        if(strcurr[itmp-1]=='\n')
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          strcurr[itmp-1]='\0';
   /*for(i=1;i<imx;i++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf(" %d\n",s[4][i]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   */        for(niterf=10;niterf<=30;niterf+=10){
   cov[1]=1.;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*      asctime_r(&tmf,strfor); */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          strcpy(strfor,asctime(&tmf));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          itmp = strlen(strfor);
     for(mi=1; mi<= wav[i]-1; mi++){          if(strfor[itmp-1]=='\n')
       for (ii=1;ii<=nlstate+ndeath;ii++)          strfor[itmp-1]='\0';
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
         for (kk=1; kk<=cptcovage;kk++) {      for (i=1;i<=n;i++) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         }        fptt=(*fret); 
          #ifdef DEBUG
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("fret=%lf \n",*fret);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"fret=%lf \n",*fret);
         savm=oldm;  #endif
         oldm=newm;        printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); 
       } /* end mult */        if (fabs(fptt-(*fret)) > del) { 
                del=fabs(fptt-(*fret)); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          ibig=i; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        } 
       ipmx +=1;  #ifdef DEBUG
       sw += weight[i];        printf("%d %.12e",i,(*fret));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog,"%d %.12e",i,(*fret));
     } /* end of wave */        for (j=1;j<=n;j++) {
   } /* end of individual */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for(j=1;j<=n;j++) {
   return -l;          printf(" p=%.12e",p[j]);
 }          fprintf(ficlog," p=%.12e",p[j]);
         }
         printf("\n");
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficlog,"\n");
   #endif
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      } 
 {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int i,j, iter;  #ifdef DEBUG
   double **xi,*delti;        int k[2],l;
   double fret;        k[0]=1;
   xi=matrix(1,npar,1,npar);        k[1]=-1;
   for (i=1;i<=npar;i++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
       xi[i][j]=(i==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) {
   printf("Powell\n");          printf(" %.12e",p[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);          fprintf(ficlog," %.12e",p[j]);
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /**** Computes Hessian and covariance matrix ***/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   double  **a,**y,*x,pd;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **hess;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i, j,jk;        }
   int *indx;  #endif
   
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);        free_vector(xit,1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        free_vector(xits,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   hess=matrix(1,npar,1,npar);        return; 
       } 
   printf("\nCalculation of the hessian matrix. Wait...\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++){      for (j=1;j<=n;j++) { 
     printf("%d",i);fflush(stdout);        ptt[j]=2.0*p[j]-pt[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);        xit[j]=p[j]-pt[j]; 
     /*printf(" %f ",p[i]);*/        pt[j]=p[j]; 
     /*printf(" %lf ",hess[i][i]);*/      } 
   }      fptt=(*func)(ptt); 
        if (fptt < fp) { 
   for (i=1;i<=npar;i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++)  {        if (t < 0.0) { 
       if (j>i) {          linmin(p,xit,n,fret,func); 
         printf(".%d%d",i,j);fflush(stdout);          for (j=1;j<=n;j++) { 
         hess[i][j]=hessij(p,delti,i,j);            xi[j][ibig]=xi[j][n]; 
         hess[j][i]=hess[i][j];                xi[j][n]=xit[j]; 
         /*printf(" %lf ",hess[i][j]);*/          }
       }  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\n");          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            fprintf(ficlog," %.12e",xit[j]);
            }
   a=matrix(1,npar,1,npar);          printf("\n");
   y=matrix(1,npar,1,npar);          fprintf(ficlog,"\n");
   x=vector(1,npar);  #endif
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    } 
   ludcmp(a,npar,indx,&pd);  } 
   
   for (j=1;j<=npar;j++) {  /**** Prevalence limit (stable prevalence)  ****************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       matcov[i][j]=x[i];       matrix by transitions matrix until convergence is reached */
     }  
   }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   printf("\n#Hessian matrix#\n");    double **matprod2();
   for (i=1;i<=npar;i++) {    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=npar;j++) {    double **newm;
       printf("%.3e ",hess[i][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
     printf("\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Recompute Inverse */      }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];     cov[1]=1.;
   ludcmp(a,npar,indx,&pd);   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*  printf("\n#Hessian matrix recomputed#\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   for (j=1;j<=npar;j++) {      /* Covariates have to be included here again */
     for (i=1;i<=npar;i++) x[i]=0;       cov[2]=agefin;
     x[j]=1;    
     lubksb(a,npar,indx,x);        for (k=1; k<=cptcovn;k++) {
     for (i=1;i<=npar;i++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       y[i][j]=x[i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       printf("%.3e ",y[i][j]);        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("\n");        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   */  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   free_matrix(a,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_matrix(y,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_vector(x,1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);      savm=oldm;
       oldm=newm;
       maxmax=0.;
 }      for(j=1;j<=nlstate;j++){
         min=1.;
 /*************** hessian matrix ****************/        max=0.;
 double hessii( double x[], double delta, int theta, double delti[])        for(i=1; i<=nlstate; i++) {
 {          sumnew=0;
   int i;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int l=1, lmax=20;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double k1,k2;          max=FMAX(max,prlim[i][j]);
   double p2[NPARMAX+1];          min=FMIN(min,prlim[i][j]);
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        maxmin=max-min;
   double fx;        maxmax=FMAX(maxmax,maxmin);
   int k=0,kmax=10;      }
   double l1;      if(maxmax < ftolpl){
         return prlim;
   fx=func(x);      }
   for (i=1;i<=npar;i++) p2[i]=x[i];    }
   for(l=0 ; l <=lmax; l++){  }
     l1=pow(10,l);  
     delts=delt;  /*************** transition probabilities ***************/ 
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       p2[theta]=x[theta] +delt;  {
       k1=func(p2)-fx;    double s1, s2;
       p2[theta]=x[theta]-delt;    /*double t34;*/
       k2=func(p2)-fx;    int i,j,j1, nc, ii, jj;
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for(i=1; i<= nlstate; i++){
            for(j=1; j<i;j++){
 #ifdef DEBUG        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*s2 += param[i][j][nc]*cov[nc];*/
 #endif          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;        ps[i][j]=s2;
       }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;      for(j=i+1; j<=nlstate+ndeath;j++){
       }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         delts=delt;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       }        }
     }        ps[i][j]=s2;
   }      }
   delti[theta]=delts;    }
   return res;      /*ps[3][2]=1;*/
    
 }    for(i=1; i<= nlstate; i++){
        s1=0;
 double hessij( double x[], double delti[], int thetai,int thetaj)      for(j=1; j<i; j++)
 {        s1+=exp(ps[i][j]);
   int i;      for(j=i+1; j<=nlstate+ndeath; j++)
   int l=1, l1, lmax=20;        s1+=exp(ps[i][j]);
   double k1,k2,k3,k4,res,fx;      ps[i][i]=1./(s1+1.);
   double p2[NPARMAX+1];      for(j=1; j<i; j++)
   int k;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
   fx=func(x);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (k=1; k<=2; k++) {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for (i=1;i<=npar;i++) p2[i]=x[i];    } /* end i */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     k1=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
          ps[ii][jj]=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;        ps[ii][ii]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;    }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     k3=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
         printf("%lf ",ps[ii][jj]);
     p2[thetai]=x[thetai]-delti[thetai]/k;     }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      printf("\n ");
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      printf("\n ");printf("%lf ",cov[2]);*/
 #ifdef DEBUG  /*
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 #endif    goto end;*/
   }      return ps;
   return res;  }
 }  
   /**************** Product of 2 matrices ******************/
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   int i,imax,j,k;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double big,dum,sum,temp;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double *vv;    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   vv=vector(1,n);       a pointer to pointers identical to out */
   *d=1.0;    long i, j, k;
   for (i=1;i<=n;i++) {    for(i=nrl; i<= nrh; i++)
     big=0.0;      for(k=ncolol; k<=ncoloh; k++)
     for (j=1;j<=n;j++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       if ((temp=fabs(a[i][j])) > big) big=temp;          out[i][k] +=in[i][j]*b[j][k];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;    return out;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /************* Higher Matrix Product ***************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     big=0.0;    /* Computes the transition matrix starting at age 'age' over 
     for (i=j;i<=n;i++) {       'nhstepm*hstepm*stepm' months (i.e. until
       sum=a[i][j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (k=1;k<j;k++)       nhstepm*hstepm matrices. 
         sum -= a[i][k]*a[k][j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       a[i][j]=sum;       (typically every 2 years instead of every month which is too big 
       if ( (dum=vv[i]*fabs(sum)) >= big) {       for the memory).
         big=dum;       Model is determined by parameters x and covariates have to be 
         imax=i;       included manually here. 
       }  
     }       */
     if (j != imax) {  
       for (k=1;k<=n;k++) {    int i, j, d, h, k;
         dum=a[imax][k];    double **out, cov[NCOVMAX];
         a[imax][k]=a[j][k];    double **newm;
         a[j][k]=dum;  
       }    /* Hstepm could be zero and should return the unit matrix */
       *d = -(*d);    for (i=1;i<=nlstate+ndeath;i++)
       vv[imax]=vv[j];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     indx[j]=imax;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     if (a[j][j] == 0.0) a[j][j]=TINY;      }
     if (j != n) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       dum=1.0/(a[j][j]);    for(h=1; h <=nhstepm; h++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      for(d=1; d <=hstepm; d++){
     }        newm=savm;
   }        /* Covariates have to be included here again */
   free_vector(vv,1,n);  /* Doesn't work */        cov[1]=1.;
 ;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
 void lubksb(double **a, int n, int *indx, double b[])          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i,ii=0,ip,j;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double sum;  
    
   for (i=1;i<=n;i++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     ip=indx[i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     sum=b[ip];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     b[ip]=b[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (ii)        savm=oldm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        oldm=newm;
     else if (sum) ii=i;      }
     b[i]=sum;      for(i=1; i<=nlstate+ndeath; i++)
   }        for(j=1;j<=nlstate+ndeath;j++) {
   for (i=n;i>=1;i--) {          po[i][j][h]=newm[i][j];
     sum=b[i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           */
     b[i]=sum/a[i][i];        }
   }    } /* end h */
 }    return po;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  /*************** log-likelihood *************/
    double func( double *x)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    int i, ii, j, k, mi, d, kk;
   double *pp;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double pos, k2, dateintsum=0,k2cpt=0;    double **out;
   FILE *ficresp;    double sw; /* Sum of weights */
   char fileresp[FILENAMELENGTH];    double lli; /* Individual log likelihood */
      int s1, s2;
   pp=vector(1,nlstate);    double bbh, survp;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    long ipmx;
   strcpy(fileresp,"p");    /*extern weight */
   strcat(fileresp,fileres);    /* We are differentiating ll according to initial status */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /*for(i=1;i<imx;i++) 
     exit(0);      printf(" %d\n",s[4][i]);
   }    */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    cov[1]=1.;
   j1=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if(mle==1){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            for (j=1;j<=nlstate+ndeath;j++){
         scanf("%d", i);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          for(d=0; d<dh[mi][i]; d++){
             freq[i][jk][m]=0;            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       dateintsum=0;            for (kk=1; kk<=cptcovage;kk++) {
       k2cpt=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (i=1; i<=imx; i++) {            }
         bool=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (z1=1; z1<=cptcoveff; z1++)            savm=oldm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            oldm=newm;
               bool=0;          } /* end mult */
         }        
         if (bool==1) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           for(m=firstpass; m<=lastpass; m++){          /* But now since version 0.9 we anticipate for bias and large stepm.
             k2=anint[m][i]+(mint[m][i]/12.);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * the nearest (and in case of equal distance, to the lowest) interval but now
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               if (m<lastpass) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * probability in order to take into account the bias as a fraction of the way
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
               }           * -stepm/2 to stepm/2 .
                         * For stepm=1 the results are the same as for previous versions of Imach.
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * For stepm > 1 the results are less biased than in previous versions. 
                 dateintsum=dateintsum+k2;           */
                 k2cpt++;          s1=s[mw[mi][i]][i];
               }          s2=s[mw[mi+1][i]][i];
             }          bbh=(double)bh[mi][i]/(double)stepm; 
           }          /* bias is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
       }           */
                  /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
       if  (cptcovn>0) {               to the likelihood is the probability to die between last step unit time and current 
         fprintf(ficresp, "\n#********** Variable ");               step unit time, which is also the differences between probability to die before dh 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);               and probability to die before dh-stepm . 
         fprintf(ficresp, "**********\n#");               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
       for(i=1; i<=nlstate;i++)          health state: the date of the interview describes the actual state
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          and not the date of a change in health state. The former idea was
       fprintf(ficresp, "\n");          to consider that at each interview the state was recorded
                (healthy, disable or death) and IMaCh was corrected; but when we
       for(i=(int)agemin; i <= (int)agemax+3; i++){          introduced the exact date of death then we should have modified
         if(i==(int)agemax+3)          the contribution of an exact death to the likelihood. This new
           printf("Total");          contribution is smaller and very dependent of the step unit
         else          stepm. It is no more the probability to die between last interview
           printf("Age %d", i);          and month of death but the probability to survive from last
         for(jk=1; jk <=nlstate ; jk++){          interview up to one month before death multiplied by the
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          probability to die within a month. Thanks to Chris
             pp[jk] += freq[jk][m][i];          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
         for(jk=1; jk <=nlstate ; jk++){          which slows down the processing. The difference can be up to 10%
           for(m=-1, pos=0; m <=0 ; m++)          lower mortality.
             pos += freq[jk][m][i];            */
           if(pp[jk]>=1.e-10)            lli=log(out[s1][s2] - savm[s1][s2]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }else{
           else            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1,pos=0; jk <=nlstate ; jk++)        } /* end of wave */
           pos += pp[jk];      } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==2){
           if(pos>=1.e-5)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else        for(mi=1; mi<= wav[i]-1; mi++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
           if( i <= (int) agemax){            for (j=1;j<=nlstate+ndeath;j++){
             if(pos>=1.e-5){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               probs[i][jk][j1]= pp[jk]/pos;            }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for(d=0; d<=dh[mi][i]; d++){
             }            newm=savm;
             else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=-1; jk <=nlstate+ndeath; jk++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1; m <=nlstate+ndeath; m++)            savm=oldm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            oldm=newm;
         if(i <= (int) agemax)          } /* end mult */
           fprintf(ficresp,"\n");        
         printf("\n");          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   dateintmean=dateintsum/k2cpt;          ipmx +=1;
            sw += weight[i];
   fclose(ficresp);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* end of wave */
   free_vector(pp,1,nlstate);      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   /* End of Freq */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Prevalence ********************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */          for(d=0; d<dh[mi][i]; d++){
   double *pp;            newm=savm;
   double pos, k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            s1=s[mw[mi][i]][i];
  for(k1=1; k1<=j;k1++){          s2=s[mw[mi+1][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          bbh=(double)bh[mi][i]/(double)stepm; 
       j1++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
       for (i=-1; i<=nlstate+ndeath; i++)            sw += weight[i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=agemin; m <= agemax+3; m++)        } /* end of wave */
             freq[i][jk][m]=0;      } /* end of individual */
          }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass)            }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          
               else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }        
       }          s1=s[mw[mi][i]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
           for(jk=1; jk <=nlstate ; jk++){          if( s2 > nlstate){ 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
               pp[jk] += freq[jk][m][i];          }else{
           }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          ipmx +=1;
             pos += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } /* end of individual */
              pp[jk] += freq[jk][m][i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
          }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
          for(jk=1; jk <=nlstate ; jk++){                      for (j=1;j<=nlstate+ndeath;j++){
            if( i <= (int) agemax){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(pos>=1.e-5){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                probs[i][jk][j1]= pp[jk]/pos;            }
              }          for(d=0; d<dh[mi][i]; d++){
            }            newm=savm;
          }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            savm=oldm;
   free_vector(pp,1,nlstate);            oldm=newm;
            } /* end mult */
 }  /* End of Freq */        
           s1=s[mw[mi][i]][i];
 /************* Waves Concatenation ***************/          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ipmx +=1;
 {          sw += weight[i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Death is a valid wave (if date is known).          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        } /* end of wave */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      } /* end of individual */
      and mw[mi+1][i]. dh depends on stepm.    } /* End of if */
      */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int i, mi, m;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return -l;
      double sum=0., jmean=0.;*/  }
   
   int j, k=0,jk, ju, jl;  /*************** log-likelihood *************/
   double sum=0.;  double funcone( double *x)
   jmin=1e+5;  {
   jmax=-1;    /* Same as likeli but slower because of a lot of printf and if */
   jmean=0.;    int i, ii, j, k, mi, d, kk;
   for(i=1; i<=imx; i++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     mi=0;    double **out;
     m=firstpass;    double lli; /* Individual log likelihood */
     while(s[m][i] <= nlstate){    double llt;
       if(s[m][i]>=1)    int s1, s2;
         mw[++mi][i]=m;    double bbh, survp;
       if(m >=lastpass)    /*extern weight */
         break;    /* We are differentiating ll according to initial status */
       else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         m++;    /*for(i=1;i<imx;i++) 
     }/* end while */      printf(" %d\n",s[4][i]);
     if (s[m][i] > nlstate){    */
       mi++;     /* Death is another wave */    cov[1]=1.;
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */    for(k=1; k<=nlstate; k++) ll[k]=0.;
       mw[mi][i]=m;  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     wav[i]=mi;      for(mi=1; mi<= wav[i]-1; mi++){
     if(mi==0)        for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){        for(d=0; d<dh[mi][i]; d++){
       if (stepm <=0)          newm=savm;
         dh[mi][i]=1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else{          for (kk=1; kk<=cptcovage;kk++) {
         if (s[mw[mi+1][i]][i] > nlstate) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if(j==0) j=1;  /* Survives at least one month after exam */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           k=k+1;          savm=oldm;
           if (j >= jmax) jmax=j;          oldm=newm;
           if (j <= jmin) jmin=j;        } /* end mult */
           sum=sum+j;        
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        s1=s[mw[mi][i]][i];
           }        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         else{        /* bias is positive if real duration
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));         * is higher than the multiple of stepm and negative otherwise.
           k=k+1;         */
           if (j >= jmax) jmax=j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           else if (j <= jmin)jmin=j;          lli=log(out[s1][s2] - savm[s1][s2]);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } else if (mle==1){
           sum=sum+j;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
         jk= j/stepm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         jl= j -jk*stepm;        } else if(mle==3){  /* exponential inter-extrapolation */
         ju= j -(jk+1)*stepm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if(jl <= -ju)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           dh[mi][i]=jk;          lli=log(out[s1][s2]); /* Original formula */
         else        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           dh[mi][i]=jk+1;          lli=log(out[s1][s2]); /* Original formula */
         if(dh[mi][i]==0)        } /* End of if */
           dh[mi][i]=1; /* At least one step */        ipmx +=1;
       }        sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   jmean=sum/k;        if(globpr){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
  }   %10.6f %10.6f %10.6f ", \
 /*********** Tricode ****************************/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 void tricode(int *Tvar, int **nbcode, int imx)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   int Ndum[20],ij=1, k, j, i;            llt +=ll[k]*gipmx/gsw;
   int cptcode=0;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   cptcoveff=0;          }
            fprintf(ficresilk," %10.6f\n", -llt);
   for (k=0; k<19; k++) Ndum[k]=0;        }
   for (k=1; k<=7; k++) ncodemax[k]=0;      } /* end of wave */
     } /* end of individual */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for (i=1; i<=imx; i++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       ij=(int)(covar[Tvar[j]][i]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       Ndum[ij]++;    if(globpr==0){ /* First time we count the contributions and weights */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      gipmx=ipmx;
       if (ij > cptcode) cptcode=ij;      gsw=sw;
     }    }
     return -l;
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for (i=1; i<=ncodemax[j]; i++) {    /* This routine should help understanding what is done with 
       for (k=0; k<=19; k++) {       the selection of individuals/waves and
         if (Ndum[k] != 0) {       to check the exact contribution to the likelihood.
           nbcode[Tvar[j]][ij]=k;       Plotting could be done.
               */
           ij++;    int k;
         }  
         if (ij > ncodemax[j]) break;    if(*globpri !=0){ /* Just counts and sums, no printings */
       }        strcpy(fileresilk,"ilk"); 
     }      strcat(fileresilk,fileres);
   }        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
  for (i=1; i<=ncovmodel-2; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       ij=Tvar[i];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       Ndum[ij]++;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
  ij=1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  for (i=1; i<=10; i++) {    }
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    *fretone=(*funcone)(p);
      ij++;    if(*globpri !=0){
    }      fclose(ficresilk);
  }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
     cptcoveff=ij-1;    } 
 }    return;
   }
 /*********** Health Expectancies ****************/  
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /*********** Maximum Likelihood Estimation ***************/
   
 {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* Health expectancies */  {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    int i,j, iter;
   double age, agelim, hf;    double **xi;
   double ***p3mat,***varhe;    double fret;
   double **dnewm,**doldm;    double fretone; /* Only one call to likelihood */
   double *xp;    /*  char filerespow[FILENAMELENGTH];*/
   double **gp, **gm;    xi=matrix(1,npar,1,npar);
   double ***gradg, ***trgradg;    for (i=1;i<=npar;i++)
   int theta;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   xp=vector(1,npar);    strcpy(filerespow,"pow"); 
   dnewm=matrix(1,nlstate*2,1,npar);    strcat(filerespow,fileres);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficreseij,"# Health expectancies\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficreseij,"# Age");    }
   for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(j=1; j<=nlstate;j++)    for (i=1;i<=nlstate;i++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficreseij,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  
   else  hstepm=estepm;      fclose(ficrespow);
   /* We compute the life expectancy from trapezoids spaced every estepm months    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
    * This is mainly to measure the difference between two models: for example    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according  }
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  /**** Computes Hessian and covariance matrix ***/
    * to compare the new estimate of Life expectancy with the same linear  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * hypothesis. A more precise result, taking into account a more precise  {
    * curvature will be obtained if estepm is as small as stepm. */    double  **a,**y,*x,pd;
     double **hess;
   /* For example we decided to compute the life expectancy with the smallest unit */    int i, j,jk;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int *indx;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      and note for a fixed period like estepm months */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    void ludcmp(double **a, int npar, int *indx, double *d) ;
      survival function given by stepm (the optimization length). Unfortunately it    double gompertz(double p[]);
      means that if the survival funtion is printed only each two years of age and if    hess=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\nCalculation of the hessian matrix. Wait...\n");
   */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   agelim=AGESUP;      fprintf(ficlog,"%d",i);fflush(ficlog);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     
     /* nhstepm age range expressed in number of stepm */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /*  printf(" %f ",p[i]);
     /* if (stepm >= YEARM) hstepm=1;*/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++) {
     gp=matrix(0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++)  {
     gm=matrix(0,nhstepm,1,nlstate*2);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          hess[i][j]=hessij(p,delti,i,j,func,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            
            hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
       }
     /* Computing Variances of health expectancies */    }
     printf("\n");
      for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
      a=matrix(1,npar,1,npar);
       cptj=0;    y=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    x=vector(1,npar);
         for(i=1; i<=nlstate; i++){    indx=ivector(1,npar);
           cptj=cptj+1;    for (i=1;i<=npar;i++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    ludcmp(a,npar,indx,&pd);
           }  
         }    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
            x[j]=1;
            lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
          }
       cptj=0;  
       for(j=1; j<= nlstate; j++){    printf("\n#Hessian matrix#\n");
         for(i=1;i<=nlstate;i++){    fprintf(ficlog,"\n#Hessian matrix#\n");
           cptj=cptj+1;    for (i=1;i<=npar;i++) { 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) { 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("%.3e ",hess[i][j]);
           }        fprintf(ficlog,"%.3e ",hess[i][j]);
         }      }
       }      printf("\n");
            fprintf(ficlog,"\n");
        }
   
       for(j=1; j<= nlstate*2; j++)    /* Recompute Inverse */
         for(h=0; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
   
      }    /*  printf("\n#Hessian matrix recomputed#\n");
      
 /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
      for(h=0; h<=nhstepm-1; h++)      for (i=1;i<=npar;i++){ 
       for(j=1; j<=nlstate*2;j++)        y[i][j]=x[i];
         for(theta=1; theta <=npar; theta++)        printf("%.3e ",y[i][j]);
         trgradg[h][j][theta]=gradg[h][theta][j];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
       printf("\n");
      for(i=1;i<=nlstate*2;i++)      fprintf(ficlog,"\n");
       for(j=1;j<=nlstate*2;j++)    }
         varhe[i][j][(int)age] =0.;    */
   
     for(h=0;h<=nhstepm-1;h++){    free_matrix(a,1,npar,1,npar);
       for(k=0;k<=nhstepm-1;k++){    free_matrix(y,1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    free_vector(x,1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    free_ivector(indx,1,npar);
         for(i=1;i<=nlstate*2;i++)    free_matrix(hess,1,npar,1,npar);
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  }
     }  
   /*************** hessian matrix ****************/
        double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     /* Computing expectancies */  {
     for(i=1; i<=nlstate;i++)    int i;
       for(j=1; j<=nlstate;j++)    int l=1, lmax=20;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double k1,k2;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double p2[NPARMAX+1];
              double res;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
         }    int k=0,kmax=10;
     double l1;
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(j=1; j<=nlstate;j++){    for(l=0 ; l <=lmax; l++){
         cptj++;      l1=pow(10,l);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
     fprintf(ficreseij,"\n");        delt = delta*(l1*k);
            p2[theta]=x[theta] +delt;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        k1=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        p2[theta]=x[theta]-delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        k2=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /************ Variance ******************/          k=kmax;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        }
 {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* Variance of health expectancies */          k=kmax; l=lmax*10.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **dnewm,**doldm;          delts=delt;
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;      }
   double *xp;    }
   double **gp, **gm;    delti[theta]=delts;
   double ***gradg, ***trgradg;    return res; 
   double ***p3mat;    
   double age,agelim, hf;  }
   int theta;  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    fprintf(ficresvij,"# Covariances of life expectancies\n");  {
   fprintf(ficresvij,"# Age");    int i;
   for(i=1; i<=nlstate;i++)    int l=1, l1, lmax=20;
     for(j=1; j<=nlstate;j++)    double k1,k2,k3,k4,res,fx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double p2[NPARMAX+1];
   fprintf(ficresvij,"\n");    int k;
   
   xp=vector(1,npar);    fx=func(x);
   dnewm=matrix(1,nlstate,1,npar);    for (k=1; k<=2; k++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   if(estepm < stepm){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf ("Problem %d lower than %d\n",estepm, stepm);      k1=func(p2)-fx;
   }    
   else  hstepm=estepm;        p2[thetai]=x[thetai]+delti[thetai]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      k2=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim    
      nstepm is the number of stepm from age to agelin.      p2[thetai]=x[thetai]-delti[thetai]/k;
      Look at hpijx to understand the reason of that which relies in memory size      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      and note for a fixed period like k years */      k3=func(p2)-fx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it      p2[thetai]=x[thetai]-delti[thetai]/k;
      means that if the survival funtion is printed only each two years of age and if      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      k4=func(p2)-fx;
      results. So we changed our mind and took the option of the best precision.      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   */  #ifdef DEBUG
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   agelim = AGESUP;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return res;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /************** Inverse of matrix **************/
     gm=matrix(0,nhstepm,1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(theta=1; theta <=npar; theta++){    int i,imax,j,k; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double big,dum,sum,temp; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *vv; 
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      vv=vector(1,n); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    *d=1.0; 
     for (i=1;i<=n;i++) { 
       if (popbased==1) {      big=0.0; 
         for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
           prlim[i][i]=probs[(int)age][i][ij];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=n;j++) { 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1;i<j;i++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */      big=0.0; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=j;i<=n;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
       if (popbased==1) {        a[i][j]=sum; 
         for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           prlim[i][i]=probs[(int)age][i][ij];          big=dum; 
       }          imax=i; 
         } 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){      if (j != imax) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
       }          a[j][k]=dum; 
         } 
       for(j=1; j<= nlstate; j++)        *d = -(*d); 
         for(h=0; h<=nhstepm; h++){        vv[imax]=vv[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } 
         }      indx[j]=imax; 
     } /* End theta */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(h=0; h<=nhstepm; h++)      } 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)    free_vector(vv,1,n);  /* Doesn't work */
           trgradg[h][j][theta]=gradg[h][theta][j];  ;
   } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1;j<=nlstate;j++)  { 
         vareij[i][j][(int)age] =0.;    int i,ii=0,ip,j; 
     double sum; 
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){    for (i=1;i<=n;i++) { 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      ip=indx[i]; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      sum=b[ip]; 
         for(i=1;i<=nlstate;i++)      b[ip]=b[i]; 
           for(j=1;j<=nlstate;j++)      if (ii) 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
     }      b[i]=sum; 
     } 
     fprintf(ficresvij,"%.0f ",age );    for (i=n;i>=1;i--) { 
     for(i=1; i<=nlstate;i++)      sum=b[i]; 
       for(j=1; j<=nlstate;j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      b[i]=sum/a[i][i]; 
       }    } 
     fprintf(ficresvij,"\n");  } 
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /************ Frequencies ********************/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {  /* Some frequencies */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
   free_vector(xp,1,npar);    double ***freq; /* Frequencies */
   free_matrix(doldm,1,nlstate,1,npar);    double *pp, **prop;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
 }    char fileresp[FILENAMELENGTH];
     
 /************ Variance of prevlim ******************/    pp=vector(1,nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    prop=matrix(1,nlstate,iagemin,iagemax+3);
 {    strcpy(fileresp,"p");
   /* Variance of prevalence limit */    strcat(fileresp,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double **newm;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double **dnewm,**doldm;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int i, j, nhstepm, hstepm;      exit(0);
   int k, cptcode;    }
   double *xp;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    first=1;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
       fprintf(ficresvpl," %1d-%1d",i,i);      for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresvpl,"\n");        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   xp=vector(1,npar);          scanf("%d", i);*/
   dnewm=matrix(1,nlstate,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   doldm=matrix(1,nlstate,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   hstepm=1*YEARM; /* Every year of age */              freq[i][jk][m]=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;      for (i=1; i<=nlstate; i++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(m=iagemin; m <= iagemax+3; m++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          prop[i][m]=0;
     if (stepm >= YEARM) hstepm=1;        
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        dateintsum=0;
     gradg=matrix(1,npar,1,nlstate);        k2cpt=0;
     gp=vector(1,nlstate);        for (i=1; i<=imx; i++) {
     gm=vector(1,nlstate);          bool=1;
           if  (cptcovn>0) {
     for(theta=1; theta <=npar; theta++){            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1; i<=npar; i++){ /* Computes gradient */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                bool=0;
       }          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (bool==1){
       for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
         gp[i] = prlim[i][i];              k2=anint[m][i]+(mint[m][i]/12.);
                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1; i<=npar; i++) /* Computes gradient */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1;i<=nlstate;i++)                if (m<lastpass) {
         gm[i] = prlim[i][i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1;i<=nlstate;i++)                }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                
     } /* End theta */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     trgradg =matrix(1,nlstate,1,npar);                  k2cpt++;
                 }
     for(j=1; j<=nlstate;j++)                /*}*/
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];          }
         }
     for(i=1;i<=nlstate;i++)         
       varpl[i][(int)age] =0.;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if  (cptcovn>0) {
     for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresvpl,"\n");        fprintf(ficresp, "\n");
     free_vector(gp,1,nlstate);        
     free_vector(gm,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
     free_matrix(gradg,1,npar,1,nlstate);          if(i==iagemax+3){
     free_matrix(trgradg,1,nlstate,1,npar);            fprintf(ficlog,"Total");
   } /* End age */          }else{
             if(first==1){
   free_vector(xp,1,npar);              first=0;
   free_matrix(doldm,1,nlstate,1,npar);              printf("See log file for details...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
             fprintf(ficlog,"Age %d", i);
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              pp[jk] += freq[jk][m][i]; 
 {          }
   int i, j, i1, k1, j1, z1;          for(jk=1; jk <=nlstate ; jk++){
   int k=0, cptcode;            for(m=-1, pos=0; m <=0 ; m++)
   double **dnewm,**doldm;              pos += freq[jk][m][i];
   double *xp;            if(pp[jk]>=1.e-10){
   double *gp, *gm;              if(first==1){
   double **gradg, **trgradg;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double age,agelim, cov[NCOVMAX];              }
   int theta;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char fileresprob[FILENAMELENGTH];            }else{
               if(first==1)
   strcpy(fileresprob,"prob");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprob,fileres);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);          }
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              pp[jk] += freq[jk][m][i];
   fprintf(ficresprob,"# Age");          }       
   for(i=1; i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     for(j=1; j<=(nlstate+ndeath);j++)            pos += pp[jk];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            posprop += prop[jk][i];
           }
           for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprob,"\n");            if(pos>=1.e-5){
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   xp=vector(1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }else{
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   cov[1]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            if( i <= iagemax){
   j1=0;              if(pos>=1.e-5){
   for(k1=1; k1<=1;k1++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(i1=1; i1<=ncodemax[k1];i1++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
     j1++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     if  (cptcovn>0) {              else
       fprintf(ficresprob, "\n#********** Variable ");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
       fprintf(ficresprob, "**********\n#");          }
     }          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
       for (age=bage; age<=fage; age ++){            for(m=-1; m <=nlstate+ndeath; m++)
         cov[2]=age;              if(freq[jk][m][i] !=0 ) {
         for (k=1; k<=cptcovn;k++) {              if(first==1)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                          fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if(i <= iagemax)
         for (k=1; k<=cptcovprod;k++)            fprintf(ficresp,"\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if(first==1)
                    printf("Others in log...\n");
         gradg=matrix(1,npar,1,9);          fprintf(ficlog,"\n");
         trgradg=matrix(1,9,1,npar);        }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      }
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    }
        dateintmean=dateintsum/k2cpt; 
         for(theta=1; theta <=npar; theta++){   
           for(i=1; i<=npar; i++)    fclose(ficresp);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
              free_vector(pp,1,nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              /* End of Freq */
           k=0;  }
           for(i=1; i<= (nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  /************ Prevalence ********************/
               k=k+1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               gp[k]=pmmij[i][j];  {  
             }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           }       in each health status at the date of interview (if between dateprev1 and dateprev2).
                 We still use firstpass and lastpass as another selection.
           for(i=1; i<=npar; i++)    */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double ***freq; /* Frequencies */
           k=0;    double *pp, **prop;
           for(i=1; i<=(nlstate+ndeath); i++){    double pos,posprop; 
             for(j=1; j<=(nlstate+ndeath);j++){    double  y2; /* in fractional years */
               k=k+1;    int iagemin, iagemax;
               gm[k]=pmmij[i][j];  
             }    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
          /*pp=vector(1,nlstate);*/
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
     
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    j=cptcoveff;
           for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             trgradg[j][theta]=gradg[theta][j];    
            for(k1=1; k1<=j;k1++){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        j1++;
                
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
         k=0;            prop[i][m]=0.0;
         for(i=1; i<=(nlstate+ndeath); i++){       
           for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=imx; i++) { /* Each individual */
             k=k+1;          bool=1;
             gm[k]=pmmij[i][j];          if  (cptcovn>0) {
           }            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                      bool=0;
      /*printf("\n%d ",(int)age);          } 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          if (bool==1) { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      }*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficresprob,"\n%d ",(int)age);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                  prop[s[m][i]][iagemax+3] += weight[i]; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            } /* end selection of waves */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }        }
   free_vector(xp,1,npar);        for(i=iagemin; i <= iagemax+3; i++){  
   fclose(ficresprob);          
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 }            posprop += prop[jk][i]; 
           } 
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          for(jk=1; jk <=nlstate ; jk++){     
  int lastpass, int stepm, int weightopt, char model[],\            if( i <=  iagemax){ 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              if(posprop>=1.e-5){ 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                probs[i][jk][j1]= prop[jk][i]/posprop;
  char version[], int popforecast, int estepm ){              } 
   int jj1, k1, i1, cpt;            } 
   FILE *fichtm;          }/* end jk */ 
   /*char optionfilehtm[FILENAMELENGTH];*/        }/* end i */ 
       } /* end i1 */
   strcpy(optionfilehtm,optionfile);    } /* end k1 */
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  /************* Waves Concatenation ***************/
 \n  
 Total number of observations=%d <br>\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  {
 <hr  size=\"2\" color=\"#EC5E5E\">    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  <ul><li>Outputs files<br>\n       Death is a valid wave (if date is known).
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       and mw[mi+1][i]. dh depends on stepm.
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n       */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  fprintf(fichtm,"\n       double sum=0., jmean=0.;*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    int first;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    int j, k=0,jk, ju, jl;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double sum=0.;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    first=0;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    jmin=1e+5;
     jmax=-1;
  if(popforecast==1) fprintf(fichtm,"\n    jmean=0.;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    for(i=1; i<=imx; i++){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      mi=0;
         <br>",fileres,fileres,fileres,fileres);      m=firstpass;
  else      while(s[m][i] <= nlstate){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        if(s[m][i]>=1)
 fprintf(fichtm," <li>Graphs</li><p>");          mw[++mi][i]=m;
         if(m >=lastpass)
  m=cptcoveff;          break;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        else
           m++;
  jj1=0;      }/* end while */
  for(k1=1; k1<=m;k1++){      if (s[m][i] > nlstate){
    for(i1=1; i1<=ncodemax[k1];i1++){        mi++;     /* Death is another wave */
        jj1++;        /* if(mi==0)  never been interviewed correctly before death */
        if (cptcovn > 0) {           /* Only death is a correct wave */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        mw[mi][i]=m;
          for (cpt=1; cpt<=cptcoveff;cpt++)      }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      wav[i]=mi;
        }      if(mi==0){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        nbwarn++;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(first==0){
        for(cpt=1; cpt<nlstate;cpt++){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          first=1;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
        }        if(first==1){
     for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        }
 interval) in state (%d): v%s%d%d.gif <br>      } /* end mi==0 */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } /* End individuals */
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    for(i=1; i<=imx; i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      for(mi=1; mi<wav[i];mi++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if (stepm <=0)
      }          dh[mi][i]=1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        else{
 health expectancies in states (1) and (2): e%s%d.gif<br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if (agedc[i] < 2*AGESUP) {
 fprintf(fichtm,"\n</body>");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    }              if(j==0) j=1;  /* Survives at least one month after exam */
    }              else if(j<0){
 fclose(fichtm);                nberr++;
 }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 /******************* Gnuplot file **************/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
               k=k+1;
   strcpy(optionfilegnuplot,optionfilefiname);              if (j >= jmax) jmax=j;
   strcat(optionfilegnuplot,".gp.txt");              if (j <= jmin) jmin=j;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              sum=sum+j;
     printf("Problem with file %s",optionfilegnuplot);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);          else{
 #endif            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 m=pow(2,cptcoveff);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              k=k+1;
  /* 1eme*/            if (j >= jmax) jmax=j;
   for (cpt=1; cpt<= nlstate ; cpt ++) {            else if (j <= jmin)jmin=j;
    for (k1=1; k1<= m ; k1 ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            if(j<0){
               nberr++;
 for (i=1; i<= nlstate ; i ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            sum=sum+j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {          jk= j/stepm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          jl= j -jk*stepm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ju= j -(jk+1)*stepm;
 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            if(jl==0){
      for (i=1; i<= nlstate ; i ++) {              dh[mi][i]=jk;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
 }                      * at the price of an extra matrix product in likelihood */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
    }          }else{
   }            if(jl <= -ju){
   /*2 eme*/              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   for (k1=1; k1<= m ; k1 ++) {                                   * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);                                   */
                }
     for (i=1; i<= nlstate+1 ; i ++) {            else{
       k=2*i;              dh[mi][i]=jk+1;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(dh[mi][i]==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=1; /* At least one step */
 }                bh[mi][i]=ju; /* At least one step */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          } /* end if mle */
       for (j=1; j<= nlstate+1 ; j ++) {        }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      jmean=sum/k;
       fprintf(ficgp,"\" t\"\" w l 0,");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for (j=1; j<= nlstate+1 ; j ++) {   }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*********** Tricode ****************************/
 }    void tricode(int *Tvar, int **nbcode, int imx)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  {
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int cptcode=0;
   }    cptcoveff=0; 
     
   /*3eme*/    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       k=2+nlstate*(2*cpt-2);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                                 modality*/ 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        Ndum[ij]++; /*store the modality */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                                         Tvar[j]. If V=sex and male is 0 and 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                         female is 1, then  cptcode=1.*/
       }
 */  
       for (i=1; i< nlstate ; i ++) {      for (i=0; i<=cptcode; i++) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) {
     }        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   /* CV preval stat */            nbcode[Tvar[j]][ij]=k; 
     for (k1=1; k1<= m ; k1 ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (cpt=1; cpt<nlstate ; cpt ++) {            
       k=3;            ij++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          }
           if (ij > ncodemax[j]) break; 
       for (i=1; i< nlstate ; i ++)        }  
         fprintf(ficgp,"+$%d",k+i+1);      } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }  
        
       l=3+(nlstate+ndeath)*cpt;   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {   for (i=1; i<=ncovmodel-2; i++) { 
         l=3+(nlstate+ndeath)*cpt;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(ficgp,"+$%d",l+i+1);     ij=Tvar[i];
       }     Ndum[ij]++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }   ij=1;
   }     for (i=1; i<= maxncov; i++) {
       if((Ndum[i]!=0) && (i<=ncovcol)){
   /* proba elementaires */       Tvaraff[ij]=i; /*For printing */
    for(i=1,jk=1; i <=nlstate; i++){       ij++;
     for(k=1; k <=(nlstate+ndeath); k++){     }
       if (k != i) {   }
         for(j=1; j <=ncovmodel; j++){   
           cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  }
           jk++;  
           fprintf(ficgp,"\n");  /*********** Health Expectancies ****************/
         }  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
     }  {
     /* Health expectancies */
     for(jk=1; jk <=m; jk++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double age, agelim, hf;
    i=1;    double ***p3mat,***varhe;
    for(k2=1; k2<=nlstate; k2++) {    double **dnewm,**doldm;
      k3=i;    double *xp;
      for(k=1; k<=(nlstate+ndeath); k++) {    double **gp, **gm;
        if (k != k2){    double ***gradg, ***trgradg;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int theta;
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    xp=vector(1,npar);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
             ij++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           }    
           else    fprintf(ficreseij,"# Health expectancies\n");
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficreseij,"# Age");
         }    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,")/(1");      for(j=1; j<=nlstate;j++)
                fprintf(ficreseij," %1d-%1d (SE)",i,j);
         for(k1=1; k1 <=nlstate; k1++){      fprintf(ficreseij,"\n");
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;    if(estepm < stepm){
           for(j=3; j <=ncovmodel; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    else  hstepm=estepm;   
             ij++;    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
           else     * if stepm=24 months pijx are given only every 2 years and by summing them
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           }     * progression in between and thus overestimating or underestimating according
           fprintf(ficgp,")");     * to the curvature of the survival function. If, for the same date, we 
         }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);     * to compare the new estimate of Life expectancy with the same linear 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     * hypothesis. A more precise result, taking into account a more precise
         i=i+ncovmodel;     * curvature will be obtained if estepm is as small as stepm. */
        }  
      }    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       nhstepm is the number of hstepm from age to agelim 
    }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
   fclose(ficgp);       and note for a fixed period like estepm months */
 }  /* end gnuplot */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 /*************** Moving average **************/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       results. So we changed our mind and took the option of the best precision.
     */
   int i, cpt, cptcod;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    agelim=AGESUP;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           mobaverage[(int)agedeb][i][cptcod]=0.;      /* nhstepm age range expressed in number of stepm */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (i=1; i<=nlstate;i++){      /* if (stepm >= YEARM) hstepm=1;*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for (cpt=0;cpt<=4;cpt++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         }  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 }   
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      /* Computing  Variances of health expectancies */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       for(theta=1; theta <=npar; theta++){
   int *popage;        for(i=1; i<=npar; i++){ 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        }
   double ***p3mat;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char fileresf[FILENAMELENGTH];    
         cptj=0;
  agelim=AGESUP;        for(j=1; j<= nlstate; j++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   strcpy(fileresf,"f");          }
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {       
     printf("Problem with forecast resultfile: %s\n", fileresf);       
   }        for(i=1; i<=npar; i++) 
   printf("Computing forecasting: result on file '%s' \n", fileresf);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        
         cptj=0;
   if (mobilav==1) {        for(j=1; j<= nlstate; j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1;i<=nlstate;i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);            cptj=cptj+1;
   }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (stepm<=12) stepsize=1;            }
            }
   agelim=AGESUP;        }
          for(j=1; j<= nlstate*nlstate; j++)
   hstepm=1;          for(h=0; h<=nhstepm-1; h++){
   hstepm=hstepm/stepm;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   yp1=modf(dateintmean,&yp);          }
   anprojmean=yp;       } 
   yp2=modf((yp1*12),&yp);     
   mprojmean=yp;  /* End theta */
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;       for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   for(cptcov=1;cptcov<=i2;cptcov++){       
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;       for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficresf,"\n#******");        for(j=1;j<=nlstate*nlstate;j++)
       for(j=1;j<=cptcoveff;j++) {          varhe[i][j][(int)age] =0.;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresf,"******\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficresf,"# StartingAge FinalAge");       for(h=0;h<=nhstepm-1;h++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for(k=0;k<=nhstepm-1;k++){
                matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficresf,"\n");            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* Computing expectancies */
           nhstepm = nhstepm/hstepm;      for(i=1; i<=nlstate;i++)
                  for(j=1; j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           oldm=oldms;savm=savms;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              
          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }      fprintf(ficreseij,"%3.0f",age );
             for(j=1; j<=nlstate+ndeath;j++) {      cptj=0;
               kk1=0.;kk2=0;      for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<=nlstate;j++){
                 if (mobilav==1)          cptj++;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(ficreseij,"\n");
                 }     
                      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                 fprintf(ficresf," %.3f", kk1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }    }
             }    printf("\n");
           }    fprintf(ficlog,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
          }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   /************ Variance ******************/
   fclose(ficresf);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 }  {
 /************** Forecasting ******************/    /* Variance of health expectancies */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double **dnewm,**doldm;
   int *popage;    double **dnewmp,**doldmp;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int i, j, nhstepm, hstepm, h, nstepm ;
   double *popeffectif,*popcount;    int k, cptcode;
   double ***p3mat,***tabpop,***tabpopprev;    double *xp;
   char filerespop[FILENAMELENGTH];    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gradgp, **trgradgp; /* for var p point j */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gpp, *gmp; /* for var p point j */
   agelim=AGESUP;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double ***p3mat;
      double age,agelim, hf;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***mobaverage;
      int theta;
      char digit[4];
   strcpy(filerespop,"pop");    char digitp[25];
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    char fileresprobmorprev[FILENAMELENGTH];
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    if(popbased==1){
   printf("Computing forecasting: result on file '%s' \n", filerespop);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      else strcpy(digitp,"-populbased-nomobil-");
     }
   if (mobilav==1) {    else 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      strcpy(digitp,"-stablbased-");
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if (stepm<=12) stepsize=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   agelim=AGESUP;      }
      }
   hstepm=1;  
   hstepm=hstepm/stepm;    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   if (popforecast==1) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     if((ficpop=fopen(popfile,"r"))==NULL) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       printf("Problem with population file : %s\n",popfile);exit(0);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
     popage=ivector(0,AGESUP);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     popeffectif=vector(0,AGESUP);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     popcount=vector(0,AGESUP);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
     i=1;      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     imx=i;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }  
       k=k+1;    fprintf(ficresprobmorprev,"\n");
       fprintf(ficrespop,"\n#******");    fprintf(ficgp,"\n# Routine varevsij");
       for(j=1;j<=cptcoveff;j++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
       fprintf(ficrespop,"******\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresvij,"# Age");
          for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=0;cpt++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
            fprintf(ficresvij,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    xp=vector(1,npar);
           nhstepm = nhstepm/hstepm;    dnewm=matrix(1,nlstate,1,npar);
              doldm=matrix(1,nlstate,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           oldm=oldms;savm=savms;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    gpp=vector(nlstate+1,nlstate+ndeath);
             if (h==(int) (calagedate+YEARM*cpt)) {    gmp=vector(nlstate+1,nlstate+ndeath);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    if(estepm < stepm){
               kk1=0.;kk2=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
                 else {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       nhstepm is the number of hstepm from age to agelim 
                 }       nstepm is the number of stepm from age to agelin. 
               }       Look at hpijx to understand the reason of that which relies in memory size
               if (h==(int)(calagedate+12*cpt)){       and note for a fixed period like k years */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   /*fprintf(ficrespop," %.3f", kk1);       survival function given by stepm (the optimization length). Unfortunately it
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       means that if the survival funtion is printed every two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             }       results. So we changed our mind and took the option of the best precision.
             for(i=1; i<=nlstate;i++){    */
               kk1=0.;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 for(j=1; j<=nlstate;j++){    agelim = AGESUP;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                 }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      gp=matrix(0,nhstepm,1,nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      gm=matrix(0,nhstepm,1,nlstate);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /******/        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if (popbased==1) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if(mobilav ==0){
           nhstepm = nhstepm/hstepm;            for(i=1; i<=nlstate;i++)
                        prlim[i][i]=probs[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }        for(j=1; j<= nlstate; j++){
             for(j=1; j<=nlstate+ndeath;j++) {          for(h=0; h<=nhstepm; h++){
               kk1=0.;kk2=0;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }        }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
          /* end probability of death */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (popforecast==1) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_ivector(popage,0,AGESUP);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_vector(popeffectif,0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(popcount,0,AGESUP);   
   }        if (popbased==1) {
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   fclose(ficrespop);              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
 /***********************************************/              prlim[i][i]=mobaverage[(int)age][i][ij];
 /**************** Main Program *****************/          }
 /***********************************************/        }
   
 int main(int argc, char *argv[])        for(j=1; j<= nlstate; j++){
 {          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double agedeb, agefin,hf;          }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        }
         /* This for computing probability of death (h=1 means
   double fret;           computed over hstepm matrices product = hstepm*stepm months) 
   double **xi,tmp,delta;           as a weighted average of prlim.
         */
   double dum; /* Dummy variable */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double ***p3mat;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   int *indx;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   char line[MAXLINE], linepar[MAXLINE];        }    
   char title[MAXLINE];        /* end probability of death */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   char popfile[FILENAMELENGTH];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        }
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */      } /* End theta */
   int c,  h , cpt,l;  
   int ju,jl, mi;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(h=0; h<=nhstepm; h++) /* veij */
   int mobilav=0,popforecast=0;        for(j=1; j<=nlstate;j++)
   int hstepm, nhstepm;          for(theta=1; theta <=npar; theta++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            trgradg[h][j][theta]=gradg[h][theta][j];
   
   double bage, fage, age, agelim, agebase;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double ftolpl=FTOL;        for(theta=1; theta <=npar; theta++)
   double **prlim;          trgradgp[j][theta]=gradgp[theta][j];
   double *severity;    
   double ***param; /* Matrix of parameters */  
   double  *p;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double **matcov; /* Matrix of covariance */      for(i=1;i<=nlstate;i++)
   double ***delti3; /* Scale */        for(j=1;j<=nlstate;j++)
   double *delti; /* Scale */          vareij[i][j][(int)age] =0.;
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      for(h=0;h<=nhstepm;h++){
   double *epj, vepp;        for(k=0;k<=nhstepm;k++){
   double kk1, kk2;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
       }
     
   char z[1]="c", occ;      /* pptj */
 #include <sys/time.h>      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 #include <time.h>      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /* long total_usecs;          varppt[j][i]=doldmp[j][i];
   struct timeval start_time, end_time;      /* end ppptj */
        /*  x centered again */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   getcwd(pathcd, size);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   printf("\n%s",version);      if (popbased==1) {
   if(argc <=1){        if(mobilav ==0){
     printf("\nEnter the parameter file name: ");          for(i=1; i<=nlstate;i++)
     scanf("%s",pathtot);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   else{          for(i=1; i<=nlstate;i++)
     strcpy(pathtot,argv[1]);            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);               
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      /* This for computing probability of death (h=1 means
   /* cutv(path,optionfile,pathtot,'\\');*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   chdir(path);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   replace(pathc,path);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
 /*-------- arguments in the command line --------*/      /* end probability of death */
   
   strcpy(fileres,"r");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   strcat(fileres, optionfilefiname);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(fileres,".txt");    /* Other files have txt extension */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   /*---------arguments file --------*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      } 
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresprobmorprev,"\n");
     goto end;  
   }      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   strcpy(filereso,"o");        for(j=1; j<=nlstate;j++){
   strcat(filereso,fileres);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 while((c=getc(ficpar))=='#' && c!= EOF){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     ungetc(c,ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     puts(line);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fputs(line,ficparo);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
   covar=matrix(0,NCOVMAX,1,n);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   cptcovn=0;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     free_vector(xp,1,npar);
   ncovmodel=2+cptcovn;    free_matrix(doldm,1,nlstate,1,nlstate);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Read guess parameters */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);    fclose(ficresprobmorprev);
     fgets(line, MAXLINE, ficpar);    fflush(ficgp);
     puts(line);    fflush(fichtm); 
     fputs(line,ficparo);  }  /* end varevsij */
   }  
   ungetc(c,ficpar);  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
     for(i=1; i <=nlstate; i++)    /* Variance of prevalence limit */
     for(j=1; j <=nlstate+ndeath-1; j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double **newm;
       fprintf(ficparo,"%1d%1d",i1,j1);    double **dnewm,**doldm;
       printf("%1d%1d",i,j);    int i, j, nhstepm, hstepm;
       for(k=1; k<=ncovmodel;k++){    int k, cptcode;
         fscanf(ficpar," %lf",&param[i][j][k]);    double *xp;
         printf(" %lf",param[i][j][k]);    double *gp, *gm;
         fprintf(ficparo," %lf",param[i][j][k]);    double **gradg, **trgradg;
       }    double age,agelim;
       fscanf(ficpar,"\n");    int theta;
       printf("\n");     
       fprintf(ficparo,"\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     }    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   p=param[1][1];  
      xp=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    dnewm=matrix(1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate,1,nlstate);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    hstepm=1*YEARM; /* Every year of age */
     puts(line);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fputs(line,ficparo);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   ungetc(c,ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      gradg=matrix(1,npar,1,nlstate);
   for(i=1; i <=nlstate; i++){      gp=vector(1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){      gm=vector(1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo,"%1d%1d",i1,j1);        for(i=1; i<=npar; i++){ /* Computes gradient */
       for(k=1; k<=ncovmodel;k++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficparo," %le",delti3[i][j][k]);        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
       fscanf(ficpar,"\n");      
       printf("\n");        for(i=1; i<=npar; i++) /* Computes gradient */
       fprintf(ficparo,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   delti=delti3[1][1];          gm[i] = prlim[i][i];
    
   /* Reads comments: lines beginning with '#' */        for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     ungetc(c,ficpar);      } /* End theta */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      trgradg =matrix(1,nlstate,1,npar);
     fputs(line,ficparo);  
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){      for(i=1;i<=nlstate;i++)
     fscanf(ficpar,"%s",&str);        varpl[i][(int)age] =0.;
     printf("%s",str);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fprintf(ficparo,"%s",str);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     for(j=1; j <=i; j++){      for(i=1;i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficresvpl,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     printf("\n");      fprintf(ficresvpl,"\n");
     fprintf(ficparo,"\n");      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   for(i=1; i <=npar; i++)      free_matrix(gradg,1,npar,1,nlstate);
     for(j=i+1;j<=npar;j++)      free_matrix(trgradg,1,nlstate,1,npar);
       matcov[i][j]=matcov[j][i];    } /* End age */
      
   printf("\n");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */  }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */  /************ Variance of one-step probabilities  ******************/
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     if((ficres =fopen(rfileres,"w"))==NULL) {  {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    int i, j=0,  i1, k1, l1, t, tj;
     }    int k2, l2, j1,  z1;
     fprintf(ficres,"#%s\n",version);    int k=0,l, cptcode;
        int first=1, first1;
     /*-------- data file ----------*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     if((fic=fopen(datafile,"r"))==NULL)    {    double **dnewm,**doldm;
       printf("Problem with datafile: %s\n", datafile);goto end;    double *xp;
     }    double *gp, *gm;
     double **gradg, **trgradg;
     n= lastobs;    double **mu;
     severity = vector(1,maxwav);    double age,agelim, cov[NCOVMAX];
     outcome=imatrix(1,maxwav+1,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     num=ivector(1,n);    int theta;
     moisnais=vector(1,n);    char fileresprob[FILENAMELENGTH];
     annais=vector(1,n);    char fileresprobcov[FILENAMELENGTH];
     moisdc=vector(1,n);    char fileresprobcor[FILENAMELENGTH];
     andc=vector(1,n);  
     agedc=vector(1,n);    double ***varpij;
     cod=ivector(1,n);  
     weight=vector(1,n);    strcpy(fileresprob,"prob"); 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    strcat(fileresprob,fileres);
     mint=matrix(1,maxwav,1,n);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     anint=matrix(1,maxwav,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
     s=imatrix(1,maxwav+1,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    strcpy(fileresprobcov,"probcov"); 
     ncodemax=ivector(1,8);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     i=1;      printf("Problem with resultfile: %s\n", fileresprobcov);
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       if ((i >= firstobs) && (i <=lastobs)) {    }
            strcpy(fileresprobcor,"probcor"); 
         for (j=maxwav;j>=1;j--){    strcat(fileresprobcor,fileres);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobcor);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprob,"# Age");
         for (j=ncovcol;j>=1;j--){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"# Age");
         }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         num[i]=atol(stra);    fprintf(ficresprobcov,"# Age");
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         i=i+1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     /* printf("ii=%d", ij);      }  
        scanf("%d",i);*/   /* fprintf(ficresprob,"\n");
   imx=i-1; /* Number of individuals */    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   /* for (i=1; i<=imx; i++){   */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   xp=vector(1,npar);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    /*  for (i=1; i<=imx; i++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      if (s[4][i]==9)  s[4][i]=-1;    first=1;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   Tprod=ivector(1,15);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   Tvaraff=ivector(1,15);    file %s<br>\n",optionfilehtmcov);
   Tvard=imatrix(1,15,1,2);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   Tage=ivector(1,15);        and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (strlen(model) >1){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     j=0, j1=0, k1=1, k2=1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     j=nbocc(model,'+');  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     j1=nbocc(model,'*');  standard deviations wide on each axis. <br>\
     cptcovn=j+1;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     cptcovprod=j1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    cov[1]=1;
       printf("Error. Non available option model=%s ",model);    tj=cptcoveff;
       goto end;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
        for(t=1; t<=tj;t++){
     for(i=(j+1); i>=1;i--){      for(i1=1; i1<=ncodemax[t];i1++){ 
       cutv(stra,strb,modelsav,'+');        j1++;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        if  (cptcovn>0) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresprob, "\n#********** Variable "); 
       /*scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (strchr(strb,'*')) {          fprintf(ficresprob, "**********\n#\n");
         cutv(strd,strc,strb,'*');          fprintf(ficresprobcov, "\n#********** Variable "); 
         if (strcmp(strc,"age")==0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovprod--;          fprintf(ficresprobcov, "**********\n#\n");
           cutv(strb,stre,strd,'V');          
           Tvar[i]=atoi(stre);          fprintf(ficgp, "\n#********** Variable "); 
           cptcovage++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             Tage[cptcovage]=i;          fprintf(ficgp, "**********\n#\n");
             /*printf("stre=%s ", stre);*/          
         }          
         else if (strcmp(strd,"age")==0) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           cptcovprod--;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strb,stre,strc,'V');          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           Tvar[i]=atoi(stre);          
           cptcovage++;          fprintf(ficresprobcor, "\n#********** Variable ");    
           Tage[cptcovage]=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcor, "**********\n#");    
         else {        }
           cutv(strb,stre,strc,'V');        
           Tvar[i]=ncovcol+k1;        for (age=bage; age<=fage; age ++){ 
           cutv(strb,strc,strd,'V');          cov[2]=age;
           Tprod[k1]=i;          for (k=1; k<=cptcovn;k++) {
           Tvard[k1][1]=atoi(strc);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           Tvard[k1][2]=atoi(stre);          }
           Tvar[cptcovn+k2]=Tvard[k1][1];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          for (k=1; k<=cptcovprod;k++)
           for (k=1; k<=lastobs;k++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          
           k1++;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           k2=k2+2;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
       else {      
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(theta=1; theta <=npar; theta++){
        /*  scanf("%d",i);*/            for(i=1; i<=npar; i++)
       cutv(strd,strc,strb,'V');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       Tvar[i]=atoi(strc);            
       }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       strcpy(modelsav,stra);              
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            k=0;
         scanf("%d",i);*/            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
 }                k=k+1;
                  gp[k]=pmmij[i][j];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              }
   printf("cptcovprod=%d ", cptcovprod);            }
   scanf("%d ",i);*/            
     fclose(fic);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(i=1;i<=n;i++) weight[i]=1.0;            k=0;
     }            for(i=1; i<=(nlstate); i++){
     /*-calculation of age at interview from date of interview and age at death -*/              for(j=1; j<=(nlstate+ndeath);j++){
     agev=matrix(1,maxwav,1,imx);                k=k+1;
                 gm[k]=pmmij[i][j];
     for (i=1; i<=imx; i++) {              }
       for(m=2; (m<= maxwav); m++) {            }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       
          anint[m][i]=9999;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
          s[m][i]=-1;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        }          }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
     for (i=1; i<=imx; i++)  {          
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       for(m=1; (m<= maxwav); m++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         if(s[m][i] >0){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           if (s[m][i] >= nlstate+1) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             if(agedc[i]>0)          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
            else {          
               if (andc[i]!=9999){          k=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(i=1; i<=(nlstate); i++){
               agev[m][i]=-1;            for(j=1; j<=(nlstate+ndeath);j++){
               }              k=k+1;
             }              mu[k][(int) age]=pmmij[i][j];
           }            }
           else if(s[m][i] !=9){ /* Should no more exist */          }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             if(mint[m][i]==99 || anint[m][i]==9999)            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               agev[m][i]=1;              varpij[i][j][(int)age] = doldm[i][j];
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];          /*printf("\n%d ",(int)age);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             else if(agev[m][i] >agemax){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               agemax=agev[m][i];            }*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }          fprintf(ficresprob,"\n%d ",(int)age);
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(ficresprobcov,"\n%d ",(int)age);
             /*   agev[m][i] = age[i]+2*m;*/          fprintf(ficresprobcor,"\n%d ",(int)age);
           }  
           else { /* =9 */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             agev[m][i]=1;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             s[m][i]=-1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         else /*= 0 Unknown */          }
           agev[m][i]=1;          i=0;
       }          for (k=1; k<=(nlstate);k++){
                for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
     for (i=1; i<=imx; i++)  {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       for(m=1; (m<= maxwav); m++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         if (s[m][i] > (nlstate+ndeath)) {              for (j=1; j<=i;j++){
           printf("Error: Wrong value in nlstate or ndeath\n");                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           goto end;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         }              }
       }            }
     }          }/* end of loop for state */
         } /* end of loop for age */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
         /* Confidence intervalle of pij  */
     free_vector(severity,1,maxwav);        /*
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficgp,"\nset noparametric;unset label");
     free_vector(moisnais,1,n);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     free_vector(annais,1,n);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
        free_matrix(anint,1,maxwav,1,n);*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     free_vector(moisdc,1,n);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     free_vector(andc,1,n);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
      
     wav=ivector(1,imx);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        first1=1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (k2=1; k2<=(nlstate);k2++){
              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     /* Concatenates waves */            if(l2==k2) continue;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       Tcode=ivector(1,100);                if(l1==k1) continue;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                i=(k1-1)*(nlstate+ndeath)+l1;
       ncodemax[1]=1;                if(i<=j) continue;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                for (age=bage; age<=fage; age ++){ 
                        if ((int)age %5==0){
    codtab=imatrix(1,100,1,10);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
    h=0;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    m=pow(2,cptcoveff);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
    for(k=1;k<=cptcoveff; k++){                    mu2=mu[j][(int) age]/stepm*YEARM;
      for(i=1; i <=(m/pow(2,k));i++){                    c12=cv12/sqrt(v1*v2);
        for(j=1; j <= ncodemax[k]; j++){                    /* Computing eigen value of matrix of covariance */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
            h++;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                    /* Eigen vectors */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
          }                    /*v21=sqrt(1.-v11*v11); *//* error */
        }                    v21=(lc1-v1)/cv12*v11;
      }                    v12=-v21;
    }                    v22=v11;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    tnalp=v21/v11;
       codtab[1][2]=1;codtab[2][2]=2; */                    if(first1==1){
    /* for(i=1; i <=m ;i++){                      first1=0;
       for(k=1; k <=cptcovn; k++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    }
       }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("\n");                    /*printf(fignu*/
       }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       scanf("%d",i);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                        if(first==1){
    /* Calculates basic frequencies. Computes observed prevalence at single age                      first=0;
        and prints on file fileres'p'. */                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                          fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                            fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     /* For Powell, parameters are in a vector p[] starting at p[1]                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     if(mle==1){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
                          first=0;
     /*--------- results files --------------*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    jk=1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    }/* if first */
    for(i=1,jk=1; i <=nlstate; i++){                  } /* age mod 5 */
      for(k=1; k <=(nlstate+ndeath); k++){                } /* end loop age */
        if (k != i)                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          {                first=1;
            printf("%d%d ",i,k);              } /*l12 */
            fprintf(ficres,"%1d%1d ",i,k);            } /* k12 */
            for(j=1; j <=ncovmodel; j++){          } /*l1 */
              printf("%f ",p[jk]);        }/* k1 */
              fprintf(ficres,"%f ",p[jk]);      } /* loop covariates */
              jk++;    }
            }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
            printf("\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
            fprintf(ficres,"\n");    free_vector(xp,1,npar);
          }    fclose(ficresprob);
      }    fclose(ficresprobcov);
    }    fclose(ficresprobcor);
  if(mle==1){    fflush(ficgp);
     /* Computing hessian and covariance matrix */    fflush(fichtmcov);
     ftolhess=ftol; /* Usually correct */  }
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /******************* Printing html file ***********/
     printf("# Scales (for hessian or gradient estimation)\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      for(i=1,jk=1; i <=nlstate; i++){                    int lastpass, int stepm, int weightopt, char model[],\
       for(j=1; j <=nlstate+ndeath; j++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         if (j!=i) {                    int popforecast, int estepm ,\
           fprintf(ficres,"%1d%1d",i,j);                    double jprev1, double mprev1,double anprev1, \
           printf("%1d%1d",i,j);                    double jprev2, double mprev2,double anprev2){
           for(k=1; k<=ncovmodel;k++){    int jj1, k1, i1, cpt;
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
             jk++;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
           printf("\n");     fprintf(fichtm,"\
           fprintf(ficres,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       }     fprintf(fichtm,"\
      }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     k=1;     fprintf(fichtm,"\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Life expectancies by age and initial health status (estepm=%2d months): \
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     <a href=\"%s\">%s</a> <br>\n</li>",
     for(i=1;i<=npar;i++){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/   m=cptcoveff;
       fprintf(ficres,"%3d",i);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf("%3d",i);  
       for(j=1; j<=i;j++){   jj1=0;
         fprintf(ficres," %.5e",matcov[i][j]);   for(k1=1; k1<=m;k1++){
         printf(" %.5e",matcov[i][j]);     for(i1=1; i1<=ncodemax[k1];i1++){
       }       jj1++;
       fprintf(ficres,"\n");       if (cptcovn > 0) {
       printf("\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       k++;         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     while((c=getc(ficpar))=='#' && c!= EOF){       }
       ungetc(c,ficpar);       /* Pij */
       fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       puts(line);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fputs(line,ficparo);       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     ungetc(c,ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     estepm=0;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         /* Stable prevalence in each health state */
     if (estepm==0 || estepm < stepm) estepm=stepm;         for(cpt=1; cpt<nlstate;cpt++){
     if (fage <= 2) {           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       bage = ageminpar;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fage = agemaxpar;         }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
              fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     } /* end i1 */
     }/* End k1 */
     while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"</ul>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);   fprintf(fichtm,"\
     fputs(line,ficparo);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   ungetc(c,ficpar);  
     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   fprintf(fichtm,"\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     puts(line);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fputs(line,ficparo);   fprintf(fichtm,"\
   }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   ungetc(c,ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fscanf(ficpar,"pop_based=%d\n",&popbased);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);    /*  if(popforecast==1) fprintf(fichtm,"\n */
    /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     ungetc(c,ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
     fgets(line, MAXLINE, ficpar);  /*  else  */
     puts(line);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fputs(line,ficparo);   fflush(fichtm);
   }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   ungetc(c,ficpar);  
    m=cptcoveff;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
     ungetc(c,ficpar);       if (cptcovn > 0) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
 /*------------ gnuplot -------------*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);     } /* end i1 */
     }/* End k1 */
 /*------------ free_vector  -------------*/   fprintf(fichtm,"</ul>");
  chdir(path);   fflush(fichtm);
    }
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /******************* Gnuplot file **************/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);    char dirfileres[132],optfileres[132];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  fclose(ficparo);    int ng;
  fclose(ficres);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
 /*--------- index.htm --------*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
     /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*--------------- Prevalence limit --------------*/      /*#endif */
      m=pow(2,cptcoveff);
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    strcpy(dirfileres,optionfilefiname);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    strcpy(optfileres,"vpl");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);     for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficrespl,"#Prevalence limit\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fprintf(ficrespl,"#Age ");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       fprintf(ficgp,"set xlabel \"Age\" \n\
   fprintf(ficrespl,"\n");  set ylabel \"Probability\" \n\
    set ter png small\n\
   prlim=matrix(1,nlstate,1,nlstate);  set size 0.65,0.65\n\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for (i=1; i<= nlstate ; i ++) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   k=0;       }
   agebase=ageminpar;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   agelim=agemaxpar;       for (i=1; i<= nlstate ; i ++) {
   ftolpl=1.e-10;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   i1=cptcoveff;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (cptcovn < 1){i1=1;}       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   for(cptcov=1;cptcov<=i1;cptcov++){       for (i=1; i<= nlstate ; i ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         k=k+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       }  
         fprintf(ficrespl,"\n#******");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         for(j=1;j<=cptcoveff;j++)     }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");    /*2 eme*/
            
         for (age=agebase; age<=agelim; age++){    for (k1=1; k1<= m ; k1 ++) { 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           fprintf(ficrespl,"%.0f",age );      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           for(i=1; i<=nlstate;i++)      
           fprintf(ficrespl," %.5f", prlim[i][i]);      for (i=1; i<= nlstate+1 ; i ++) {
           fprintf(ficrespl,"\n");        k=2*i;
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficrespl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   /*------------- h Pij x at various ages ------------*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing pij: result on file '%s' \n", filerespij);        }   
          fprintf(ficgp,"\" t\"\" w l 0,");
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /*if (stepm<=24) stepsize=2;*/        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   agelim=AGESUP;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=stepsize*YEARM; /* Every year of age */        }   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          else fprintf(ficgp,"\" t\"\" w l 0,");
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    /*3eme*/
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficrespij,"******\n");        k=2+nlstate*(2*cpt-2);
                fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficgp,"set ter png small\n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  set size 0.65,0.65\n\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           oldm=oldms;savm=savms;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficrespij,"# Age");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for(i=1; i<=nlstate;i++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               fprintf(ficrespij," %1d-%1d",i,j);          
           fprintf(ficrespij,"\n");        */
            for (h=0; h<=nhstepm; h++){        for (i=1; i< nlstate ; i ++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
             for(i=1; i<=nlstate;i++)          
               for(j=1; j<=nlstate+ndeath;j++)        } 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      }
             fprintf(ficrespij,"\n");    }
              }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* CV preval stable (period) */
           fprintf(ficrespij,"\n");    for (k1=1; k1<= m ; k1 ++) { 
         }      for (cpt=1; cpt<=nlstate ; cpt ++) {
     }        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   fclose(ficrespij);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
   /*---------- Forecasting ------------------*/          fprintf(ficgp,"+$%d",k+i+1);
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        l=3+(nlstate+ndeath)*cpt;
   }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   else{        for (i=1; i< nlstate ; i ++) {
     erreur=108;          l=3+(nlstate+ndeath)*cpt;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   /*---------- Health expectancies and variances ------------*/    }  
     
   strcpy(filerest,"t");    /* proba elementaires */
   strcat(filerest,fileres);    for(i=1,jk=1; i <=nlstate; i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {      for(k=1; k <=(nlstate+ndeath); k++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
   strcpy(filerese,"e");          }
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {      }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
  strcpy(fileresv,"v");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   strcat(fileresv,fileres);         if (ng==2)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   calagedate=-1;         i=1;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   k=0;           for(k=1; k<=(nlstate+ndeath); k++) {
   for(cptcov=1;cptcov<=i1;cptcov++){             if (k != k2){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               if(ng==2)
       k=k+1;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       fprintf(ficrest,"\n#****** ");               else
       for(j=1;j<=cptcoveff;j++)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               ij=1;
       fprintf(ficrest,"******\n");               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficreseij,"\n#****** ");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for(j=1;j<=cptcoveff;j++)                   ij++;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 }
       fprintf(ficreseij,"******\n");                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficresvij,"\n#****** ");               }
       for(j=1;j<=cptcoveff;j++)               fprintf(ficgp,")/(1");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               
       fprintf(ficresvij,"******\n");               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 ij=1;
       oldm=oldms;savm=savms;                 for(j=3; j <=ncovmodel; j++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                     ij++;
       oldm=oldms;savm=savms;                   }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                   else
                         fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                   fprintf(ficgp,")");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");               }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficrest,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
       epj=vector(1,nlstate+1);             }
       for(age=bage; age <=fage ;age++){           } /* end k */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         } /* end k2 */
         if (popbased==1) {       } /* end jk */
           for(i=1; i<=nlstate;i++)     } /* end ng */
             prlim[i][i]=probs[(int)age][i][k];     fflush(ficgp); 
         }  }  /* end gnuplot */
          
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*************** Moving average **************/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int i, cpt, cptcod;
           }    int modcovmax =1;
           epj[nlstate+1] +=epj[j];    int mobilavrange, mob;
         }    double age;
   
         for(i=1, vepp=0.;i <=nlstate;i++)    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           for(j=1;j <=nlstate;j++)                             a covariate has 2 modalities */
             vepp += vareij[i][j][(int)age];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      if(mobilav==1) mobilavrange=5; /* default */
         }      else mobilavrange=mobilav;
         fprintf(ficrest,"\n");      for (age=bage; age<=fage; age++)
       }        for (i=1; i<=nlstate;i++)
     }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 free_matrix(mint,1,maxwav,1,n);      /* We keep the original values on the extreme ages bage, fage and for 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     free_vector(weight,1,n);         we use a 5 terms etc. until the borders are no more concerned. 
   fclose(ficreseij);      */ 
   fclose(ficresvij);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   fclose(ficrest);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fclose(ficpar);          for (i=1; i<=nlstate;i++){
   free_vector(epj,1,nlstate+1);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   /*------- Variance limit prevalence------*/                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   strcpy(fileresvpl,"vpl");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   strcat(fileresvpl,fileres);                }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            }
     exit(0);          }
   }        }/* end age */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      }/* end mob */
     }else return -1;
   k=0;    return 0;
   for(cptcov=1;cptcov<=i1;cptcov++){  }/* End movingaverage */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");  /************** Forecasting ******************/
       for(j=1;j<=cptcoveff;j++)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* proj1, year, month, day of starting projection 
       fprintf(ficresvpl,"******\n");       agemin, agemax range of age
             dateprev1 dateprev2 range of dates during which prevalence is computed
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       anproj2 year of en of projection (same day and month as proj1).
       oldm=oldms;savm=savms;    */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     }    int *popage;
  }    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   fclose(ficresvpl);    double *popeffectif,*popcount;
     double ***p3mat;
   /*---------- End : free ----------------*/    double ***mobaverage;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    char fileresf[FILENAMELENGTH];
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    agelim=AGESUP;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
      strcpy(fileresf,"f"); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    strcat(fileresf,fileres);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf("Problem with forecast resultfile: %s\n", fileresf);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
   free_matrix(matcov,1,npar,1,npar);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   free_vector(delti,1,npar);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   if(erreur >0)    if (mobilav!=0) {
     printf("End of Imach with error or warning %d\n",erreur);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else   printf("End of Imach\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }
   /*------ End -----------*/  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
  end:    if(estepm < stepm){
   /* chdir(pathcd);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
  /*system("wgnuplot graph.plt");*/    }
  /*system("../gp37mgw/wgnuplot graph.plt");*/    else  hstepm=estepm;   
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    hstepm=hstepm/stepm; 
  strcpy(plotcmd,GNUPLOTPROGRAM);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
  strcat(plotcmd," ");                                 fractional in yp1 */
  strcat(plotcmd,optionfilegnuplot);    anprojmean=yp;
  system(plotcmd);    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
  /*#ifdef windows*/    yp1=modf((yp2*30.5),&yp);
   while (z[0] != 'q') {    jprojmean=yp;
     /* chdir(path); */    if(jprojmean==0) jprojmean=1;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if(mprojmean==0) jprojmean=1;
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    i1=cptcoveff;
     else if (z[0] == 'e') system(optionfilehtm);    if (cptcovn < 1){i1=1;}
     else if (z[0] == 'g') system(plotcmd);    
     else if (z[0] == 'q') exit(0);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   }    
   /*#endif */    fprintf(ficresf,"#****** Routine prevforecast **\n");
 }  
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>