Diff for /imach/src/imach.c between versions 1.46 and 1.98

version 1.46, 2002/05/30 17:44:35 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Some bugs corrected for windows. Also, when
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FILENAMELENGTH 80    of the covariance matrix to be input.
 /*#define DEBUG*/  
 #define windows    Revision 1.89  2003/06/24 12:30:52  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Version 0.96
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.86  2003/06/17 20:04:08  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Change position of html and gnuplot routines and added
 #define AGESUP 130    routine fileappend.
 #define AGEBASE 40  
     Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 int erreur; /* Error number */    current date of interview. It may happen when the death was just
 int nvar;    prior to the death. In this case, dh was negative and likelihood
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    was wrong (infinity). We still send an "Error" but patch by
 int npar=NPARMAX;    assuming that the date of death was just one stepm after the
 int nlstate=2; /* Number of live states */    interview.
 int ndeath=1; /* Number of dead states */    (Repository): Because some people have very long ID (first column)
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    we changed int to long in num[] and we added a new lvector for
 int popbased=0;    memory allocation. But we also truncated to 8 characters (left
     truncation)
 int *wav; /* Number of waves for this individuual 0 is possible */    (Repository): No more line truncation errors.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.84  2003/06/13 21:44:43  brouard
 int mle, weightopt;    * imach.c (Repository): Replace "freqsummary" at a correct
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    place. It differs from routine "prevalence" which may be called
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    many times. Probs is memory consuming and must be used with
 double jmean; /* Mean space between 2 waves */    parcimony.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    *** empty log message ***
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
  FILE  *ficresvij;    Add log in  imach.c and  fullversion number is now printed.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  */
   char fileresvpl[FILENAMELENGTH];  /*
      Interpolated Markov Chain
 #define NR_END 1  
 #define FREE_ARG char*    Short summary of the programme:
 #define FTOL 1.0e-10    
     This program computes Healthy Life Expectancies from
 #define NRANSI    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define ITMAX 200    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define TOL 2.0e-4    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define CGOLD 0.3819660    (if any) in individual health status.  Health expectancies are
 #define ZEPS 1.0e-10    computed from the time spent in each health state according to a
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define GOLD 1.618034    simplest model is the multinomial logistic model where pij is the
 #define GLIMIT 100.0    probability to be observed in state j at the second wave
 #define TINY 1.0e-20    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 static double maxarg1,maxarg2;    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    complex model than "constant and age", you should modify the program
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    convergence.
 #define rint(a) floor(a+0.5)  
     The advantage of this computer programme, compared to a simple
 static double sqrarg;    multinomial logistic model, is clear when the delay between waves is not
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    identical for each individual. Also, if a individual missed an
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 int imx;  
 int stepm;    hPijx is the probability to be observed in state i at age x+h
 /* Stepm, step in month: minimum step interpolation*/    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 int estepm;    states. This elementary transition (by month, quarter,
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 int m,nb;    and the contribution of each individual to the likelihood is simply
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    hPijx.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Also this programme outputs the covariance matrix of the parameters but also
 double dateintmean=0;    of the life expectancies. It also computes the stable prevalence. 
     
 double *weight;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **s; /* Status */             Institut national d'études démographiques, Paris.
 double *agedc, **covar, idx;    This software have been partly granted by Euro-REVES, a concerted action
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    software can be distributed freely for non commercial use. Latest version
 double ftolhess; /* Tolerance for computing hessian */    can be accessed at http://euroreves.ined.fr/imach .
   
 /**************** split *************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
    char *s;                             /* pointer */    **********************************************************************/
    int  l1, l2;                         /* length counters */  /*
     main
    l1 = strlen( path );                 /* length of path */    read parameterfile
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    read datafile
 #ifdef windows    concatwav
    s = strrchr( path, '\\' );           /* find last / */    freqsummary
 #else    if (mle >= 1)
    s = strrchr( path, '/' );            /* find last / */      mlikeli
 #endif    print results files
    if ( s == NULL ) {                   /* no directory, so use current */    if mle==1 
 #if     defined(__bsd__)                /* get current working directory */       computes hessian
       extern char       *getwd( );    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
       if ( getwd( dirc ) == NULL ) {    open gnuplot file
 #else    open html file
       extern char       *getcwd( );    stable prevalence
      for age prevalim()
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    h Pij x
 #endif    variance of p varprob
          return( GLOCK_ERROR_GETCWD );    forecasting if prevfcast==1 prevforecast call prevalence()
       }    health expectancies
       strcpy( name, path );             /* we've got it */    Variance-covariance of DFLE
    } else {                             /* strip direcotry from path */    prevalence()
       s++;                              /* after this, the filename */     movingaverage()
       l2 = strlen( s );                 /* length of filename */    varevsij() 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    if popbased==1 varevsij(,popbased)
       strcpy( name, s );                /* save file name */    total life expectancies
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Variance of stable prevalence
       dirc[l1-l2] = 0;                  /* add zero */   end
    }  */
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else   
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include <math.h>
 #endif  #include <stdio.h>
    s = strrchr( name, '.' );            /* find last / */  #include <stdlib.h>
    s++;  #include <unistd.h>
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #include <sys/time.h>
    l2= strlen( s)+1;  #include <time.h>
    strncpy( finame, name, l1-l2);  #include "timeval.h"
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
   #define MAXLINE 256
 /******************************************/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void replace(char *s, char*t)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   int i;  /*#define windows*/
   int lg=20;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   i=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
     (s[i] = t[i]);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     if (t[i]== '\\') s[i]='/';  
   }  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int nbocc(char *s, char occ)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int i,j=0;  #define YEARM 12. /* Number of months per year */
   int lg=20;  #define AGESUP 130
   i=0;  #define AGEBASE 40
   lg=strlen(s);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for(i=0; i<= lg; i++) {  #ifdef unix
   if  (s[i] == occ ) j++;  #define DIRSEPARATOR '/'
   }  #define ODIRSEPARATOR '\\'
   return j;  #else
 }  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 void cutv(char *u,char *v, char*t, char occ)  #endif
 {  
   int i,lg,j,p=0;  /* $Id$ */
   i=0;  /* $State$ */
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
   }  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   lg=strlen(t);  int nvar;
   for(j=0; j<p; j++) {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     (u[j] = t[j]);  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
      u[p]='\0';  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    for(j=0; j<= lg; j++) {  int popbased=0;
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /********************** nrerror ********************/  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 void nrerror(char error_text[])  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   fprintf(stderr,"ERREUR ...\n");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   fprintf(stderr,"%s\n",error_text);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   exit(1);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
 /*********************** vector *******************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double *vector(int nl, int nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double *v;  FILE *ficlog, *ficrespow;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int globpr; /* Global variable for printing or not */
   if (!v) nrerror("allocation failure in vector");  double fretone; /* Only one call to likelihood */
   return v-nl+NR_END;  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 /************************ free vector ******************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void free_vector(double*v, int nl, int nh)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /************************ivector *******************************/  char filerese[FILENAMELENGTH];
 int *ivector(long nl,long nh)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   int *v;  FILE  *ficresvpl;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileresvpl[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char title[MAXLINE];
   return v-nl+NR_END;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /******************free ivector **************************/  char command[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  int  outcmd=0;
 {  
   free((FREE_ARG)(v+nl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /******************* imatrix *******************************/  char filerest[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileregp[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char popfile[FILENAMELENGTH];
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int **m;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   /* allocate pointers to rows */  struct timezone tzp;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  extern int gettimeofday();
   if (!m) nrerror("allocation failure 1 in matrix()");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m += NR_END;  long time_value;
   m -= nrl;  extern long time();
    char strcurr[80], strfor[80];
    
   /* allocate rows and set pointers to them */  #define NR_END 1
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI 
    #define ITMAX 200 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define TOL 2.0e-4 
   /* return pointer to array of pointers to rows */  
   return m;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GOLD 1.618034 
       int **m;  #define GLIMIT 100.0 
       long nch,ncl,nrh,nrl;  #define TINY 1.0e-20 
      /* free an int matrix allocated by imatrix() */  
 {  static double maxarg1,maxarg2;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m+nrl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /******************* matrix *******************************/  #define rint(a) floor(a+0.5)
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  static double sqrarg;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double **m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int imx; 
   m += NR_END;  int stepm=1;
   m -= nrl;  /* Stepm, step in month: minimum step interpolation*/
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int estepm;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int m,nb;
   long *num;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   return m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /*************************free matrix ************************/  double dateintmean=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* ma3x *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ftolhess; /* Tolerance for computing hessian */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /**************** split *************************/
   double ***m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    char  *ss;                            /* pointer */
   if (!m) nrerror("allocation failure 1 in matrix()");    int   l1, l2;                         /* length counters */
   m += NR_END;  
   m -= nrl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] -= ncl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        return( GLOCK_ERROR_GETCWD );
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      }
   m[nrl][ncl] += NR_END;      strcpy( name, path );               /* we've got it */
   m[nrl][ncl] -= nll;    } else {                              /* strip direcotry from path */
   for (j=ncl+1; j<=nch; j++)      ss++;                               /* after this, the filename */
     m[nrl][j]=m[nrl][j-1]+nlay;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) {      strcpy( name, ss );         /* save file name */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for (j=ncl+1; j<=nch; j++)      dirc[l1-l2] = 0;                    /* add zero */
       m[i][j]=m[i][j-1]+nlay;    }
   }    l1 = strlen( dirc );                  /* length of directory */
   return m;    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /*************************free ma3x ************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #endif
 {    */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    ss++;
   free((FREE_ARG)(m+nrl-NR_END));    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 /***************** f1dim *************************/    strncpy( finame, name, l1-l2);
 extern int ncom;    finame[l1-l2]= 0;
 extern double *pcom,*xicom;    return( 0 );                          /* we're done */
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  
 {  /******************************************/
   int j;  
   double f;  void replace_back_to_slash(char *s, char*t)
   double *xt;  {
      int i;
   xt=vector(1,ncom);    int lg=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    i=0;
   f=(*nrfunc)(xt);    lg=strlen(t);
   free_vector(xt,1,ncom);    for(i=0; i<= lg; i++) {
   return f;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  int nbocc(char *s, char occ)
   int iter;  {
   double a,b,d,etemp;    int i,j=0;
   double fu,fv,fw,fx;    int lg=20;
   double ftemp;    i=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    lg=strlen(s);
   double e=0.0;    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);    return j;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  void cutv(char *u,char *v, char*t, char occ)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* cuts string t into u and v where u is ended by char occ excluding it
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     printf(".");fflush(stdout);       gives u="abcedf" and v="ghi2j" */
 #ifdef DEBUG    int i,lg,j,p=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    i=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(j=0; j<=strlen(t)-1; j++) {
 #endif      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;  
       return fx;    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     ftemp=fu;      (u[j] = t[j]);
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);       u[p]='\0';
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;     for(j=0; j<= lg; j++) {
       q=2.0*(q-r);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (q > 0.0) p = -p;    }
       q=fabs(q);  }
       etemp=e;  
       e=d;  /********************** nrerror ********************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void nrerror(char error_text[])
       else {  {
         d=p/q;    fprintf(stderr,"ERREUR ...\n");
         u=x+d;    fprintf(stderr,"%s\n",error_text);
         if (u-a < tol2 || b-u < tol2)    exit(EXIT_FAILURE);
           d=SIGN(tol1,xm-x);  }
       }  /*********************** vector *******************/
     } else {  double *vector(int nl, int nh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    double *v;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     fu=(*f)(u);    if (!v) nrerror("allocation failure in vector");
     if (fu <= fx) {    return v-nl+NR_END;
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /************************ free vector ******************/
         } else {  void free_vector(double*v, int nl, int nh)
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    free((FREE_ARG)(v+nl-NR_END));
             v=w;  }
             w=u;  
             fv=fw;  /************************ivector *******************************/
             fw=fu;  int *ivector(long nl,long nh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int *v;
             fv=fu;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           }    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /******************free ivector **************************/
   return fx;  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /************************lvector *******************************/
             double (*func)(double))  long *lvector(long nl,long nh)
 {  {
   double ulim,u,r,q, dum;    long *v;
   double fu;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   *fa=(*func)(*ax);    return v-nl+NR_END;
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************free lvector **************************/
       SHFT(dum,*fb,*fa,dum)  void free_lvector(long *v, long nl, long nh)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(v+nl-NR_END));
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************* imatrix *******************************/
     q=(*bx-*cx)*(*fb-*fa);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  { 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     if ((*bx-u)*(u-*cx) > 0.0) {    int **m; 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END; 
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl; 
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    
       u=ulim;    /* allocate rows and set pointers to them */ 
       fu=(*func)(u);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] += NR_END; 
       fu=(*func)(u);    m[nrl] -= ncl; 
     }    
     SHFT(*ax,*bx,*cx,u)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       SHFT(*fa,*fb,*fc,fu)    
       }    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /*************** linmin ************************/  
   /****************** free_imatrix *************************/
 int ncom;  void free_imatrix(m,nrl,nrh,ncl,nch)
 double *pcom,*xicom;        int **m;
 double (*nrfunc)(double []);        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double brent(double ax, double bx, double cx,    free((FREE_ARG) (m+nrl-NR_END)); 
                double (*f)(double), double tol, double *xmin);  } 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************* matrix *******************************/
               double *fc, double (*func)(double));  double **matrix(long nrl, long nrh, long ncl, long nch)
   int j;  {
   double xx,xmin,bx,ax;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double fx,fb,fa;    double **m;
    
   ncom=n;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   pcom=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   xicom=vector(1,n);    m += NR_END;
   nrfunc=func;    m -= nrl;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     xicom[j]=xi[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   ax=0.0;    m[nrl] -= ncl;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return m;
 #ifdef DEBUG    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     */
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /*************************free matrix ************************/
     p[j] += xi[j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free_vector(pcom,1,n);    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** powell ************************/  /******************* ma3x *******************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             double (*func)(double []))  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   void linmin(double p[], double xi[], int n, double *fret,    double ***m;
               double (*func)(double []));  
   int i,ibig,j;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double del,t,*pt,*ptt,*xit;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fp,fptt;    m += NR_END;
   double *xits;    m -= nrl;
   pt=vector(1,n);  
   ptt=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xit=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xits=vector(1,n);    m[nrl] += NR_END;
   *fret=(*func)(p);    m[nrl] -= ncl;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fp=(*fret);  
     ibig=0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     del=0.0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl][ncl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl][ncl] -= nll;
       printf(" %d %.12f",i, p[i]);    for (j=ncl+1; j<=nch; j++) 
     printf("\n");      m[nrl][j]=m[nrl][j-1]+nlay;
     for (i=1;i<=n;i++) {    
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (i=nrl+1; i<=nrh; i++) {
       fptt=(*fret);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #ifdef DEBUG      for (j=ncl+1; j<=nch; j++) 
       printf("fret=%lf \n",*fret);        m[i][j]=m[i][j-1]+nlay;
 #endif    }
       printf("%d",i);fflush(stdout);    return m; 
       linmin(p,xit,n,fret,func);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (fabs(fptt-(*fret)) > del) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         del=fabs(fptt-(*fret));    */
         ibig=i;  }
       }  
 #ifdef DEBUG  /*************************free ma3x ************************/
       printf("%d %.12e",i,(*fret));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /*************** function subdirf ***********/
 #endif  char *subdirf(char fileres[])
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       int k[2],l;    strcat(tmpout,"/"); /* Add to the right */
       k[0]=1;    strcat(tmpout,fileres);
       k[1]=-1;    return tmpout;
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************** function subdirf2 ***********/
       printf("\n");  char *subdirf2(char fileres[], char *preop)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* Caution optionfilefiname is hidden */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
 #endif    return tmpout;
   }
   
       free_vector(xit,1,n);  /*************** function subdirf3 ***********/
       free_vector(xits,1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    
       return;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,"/");
     for (j=1;j<=n;j++) {    strcat(tmpout,preop);
       ptt[j]=2.0*p[j]-pt[j];    strcat(tmpout,preop2);
       xit[j]=p[j]-pt[j];    strcat(tmpout,fileres);
       pt[j]=p[j];    return tmpout;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /***************** f1dim *************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  extern int ncom; 
       if (t < 0.0) {  extern double *pcom,*xicom;
         linmin(p,xit,n,fret,func);  extern double (*nrfunc)(double []); 
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n];  double f1dim(double x) 
           xi[j][n]=xit[j];  { 
         }    int j; 
 #ifdef DEBUG    double f;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double *xt; 
         for(j=1;j<=n;j++)   
           printf(" %.12e",xit[j]);    xt=vector(1,ncom); 
         printf("\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #endif    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
     }    return f; 
   }  } 
 }  
   /*****************brent *************************/
 /**** Prevalence limit ****************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    int iter; 
 {    double a,b,d,etemp;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double fu,fv,fw,fx;
      matrix by transitions matrix until convergence is reached */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i, ii,j,k;    double e=0.0; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    a=(ax < cx ? ax : cx); 
   double **out, cov[NCOVMAX], **pmij();    b=(ax > cx ? ax : cx); 
   double **newm;    x=w=v=bx; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      xm=0.5*(a+b); 
     for (j=1;j<=nlstate+ndeath;j++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
    cov[1]=1.;  #ifdef DEBUG
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     newm=savm;  #endif
     /* Covariates have to be included here again */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      cov[2]=agefin;        *xmin=x; 
          return fx; 
       for (k=1; k<=cptcovn;k++) {      } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      ftemp=fu;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        q=(x-v)*(fx-fw); 
       for (k=1; k<=cptcovprod;k++)        p=(x-v)*q-(x-w)*r; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        q=fabs(q); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        etemp=e; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        e=d; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     savm=oldm;        else { 
     oldm=newm;          d=p/q; 
     maxmax=0.;          u=x+d; 
     for(j=1;j<=nlstate;j++){          if (u-a < tol2 || b-u < tol2) 
       min=1.;            d=SIGN(tol1,xm-x); 
       max=0.;        } 
       for(i=1; i<=nlstate; i++) {      } else { 
         sumnew=0;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } 
         prlim[i][j]= newm[i][j]/(1-sumnew);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         max=FMAX(max,prlim[i][j]);      fu=(*f)(u); 
         min=FMIN(min,prlim[i][j]);      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
       maxmin=max-min;        SHFT(v,w,x,u) 
       maxmax=FMAX(maxmax,maxmin);          SHFT(fv,fw,fx,fu) 
     }          } else { 
     if(maxmax < ftolpl){            if (u < x) a=u; else b=u; 
       return prlim;            if (fu <= fw || w == x) { 
     }              v=w; 
   }              w=u; 
 }              fv=fw; 
               fw=fu; 
 /*************** transition probabilities ***************/            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )              fv=fu; 
 {            } 
   double s1, s2;          } 
   /*double t34;*/    } 
   int i,j,j1, nc, ii, jj;    nrerror("Too many iterations in brent"); 
     *xmin=x; 
     for(i=1; i<= nlstate; i++){    return fx; 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /****************** mnbrak ***********************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
       ps[i][j]=s2;  { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double ulim,u,r,q, dum;
     }    double fu; 
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fa=(*func)(*ax); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *fb=(*func)(*bx); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
       ps[i][j]=s2;        SHFT(dum,*fb,*fa,dum) 
     }        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
     /*ps[3][2]=1;*/    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   for(i=1; i<= nlstate; i++){      r=(*bx-*ax)*(*fb-*fc); 
      s1=0;      q=(*bx-*cx)*(*fb-*fa); 
     for(j=1; j<i; j++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       s1+=exp(ps[i][j]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(j=i+1; j<=nlstate+ndeath; j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       s1+=exp(ps[i][j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
     ps[i][i]=1./(s1+1.);        fu=(*func)(u); 
     for(j=1; j<i; j++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (fu < *fc) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            SHFT(*fb,*fc,fu,(*func)(u)) 
   } /* end i */            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        u=ulim; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
       ps[ii][jj]=0;      } else { 
       ps[ii][ii]=1;        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
   }      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
      printf("%lf ",ps[ii][jj]);  
    }  /*************** linmin ************************/
     printf("\n ");  
     }  int ncom; 
     printf("\n ");printf("%lf ",cov[2]);*/  double *pcom,*xicom;
 /*  double (*nrfunc)(double []); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);   
   goto end;*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     return ps;  { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /**************** Product of 2 matrices ******************/    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)                double *fc, double (*func)(double)); 
 {    int j; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double xx,xmin,bx,ax; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double fx,fb,fa;
   /* in, b, out are matrice of pointers which should have been initialized   
      before: only the contents of out is modified. The function returns    ncom=n; 
      a pointer to pointers identical to out */    pcom=vector(1,n); 
   long i, j, k;    xicom=vector(1,n); 
   for(i=nrl; i<= nrh; i++)    nrfunc=func; 
     for(k=ncolol; k<=ncoloh; k++)    for (j=1;j<=n;j++) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      pcom[j]=p[j]; 
         out[i][k] +=in[i][j]*b[j][k];      xicom[j]=xi[j]; 
     } 
   return out;    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /************* Higher Matrix Product ***************/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (j=1;j<=n;j++) { 
      duration (i.e. until      xi[j] *= xmin; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      p[j] += xi[j]; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    } 
      (typically every 2 years instead of every month which is too big).    free_vector(xicom,1,n); 
      Model is determined by parameters x and covariates have to be    free_vector(pcom,1,n); 
      included manually here.  } 
   
      */  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   int i, j, d, h, k;    long sec_left, days, hours, minutes;
   double **out, cov[NCOVMAX];    days = (time_sec) / (60*60*24);
   double **newm;    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   /* Hstepm could be zero and should return the unit matrix */    sec_left = (sec_left) %(60*60);
   for (i=1;i<=nlstate+ndeath;i++)    minutes = (sec_left) /60;
     for (j=1;j<=nlstate+ndeath;j++){    sec_left = (sec_left) % (60);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return ascdiff;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** powell ************************/
     for(d=1; d <=hstepm; d++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       newm=savm;              double (*func)(double [])) 
       /* Covariates have to be included here again */  { 
       cov[1]=1.;    void linmin(double p[], double xi[], int n, double *fret, 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                double (*func)(double [])); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int i,ibig,j; 
       for (k=1; k<=cptcovage;k++)    double del,t,*pt,*ptt,*xit;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fp,fptt;
       for (k=1; k<=cptcovprod;k++)    double *xits;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int niterf, itmp;
   
     pt=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    ptt=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xit=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    xits=vector(1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *fret=(*func)(p); 
       savm=oldm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       oldm=newm;    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     for(i=1; i<=nlstate+ndeath; i++)      ibig=0; 
       for(j=1;j<=nlstate+ndeath;j++) {      del=0.0; 
         po[i][j][h]=newm[i][j];      last_time=curr_time;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      (void) gettimeofday(&curr_time,&tzp);
          */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   } /* end h */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   return po;      */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*************** log-likelihood *************/        fprintf(ficrespow," %.12lf", p[i]);
 double func( double *x)      }
 {      printf("\n");
   int i, ii, j, k, mi, d, kk;      fprintf(ficlog,"\n");
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **out;      if(*iter <=3){
   double sw; /* Sum of weights */        tm = *localtime(&curr_time.tv_sec);
   double lli; /* Individual log likelihood */        strcpy(strcurr,asctime(&tmf));
   long ipmx;  /*       asctime_r(&tm,strcurr); */
   /*extern weight */        forecast_time=curr_time;
   /* We are differentiating ll according to initial status */        itmp = strlen(strcurr);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        if(strcurr[itmp-1]=='\n')
   /*for(i=1;i<imx;i++)          strcurr[itmp-1]='\0';
     printf(" %d\n",s[4][i]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   cov[1]=1.;        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*      asctime_r(&tmf,strfor); */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          strcpy(strfor,asctime(&tmf));
     for(mi=1; mi<= wav[i]-1; mi++){          itmp = strlen(strfor);
       for (ii=1;ii<=nlstate+ndeath;ii++)          if(strfor[itmp-1]=='\n')
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          strfor[itmp-1]='\0';
       for(d=0; d<dh[mi][i]; d++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         newm=savm;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                fptt=(*fret); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        printf("fret=%lf \n",*fret);
         savm=oldm;        fprintf(ficlog,"fret=%lf \n",*fret);
         oldm=newm;  #endif
                printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
       } /* end mult */        linmin(p,xit,n,fret,func); 
              if (fabs(fptt-(*fret)) > del) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          del=fabs(fptt-(*fret)); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          ibig=i; 
       ipmx +=1;        } 
       sw += weight[i];  #ifdef DEBUG
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("%d %.12e",i,(*fret));
     } /* end of wave */        fprintf(ficlog,"%d %.12e",i,(*fret));
   } /* end of individual */        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          printf(" x(%d)=%.12e",j,xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        }
   return -l;        for(j=1;j<=n;j++) {
 }          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
         }
 /*********** Maximum Likelihood Estimation ***************/        printf("\n");
         fprintf(ficlog,"\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #endif
 {      } 
   int i,j, iter;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double **xi,*delti;  #ifdef DEBUG
   double fret;        int k[2],l;
   xi=matrix(1,npar,1,npar);        k[0]=1;
   for (i=1;i<=npar;i++)        k[1]=-1;
     for (j=1;j<=npar;j++)        printf("Max: %.12e",(*func)(p));
       xi[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   printf("Powell\n");        for (j=1;j<=n;j++) {
   powell(p,xi,npar,ftol,&iter,&fret,func);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf("\n");
         fprintf(ficlog,"\n");
 }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 /**** Computes Hessian and covariance matrix ***/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double  **a,**y,*x,pd;          }
   double **hess;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i, j,jk;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int *indx;        }
   #endif
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;        free_vector(xit,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   hess=matrix(1,npar,1,npar);        free_vector(pt,1,n); 
         return; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      } 
   for (i=1;i<=npar;i++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf("%d",i);fflush(stdout);      for (j=1;j<=n;j++) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);        ptt[j]=2.0*p[j]-pt[j]; 
     /*printf(" %f ",p[i]);*/        xit[j]=p[j]-pt[j]; 
     /*printf(" %lf ",hess[i][i]);*/        pt[j]=p[j]; 
   }      } 
        fptt=(*func)(ptt); 
   for (i=1;i<=npar;i++) {      if (fptt < fp) { 
     for (j=1;j<=npar;j++)  {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if (j>i) {        if (t < 0.0) { 
         printf(".%d%d",i,j);fflush(stdout);          linmin(p,xit,n,fret,func); 
         hess[i][j]=hessij(p,delti,i,j);          for (j=1;j<=n;j++) { 
         hess[j][i]=hess[i][j];                xi[j][ibig]=xi[j][n]; 
         /*printf(" %lf ",hess[i][j]);*/            xi[j][n]=xit[j]; 
       }          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\n");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
   a=matrix(1,npar,1,npar);          }
   y=matrix(1,npar,1,npar);          printf("\n");
   x=vector(1,npar);          fprintf(ficlog,"\n");
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);    } 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /**** Prevalence limit (stable prevalence)  ****************/
     x[j]=1;  
     lubksb(a,npar,indx,x);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
     int i, ii,j,k;
   printf("\n#Hessian matrix#\n");    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++) {    double **matprod2();
     for (j=1;j<=npar;j++) {    double **out, cov[NCOVMAX], **pmij();
       printf("%.3e ",hess[i][j]);    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
     printf("\n");  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   /* Recompute Inverse */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);     cov[1]=1.;
    
   /*  printf("\n#Hessian matrix recomputed#\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (j=1;j<=npar;j++) {      newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;      /* Covariates have to be included here again */
     x[j]=1;       cov[2]=agefin;
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) {
       y[i][j]=x[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       printf("%.3e ",y[i][j]);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
     printf("\n");        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   free_matrix(a,1,npar,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   free_matrix(y,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_vector(x,1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_ivector(indx,1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   free_matrix(hess,1,npar,1,npar);  
       savm=oldm;
       oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /*************** hessian matrix ****************/        min=1.;
 double hessii( double x[], double delta, int theta, double delti[])        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   int i;          sumnew=0;
   int l=1, lmax=20;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double k1,k2;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double p2[NPARMAX+1];          max=FMAX(max,prlim[i][j]);
   double res;          min=FMIN(min,prlim[i][j]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;        maxmin=max-min;
   int k=0,kmax=10;        maxmax=FMAX(maxmax,maxmin);
   double l1;      }
       if(maxmax < ftolpl){
   fx=func(x);        return prlim;
   for (i=1;i<=npar;i++) p2[i]=x[i];      }
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /*************** transition probabilities ***************/ 
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    double s1, s2;
       k2=func(p2)-fx;    /*double t34;*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int i,j,j1, nc, ii, jj;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
            for(i=1; i<= nlstate; i++){
 #ifdef DEBUG      for(j=1; j<i;j++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #endif          /*s2 += param[i][j][nc]*cov[nc];*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         k=kmax;        }
       }        ps[i][j]=s2;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         k=kmax; l=lmax*10.;      }
       }      for(j=i+1; j<=nlstate+ndeath;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         delts=delt;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     }        }
   }        ps[i][j]=s2;
   delti[theta]=delts;      }
   return res;    }
        /*ps[3][2]=1;*/
 }  
     for(i=1; i<= nlstate; i++){
 double hessij( double x[], double delti[], int thetai,int thetaj)       s1=0;
 {      for(j=1; j<i; j++)
   int i;        s1+=exp(ps[i][j]);
   int l=1, l1, lmax=20;      for(j=i+1; j<=nlstate+ndeath; j++)
   double k1,k2,k3,k4,res,fx;        s1+=exp(ps[i][j]);
   double p2[NPARMAX+1];      ps[i][i]=1./(s1+1.);
   int k;      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   fx=func(x);      for(j=i+1; j<=nlstate+ndeath; j++)
   for (k=1; k<=2; k++) {        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=1;i<=npar;i++) p2[i]=x[i];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetai]=x[thetai]+delti[thetai]/k;    } /* end i */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
        for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        ps[ii][jj]=0;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        ps[ii][ii]=1;
     k2=func(p2)-fx;      }
      }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
        for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetai]=x[thetai]-delti[thetai]/k;       printf("%lf ",ps[ii][jj]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;     }
     k4=func(p2)-fx;      printf("\n ");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      }
 #ifdef DEBUG      printf("\n ");printf("%lf ",cov[2]);*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*
 #endif    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }    goto end;*/
   return res;      return ps;
 }  }
   
 /************** Inverse of matrix **************/  /**************** Product of 2 matrices ******************/
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i,imax,j,k;  {
   double big,dum,sum,temp;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double *vv;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
   vv=vector(1,n);       before: only the contents of out is modified. The function returns
   *d=1.0;       a pointer to pointers identical to out */
   for (i=1;i<=n;i++) {    long i, j, k;
     big=0.0;    for(i=nrl; i<= nrh; i++)
     for (j=1;j<=n;j++)      for(k=ncolol; k<=ncoloh; k++)
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          out[i][k] +=in[i][j]*b[j][k];
     vv[i]=1.0/big;  
   }    return out;
   for (j=1;j<=n;j++) {  }
     for (i=1;i<j;i++) {  
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /************* Higher Matrix Product ***************/
       a[i][j]=sum;  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     big=0.0;  {
     for (i=j;i<=n;i++) {    /* Computes the transition matrix starting at age 'age' over 
       sum=a[i][j];       'nhstepm*hstepm*stepm' months (i.e. until
       for (k=1;k<j;k++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         sum -= a[i][k]*a[k][j];       nhstepm*hstepm matrices. 
       a[i][j]=sum;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if ( (dum=vv[i]*fabs(sum)) >= big) {       (typically every 2 years instead of every month which is too big 
         big=dum;       for the memory).
         imax=i;       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
     }  
     if (j != imax) {       */
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    int i, j, d, h, k;
         a[imax][k]=a[j][k];    double **out, cov[NCOVMAX];
         a[j][k]=dum;    double **newm;
       }  
       *d = -(*d);    /* Hstepm could be zero and should return the unit matrix */
       vv[imax]=vv[j];    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     indx[j]=imax;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     if (a[j][j] == 0.0) a[j][j]=TINY;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     if (j != n) {      }
       dum=1.0/(a[j][j]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */        /* Covariates have to be included here again */
 ;        cov[1]=1.;
 }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovage;k++)
 {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i,ii=0,ip,j;        for (k=1; k<=cptcovprod;k++)
   double sum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   for (i=1;i<=n;i++) {  
     ip=indx[i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     sum=b[ip];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     b[ip]=b[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     if (ii)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        savm=oldm;
     else if (sum) ii=i;        oldm=newm;
     b[i]=sum;      }
   }      for(i=1; i<=nlstate+ndeath; i++)
   for (i=n;i>=1;i--) {        for(j=1;j<=nlstate+ndeath;j++) {
     sum=b[i];          po[i][j][h]=newm[i][j];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     b[i]=sum/a[i][i];           */
   }        }
 }    } /* end h */
     return po;
 /************ Frequencies ********************/  }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  
    /*************** log-likelihood *************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  double func( double *x)
   double ***freq; /* Frequencies */  {
   double *pp;    int i, ii, j, k, mi, d, kk;
   double pos, k2, dateintsum=0,k2cpt=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   FILE *ficresp;    double **out;
   char fileresp[FILENAMELENGTH];    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   pp=vector(1,nlstate);    int s1, s2;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double bbh, survp;
   strcpy(fileresp,"p");    long ipmx;
   strcat(fileresp,fileres);    /*extern weight */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /* We are differentiating ll according to initial status */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     exit(0);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    */
   j1=0;    cov[1]=1.;
    
   j=cptcoveff;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      if(mle==1){
   for(k1=1; k1<=j;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       j1++;        for(mi=1; mi<= wav[i]-1; mi++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         scanf("%d", i);*/            for (j=1;j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       dateintsum=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k2cpt=0;            for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);          /* But now since version 0.9 we anticipate for bias and large stepm.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * the nearest (and in case of equal distance, to the lowest) interval but now
               if (m<lastpass) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * probability in order to take into account the bias as a fraction of the way
               }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                         * -stepm/2 to stepm/2 .
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * For stepm=1 the results are the same as for previous versions of Imach.
                 dateintsum=dateintsum+k2;           * For stepm > 1 the results are less biased than in previous versions. 
                 k2cpt++;           */
               }          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
                   */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
       if  (cptcovn>0) {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         fprintf(ficresp, "\n#********** Variable ");               to the likelihood is the probability to die between last step unit time and current 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);               step unit time, which is also the differences between probability to die before dh 
         fprintf(ficresp, "**********\n#");               and probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
       for(i=1; i<=nlstate;i++)          as if date of death was unknown. Death was treated as any other
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          health state: the date of the interview describes the actual state
       fprintf(ficresp, "\n");          and not the date of a change in health state. The former idea was
                to consider that at each interview the state was recorded
       for(i=(int)agemin; i <= (int)agemax+3; i++){          (healthy, disable or death) and IMaCh was corrected; but when we
         if(i==(int)agemax+3)          introduced the exact date of death then we should have modified
           printf("Total");          the contribution of an exact death to the likelihood. This new
         else          contribution is smaller and very dependent of the step unit
           printf("Age %d", i);          stepm. It is no more the probability to die between last interview
         for(jk=1; jk <=nlstate ; jk++){          and month of death but the probability to survive from last
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          interview up to one month before death multiplied by the
             pp[jk] += freq[jk][m][i];          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
         for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
           for(m=-1, pos=0; m <=0 ; m++)          which slows down the processing. The difference can be up to 10%
             pos += freq[jk][m][i];          lower mortality.
           if(pp[jk]>=1.e-10)            */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            lli=log(out[s1][s2] - savm[s1][s2]);
           else          }else{
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*if(lli ==000.0)*/
             pp[jk] += freq[jk][m][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           pos += pp[jk];        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           if(pos>=1.e-5)    }  else if(mle==2){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
           if( i <= (int) agemax){          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(pos>=1.e-5){            for (j=1;j<=nlstate+ndeath;j++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               probs[i][jk][j1]= pp[jk]/pos;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            }
             }          for(d=0; d<=dh[mi][i]; d++){
             else            newm=savm;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
         for(jk=-1; jk <=nlstate+ndeath; jk++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=-1; m <=nlstate+ndeath; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            savm=oldm;
         if(i <= (int) agemax)            oldm=newm;
           fprintf(ficresp,"\n");          } /* end mult */
         printf("\n");        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   dateintmean=dateintsum/k2cpt;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   fclose(ficresp);          sw += weight[i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(pp,1,nlstate);        } /* end of wave */
        } /* end of individual */
   /* End of Freq */    }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Prevalence ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */            }
   double *pp;          for(d=0; d<dh[mi][i]; d++){
   double pos, k2;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j1=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   j=cptcoveff;            oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } /* end mult */
          
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
       j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
                lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
           for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             freq[i][jk][m]=0;        } /* end of wave */
            } /* end of individual */
       for (i=1; i<=imx; i++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (z1=1; z1<=cptcoveff; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          for(d=0; d<dh[mi][i]; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 if (calagedate>0)            }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          
                 else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            savm=oldm;
               }            oldm=newm;
             }          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }else{
             pp[jk] += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
             pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm=newm;
   free_vector(pp,1,nlstate);          } /* end mult */
          
 }  /* End of Freq */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************* Waves Concatenation ***************/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      Death is a valid wave (if date is known).        } /* end of wave */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of individual */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* End of if */
      and mw[mi+1][i]. dh depends on stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, mi, m;    return -l;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  }
      double sum=0., jmean=0.;*/  
   /*************** log-likelihood *************/
   int j, k=0,jk, ju, jl;  double funcone( double *x)
   double sum=0.;  {
   jmin=1e+5;    /* Same as likeli but slower because of a lot of printf and if */
   jmax=-1;    int i, ii, j, k, mi, d, kk;
   jmean=0.;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(i=1; i<=imx; i++){    double **out;
     mi=0;    double lli; /* Individual log likelihood */
     m=firstpass;    double llt;
     while(s[m][i] <= nlstate){    int s1, s2;
       if(s[m][i]>=1)    double bbh, survp;
         mw[++mi][i]=m;    /*extern weight */
       if(m >=lastpass)    /* We are differentiating ll according to initial status */
         break;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       else    /*for(i=1;i<imx;i++) 
         m++;      printf(" %d\n",s[4][i]);
     }/* end while */    */
     if (s[m][i] > nlstate){    cov[1]=1.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for(k=1; k<=nlstate; k++) ll[k]=0.;
          /* Only death is a correct wave */  
       mw[mi][i]=m;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
     wav[i]=mi;        for (ii=1;ii<=nlstate+ndeath;ii++)
     if(mi==0)          for (j=1;j<=nlstate+ndeath;j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   for(i=1; i<=imx; i++){        for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<wav[i];mi++){          newm=savm;
       if (stepm <=0)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dh[mi][i]=1;          for (kk=1; kk<=cptcovage;kk++) {
       else{            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (s[mw[mi+1][i]][i] > nlstate) {          }
           if (agedc[i] < 2*AGESUP) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */          savm=oldm;
           k=k+1;          oldm=newm;
           if (j >= jmax) jmax=j;        } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;        s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        s2=s[mw[mi+1][i]][i];
           }        bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
         else{         * is higher than the multiple of stepm and negative otherwise.
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));         */
           k=k+1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           if (j >= jmax) jmax=j;          lli=log(out[s1][s2] - savm[s1][s2]);
           else if (j <= jmin)jmin=j;        } else if (mle==1){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           sum=sum+j;        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         jk= j/stepm;        } else if(mle==3){  /* exponential inter-extrapolation */
         jl= j -jk*stepm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         ju= j -(jk+1)*stepm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         if(jl <= -ju)          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=jk;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         else          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=jk+1;        } /* End of if */
         if(dh[mi][i]==0)        ipmx +=1;
           dh[mi][i]=1; /* At least one step */        sw += weight[i];
       }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
   jmean=sum/k;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);   %10.6f %10.6f %10.6f ", \
  }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 /*********** Tricode ****************************/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 void tricode(int *Tvar, int **nbcode, int imx)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 {            llt +=ll[k]*gipmx/gsw;
   int Ndum[20],ij=1, k, j, i;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int cptcode=0;          }
   cptcoveff=0;          fprintf(ficresilk," %10.6f\n", -llt);
          }
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end of wave */
   for (k=1; k<=7; k++) ncodemax[k]=0;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=1; i<=imx; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       ij=(int)(covar[Tvar[j]][i]);    if(globpr==0){ /* First time we count the contributions and weights */
       Ndum[ij]++;      gipmx=ipmx;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      gsw=sw;
       if (ij > cptcode) cptcode=ij;    }
     }    return -l;
   }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /*************** function likelione ***********/
     ij=1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* This routine should help understanding what is done with 
     for (i=1; i<=ncodemax[j]; i++) {       the selection of individuals/waves and
       for (k=0; k<=19; k++) {       to check the exact contribution to the likelihood.
         if (Ndum[k] != 0) {       Plotting could be done.
           nbcode[Tvar[j]][ij]=k;     */
              int k;
           ij++;  
         }    if(*globpri !=0){ /* Just counts and sums, no printings */
         if (ij > ncodemax[j]) break;      strcpy(fileresilk,"ilk"); 
       }        strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   }          printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  for (k=0; k<19; k++) Ndum[k]=0;      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  for (i=1; i<=ncovmodel-2; i++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       ij=Tvar[i];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       Ndum[ij]++;      for(k=1; k<=nlstate; k++) 
     }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  ij=1;    }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    *fretone=(*funcone)(p);
      Tvaraff[ij]=i;    if(*globpri !=0){
      ij++;      fclose(ficresilk);
    }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  }      fflush(fichtm); 
      } 
     cptcoveff=ij-1;    return;
 }  }
   
 /*********** Health Expectancies ****************/  
   /*********** Maximum Likelihood Estimation ***************/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   /* Health expectancies */    int i,j, iter;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double **xi;
   double age, agelim, hf;    double fret;
   double ***p3mat,***varhe;    double fretone; /* Only one call to likelihood */
   double **dnewm,**doldm;    /*  char filerespow[FILENAMELENGTH];*/
   double *xp;    xi=matrix(1,npar,1,npar);
   double **gp, **gm;    for (i=1;i<=npar;i++)
   double ***gradg, ***trgradg;      for (j=1;j<=npar;j++)
   int theta;        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    strcpy(filerespow,"pow"); 
   xp=vector(1,npar);    strcat(filerespow,fileres);
   dnewm=matrix(1,nlstate*2,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficreseij,"\n");    fprintf(ficrespow,"\n");
   
   if(estepm < stepm){    powell(p,xi,npar,ftol,&iter,&fret,func);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    fclose(ficrespow);
   else  hstepm=estepm;      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* We compute the life expectancy from trapezoids spaced every estepm months    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * This is mainly to measure the difference between two models: for example    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  /**** Computes Hessian and covariance matrix ***/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * to compare the new estimate of Life expectancy with the same linear  {
    * hypothesis. A more precise result, taking into account a more precise    double  **a,**y,*x,pd;
    * curvature will be obtained if estepm is as small as stepm. */    double **hess;
     int i, j,jk;
   /* For example we decided to compute the life expectancy with the smallest unit */    int *indx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      nstepm is the number of stepm from age to agelin.    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    void lubksb(double **a, int npar, int *indx, double b[]) ;
      and note for a fixed period like estepm months */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double gompertz(double p[]);
      survival function given by stepm (the optimization length). Unfortunately it    hess=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    printf("\nCalculation of the hessian matrix. Wait...\n");
      results. So we changed our mind and took the option of the best precision.    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   */    for (i=1;i<=npar;i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   agelim=AGESUP;     
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* nhstepm age range expressed in number of stepm */      
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /*  printf(" %f ",p[i]);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++)  {
     gp=matrix(0,nhstepm,1,nlstate*2);        if (j>i) { 
     gm=matrix(0,nhstepm,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          hess[i][j]=hessij(p,delti,i,j,func,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     }
     /* Computing Variances of health expectancies */    printf("\n");
     fprintf(ficlog,"\n");
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
       cptj=0;    x=vector(1,npar);
       for(j=1; j<= nlstate; j++){    indx=ivector(1,npar);
         for(i=1; i<=nlstate; i++){    for (i=1;i<=npar;i++)
           cptj=cptj+1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    ludcmp(a,npar,indx,&pd);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
            lubksb(a,npar,indx,x);
            for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++)        matcov[i][j]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
        
       cptj=0;    printf("\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(i=1;i<=nlstate;i++){    for (i=1;i<=npar;i++) { 
           cptj=cptj+1;      for (j=1;j<=npar;j++) { 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        printf("%.3e ",hess[i][j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        fprintf(ficlog,"%.3e ",hess[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
       for(j=1; j<= nlstate*2; j++)    }
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
      }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
 /* End theta */  
     /*  printf("\n#Hessian matrix recomputed#\n");
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     for (j=1;j<=npar;j++) {
      for(h=0; h<=nhstepm-1; h++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate*2;j++)      x[j]=1;
         for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++){ 
              y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
      for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1;j<=nlstate*2;j++)      }
         varhe[i][j][(int)age] =0.;      printf("\n");
       fprintf(ficlog,"\n");
      printf("%d|",(int)age);fflush(stdout);    }
      for(h=0;h<=nhstepm-1;h++){    */
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    free_matrix(a,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    free_matrix(y,1,npar,1,npar);
         for(i=1;i<=nlstate*2;i++)    free_vector(x,1,npar);
           for(j=1;j<=nlstate*2;j++)    free_ivector(indx,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(hess,1,npar,1,npar);
       }  
     }  
   }
        
     /* Computing expectancies */  /*************** hessian matrix ****************/
     for(i=1; i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int l=1, lmax=20;
              double k1,k2;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double p2[NPARMAX+1];
     double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     fprintf(ficreseij,"%3.0f",age );    int k=0,kmax=10;
     cptj=0;    double l1;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    fx=func(x);
         cptj++;    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for(l=0 ; l <=lmax; l++){
       }      l1=pow(10,l);
     fprintf(ficreseij,"\n");      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
     free_matrix(gm,0,nhstepm,1,nlstate*2);        delt = delta*(l1*k);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        p2[theta]=x[theta] +delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        k1=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        p2[theta]=x[theta]-delt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_vector(xp,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   free_matrix(dnewm,1,nlstate*2,1,npar);        
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  #ifdef DEBUG
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 /************ Variance ******************/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 {          k=kmax;
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **newm;          k=kmax; l=lmax*10.;
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm, h, nstepm ;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int k, cptcode;          delts=delt;
   double *xp;        }
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    }
   double ***p3mat;    delti[theta]=delts;
   double age,agelim, hf;    return res; 
   int theta;    
   }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int l=1, l1, lmax=20;
   fprintf(ficresvij,"\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    fx=func(x);
      for (k=1; k<=2; k++) {
   if(estepm < stepm){      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else  hstepm=estepm;        k1=func(p2)-fx;
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      p2[thetai]=x[thetai]+delti[thetai]/k;
      nhstepm is the number of hstepm from age to agelim      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      nstepm is the number of stepm from age to agelin.      k2=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      survival function given by stepm (the optimization length). Unfortunately it      k3=func(p2)-fx;
      means that if the survival funtion is printed only each two years of age and if    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      p2[thetai]=x[thetai]-delti[thetai]/k;
      results. So we changed our mind and took the option of the best precision.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   */      k4=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    return res;
     gp=matrix(0,nhstepm,1,nlstate);  }
     gm=matrix(0,nhstepm,1,nlstate);  
   /************** Inverse of matrix **************/
     for(theta=1; theta <=npar; theta++){  void ludcmp(double **a, int n, int *indx, double *d) 
       for(i=1; i<=npar; i++){ /* Computes gradient */  { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double *vv; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
     vv=vector(1,n); 
       if (popbased==1) {    *d=1.0; 
         for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
           prlim[i][i]=probs[(int)age][i][ij];      big=0.0; 
       }      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(j=1; j<= nlstate; j++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for(h=0; h<=nhstepm; h++){      vv[i]=1.0/big; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        big=0.0; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
       if (popbased==1) {        for (k=1;k<j;k++) 
         for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
           prlim[i][i]=probs[(int)age][i][ij];        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
       for(j=1; j<= nlstate; j++){          imax=i; 
         for(h=0; h<=nhstepm; h++){        } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
       for(j=1; j<= nlstate; j++)          a[j][k]=dum; 
         for(h=0; h<=nhstepm; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        *d = -(*d); 
         }        vv[imax]=vv[j]; 
     } /* End theta */      } 
       indx[j]=imax; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     for(h=0; h<=nhstepm; h++)        dum=1.0/(a[j][j]); 
       for(j=1; j<=nlstate;j++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         for(theta=1; theta <=npar; theta++)      } 
           trgradg[h][j][theta]=gradg[h][theta][j];    } 
     free_vector(vv,1,n);  /* Doesn't work */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  ;
     for(i=1;i<=nlstate;i++)  } 
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     for(h=0;h<=nhstepm;h++){    int i,ii=0,ip,j; 
       for(k=0;k<=nhstepm;k++){    double sum; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    for (i=1;i<=n;i++) { 
         for(i=1;i<=nlstate;i++)      ip=indx[i]; 
           for(j=1;j<=nlstate;j++)      sum=b[ip]; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      b[ip]=b[i]; 
       }      if (ii) 
     }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     fprintf(ficresvij,"%.0f ",age );      b[i]=sum; 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++){    for (i=n;i>=1;i--) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvij,"\n");      b[i]=sum/a[i][i]; 
     free_matrix(gp,0,nhstepm,1,nlstate);    } 
     free_matrix(gm,0,nhstepm,1,nlstate);  } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /************ Frequencies ********************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   } /* End age */  {  /* Some frequencies */
      
   free_vector(xp,1,npar);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   free_matrix(doldm,1,nlstate,1,npar);    int first;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double ***freq; /* Frequencies */
     double *pp, **prop;
 }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
 /************ Variance of prevlim ******************/    char fileresp[FILENAMELENGTH];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    
 {    pp=vector(1,nlstate);
   /* Variance of prevalence limit */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    strcpy(fileresp,"p");
   double **newm;    strcat(fileresp,fileres);
   double **dnewm,**doldm;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int i, j, nhstepm, hstepm;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   int k, cptcode;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double *xp;      exit(0);
   double *gp, *gm;    }
   double **gradg, **trgradg;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   double age,agelim;    j1=0;
   int theta;    
        j=cptcoveff;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    first=1;
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   xp=vector(1,npar);        j1++;
   dnewm=matrix(1,nlstate,1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   doldm=matrix(1,nlstate,1,nlstate);          scanf("%d", i);*/
          for (i=-1; i<=nlstate+ndeath; i++)  
   hstepm=1*YEARM; /* Every year of age */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for(m=iagemin; m <= iagemax+3; m++)
   agelim = AGESUP;              freq[i][jk][m]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1; i<=nlstate; i++)  
     if (stepm >= YEARM) hstepm=1;        for(m=iagemin; m <= iagemax+3; m++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          prop[i][m]=0;
     gradg=matrix(1,npar,1,nlstate);        
     gp=vector(1,nlstate);        dateintsum=0;
     gm=vector(1,nlstate);        k2cpt=0;
         for (i=1; i<=imx; i++) {
     for(theta=1; theta <=npar; theta++){          bool=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */          if  (cptcovn>0) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                bool=0;
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
       for(i=1; i<=npar; i++) /* Computes gradient */              k2=anint[m][i]+(mint[m][i]/12.);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(i=1;i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         gm[i] = prlim[i][i];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
       for(i=1;i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     } /* End theta */                }
                 
     trgradg =matrix(1,nlstate,1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     for(j=1; j<=nlstate;j++)                  k2cpt++;
       for(theta=1; theta <=npar; theta++)                }
         trgradg[j][theta]=gradg[theta][j];                /*}*/
             }
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;        }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);         
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficresvpl,"%.0f ",age );          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1; i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");        for(i=1; i<=nlstate;i++) 
     free_vector(gp,1,nlstate);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     free_vector(gm,1,nlstate);        fprintf(ficresp, "\n");
     free_matrix(gradg,1,npar,1,nlstate);        
     free_matrix(trgradg,1,nlstate,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   } /* End age */          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   free_vector(xp,1,npar);          }else{
   free_matrix(doldm,1,nlstate,1,npar);            if(first==1){
   free_matrix(dnewm,1,nlstate,1,nlstate);              first=0;
               printf("See log file for details...\n");
 }            }
             fprintf(ficlog,"Age %d", i);
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for(jk=1; jk <=nlstate ; jk++){
 {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   int i, j, i1, k1, j1, z1;              pp[jk] += freq[jk][m][i]; 
   int k=0,l, cptcode;          }
   double **dnewm,**doldm;          for(jk=1; jk <=nlstate ; jk++){
   double *xp;            for(m=-1, pos=0; m <=0 ; m++)
   double *gp, *gm;              pos += freq[jk][m][i];
   double **gradg, **trgradg;            if(pp[jk]>=1.e-10){
   double age,agelim, cov[NCOVMAX];              if(first==1){
   int theta;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char fileresprob[FILENAMELENGTH];              }
   char fileresprobcov[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char fileresprobcor[FILENAMELENGTH];            }else{
               if(first==1)
   strcpy(fileresprob,"prob");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprob,fileres);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);          }
   }  
   strcpy(fileresprobcov,"probcov");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresprobcov,fileres);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              pp[jk] += freq[jk][m][i];
     printf("Problem with resultfile: %s\n", fileresprobcov);          }       
   }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   strcpy(fileresprobcor,"probcor");            pos += pp[jk];
   strcat(fileresprobcor,fileres);            posprop += prop[jk][i];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcor);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if(first==1)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              if(first==1)
   fprintf(ficresprob,"# Age");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprobcov,"# Age");            }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            if( i <= iagemax){
   fprintf(ficresprobcov,"# Age");              if(pos>=1.e-5){
   for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(j=1; j<=(nlstate+ndeath);j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              else
     }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprob,"\n");            }
   fprintf(ficresprobcov,"\n");          }
   fprintf(ficresprobcor,"\n");          
   xp=vector(1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              if(freq[jk][m][i] !=0 ) {
                if(first==1)
   cov[1]=1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   j=cptcoveff;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              }
   j1=0;          if(i <= iagemax)
   for(k1=1; k1<=1;k1++){            fprintf(ficresp,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){          if(first==1)
     j1++;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
     if  (cptcovn>0) {        }
       fprintf(ficresprob, "\n#********** Variable ");      }
       fprintf(ficresprobcov, "\n#********** Variable ");    }
       fprintf(ficresprobcor, "\n#********** Variable ");    dateintmean=dateintsum/k2cpt; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
       fprintf(ficresprob, "**********\n#");    fclose(ficresp);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficresprobcov, "**********\n#");    free_vector(pp,1,nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficresprobcor, "**********\n#");    /* End of Freq */
     }  }
      
       for (age=bage; age<=fage; age ++){  /************ Prevalence ********************/
         cov[2]=age;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for (k=1; k<=cptcovn;k++) {  {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }       in each health status at the date of interview (if between dateprev1 and dateprev2).
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       We still use firstpass and lastpass as another selection.
         for (k=1; k<=cptcovprod;k++)    */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
            int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         gradg=matrix(1,npar,1,9);    double ***freq; /* Frequencies */
         trgradg=matrix(1,9,1,npar);    double *pp, **prop;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double pos,posprop; 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double  y2; /* in fractional years */
        int iagemin, iagemax;
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)    iagemin= (int) agemin;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    iagemax= (int) agemax;
              /*pp=vector(1,nlstate);*/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
              /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           k=0;    j1=0;
           for(i=1; i<= (nlstate+ndeath); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
               k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               gp[k]=pmmij[i][j];    
             }    for(k1=1; k1<=j;k1++){
           }      for(i1=1; i1<=ncodemax[k1];i1++){
                  j1++;
           for(i=1; i<=npar; i++)        
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            prop[i][m]=0.0;
           k=0;       
           for(i=1; i<=(nlstate+ndeath); i++){        for (i=1; i<=imx; i++) { /* Each individual */
             for(j=1; j<=(nlstate+ndeath);j++){          bool=1;
               k=k+1;          if  (cptcovn>0) {
               gm[k]=pmmij[i][j];            for (z1=1; z1<=cptcoveff; z1++) 
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
                } 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          if (bool==1) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(theta=1; theta <=npar; theta++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             trgradg[j][theta]=gradg[theta][j];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                          prop[s[m][i]][iagemax+3] += weight[i]; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);                } 
                      }
         k=0;            } /* end selection of waves */
         for(i=1; i<=(nlstate+ndeath); i++){          }
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;        for(i=iagemin; i <= iagemax+3; i++){  
             gm[k]=pmmij[i][j];          
           }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
                } 
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for(jk=1; jk <=nlstate ; jk++){     
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            if( i <=  iagemax){ 
      }*/              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(ficresprob,"\n%d ",(int)age);              } 
         fprintf(ficresprobcov,"\n%d ",(int)age);            } 
         fprintf(ficresprobcor,"\n%d ",(int)age);          }/* end jk */ 
         }/* end i */ 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      } /* end i1 */
           fprintf(ficresprob,"%12.3e (%12.3e) ",gm[i],sqrt(doldm[i][j]));    } /* end k1 */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    
           fprintf(ficresprobcov,"%12.3e ",gm[i]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           fprintf(ficresprobcor,"%12.3e ",gm[i]);    /*free_vector(pp,1,nlstate);*/
         }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         i=0;  }  /* End of prevalence */
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  /************* Waves Concatenation ***************/
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  {
             for (j=1; j<=i;j++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               fprintf(ficresprobcov," %12.3e",doldm[i][j]);       Death is a valid wave (if date is known).
               fprintf(ficresprobcor," %12.3e",doldm[i][j]/sqrt(doldm[i][i])/sqrt(doldm[j][j]));       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
     }    int i, mi, m;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       double sum=0., jmean=0.;*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int first;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int j, k=0,jk, ju, jl;
   }    double sum=0.;
   free_vector(xp,1,npar);    first=0;
   fclose(ficresprob);    jmin=1e+5;
   fclose(ficresprobcov);    jmax=-1;
   fclose(ficresprobcor);    jmean=0.;
 }    for(i=1; i<=imx; i++){
       mi=0;
       m=firstpass;
 /******************* Printing html file ***********/      while(s[m][i] <= nlstate){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        if(s[m][i]>=1)
                   int lastpass, int stepm, int weightopt, char model[],\          mw[++mi][i]=m;
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        if(m >=lastpass)
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          break;
                   char version[], int popforecast, int estepm ,\        else
                   double jprev1, double mprev1,double anprev1, \          m++;
                   double jprev2, double mprev2,double anprev2){      }/* end while */
   int jj1, k1, i1, cpt;      if (s[m][i] > nlstate){
   FILE *fichtm;        mi++;     /* Death is another wave */
   /*char optionfilehtm[FILENAMELENGTH];*/        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   strcpy(optionfilehtm,optionfile);        mw[mi][i]=m;
   strcat(optionfilehtm,".htm");      }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);      wav[i]=mi;
   }      if(mi==0){
         nbwarn++;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        if(first==0){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 \n          first=1;
 Total number of observations=%d <br>\n        }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        if(first==1){
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  <ul><li>Parameter files<br>\n        }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      } /* end mi==0 */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    } /* End individuals */
   
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    for(i=1; i<=imx; i++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      for(mi=1; mi<wav[i];mi++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        if (stepm <=0)
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          dh[mi][i]=1;
  - Life expectancies by age and initial health status (estepm=%2d months):        else{
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              else if(j<0){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                nberr++;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                j=1; /* Temporary Dangerous patch */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
  if(popforecast==1) fprintf(fichtm,"\n              k=k+1;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if (j >= jmax) jmax=j;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              if (j <= jmin) jmin=j;
         <br>",fileres,fileres,fileres,fileres);              sum=sum+j;
  else              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(fichtm," <li>Graphs</li><p>");            }
           }
  m=cptcoveff;          else{
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  jj1=0;            k=k+1;
  for(k1=1; k1<=m;k1++){            if (j >= jmax) jmax=j;
    for(i1=1; i1<=ncodemax[k1];i1++){            else if (j <= jmin)jmin=j;
      jj1++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      if (cptcovn > 0) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            if(j<0){
        for (cpt=1; cpt<=cptcoveff;cpt++)              nberr++;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
      /* Pij */            sum=sum+j;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              jk= j/stepm;
      /* Quasi-incidences */          jl= j -jk*stepm;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          ju= j -(jk+1)*stepm;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        /* Stable prevalence in each health state */            if(jl==0){
        for(cpt=1; cpt<nlstate;cpt++){              dh[mi][i]=jk;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              bh[mi][i]=0;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{ /* We want a negative bias in order to only have interpolation ie
        }                    * at the price of an extra matrix product in likelihood */
     for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk+1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              bh[mi][i]=ju;
 interval) in state (%d): v%s%d%d.png <br>            }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{
      }            if(jl <= -ju){
      for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              bh[mi][i]=jl;       /* bias is positive if real duration
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                   * is higher than the multiple of stepm and negative otherwise.
      }                                   */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.png<br>            else{
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              dh[mi][i]=jk+1;
 fprintf(fichtm,"\n</body>");              bh[mi][i]=ju;
    }            }
  }            if(dh[mi][i]==0){
 fclose(fichtm);              dh[mi][i]=1; /* At least one step */
 }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 /******************* Gnuplot file **************/            }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          } /* end if mle */
         }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      } /* end wave */
   int ng;    }
   strcpy(optionfilegnuplot,optionfilefiname);    jmean=sum/k;
   strcat(optionfilegnuplot,".gp");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     printf("Problem with file %s",optionfilegnuplot);   }
   }  
   /*********** Tricode ****************************/
 #ifdef windows  void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficgp,"cd \"%s\" \n",pathc);  {
 #endif    
 m=pow(2,cptcoveff);    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
  /* 1eme*/    cptcoveff=0; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {   
    for (k1=1; k1<= m ; k1 ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 #endif                                 modality*/ 
 #ifdef unix        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        Ndum[ij]++; /*store the modality */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 #endif        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
 for (i=1; i<= nlstate ; i ++) {                                         female is 1, then  cptcode=1.*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for (i=0; i<=cptcode; i++) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      ij=1; 
 }      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for (k=0; k<= maxncov; k++) {
      for (i=1; i<= nlstate ; i ++) {          if (Ndum[k] != 0) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            nbcode[Tvar[j]][ij]=k; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 }              
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            ij++;
 #ifdef unix          }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          if (ij > ncodemax[j]) break; 
 #endif        }  
    }      } 
   }    }  
   /*2 eme*/  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);   for (i=1; i<=ncovmodel-2; i++) { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         ij=Tvar[i];
     for (i=1; i<= nlstate+1 ; i ++) {     Ndum[ij]++;
       k=2*i;   }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   ij=1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<= maxncov; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
 }         Tvaraff[ij]=i; /*For printing */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       ij++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);     }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   }
       for (j=1; j<= nlstate+1 ; j ++) {   
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");  /*********** Health Expectancies ****************/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Health expectancies */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double age, agelim, hf;
     }    double ***p3mat,***varhe;
   }    double **dnewm,**doldm;
      double *xp;
   /*3eme*/    double **gp, **gm;
     double ***gradg, ***trgradg;
   for (k1=1; k1<= m ; k1 ++) {    int theta;
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    xp=vector(1,npar);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficreseij,"# Health expectancies\n");
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficreseij,"# Age");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
 */    fprintf(ficreseij,"\n");
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   /* CV preval stat */     * if stepm=24 months pijx are given only every 2 years and by summing them
     for (k1=1; k1<= m ; k1 ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for (cpt=1; cpt<nlstate ; cpt ++) {     * progression in between and thus overestimating or underestimating according
       k=3;     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
       for (i=1; i< nlstate ; i ++)     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       l=3+(nlstate+ndeath)*cpt;       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       nstepm is the number of stepm from age to agelin. 
       for (i=1; i< nlstate ; i ++) {       Look at hpijx to understand the reason of that which relies in memory size
         l=3+(nlstate+ndeath)*cpt;       and note for a fixed period like estepm months */
         fprintf(ficgp,"+$%d",l+i+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }         results. So we changed our mind and took the option of the best precision.
      */
   /* proba elementaires */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){    agelim=AGESUP;
       if (k != i) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(j=1; j <=ncovmodel; j++){      /* nhstepm age range expressed in number of stepm */
              nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           jk++;      /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,"\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
    }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      for(jk=1; jk <=m; jk++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
        if (ng==2)   
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      /* Computing  Variances of health expectancies */
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {       for(theta=1; theta <=npar; theta++){
          k3=i;        for(i=1; i<=npar; i++){ 
          for(k=1; k<=(nlstate+ndeath); k++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            if (k != k2){        }
              if(ng==2)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    
              else        cptj=0;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<= nlstate; j++){
              ij=1;          for(i=1; i<=nlstate; i++){
              for(j=3; j <=ncovmodel; j++) {            cptj=cptj+1;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                  ij++;            }
                }          }
                else        }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       
              }       
              fprintf(ficgp,")/(1");        for(i=1; i<=npar; i++) 
                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
              for(k1=1; k1 <=nlstate; k1++){          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        
                ij=1;        cptj=0;
                for(j=3; j <=ncovmodel; j++){        for(j=1; j<= nlstate; j++){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(i=1;i<=nlstate;i++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            cptj=cptj+1;
                    ij++;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                  }  
                  else              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
                }          }
                fprintf(ficgp,")");        }
              }        for(j=1; j<= nlstate*nlstate; j++)
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for(h=0; h<=nhstepm-1; h++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              i=i+ncovmodel;          }
            }       } 
          }     
        }  /* End theta */
      }  
    }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fclose(ficgp);  
 }  /* end gnuplot */       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
 /*************** Moving average **************/            trgradg[h][j][theta]=gradg[h][theta][j];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       
   
   int i, cpt, cptcod;       for(i=1;i<=nlstate*nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(j=1;j<=nlstate*nlstate;j++)
       for (i=1; i<=nlstate;i++)          varhe[i][j][(int)age] =0.;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;       printf("%d|",(int)age);fflush(stdout);
           fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       for(h=0;h<=nhstepm-1;h++){
       for (i=1; i<=nlstate;i++){        for(k=0;k<=nhstepm-1;k++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for (cpt=0;cpt<=4;cpt++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          for(i=1;i<=nlstate*nlstate;i++)
           }            for(j=1;j<=nlstate*nlstate;j++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
       }      }
     }      /* Computing expectancies */
          for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 /************** Forecasting ******************/            
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficreseij,"%3.0f",age );
   double *popeffectif,*popcount;      cptj=0;
   double ***p3mat;      for(i=1; i<=nlstate;i++)
   char fileresf[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
           cptj++;
  agelim=AGESUP;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        }
       fprintf(ficreseij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcpy(fileresf,"f");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileresf,fileres);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with forecast resultfile: %s\n", fileresf);    }
   }    printf("\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficlog,"\n");
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   if (mobilav==1) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     movingaverage(agedeb, fage, ageminpar, mobaverage);  }
   }  
   /************ Variance ******************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   if (stepm<=12) stepsize=1;  {
      /* Variance of health expectancies */
   agelim=AGESUP;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   hstepm=1;    double **dnewm,**doldm;
   hstepm=hstepm/stepm;    double **dnewmp,**doldmp;
   yp1=modf(dateintmean,&yp);    int i, j, nhstepm, hstepm, h, nstepm ;
   anprojmean=yp;    int k, cptcode;
   yp2=modf((yp1*12),&yp);    double *xp;
   mprojmean=yp;    double **gp, **gm;  /* for var eij */
   yp1=modf((yp2*30.5),&yp);    double ***gradg, ***trgradg; /*for var eij */
   jprojmean=yp;    double **gradgp, **trgradgp; /* for var p point j */
   if(jprojmean==0) jprojmean=1;    double *gpp, *gmp; /* for var p point j */
   if(mprojmean==0) jprojmean=1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double age,agelim, hf;
      double ***mobaverage;
   for(cptcov=1;cptcov<=i2;cptcov++){    int theta;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    char digit[4];
       k=k+1;    char digitp[25];
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    if(popbased==1){
       fprintf(ficresf,"******\n");      if(mobilav!=0)
       fprintf(ficresf,"# StartingAge FinalAge");        strcpy(digitp,"-populbased-mobilav-");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      else strcpy(digitp,"-populbased-nomobil-");
          }
          else 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      strcpy(digitp,"-stablbased-");
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm = nhstepm/hstepm;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprobmorprev,"prmorprev"); 
            sprintf(digit,"%-d",ij);
           for (h=0; h<=nhstepm; h++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             if (h==(int) (calagedate+YEARM*cpt)) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             }    strcat(fileresprobmorprev,fileres);
             for(j=1; j<=nlstate+ndeath;j++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               kk1=0.;kk2=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               for(i=1; i<=nlstate;i++) {                    fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 if (mobilav==1)    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 else {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                 }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               }      fprintf(ficresprobmorprev," p.%-d SE",j);
               if (h==(int)(calagedate+12*cpt)){      for(i=1; i<=nlstate;i++)
                 fprintf(ficresf," %.3f", kk1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                            }  
               }    fprintf(ficresprobmorprev,"\n");
             }    fprintf(ficgp,"\n# Routine varevsij");
           }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }  /*   } */
       }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
            fprintf(ficresvij,"# Age");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   fclose(ficresf);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 }    fprintf(ficresvij,"\n");
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    doldm=matrix(1,nlstate,1,nlstate);
   int *popage;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   char filerespop[FILENAMELENGTH];    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;    if(estepm < stepm){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(filerespop,"pop");       nhstepm is the number of hstepm from age to agelim 
   strcat(filerespop,fileres);       nstepm is the number of stepm from age to agelin. 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with forecast resultfile: %s\n", filerespop);       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing forecasting: result on file '%s' \n", filerespop);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (stepm<=12) stepsize=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   agelim=AGESUP;      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   hstepm=1;  
   hstepm=hstepm/stepm;  
        for(theta=1; theta <=npar; theta++){
   if (popforecast==1) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     if((ficpop=fopen(popfile,"r"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     popage=ivector(0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);        if (popbased==1) {
              if(mobilav ==0){
     i=1;              for(i=1; i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     imx=i;            for(i=1; i<=nlstate;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
         }
   for(cptcov=1;cptcov<=i2;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1; j<= nlstate; j++){
       k=k+1;          for(h=0; h<=nhstepm; h++){
       fprintf(ficrespop,"\n#******");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }        }
       fprintf(ficrespop,"******\n");        /* This for computing probability of death (h=1 means
       fprintf(ficrespop,"# Age");           computed over hstepm matrices product = hstepm*stepm months) 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);           as a weighted average of prlim.
       if (popforecast==1)  fprintf(ficrespop," [Population]");        */
              for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (cpt=0; cpt<=0;cpt++) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              gpp[j] += prlim[i][i]*p3mat[i][j][1];
                }    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /* end probability of death */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                    xp[i] = x[i] - (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
                if (popbased==1) {
           for (h=0; h<=nhstepm; h++){          if(mobilav ==0){
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<=nlstate;i++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              prlim[i][i]=probs[(int)age][i][ij];
             }          }else{ /* mobilav */ 
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {        for(j=1; j<= nlstate; j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(h=0; h<=nhstepm; h++){
                 }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               if (h==(int)(calagedate+12*cpt)){          }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        }
                   /*fprintf(ficrespop," %.3f", kk1);        /* This for computing probability of death (h=1 means
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/           computed over hstepm matrices product = hstepm*stepm months) 
               }           as a weighted average of prlim.
             }        */
             for(i=1; i<=nlstate;i++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               kk1=0.;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 for(j=1; j<=nlstate;j++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        }    
                 }        /* end probability of death */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       }        }
    
   /******/      } /* End theta */
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(h=0; h<=nhstepm; h++) /* veij */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;          for(theta=1; theta <=npar; theta++)
                      trgradg[h][j][theta]=gradg[h][theta][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(theta=1; theta <=npar; theta++)
           for (h=0; h<=nhstepm; h++){          trgradgp[j][theta]=gradgp[theta][j];
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1;i<=nlstate;i++)
               kk1=0.;kk2=0;        for(j=1;j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        vareij[i][j][(int)age] =0.;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      for(h=0;h<=nhstepm;h++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(k=0;k<=nhstepm;k++){
             }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
    }        }
   }      }
      
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   if (popforecast==1) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     free_ivector(popage,0,AGESUP);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_vector(popeffectif,0,AGESUP);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_vector(popcount,0,AGESUP);          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*  x centered again */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fclose(ficrespop);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 }   
       if (popbased==1) {
 /***********************************************/        if(mobilav ==0){
 /**************** Main Program *****************/          for(i=1; i<=nlstate;i++)
 /***********************************************/            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
 int main(int argc, char *argv[])          for(i=1; i<=nlstate;i++)
 {            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      }
   double agedeb, agefin,hf;               
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double fret;         as a weighted average of prlim.
   double **xi,tmp,delta;      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double dum; /* Dummy variable */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double ***p3mat;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   int *indx;      }    
   char line[MAXLINE], linepar[MAXLINE];      /* end probability of death */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   char filerest[FILENAMELENGTH];        }
   char fileregp[FILENAMELENGTH];      } 
   char popfile[FILENAMELENGTH];      fprintf(ficresprobmorprev,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      fprintf(ficresvij,"%.0f ",age );
   int sdeb, sfin; /* Status at beginning and end */      for(i=1; i<=nlstate;i++)
   int c,  h , cpt,l;        for(j=1; j<=nlstate;j++){
   int ju,jl, mi;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficresvij,"\n");
   int mobilav=0,popforecast=0;      free_matrix(gp,0,nhstepm,1,nlstate);
   int hstepm, nhstepm;      free_matrix(gm,0,nhstepm,1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double bage, fage, age, agelim, agebase;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ftolpl=FTOL;    } /* End age */
   double **prlim;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double *severity;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double ***param; /* Matrix of parameters */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double  *p;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double **matcov; /* Matrix of covariance */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double ***delti3; /* Scale */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double *delti; /* Scale */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double ***eij, ***vareij;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double **varpl; /* Variances of prevalence limits by age */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double *epj, vepp;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double kk1, kk2;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   char z[1]="c", occ;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 #include <sys/time.h>  
 #include <time.h>    free_vector(xp,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   /* long total_usecs;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   struct timeval start_time, end_time;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   getcwd(pathcd, size);    fclose(ficresprobmorprev);
     fflush(ficgp);
   printf("\n%s",version);    fflush(fichtm); 
   if(argc <=1){  }  /* end varevsij */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);  /************ Variance of prevlim ******************/
   }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   else{  {
     strcpy(pathtot,argv[1]);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **newm;
   /*cygwin_split_path(pathtot,path,optionfile);    double **dnewm,**doldm;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int i, j, nhstepm, hstepm;
   /* cutv(path,optionfile,pathtot,'\\');*/    int k, cptcode;
     double *xp;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double *gp, *gm;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **gradg, **trgradg;
   chdir(path);    double age,agelim;
   replace(pathc,path);    int theta;
      
 /*-------- arguments in the command line --------*/    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   strcpy(fileres,"r");    for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficresvpl,"\n");
   
   /*---------arguments file --------*/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);    
     goto end;    hstepm=1*YEARM; /* Every year of age */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   strcpy(filereso,"o");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(filereso,fileres);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if((ficparo=fopen(filereso,"w"))==NULL) {      if (stepm >= YEARM) hstepm=1;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   /* Reads comments: lines beginning with '#' */      gm=vector(1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(i=1; i<=npar; i++) /* Computes gradient */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gm[i] = prlim[i][i];
     puts(line);  
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   ungetc(c,ficpar);      } /* End theta */
    
          trgradg =matrix(1,nlstate,1,npar);
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      for(j=1; j<=nlstate;j++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   /* Read guess parameters */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresvpl,"%.0f ",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   ungetc(c,ficpar);      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      free_vector(gm,1,nlstate);
     for(i=1; i <=nlstate; i++)      free_matrix(gradg,1,npar,1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){      free_matrix(trgradg,1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    } /* End age */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    free_vector(xp,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_matrix(doldm,1,nlstate,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(dnewm,1,nlstate,1,nlstate);
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  }
       }  
       fscanf(ficpar,"\n");  /************ Variance of one-step probabilities  ******************/
       printf("\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       fprintf(ficparo,"\n");  {
     }    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int k=0,l, cptcode;
     int first=1, first1;
   p=param[1][1];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   /* Reads comments: lines beginning with '#' */    double *xp;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
     ungetc(c,ficpar);    double **gradg, **trgradg;
     fgets(line, MAXLINE, ficpar);    double **mu;
     puts(line);    double age,agelim, cov[NCOVMAX];
     fputs(line,ficparo);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   }    int theta;
   ungetc(c,ficpar);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    char fileresprobcor[FILENAMELENGTH];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    double ***varpij;
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcpy(fileresprob,"prob"); 
       printf("%1d%1d",i,j);    strcat(fileresprob,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for(k=1; k<=ncovmodel;k++){      printf("Problem with resultfile: %s\n", fileresprob);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    strcpy(fileresprobcov,"probcov"); 
       }    strcat(fileresprobcov,fileres);
       fscanf(ficpar,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
   }    strcpy(fileresprobcor,"probcor"); 
   delti=delti3[1][1];    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fputs(line,ficparo);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ungetc(c,ficpar);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fscanf(ficpar,"%s",&str);    fprintf(ficresprob,"# Age");
     printf("%s",str);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficparo,"%s",str);    fprintf(ficresprobcov,"# Age");
     for(j=1; j <=i; j++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresprobcov,"# Age");
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
     printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     fprintf(ficparo,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   for(i=1; i <=npar; i++)      }  
     for(j=i+1;j<=npar;j++)   /* fprintf(ficresprob,"\n");
       matcov[i][j]=matcov[j][i];    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
   printf("\n");   */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /*-------- Rewriting paramater file ----------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      strcpy(rfileres,"r");    /* "Rparameterfile */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      strcat(rfileres,".");    /* */    first=1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficgp,"\n# Routine varprob");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(fichtm,"\n");
     }  
     fprintf(ficres,"#%s\n",version);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     /*-------- data file ----------*/    file %s<br>\n",optionfilehtmcov);
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("Problem with datafile: %s\n", datafile);goto end;  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     n= lastobs;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     severity = vector(1,maxwav);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     outcome=imatrix(1,maxwav+1,1,n);  standard deviations wide on each axis. <br>\
     num=ivector(1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     moisnais=vector(1,n);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     annais=vector(1,n);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     moisdc=vector(1,n);  
     andc=vector(1,n);    cov[1]=1;
     agedc=vector(1,n);    tj=cptcoveff;
     cod=ivector(1,n);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     weight=vector(1,n);    j1=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for(t=1; t<=tj;t++){
     mint=matrix(1,maxwav,1,n);      for(i1=1; i1<=ncodemax[t];i1++){ 
     anint=matrix(1,maxwav,1,n);        j1++;
     s=imatrix(1,maxwav+1,1,n);        if  (cptcovn>0) {
     adl=imatrix(1,maxwav+1,1,n);              fprintf(ficresprob, "\n#********** Variable "); 
     tab=ivector(1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ncodemax=ivector(1,8);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
     i=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficresprobcov, "**********\n#\n");
       if ((i >= firstobs) && (i <=lastobs)) {          
                  fprintf(ficgp, "\n#********** Variable "); 
         for (j=maxwav;j>=1;j--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficgp, "**********\n#\n");
           strcpy(line,stra);          
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "**********\n#");    
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (age=bage; age<=fage; age ++){ 
         for (j=ncovcol;j>=1;j--){          cov[2]=age;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         num[i]=atol(stra);          }
                  for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (k=1; k<=cptcovprod;k++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
         i=i+1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
     /* printf("ii=%d", ij);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        scanf("%d",i);*/      
   imx=i-1; /* Number of individuals */          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   /* for (i=1; i<=imx; i++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            
     }*/            k=0;
    /*  for (i=1; i<=imx; i++){            for(i=1; i<= (nlstate); i++){
      if (s[4][i]==9)  s[4][i]=-1;              for(j=1; j<=(nlstate+ndeath);j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                k=k+1;
                  gp[k]=pmmij[i][j];
                }
   /* Calculation of the number of parameter from char model*/            }
   Tvar=ivector(1,15);            
   Tprod=ivector(1,15);            for(i=1; i<=npar; i++)
   Tvaraff=ivector(1,15);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   Tvard=imatrix(1,15,1,2);      
   Tage=ivector(1,15);                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
   if (strlen(model) >1){            for(i=1; i<=(nlstate); i++){
     j=0, j1=0, k1=1, k2=1;              for(j=1; j<=(nlstate+ndeath);j++){
     j=nbocc(model,'+');                k=k+1;
     j1=nbocc(model,'*');                gm[k]=pmmij[i][j];
     cptcovn=j+1;              }
     cptcovprod=j1;            }
           
     strcpy(modelsav,model);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       printf("Error. Non available option model=%s ",model);          }
       goto end;  
     }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
     for(i=(j+1); i>=1;i--){              trgradg[j][theta]=gradg[theta][j];
       cutv(stra,strb,modelsav,'+');          
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       /*scanf("%d",i);*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       if (strchr(strb,'*')) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         cutv(strd,strc,strb,'*');          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         if (strcmp(strc,"age")==0) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cptcovprod--;  
           cutv(strb,stre,strd,'V');          pmij(pmmij,cov,ncovmodel,x,nlstate);
           Tvar[i]=atoi(stre);          
           cptcovage++;          k=0;
             Tage[cptcovage]=i;          for(i=1; i<=(nlstate); i++){
             /*printf("stre=%s ", stre);*/            for(j=1; j<=(nlstate+ndeath);j++){
         }              k=k+1;
         else if (strcmp(strd,"age")==0) {              mu[k][(int) age]=pmmij[i][j];
           cptcovprod--;            }
           cutv(strb,stre,strc,'V');          }
           Tvar[i]=atoi(stre);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           cptcovage++;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           Tage[cptcovage]=i;              varpij[i][j][(int)age] = doldm[i][j];
         }  
         else {          /*printf("\n%d ",(int)age);
           cutv(strb,stre,strc,'V');            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tvar[i]=ncovcol+k1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           cutv(strb,strc,strd,'V');            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           Tprod[k1]=i;            }*/
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);          fprintf(ficresprob,"\n%d ",(int)age);
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficresprobcov,"\n%d ",(int)age);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficresprobcor,"\n%d ",(int)age);
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           k1++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           k2=k2+2;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          i=0;
        /*  scanf("%d",i);*/          for (k=1; k<=(nlstate);k++){
       cutv(strd,strc,strb,'V');            for (l=1; l<=(nlstate+ndeath);l++){ 
       Tvar[i]=atoi(strc);              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       strcpy(modelsav,stra);                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              for (j=1; j<=i;j++){
         scanf("%d",i);*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 }              }
              }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          }/* end of loop for state */
   printf("cptcovprod=%d ", cptcovprod);        } /* end of loop for age */
   scanf("%d ",i);*/  
     fclose(fic);        /* Confidence intervalle of pij  */
         /*
     /*  if(mle==1){*/          fprintf(ficgp,"\nset noparametric;unset label");
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     agev=matrix(1,maxwav,1,imx);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for (i=1; i<=imx; i++) {        */
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          anint[m][i]=9999;        first1=1;
          s[m][i]=-1;        for (k2=1; k2<=(nlstate);k2++){
        }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            if(l2==k2) continue;
       }            j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     for (i=1; i<=imx; i++)  {                if(l1==k1) continue;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                i=(k1-1)*(nlstate+ndeath)+l1;
       for(m=1; (m<= maxwav); m++){                if(i<=j) continue;
         if(s[m][i] >0){                for (age=bage; age<=fage; age ++){ 
           if (s[m][i] >= nlstate+1) {                  if ((int)age %5==0){
             if(agedc[i]>0)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
               if(moisdc[i]!=99 && andc[i]!=9999)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                 agev[m][i]=agedc[i];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
            else {                    mu2=mu[j][(int) age]/stepm*YEARM;
               if (andc[i]!=9999){                    c12=cv12/sqrt(v1*v2);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    /* Computing eigen value of matrix of covariance */
               agev[m][i]=-1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             }                    /* Eigen vectors */
           }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           else if(s[m][i] !=9){ /* Should no more exist */                    /*v21=sqrt(1.-v11*v11); *//* error */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    v21=(lc1-v1)/cv12*v11;
             if(mint[m][i]==99 || anint[m][i]==9999)                    v12=-v21;
               agev[m][i]=1;                    v22=v11;
             else if(agev[m][i] <agemin){                    tnalp=v21/v11;
               agemin=agev[m][i];                    if(first1==1){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      first1=0;
             }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             else if(agev[m][i] >agemax){                    }
               agemax=agev[m][i];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    /*printf(fignu*/
             }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             /*agev[m][i]=anint[m][i]-annais[i];*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             /*   agev[m][i] = age[i]+2*m;*/                    if(first==1){
           }                      first=0;
           else { /* =9 */                      fprintf(ficgp,"\nset parametric;unset label");
             agev[m][i]=1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             s[m][i]=-1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         else /*= 0 Unknown */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           agev[m][i]=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for (i=1; i<=imx; i++)  {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(m=1; (m<= maxwav); m++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         if (s[m][i] > (nlstate+ndeath)) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           printf("Error: Wrong value in nlstate or ndeath\n");                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
     }                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_vector(severity,1,maxwav);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_imatrix(outcome,1,maxwav+1,1,n);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     free_vector(moisnais,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_vector(annais,1,n);                    }/* if first */
     /* free_matrix(mint,1,maxwav,1,n);                  } /* age mod 5 */
        free_matrix(anint,1,maxwav,1,n);*/                } /* end loop age */
     free_vector(moisdc,1,n);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(andc,1,n);                first=1;
               } /*l12 */
                } /* k12 */
     wav=ivector(1,imx);          } /*l1 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }/* k1 */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      } /* loop covariates */
        }
     /* Concatenates waves */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
       Tcode=ivector(1,100);    fclose(ficresprobcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fclose(ficresprobcor);
       ncodemax[1]=1;    fflush(ficgp);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fflush(fichtmcov);
        }
    codtab=imatrix(1,100,1,10);  
    h=0;  
    m=pow(2,cptcoveff);  /******************* Printing html file ***********/
    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    for(k=1;k<=cptcoveff; k++){                    int lastpass, int stepm, int weightopt, char model[],\
      for(i=1; i <=(m/pow(2,k));i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        for(j=1; j <= ncodemax[k]; j++){                    int popforecast, int estepm ,\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    double jprev1, double mprev1,double anprev1, \
            h++;                    double jprev2, double mprev2,double anprev2){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    int jj1, k1, i1, cpt;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
        }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
      }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    }     fprintf(fichtm,"\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       codtab[1][2]=1;codtab[2][2]=2; */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    /* for(i=1; i <=m ;i++){     fprintf(fichtm,"\
       for(k=1; k <=cptcovn; k++){   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       }     fprintf(fichtm,"\
       printf("\n");   - Life expectancies by age and initial health status (estepm=%2d months): \
       }     <a href=\"%s\">%s</a> <br>\n</li>",
       scanf("%d",i);*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
        and prints on file fileres'p'. */  
    m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       jj1++;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       if (cptcovn > 0) {
               fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /* For Powell, parameters are in a vector p[] starting at p[1]         for (cpt=1; cpt<=cptcoveff;cpt++) 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
     if(mle==1){       /* Pij */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           /* Quasi-incidences */
     /*--------- results files --------------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
    jk=1;         for(cpt=1; cpt<nlstate;cpt++){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    for(i=1,jk=1; i <=nlstate; i++){         }
      for(k=1; k <=(nlstate+ndeath); k++){       for(cpt=1; cpt<=nlstate;cpt++) {
        if (k != i)          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
          {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
            printf("%d%d ",i,k);       }
            fprintf(ficres,"%1d%1d ",i,k);     } /* end i1 */
            for(j=1; j <=ncovmodel; j++){   }/* End k1 */
              printf("%f ",p[jk]);   fprintf(fichtm,"</ul>");
              fprintf(ficres,"%f ",p[jk]);  
              jk++;  
            }   fprintf(fichtm,"\
            printf("\n");  \n<br><li><h4> Result files (second order: variances)</h4>\n\
            fprintf(ficres,"\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
          }  
      }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  if(mle==1){   fprintf(fichtm,"\
     /* Computing hessian and covariance matrix */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     ftolhess=ftol; /* Usually correct */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }   fprintf(fichtm,"\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("# Scales (for hessian or gradient estimation)\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
      for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"\
       for(j=1; j <=nlstate+ndeath; j++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         if (j!=i) {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           fprintf(ficres,"%1d%1d",i,j);   fprintf(fichtm,"\
           printf("%1d%1d",i,j);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           for(k=1; k<=ncovmodel;k++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             printf(" %.5e",delti[jk]);   fprintf(fichtm,"\
             fprintf(ficres," %.5e",delti[jk]);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             jk++;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           }  
           printf("\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
           fprintf(ficres,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       }  /*      <br>",fileres,fileres,fileres,fileres); */
      }  /*  else  */
      /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     k=1;   fflush(fichtm);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){   m=cptcoveff;
       /*  if (k>nlstate) k=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   jj1=0;
       printf("%s%d%d",alph[k],i1,tab[i]);*/   for(k1=1; k1<=m;k1++){
       fprintf(ficres,"%3d",i);     for(i1=1; i1<=ncodemax[k1];i1++){
       printf("%3d",i);       jj1++;
       for(j=1; j<=i;j++){       if (cptcovn > 0) {
         fprintf(ficres," %.5e",matcov[i][j]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         printf(" %.5e",matcov[i][j]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficres,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("\n");       }
       k++;       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
      prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       ungetc(c,ficpar);       }
       fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       puts(line);  health expectancies in states (1) and (2): %s%d.png<br>\
       fputs(line,ficparo);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     }     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     estepm=0;   fprintf(fichtm,"</ul>");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   fflush(fichtm);
     if (estepm==0 || estepm < stepm) estepm=stepm;  }
     if (fage <= 2) {  
       bage = ageminpar;  /******************* Gnuplot file **************/
       fage = agemaxpar;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     }  
        char dirfileres[132],optfileres[132];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int ng;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    /*     printf("Problem with file %s",optionfilegnuplot); */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     ungetc(c,ficpar);  /*   } */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /*#ifdef windows */
     fputs(line,ficparo);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   ungetc(c,ficpar);    m=pow(2,cptcoveff);
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    strcpy(dirfileres,optionfilefiname);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcpy(optfileres,"vpl");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   /* 1eme*/
          for (cpt=1; cpt<= nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){     for (k1=1; k1<= m ; k1 ++) {
     ungetc(c,ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     puts(line);       fprintf(ficgp,"set xlabel \"Age\" \n\
     fputs(line,ficparo);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   ungetc(c,ficpar);  set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       for (i=1; i<= nlstate ; i ++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fscanf(ficpar,"pop_based=%d\n",&popbased);       }
   fprintf(ficparo,"pop_based=%d\n",popbased);         fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fprintf(ficres,"pop_based=%d\n",popbased);         for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);       } 
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     puts(line);       for (i=1; i<= nlstate ; i ++) {
     fputs(line,ficparo);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     ungetc(c,ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     fgets(line, MAXLINE, ficpar);      
     puts(line);      for (i=1; i<= nlstate+1 ; i ++) {
     fputs(line,ficparo);        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }   
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 /*------------ gnuplot -------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
 /*------------ free_vector  -------------*/        fprintf(ficgp,"\" t\"\" w l 0,");
  chdir(path);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
  free_ivector(wav,1,imx);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }   
  free_ivector(num,1,n);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  free_vector(agedc,1,n);        else fprintf(ficgp,"\" t\"\" w l 0,");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
  fclose(ficparo);    }
  fclose(ficres);    
     /*3eme*/
 /*--------- index.htm --------*/    
     for (k1=1; k1<= m ; k1 ++) { 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   /*--------------- Prevalence limit --------------*/        fprintf(ficgp,"set ter png small\n\
    set size 0.65,0.65\n\
   strcpy(filerespl,"pl");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   strcat(filerespl,fileres);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(ficrespl,"#Prevalence limit\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fprintf(ficrespl,"#Age ");          
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        */
   fprintf(ficrespl,"\n");        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   prlim=matrix(1,nlstate,1,nlstate);          
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        } 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* CV preval stable (period) */
   k=0;    for (k1=1; k1<= m ; k1 ++) { 
   agebase=ageminpar;      for (cpt=1; cpt<=nlstate ; cpt ++) {
   agelim=agemaxpar;        k=3;
   ftolpl=1.e-10;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   i1=cptcoveff;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   if (cptcovn < 1){i1=1;}  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   for(cptcov=1;cptcov<=i1;cptcov++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
         k=k+1;        for (i=1; i< nlstate ; i ++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficrespl,"\n#******");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         for(j=1;j<=cptcoveff;j++)        
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficrespl,"******\n");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                for (i=1; i< nlstate ; i ++) {
         for (age=agebase; age<=agelim; age++){          l=3+(nlstate+ndeath)*cpt;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficgp,"+$%d",l+i+1);
           fprintf(ficrespl,"%.0f",age );        }
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           fprintf(ficrespl," %.5f", prlim[i][i]);      } 
           fprintf(ficrespl,"\n");    }  
         }    
       }    /* proba elementaires */
     }    for(i=1,jk=1; i <=nlstate; i++){
   fclose(ficrespl);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   /*------------- h Pij x at various ages ------------*/          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            jk++; 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            fprintf(ficgp,"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          }
   }        }
   printf("Computing pij: result on file '%s' \n", filerespij);      }
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   agelim=AGESUP;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   hstepm=stepsize*YEARM; /* Every year of age */         if (ng==2)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
   k=0;           fprintf(ficgp,"\nset title \"Probability\"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         i=1;
       k=k+1;         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficrespij,"\n#****** ");           k3=i;
         for(j=1;j<=cptcoveff;j++)           for(k=1; k<=(nlstate+ndeath); k++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             if (k != k2){
         fprintf(ficrespij,"******\n");               if(ng==2)
                         fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */               else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               ij=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               for(j=3; j <=ncovmodel; j++) {
           oldm=oldms;savm=savms;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespij,"# Age");                   ij++;
           for(i=1; i<=nlstate;i++)                 }
             for(j=1; j<=nlstate+ndeath;j++)                 else
               fprintf(ficrespij," %1d-%1d",i,j);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficrespij,"\n");               }
            for (h=0; h<=nhstepm; h++){               fprintf(ficgp,")/(1");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );               
             for(i=1; i<=nlstate;i++)               for(k1=1; k1 <=nlstate; k1++){   
               for(j=1; j<=nlstate+ndeath;j++)                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                 ij=1;
             fprintf(ficrespij,"\n");                 for(j=3; j <=ncovmodel; j++){
              }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespij,"\n");                     ij++;
         }                   }
     }                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 fprintf(ficgp,")");
                }
   fclose(ficrespij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
   /*---------- Forecasting ------------------*/             }
   if((stepm == 1) && (strcmp(model,".")==0)){           } /* end k */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);         } /* end k2 */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);       } /* end jk */
   }     } /* end ng */
   else{     fflush(ficgp); 
     erreur=108;  }  /* end gnuplot */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }  
    /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   /*---------- Health expectancies and variances ------------*/  
     int i, cpt, cptcod;
   strcpy(filerest,"t");    int modcovmax =1;
   strcat(filerest,fileres);    int mobilavrange, mob;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double age;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   strcpy(filerese,"e");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   strcat(filerese,fileres);      if(mobilav==1) mobilavrange=5; /* default */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      else mobilavrange=mobilav;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (age=bage; age<=fage; age++)
   }        for (i=1; i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  strcpy(fileresv,"v");      /* We keep the original values on the extreme ages bage, fage and for 
   strcat(fileresv,fileres);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         we use a 5 terms etc. until the borders are no more concerned. 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      */ 
   }      for (mob=3;mob <=mobilavrange;mob=mob+2){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   calagedate=-1;          for (i=1; i<=nlstate;i++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   k=0;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   for(cptcov=1;cptcov<=i1;cptcov++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       k=k+1;                }
       fprintf(ficrest,"\n#****** ");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       for(j=1;j<=cptcoveff;j++)            }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficrest,"******\n");        }/* end age */
       }/* end mob */
       fprintf(ficreseij,"\n#****** ");    }else return -1;
       for(j=1;j<=cptcoveff;j++)    return 0;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }/* End movingaverage */
       fprintf(ficreseij,"******\n");  
   
       fprintf(ficresvij,"\n#****** ");  /************** Forecasting ******************/
       for(j=1;j<=cptcoveff;j++)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* proj1, year, month, day of starting projection 
       fprintf(ficresvij,"******\n");       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       anproj2 year of en of projection (same day and month as proj1).
       oldm=oldms;savm=savms;    */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double agec; /* generic age */
       oldm=oldms;savm=savms;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    double *popeffectif,*popcount;
        double ***p3mat;
     double ***mobaverage;
      char fileresf[FILENAMELENGTH];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    agelim=AGESUP;
       fprintf(ficrest,"\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
       epj=vector(1,nlstate+1);    strcpy(fileresf,"f"); 
       for(age=bage; age <=fage ;age++){    strcat(fileresf,fileres);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if((ficresf=fopen(fileresf,"w"))==NULL) {
         if (popbased==1) {      printf("Problem with forecast resultfile: %s\n", fileresf);
           for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
             prlim[i][i]=probs[(int)age][i][k];    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
            fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if (mobilav!=0) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           epj[nlstate+1] +=epj[j];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    if (stepm<=12) stepsize=1;
         for(j=1;j <=nlstate;j++){    if(estepm < stepm){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
         fprintf(ficrest,"\n");    else  hstepm=estepm;   
       }  
     }    hstepm=hstepm/stepm; 
   }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 free_matrix(mint,1,maxwav,1,n);                                 fractional in yp1 */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    anprojmean=yp;
     free_vector(weight,1,n);    yp2=modf((yp1*12),&yp);
   fclose(ficreseij);    mprojmean=yp;
   fclose(ficresvij);    yp1=modf((yp2*30.5),&yp);
   fclose(ficrest);    jprojmean=yp;
   fclose(ficpar);    if(jprojmean==0) jprojmean=1;
   free_vector(epj,1,nlstate+1);    if(mprojmean==0) jprojmean=1;
    
   /*------- Variance limit prevalence------*/      i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     exit(0);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   k=0;        k=k+1;
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresf,"\n#******");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1;j<=cptcoveff;j++) {
       k=k+1;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficresvpl,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresf,"******\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       fprintf(ficresvpl,"******\n");        for(j=1; j<=nlstate+ndeath;j++){ 
                for(i=1; i<=nlstate;i++)              
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            fprintf(ficresf," p%d%d",i,j);
       oldm=oldms;savm=savms;          fprintf(ficresf," p.%d",j);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
     }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
  }          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   fclose(ficresvpl);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
   /*---------- End : free ----------------*/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            oldm=oldms;savm=savms;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
              for (h=0; h<=nhstepm; h++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              if (h*hstepm/YEARM*stepm ==yearp) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficresf,"\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                for(j=1;j<=cptcoveff;j++) 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                  fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   free_matrix(matcov,1,npar,1,npar);              } 
   free_vector(delti,1,npar);              for(j=1; j<=nlstate+ndeath;j++) {
   free_matrix(agev,1,maxwav,1,imx);                ppij=0.;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
   if(erreur >0)                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     printf("End of Imach with error or warning %d\n",erreur);                  else {
   else   printf("End of Imach\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                  }
                    if (h*hstepm/YEARM*stepm== yearp) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/                  }
   /*------ End -----------*/                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
  end:                }
 #ifdef windows              }/* end j */
   /* chdir(pathcd);*/            } /* end h */
 #endif            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*system("wgnuplot graph.plt");*/          } /* end agec */
  /*system("../gp37mgw/wgnuplot graph.plt");*/        } /* end yearp */
  /*system("cd ../gp37mgw");*/      } /* end cptcod */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    } /* end  cptcov */
  strcpy(plotcmd,GNUPLOTPROGRAM);         
  strcat(plotcmd," ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    fclose(ficresf);
   }
 #ifdef windows  
   while (z[0] != 'q') {  /************** Forecasting *****not tested NB*************/
     /* chdir(path); */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    
     scanf("%s",z);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     if (z[0] == 'c') system("./imach");    int *popage;
     else if (z[0] == 'e') system(optionfilehtm);    double calagedatem, agelim, kk1, kk2;
     else if (z[0] == 'g') system(plotcmd);    double *popeffectif,*popcount;
     else if (z[0] == 'q') exit(0);    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
 #endif    char filerespop[FILENAMELENGTH];
 }  
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.46  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>