Diff for /imach/src/imach.c between versions 1.4 and 1.98

version 1.4, 2001/05/02 17:34:41 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.98  2004/05/16 15:05:56  brouard
   individuals from different ages are interviewed on their health status    New version 0.97 . First attempt to estimate force of mortality
   or degree of  disability. At least a second wave of interviews    directly from the data i.e. without the need of knowing the health
   ("longitudinal") should  measure each new individual health status.    state at each age, but using a Gompertz model: log u =a + b*age .
   Health expectancies are computed from the transistions observed between    This is the basic analysis of mortality and should be done before any
   waves and are computed for each degree of severity of disability (number    other analysis, in order to test if the mortality estimated from the
   of life states). More degrees you consider, more time is necessary to    cross-longitudinal survey is different from the mortality estimated
   reach the Maximum Likelihood of the parameters involved in the model.    from other sources like vital statistic data.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    The same imach parameter file can be used but the option for mle should be -3.
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Agnès, who wrote this part of the code, tried to keep most of the
   is a covariate. If you want to have a more complex model than "constant and    former routines in order to include the new code within the former code.
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    The output is very simple: only an estimate of the intercept and of
   More covariates you add, less is the speed of the convergence.    the slope with 95% confident intervals.
   
   The advantage that this computer programme claims, comes from that if the    Current limitations:
   delay between waves is not identical for each individual, or if some    A) Even if you enter covariates, i.e. with the
   individual missed an interview, the information is not rounded or lost, but    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   taken into account using an interpolation or extrapolation.    B) There is no computation of Life Expectancy nor Life Table.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Revision 1.97  2004/02/20 13:25:42  lievre
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Version 0.96d. Population forecasting command line is (temporarily)
   unobserved intermediate  states. This elementary transition (by month or    suppressed.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.96  2003/07/15 15:38:55  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Repository): Using imachwizard code to output a more meaningful covariance
            Institut national d'études démographiques, Paris.    matrix (cov(a12,c31) instead of numbers.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.94  2003/06/27 13:00:02  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Just cleaning
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.93  2003/06/25 16:33:55  brouard
   **********************************************************************/    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 #include <math.h>    (Module): Version 0.96b
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <unistd.h>    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.91  2003/06/25 15:30:29  brouard
 /*#define DEBUG*/    * imach.c (Repository): Duplicated warning errors corrected.
 #define windows    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    is stamped in powell.  We created a new html file for the graphs
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NINTERVMAX 8    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NCOVMAX 8 /* Maximum number of covariates */    of the covariance matrix to be input.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGESUP 130    (Module): Some bugs corrected for windows. Also, when
 #define AGEBASE 40    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   
 int nvar;    Revision 1.88  2003/06/23 17:54:56  brouard
 static int cptcov;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int cptcovn;  
 int npar=NPARMAX;    Revision 1.87  2003/06/18 12:26:01  brouard
 int nlstate=2; /* Number of live states */    Version 0.96
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 int *wav; /* Number of waves for this individuual 0 is possible */    routine fileappend.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Revision 1.85  2003/06/17 13:12:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Check when date of death was earlier that
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    current date of interview. It may happen when the death was just
 double **oldm, **newm, **savm; /* Working pointers to matrices */    prior to the death. In this case, dh was negative and likelihood
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    was wrong (infinity). We still send an "Error" but patch by
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    assuming that the date of death was just one stepm after the
 FILE *ficgp, *fichtm;    interview.
 FILE *ficreseij;    (Repository): Because some people have very long ID (first column)
   char filerese[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
  FILE  *ficresvij;    memory allocation. But we also truncated to 8 characters (left
   char fileresv[FILENAMELENGTH];    truncation)
  FILE  *ficresvpl;    (Repository): No more line truncation errors.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NR_END 1    parcimony.
 #define FREE_ARG char*    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FTOL 1.0e-10  
     Revision 1.83  2003/06/10 13:39:11  lievre
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define TOL 2.0e-4    Add log in  imach.c and  fullversion number is now printed.
   
 #define CGOLD 0.3819660  */
 #define ZEPS 1.0e-10  /*
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Interpolated Markov Chain
   
 #define GOLD 1.618034    Short summary of the programme:
 #define GLIMIT 100.0    
 #define TINY 1.0e-20    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 static double maxarg1,maxarg2;    first survey ("cross") where individuals from different ages are
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    interviewed on their health status or degree of disability (in the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (if any) in individual health status.  Health expectancies are
 #define rint(a) floor(a+0.5)    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 static double sqrarg;    Maximum Likelihood of the parameters involved in the model.  The
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    simplest model is the multinomial logistic model where pij is the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int imx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int stepm;    'age' is age and 'sex' is a covariate. If you want to have a more
 /* Stepm, step in month: minimum step interpolation*/    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 int m,nb;    you to do it.  More covariates you add, slower the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    convergence.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 double *weight;    identical for each individual. Also, if a individual missed an
 int **s; /* Status */    intermediate interview, the information is lost, but taken into
 double *agedc, **covar, idx;    account using an interpolation or extrapolation.  
 int **nbcode, *Tcode, *Tvar, **codtab;  
     hPijx is the probability to be observed in state i at age x+h
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    conditional to the observed state i at age x. The delay 'h' can be
 double ftolhess; /* Tolerance for computing hessian */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /******************************************/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 void replace(char *s, char*t)    hPijx.
 {  
   int i;    Also this programme outputs the covariance matrix of the parameters but also
   int lg=20;    of the life expectancies. It also computes the stable prevalence. 
   i=0;    
   lg=strlen(t);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for(i=0; i<= lg; i++) {             Institut national d'études démographiques, Paris.
     (s[i] = t[i]);    This software have been partly granted by Euro-REVES, a concerted action
     if (t[i]== '\\') s[i]='/';    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 int nbocc(char *s, char occ)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int i,j=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int lg=20;    
   i=0;    **********************************************************************/
   lg=strlen(s);  /*
   for(i=0; i<= lg; i++) {    main
   if  (s[i] == occ ) j++;    read parameterfile
   }    read datafile
   return j;    concatwav
 }    freqsummary
     if (mle >= 1)
 void cutv(char *u,char *v, char*t, char occ)      mlikeli
 {    print results files
   int i,lg,j,p;    if mle==1 
   i=0;       computes hessian
   for(j=0; j<=strlen(t)-1; j++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;        begin-prev-date,...
   }    open gnuplot file
     open html file
   lg=strlen(t);    stable prevalence
   for(j=0; j<p; j++) {     for age prevalim()
     (u[j] = t[j]);    h Pij x
     u[p]='\0';    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
    for(j=0; j<= lg; j++) {    Variance-covariance of DFLE
     if (j>=(p+1))(v[j-p-1] = t[j]);    prevalence()
   }     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /********************** nrerror ********************/    total life expectancies
     Variance of stable prevalence
 void nrerror(char error_text[])   end
 {  */
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  
 }   
 /*********************** vector *******************/  #include <math.h>
 double *vector(int nl, int nh)  #include <stdio.h>
 {  #include <stdlib.h>
   double *v;  #include <unistd.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #include <sys/time.h>
   return v-nl+NR_END;  #include <time.h>
 }  #include "timeval.h"
   
 /************************ free vector ******************/  /* #include <libintl.h> */
 void free_vector(double*v, int nl, int nh)  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXLINE 256
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /************************ivector *******************************/  #define FILENAMELENGTH 132
 int *ivector(long nl,long nh)  /*#define DEBUG*/
 {  /*#define windows*/
   int *v;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /******************free ivector **************************/  #define NINTERVMAX 8
 void free_ivector(int *v, long nl, long nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG)(v+nl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /******************* imatrix *******************************/  #define AGESUP 130
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef unix
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define DIRSEPARATOR '/'
   int **m;  #define ODIRSEPARATOR '\\'
    #else
   /* allocate pointers to rows */  #define DIRSEPARATOR '\\'
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define ODIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;  
   m -= nrl;  /* $Id$ */
    /* $State$ */
    
   /* allocate rows and set pointers to them */  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl] += NR_END;  int nvar;
   m[nrl] -= ncl;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
   /* return pointer to array of pointers to rows */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return m;  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /****************** free_imatrix *************************/  int maxwav; /* Maxim number of waves */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int jmin, jmax; /* min, max spacing between 2 waves */
       int **m;  int gipmx, gsw; /* Global variables on the number of contributions 
       long nch,ncl,nrh,nrl;                     to the likelihood and the sum of weights (done by funcone)*/
      /* free an int matrix allocated by imatrix() */  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG) (m+nrl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************* matrix *******************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficlog, *ficrespow;
   double **m;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long ipmx; /* Number of contributions */
   if (!m) nrerror("allocation failure 1 in matrix()");  double sw; /* Sum of weights */
   m += NR_END;  char filerespow[FILENAMELENGTH];
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresprobmorprev;
   m[nrl] += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl] -= ncl;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvij;
   return m;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /*************************free matrix ************************/  char title[MAXLINE];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(m+nrl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /******************* ma3x *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char filerest[FILENAMELENGTH];
   double ***m;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m += NR_END;  
   m -= nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern int gettimeofday();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] += NR_END;  long time_value;
   m[nrl] -= ncl;  extern long time();
   char strcurr[80], strfor[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define NR_END 1
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define FTOL 1.0e-10
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define NRANSI 
   for (j=ncl+1; j<=nch; j++)  #define ITMAX 200 
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define TOL 2.0e-4 
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define CGOLD 0.3819660 
     for (j=ncl+1; j<=nch; j++)  #define ZEPS 1.0e-10 
       m[i][j]=m[i][j-1]+nlay;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
   return m;  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /***************** f1dim *************************/  static double sqrarg;
 extern int ncom;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 extern double *pcom,*xicom;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 extern double (*nrfunc)(double []);  int agegomp= AGEGOMP;
    
 double f1dim(double x)  int imx; 
 {  int stepm=1;
   int j;  /* Stepm, step in month: minimum step interpolation*/
   double f;  
   double *xt;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int m,nb;
   f=(*nrfunc)(xt);  long *num;
   free_vector(xt,1,ncom);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   return f;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /*****************brent *************************/  double dateintmean=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  double *weight;
   int iter;  int **s; /* Status */
   double a,b,d,etemp;  double *agedc, **covar, idx;
   double fu,fv,fw,fx;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double e=0.0;  double ftolhess; /* Tolerance for computing hessian */
    
   a=(ax < cx ? ax : cx);  /**************** split *************************/
   b=(ax > cx ? ax : cx);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    char  *ss;                            /* pointer */
   for (iter=1;iter<=ITMAX;iter++) {    int   l1, l2;                         /* length counters */
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    l1 = strlen(path );                   /* length of path */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     printf(".");fflush(stdout);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 #ifdef DEBUG    if ( ss == NULL ) {                   /* no directory, so use current */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 #endif      /* get current working directory */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      /*    extern  char* getcwd ( char *buf , int len);*/
       *xmin=x;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       return fx;        return( GLOCK_ERROR_GETCWD );
     }      }
     ftemp=fu;      strcpy( name, path );               /* we've got it */
     if (fabs(e) > tol1) {    } else {                              /* strip direcotry from path */
       r=(x-w)*(fx-fv);      ss++;                               /* after this, the filename */
       q=(x-v)*(fx-fw);      l2 = strlen( ss );                  /* length of filename */
       p=(x-v)*q-(x-w)*r;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       q=2.0*(q-r);      strcpy( name, ss );         /* save file name */
       if (q > 0.0) p = -p;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       q=fabs(q);      dirc[l1-l2] = 0;                    /* add zero */
       etemp=e;    }
       e=d;    l1 = strlen( dirc );                  /* length of directory */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /*#ifdef windows
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       else {  #else
         d=p/q;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
         u=x+d;  #endif
         if (u-a < tol2 || b-u < tol2)    */
           d=SIGN(tol1,xm-x);    ss = strrchr( name, '.' );            /* find last / */
       }    ss++;
     } else {    strcpy(ext,ss);                       /* save extension */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1= strlen( name);
     }    l2= strlen(ss)+1;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    strncpy( finame, name, l1-l2);
     fu=(*f)(u);    finame[l1-l2]= 0;
     if (fu <= fx) {    return( 0 );                          /* we're done */
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  
         } else {  /******************************************/
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  void replace_back_to_slash(char *s, char*t)
             v=w;  {
             w=u;    int i;
             fv=fw;    int lg=0;
             fw=fu;    i=0;
           } else if (fu <= fv || v == x || v == w) {    lg=strlen(t);
             v=u;    for(i=0; i<= lg; i++) {
             fv=fu;      (s[i] = t[i]);
           }      if (t[i]== '\\') s[i]='/';
         }    }
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  int nbocc(char *s, char occ)
   return fx;  {
 }    int i,j=0;
     int lg=20;
 /****************** mnbrak ***********************/    i=0;
     lg=strlen(s);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for(i=0; i<= lg; i++) {
             double (*func)(double))    if  (s[i] == occ ) j++;
 {    }
   double ulim,u,r,q, dum;    return j;
   double fu;  }
    
   *fa=(*func)(*ax);  void cutv(char *u,char *v, char*t, char occ)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    /* cuts string t into u and v where u is ended by char occ excluding it
     SHFT(dum,*ax,*bx,dum)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       SHFT(dum,*fb,*fa,dum)       gives u="abcedf" and v="ghi2j" */
       }    int i,lg,j,p=0;
   *cx=(*bx)+GOLD*(*bx-*ax);    i=0;
   *fc=(*func)(*cx);    for(j=0; j<=strlen(t)-1; j++) {
   while (*fb > *fc) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    lg=strlen(t);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    for(j=0; j<p; j++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);      (u[j] = t[j]);
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);       u[p]='\0';
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);     for(j=0; j<= lg; j++) {
       if (fu < *fc) {      if (j>=(p+1))(v[j-p-1] = t[j]);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /********************** nrerror ********************/
       u=ulim;  
       fu=(*func)(u);  void nrerror(char error_text[])
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    fprintf(stderr,"ERREUR ...\n");
       fu=(*func)(u);    fprintf(stderr,"%s\n",error_text);
     }    exit(EXIT_FAILURE);
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************** linmin ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 int ncom;    return v-nl+NR_END;
 double *pcom,*xicom;  }
 double (*nrfunc)(double []);  
    /************************ free vector ******************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void free_vector(double*v, int nl, int nh)
 {  {
   double brent(double ax, double bx, double cx,    free((FREE_ARG)(v+nl-NR_END));
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /************************ivector *******************************/
               double *fc, double (*func)(double));  int *ivector(long nl,long nh)
   int j;  {
   double xx,xmin,bx,ax;    int *v;
   double fx,fb,fa;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   ncom=n;    return v-nl+NR_END;
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /******************free ivector **************************/
   for (j=1;j<=n;j++) {  void free_ivector(int *v, long nl, long nh)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    free((FREE_ARG)(v+nl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /************************lvector *******************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  long *lvector(long nl,long nh)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    long *v;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #endif    if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=n;j++) {    return v-nl+NR_END;
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /******************free lvector **************************/
   free_vector(xicom,1,n);  void free_lvector(long *v, long nl, long nh)
   free_vector(pcom,1,n);  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /******************* imatrix *******************************/
             double (*func)(double []))  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   void linmin(double p[], double xi[], int n, double *fret,  { 
               double (*func)(double []));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int i,ibig,j;    int **m; 
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    /* allocate pointers to rows */ 
   double *xits;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   pt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   ptt=vector(1,n);    m += NR_END; 
   xit=vector(1,n);    m -= nrl; 
   xits=vector(1,n);    
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* allocate rows and set pointers to them */ 
   for (*iter=1;;++(*iter)) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     fp=(*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     ibig=0;    m[nrl] += NR_END; 
     del=0.0;    m[nrl] -= ncl; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       printf(" %d %.12f",i, p[i]);    
     printf("\n");    /* return pointer to array of pointers to rows */ 
     for (i=1;i<=n;i++) {    return m; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  } 
       fptt=(*fret);  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       printf("fret=%lf \n",*fret);  void free_imatrix(m,nrl,nrh,ncl,nch)
 #endif        int **m;
       printf("%d",i);fflush(stdout);        long nch,ncl,nrh,nrl; 
       linmin(p,xit,n,fret,func);       /* free an int matrix allocated by imatrix() */ 
       if (fabs(fptt-(*fret)) > del) {  { 
         del=fabs(fptt-(*fret));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         ibig=i;    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /******************* matrix *******************************/
       for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
     }    m -= nrl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       int k[2],l;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k[0]=1;    m[nrl] += NR_END;
       k[1]=-1;    m[nrl] -= ncl;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" %.12e",p[j]);    return m;
       printf("\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       for(l=0;l<=1;l++) {     */
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************************free matrix ************************/
         }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
   }
   
       free_vector(xit,1,n);  /******************* ma3x *******************************/
       free_vector(xits,1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       return;    double ***m;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       ptt[j]=2.0*p[j]-pt[j];    m += NR_END;
       xit[j]=p[j]-pt[j];    m -= nrl;
       pt[j]=p[j];  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fptt=(*func)(ptt);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fptt < fp) {    m[nrl] += NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl] -= ncl;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           xi[j][n]=xit[j];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (j=ncl+1; j<=nch; j++) 
         for(j=1;j<=n;j++)      m[nrl][j]=m[nrl][j-1]+nlay;
           printf(" %.12e",xit[j]);    
         printf("\n");    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
   }    }
 }    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 /**** Prevalence limit ****************/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************************free ma3x ************************/
      matrix by transitions matrix until convergence is reached */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   int i, ii,j,k;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double **matprod2();    free((FREE_ARG)(m+nrl-NR_END));
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    /* Caution optionfilefiname is hidden */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/"); /* Add to the right */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,fileres);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return tmpout;
     newm=savm;  }
     /* Covariates have to be included here again */  
     cov[1]=1.;  /*************** function subdirf2 ***********/
     cov[2]=agefin;  char *subdirf2(char fileres[], char *preop)
     if (cptcovn>0){  {
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    
     }    /* Caution optionfilefiname is hidden */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     savm=oldm;    strcat(tmpout,preop);
     oldm=newm;    strcat(tmpout,fileres);
     maxmax=0.;    return tmpout;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /*************** function subdirf3 ***********/
       for(i=1; i<=nlstate; i++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    
         prlim[i][j]= newm[i][j]/(1-sumnew);    /* Caution optionfilefiname is hidden */
         max=FMAX(max,prlim[i][j]);    strcpy(tmpout,optionfilefiname);
         min=FMIN(min,prlim[i][j]);    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       maxmin=max-min;    strcat(tmpout,preop2);
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,fileres);
     }    return tmpout;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /***************** f1dim *************************/
   }  extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /*************** transition probabilities **********/   
   double f1dim(double x) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  { 
 {    int j; 
   double s1, s2;    double f;
   /*double t34;*/    double *xt; 
   int i,j,j1, nc, ii, jj;   
     xt=vector(1,ncom); 
     for(i=1; i<= nlstate; i++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=1; j<i;j++){    f=(*nrfunc)(xt); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(xt,1,ncom); 
         /*s2 += param[i][j][nc]*cov[nc];*/    return f; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*****************brent *************************/
       ps[i][j]=s2;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
     }    int iter; 
     for(j=i+1; j<=nlstate+ndeath;j++){    double a,b,d,etemp;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double fu,fv,fw,fx;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double ftemp;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       ps[i][j]=s2;   
     }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
   for(i=1; i<= nlstate; i++){    x=w=v=bx; 
      s1=0;    fw=fv=fx=(*f)(x); 
     for(j=1; j<i; j++)    for (iter=1;iter<=ITMAX;iter++) { 
       s1+=exp(ps[i][j]);      xm=0.5*(a+b); 
     for(j=i+1; j<=nlstate+ndeath; j++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       s1+=exp(ps[i][j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     ps[i][i]=1./(s1+1.);      printf(".");fflush(stdout);
     for(j=1; j<i; j++)      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   } /* end i */  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        *xmin=x; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        return fx; 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        p=(x-v)*q-(x-w)*r; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=2.0*(q-r); 
      printf("%lf ",ps[ii][jj]);        if (q > 0.0) p = -p; 
    }        q=fabs(q); 
     printf("\n ");        etemp=e; 
     }        e=d; 
     printf("\n ");printf("%lf ",cov[2]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /*          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        else { 
   goto end;*/          d=p/q; 
     return ps;          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /**************** Product of 2 matrices ******************/        } 
       } else { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fu=(*f)(u); 
   /* in, b, out are matrice of pointers which should have been initialized      if (fu <= fx) { 
      before: only the contents of out is modified. The function returns        if (u >= x) a=x; else b=x; 
      a pointer to pointers identical to out */        SHFT(v,w,x,u) 
   long i, j, k;          SHFT(fv,fw,fx,fu) 
   for(i=nrl; i<= nrh; i++)          } else { 
     for(k=ncolol; k<=ncoloh; k++)            if (u < x) a=u; else b=u; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            if (fu <= fw || w == x) { 
         out[i][k] +=in[i][j]*b[j][k];              v=w; 
               w=u; 
   return out;              fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /************* Higher Matrix Product ***************/              fv=fu; 
             } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          } 
 {    } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    nrerror("Too many iterations in brent"); 
      duration (i.e. until    *xmin=x; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    return fx; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  } 
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /****************** mnbrak ***********************/
      included manually here.  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      */              double (*func)(double)) 
   { 
   int i, j, d, h, k;    double ulim,u,r,q, dum;
   double **out, cov[NCOVMAX];    double fu; 
   double **newm;   
     *fa=(*func)(*ax); 
   /* Hstepm could be zero and should return the unit matrix */    *fb=(*func)(*bx); 
   for (i=1;i<=nlstate+ndeath;i++)    if (*fb > *fa) { 
     for (j=1;j<=nlstate+ndeath;j++){      SHFT(dum,*ax,*bx,dum) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        SHFT(dum,*fb,*fa,dum) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fc=(*func)(*cx); 
   for(h=1; h <=nhstepm; h++){    while (*fb > *fc) { 
     for(d=1; d <=hstepm; d++){      r=(*bx-*ax)*(*fb-*fc); 
       newm=savm;      q=(*bx-*cx)*(*fb-*fa); 
       /* Covariates have to be included here again */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       cov[1]=1.;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if (cptcovn>0){      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fu=(*func)(u); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if (fu < *fc) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            SHFT(*fb,*fc,fu,(*func)(u)) 
       savm=oldm;            } 
       oldm=newm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     for(i=1; i<=nlstate+ndeath; i++)        fu=(*func)(u); 
       for(j=1;j<=nlstate+ndeath;j++) {      } else { 
         po[i][j][h]=newm[i][j];        u=(*cx)+GOLD*(*cx-*bx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fu=(*func)(u); 
          */      } 
       }      SHFT(*ax,*bx,*cx,u) 
   } /* end h */        SHFT(*fa,*fb,*fc,fu) 
   return po;        } 
 }  } 
   
   /*************** linmin ************************/
 /*************** log-likelihood *************/  
 double func( double *x)  int ncom; 
 {  double *pcom,*xicom;
   int i, ii, j, k, mi, d;  double (*nrfunc)(double []); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double sw; /* Sum of weights */  { 
   double lli; /* Individual log likelihood */    double brent(double ax, double bx, double cx, 
   long ipmx;                 double (*f)(double), double tol, double *xmin); 
   /*extern weight */    double f1dim(double x); 
   /* We are differentiating ll according to initial status */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/                double *fc, double (*func)(double)); 
   /*for(i=1;i<imx;i++)    int j; 
 printf(" %d\n",s[4][i]);    double xx,xmin,bx,ax; 
   */    double fx,fb,fa;
    
   for(k=1; k<=nlstate; k++) ll[k]=0.;    ncom=n; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    pcom=vector(1,n); 
        for(mi=1; mi<= wav[i]-1; mi++){    xicom=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    nrfunc=func; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
             for(d=0; d<dh[mi][i]; d++){      pcom[j]=p[j]; 
         newm=savm;      xicom[j]=xi[j]; 
           cov[1]=1.;    } 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    ax=0.0; 
           if (cptcovn>0){    xx=1.0; 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
             }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           savm=oldm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           oldm=newm;  #endif
     for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       } /* end mult */      p[j] += xi[j]; 
        } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free_vector(xicom,1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free_vector(pcom,1,n); 
       ipmx +=1;  } 
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  char *asc_diff_time(long time_sec, char ascdiff[])
     } /* end of wave */  {
   } /* end of individual */    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    sec_left = (time_sec) % (60*60*24);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    hours = (sec_left) / (60*60) ;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    sec_left = (sec_left) %(60*60);
   return -l;    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i,j, iter;              double (*func)(double [])) 
   double **xi,*delti;  { 
   double fret;    void linmin(double p[], double xi[], int n, double *fret, 
   xi=matrix(1,npar,1,npar);                double (*func)(double [])); 
   for (i=1;i<=npar;i++)    int i,ibig,j; 
     for (j=1;j<=npar;j++)    double del,t,*pt,*ptt,*xit;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fp,fptt;
   printf("Powell\n");    double *xits;
   powell(p,xi,npar,ftol,&iter,&fret,func);    int niterf, itmp;
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    pt=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    ptt=vector(1,n); 
     xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /**** Computes Hessian and covariance matrix ***/    for (j=1;j<=n;j++) pt[j]=p[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   double  **a,**y,*x,pd;      ibig=0; 
   double **hess;      del=0.0; 
   int i, j,jk;      last_time=curr_time;
   int *indx;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double hessii(double p[], double delta, int theta, double delti[]);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;      */
   void ludcmp(double **a, int npar, int *indx, double *d) ;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   hess=matrix(1,npar,1,npar);        fprintf(ficrespow," %.12lf", p[i]);
       }
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf("\n");
   for (i=1;i<=npar;i++){      fprintf(ficlog,"\n");
     printf("%d",i);fflush(stdout);      fprintf(ficrespow,"\n");fflush(ficrespow);
     hess[i][i]=hessii(p,ftolhess,i,delti);      if(*iter <=3){
     /*printf(" %f ",p[i]);*/        tm = *localtime(&curr_time.tv_sec);
   }        strcpy(strcurr,asctime(&tmf));
   /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++) {        forecast_time=curr_time;
     for (j=1;j<=npar;j++)  {        itmp = strlen(strcurr);
       if (j>i) {        if(strcurr[itmp-1]=='\n')
         printf(".%d%d",i,j);fflush(stdout);          strcurr[itmp-1]='\0';
         hess[i][j]=hessij(p,delti,i,j);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         hess[j][i]=hess[i][j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   printf("\n");  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
   a=matrix(1,npar,1,npar);          strfor[itmp-1]='\0';
   y=matrix(1,npar,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   x=vector(1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for (i=1;i<=n;i++) { 
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;        printf("fret=%lf \n",*fret);
     x[j]=1;        fprintf(ficlog,"fret=%lf \n",*fret);
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        printf("%d",i);fflush(stdout);
       matcov[i][j]=x[i];        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   printf("\n#Hessian matrix#\n");          ibig=i; 
   for (i=1;i<=npar;i++) {        } 
     for (j=1;j<=npar;j++) {  #ifdef DEBUG
       printf("%.3e ",hess[i][j]);        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
     printf("\n");        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   /* Recompute Inverse */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(j=1;j<=n;j++) {
   ludcmp(a,npar,indx,&pd);          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");        }
         printf("\n");
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;  #endif
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       y[i][j]=x[i];        int k[2],l;
       printf("%.3e ",y[i][j]);        k[0]=1;
     }        k[1]=-1;
     printf("\n");        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   */        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog," %.12e",p[j]);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        printf("\n");
   free_ivector(indx,1,npar);        fprintf(ficlog,"\n");
   free_matrix(hess,1,npar,1,npar);        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /*************** hessian matrix ****************/          }
 double hessii( double x[], double delta, int theta, double delti[])          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i;        }
   int l=1, lmax=20;  #endif
   double k1,k2;  
   double p2[NPARMAX+1];  
   double res;        free_vector(xit,1,n); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        free_vector(xits,1,n); 
   double fx;        free_vector(ptt,1,n); 
   int k=0,kmax=10;        free_vector(pt,1,n); 
   double l1;        return; 
       } 
   fx=func(x);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=1;j<=n;j++) { 
   for(l=0 ; l <=lmax; l++){        ptt[j]=2.0*p[j]-pt[j]; 
     l1=pow(10,l);        xit[j]=p[j]-pt[j]; 
     delts=delt;        pt[j]=p[j]; 
     for(k=1 ; k <kmax; k=k+1){      } 
       delt = delta*(l1*k);      fptt=(*func)(ptt); 
       p2[theta]=x[theta] +delt;      if (fptt < fp) { 
       k1=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       p2[theta]=x[theta]-delt;        if (t < 0.0) { 
       k2=func(p2)-fx;          linmin(p,xit,n,fret,func); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for (j=1;j<=n;j++) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            xi[j][ibig]=xi[j][n]; 
                  xi[j][n]=xit[j]; 
 #ifdef DEBUG          }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #ifdef DEBUG
 #endif          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for(j=1;j<=n;j++){
         k=kmax;            printf(" %.12e",xit[j]);
       }            fprintf(ficlog," %.12e",xit[j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          }
         k=kmax; l=lmax*10.;          printf("\n");
       }          fprintf(ficlog,"\n");
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #endif
         delts=delt;        }
       }      } 
     }    } 
   }  } 
   delti[theta]=delts;  
   return res;  /**** Prevalence limit (stable prevalence)  ****************/
    
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   int i;  
   int l=1, l1, lmax=20;    int i, ii,j,k;
   double k1,k2,k3,k4,res,fx;    double min, max, maxmin, maxmax,sumnew=0.;
   double p2[NPARMAX+1];    double **matprod2();
   int k;    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   fx=func(x);    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k1=func(p2)-fx;      }
    
     p2[thetai]=x[thetai]+delti[thetai]/k;     cov[1]=1.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   
     k2=func(p2)-fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetai]=x[thetai]-delti[thetai]/k;      newm=savm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      /* Covariates have to be included here again */
     k3=func(p2)-fx;       cov[2]=agefin;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovn;k++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     k4=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (k=1; k<=cptcovprod;k++)
 #endif          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   return res;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /************** Inverse of matrix **************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 void ludcmp(double **a, int n, int *indx, double *d)  
 {      savm=oldm;
   int i,imax,j,k;      oldm=newm;
   double big,dum,sum,temp;      maxmax=0.;
   double *vv;      for(j=1;j<=nlstate;j++){
          min=1.;
   vv=vector(1,n);        max=0.;
   *d=1.0;        for(i=1; i<=nlstate; i++) {
   for (i=1;i<=n;i++) {          sumnew=0;
     big=0.0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for (j=1;j<=n;j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
       if ((temp=fabs(a[i][j])) > big) big=temp;          max=FMAX(max,prlim[i][j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          min=FMIN(min,prlim[i][j]);
     vv[i]=1.0/big;        }
   }        maxmin=max-min;
   for (j=1;j<=n;j++) {        maxmax=FMAX(maxmax,maxmin);
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      if(maxmax < ftolpl){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        return prlim;
       a[i][j]=sum;      }
     }    }
     big=0.0;  }
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  /*************** transition probabilities ***************/ 
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       a[i][j]=sum;  {
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double s1, s2;
         big=dum;    /*double t34;*/
         imax=i;    int i,j,j1, nc, ii, jj;
       }  
     }      for(i=1; i<= nlstate; i++){
     if (j != imax) {      for(j=1; j<i;j++){
       for (k=1;k<=n;k++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         dum=a[imax][k];          /*s2 += param[i][j][nc]*cov[nc];*/
         a[imax][k]=a[j][k];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         a[j][k]=dum;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       }        }
       *d = -(*d);        ps[i][j]=s2;
       vv[imax]=vv[j];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
     indx[j]=imax;      for(j=i+1; j<=nlstate+ndeath;j++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (j != n) {          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       dum=1.0/(a[j][j]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        }
     }        ps[i][j]=s2;
   }      }
   free_vector(vv,1,n);  /* Doesn't work */    }
 ;      /*ps[3][2]=1;*/
 }  
     for(i=1; i<= nlstate; i++){
 void lubksb(double **a, int n, int *indx, double b[])       s1=0;
 {      for(j=1; j<i; j++)
   int i,ii=0,ip,j;        s1+=exp(ps[i][j]);
   double sum;      for(j=i+1; j<=nlstate+ndeath; j++)
          s1+=exp(ps[i][j]);
   for (i=1;i<=n;i++) {      ps[i][i]=1./(s1+1.);
     ip=indx[i];      for(j=1; j<i; j++)
     sum=b[ip];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[ip]=b[i];      for(j=i+1; j<=nlstate+ndeath; j++)
     if (ii)        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     else if (sum) ii=i;    } /* end i */
     b[i]=sum;  
   }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (i=n;i>=1;i--) {      for(jj=1; jj<= nlstate+ndeath; jj++){
     sum=b[i];        ps[ii][jj]=0;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        ps[ii][ii]=1;
     b[i]=sum/a[i][i];      }
   }    }
 }  
   
 /************ Frequencies ********************/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)      for(jj=1; jj<= nlstate+ndeath; jj++){
 {  /* Some frequencies */       printf("%lf ",ps[ii][jj]);
       }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      printf("\n ");
   double ***freq; /* Frequencies */      }
   double *pp;      printf("\n ");printf("%lf ",cov[2]);*/
   double pos;  /*
   FILE *ficresp;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   char fileresp[FILENAMELENGTH];    goto end;*/
       return ps;
   pp=vector(1,nlstate);  }
   
   strcpy(fileresp,"p");  /**************** Product of 2 matrices ******************/
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* in, b, out are matrice of pointers which should have been initialized 
   j1=0;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   j=cptcovn;    long i, j, k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k1=1; k1<=j;k1++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
    for(i1=1; i1<=ncodemax[k1];i1++){          out[i][k] +=in[i][j]*b[j][k];
        j1++;  
     return out;
         for (i=-1; i<=nlstate+ndeath; i++)    }
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;  /************* Higher Matrix Product ***************/
          
        for (i=1; i<=imx; i++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          bool=1;  {
          if  (cptcovn>0) {    /* Computes the transition matrix starting at age 'age' over 
            for (z1=1; z1<=cptcovn; z1++)       'nhstepm*hstepm*stepm' months (i.e. until
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          }       nhstepm*hstepm matrices. 
           if (bool==1) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
            for(m=firstpass; m<=lastpass-1; m++){       (typically every 2 years instead of every month which is too big 
              if(agev[m][i]==0) agev[m][i]=agemax+1;       for the memory).
              if(agev[m][i]==1) agev[m][i]=agemax+2;       Model is determined by parameters x and covariates have to be 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       included manually here. 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
            }       */
          }  
        }    int i, j, d, h, k;
         if  (cptcovn>0) {    double **out, cov[NCOVMAX];
          fprintf(ficresp, "\n#Variable");    double **newm;
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  
        }    /* Hstepm could be zero and should return the unit matrix */
        fprintf(ficresp, "\n#");    for (i=1;i<=nlstate+ndeath;i++)
        for(i=1; i<=nlstate;i++)      for (j=1;j<=nlstate+ndeath;j++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        oldm[i][j]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
              }
   for(i=(int)agemin; i <= (int)agemax+3; i++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if(i==(int)agemax+3)    for(h=1; h <=nhstepm; h++){
       printf("Total");      for(d=1; d <=hstepm; d++){
     else        newm=savm;
       printf("Age %d", i);        /* Covariates have to be included here again */
     for(jk=1; jk <=nlstate ; jk++){        cov[1]=1.;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
     for(jk=1; jk <=nlstate ; jk++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovprod;k++)
         pos += freq[jk][m][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(jk=1; jk <=nlstate ; jk++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        savm=oldm;
         pp[jk] += freq[jk][m][i];        oldm=newm;
     }      }
     for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<=nlstate+ndeath; i++)
       pos += pp[jk];        for(j=1;j<=nlstate+ndeath;j++) {
     for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
       if(pos>=1.e-5)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
       else        }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } /* end h */
       if( i <= (int) agemax){    return po;
         if(pos>=1.e-5)  }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*************** log-likelihood *************/
       }  double func( double *x)
     }  {
     for(jk=-1; jk <=nlstate+ndeath; jk++)    int i, ii, j, k, mi, d, kk;
       for(m=-1; m <=nlstate+ndeath; m++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double **out;
     if(i <= (int) agemax)    double sw; /* Sum of weights */
       fprintf(ficresp,"\n");    double lli; /* Individual log likelihood */
     printf("\n");    int s1, s2;
     }    double bbh, survp;
     }    long ipmx;
  }    /*extern weight */
      /* We are differentiating ll according to initial status */
   fclose(ficresp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
     */
 }  /* End of Freq */    cov[1]=1.;
   
 /************* Waves Concatenation ***************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    if(mle==1){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Death is a valid wave (if date is known).        for(mi=1; mi<= wav[i]-1; mi++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (ii=1;ii<=nlstate+ndeath;ii++)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (j=1;j<=nlstate+ndeath;j++){
      and mw[mi+1][i]. dh depends on stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int i, mi, m;          for(d=0; d<dh[mi][i]; d++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            newm=savm;
 float sum=0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     mi=0;            }
     m=firstpass;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     while(s[m][i] <= nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(s[m][i]>=1)            savm=oldm;
         mw[++mi][i]=m;            oldm=newm;
       if(m >=lastpass)          } /* end mult */
         break;        
       else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         m++;          /* But now since version 0.9 we anticipate for bias and large stepm.
     }/* end while */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if (s[m][i] > nlstate){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       mi++;     /* Death is another wave */           * the nearest (and in case of equal distance, to the lowest) interval but now
       /* if(mi==0)  never been interviewed correctly before death */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          /* Only death is a correct wave */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       mw[mi][i]=m;           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
     wav[i]=mi;           * For stepm=1 the results are the same as for previous versions of Imach.
     if(mi==0)           * For stepm > 1 the results are less biased than in previous versions. 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           */
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(mi=1; mi<wav[i];mi++){          /* bias is positive if real duration
       if (stepm <=0)           * is higher than the multiple of stepm and negative otherwise.
         dh[mi][i]=1;           */
       else{          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if (s[mw[mi+1][i]][i] > nlstate) {          if( s2 > nlstate){ 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
           if(j=0) j=1;  /* Survives at least one month after exam */               to the likelihood is the probability to die between last step unit time and current 
         }               step unit time, which is also the differences between probability to die before dh 
         else{               and probability to die before dh-stepm . 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));               In version up to 0.92 likelihood was computed
           k=k+1;          as if date of death was unknown. Death was treated as any other
           if (j >= jmax) jmax=j;          health state: the date of the interview describes the actual state
           else if (j <= jmin)jmin=j;          and not the date of a change in health state. The former idea was
           sum=sum+j;          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         jk= j/stepm;          introduced the exact date of death then we should have modified
         jl= j -jk*stepm;          the contribution of an exact death to the likelihood. This new
         ju= j -(jk+1)*stepm;          contribution is smaller and very dependent of the step unit
         if(jl <= -ju)          stepm. It is no more the probability to die between last interview
           dh[mi][i]=jk;          and month of death but the probability to survive from last
         else          interview up to one month before death multiplied by the
           dh[mi][i]=jk+1;          probability to die within a month. Thanks to Chris
         if(dh[mi][i]==0)          Jackson for correcting this bug.  Former versions increased
           dh[mi][i]=1; /* At least one step */          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            lli=log(out[s1][s2] - savm[s1][s2]);
 }          }else{
 /*********** Tricode ****************************/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void tricode(int *Tvar, int **nbcode, int imx)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 {          } 
   int Ndum[80],ij, k, j, i;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int cptcode=0;          /*if(lli ==000.0)*/
   for (k=0; k<79; k++) Ndum[k]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (k=1; k<=7; k++) ncodemax[k]=0;          ipmx +=1;
            sw += weight[i];
   for (j=1; j<=cptcovn; j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=imx; i++) {        } /* end of wave */
       ij=(int)(covar[Tvar[j]][i]);      } /* end of individual */
       Ndum[ij]++;    }  else if(mle==2){
       if (ij > cptcode) cptcode=ij;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=0; i<=cptcode; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;            }
     for (i=1; i<=ncodemax[j]; i++) {          for(d=0; d<=dh[mi][i]; d++){
       for (k=0; k<=79; k++) {            newm=savm;
         if (Ndum[k] != 0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           nbcode[Tvar[j]][ij]=k;            for (kk=1; kk<=cptcovage;kk++) {
           ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (ij > ncodemax[j]) break;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }              oldm=newm;
           } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
 /*********** Health Expectancies ****************/          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {          ipmx +=1;
   /* Health expectancies */          sw += weight[i];
   int i, j, nhstepm, hstepm, h;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age, agelim,hf;        } /* end of wave */
   double ***p3mat;      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficreseij,"# Health expectancies\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficreseij," %1d-%1d",i,j);            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /*  Every j years of age (in month) */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   agelim=AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     /* nhstepm age range expressed in number of stepm */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years = 20*12/6=40 stepm */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (stepm >= YEARM) hstepm=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            savm=oldm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=newm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          } /* end mult */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++)          ipmx +=1;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          sw += weight[i];
           eij[i][j][(int)age] +=p3mat[i][j][h];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
          } /* end of individual */
     hf=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     if (stepm >= YEARM) hf=stepm/YEARM;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"%.0f",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Variance ******************/            for (kk=1; kk<=cptcovage;kk++) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Variance of health expectancies */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   int i, j, nhstepm, hstepm, h;            oldm=newm;
   int k, cptcode;          } /* end mult */
    double *xp;        
   double **gp, **gm;          s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;          s2=s[mw[mi+1][i]][i];
   double ***p3mat;          if( s2 > nlstate){ 
   double age,agelim;            lli=log(out[s1][s2] - savm[s1][s2]);
   int theta;          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    fprintf(ficresvij,"# Covariances of life expectancies\n");          }
   fprintf(ficresvij,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvij,"\n");        } /* end of wave */
       } /* end of individual */
   xp=vector(1,npar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   dnewm=matrix(1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=1*YEARM; /* Every year of age */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (j=1;j<=nlstate+ndeath;j++){
   agelim = AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;          for(d=0; d<dh[mi][i]; d++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            newm=savm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     gp=matrix(0,nhstepm,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gm=matrix(0,nhstepm,1,nlstate);            }
           
     for(theta=1; theta <=npar; theta++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++){ /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            savm=oldm;
       }            oldm=newm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(h=0; h<=nhstepm; h++){          s2=s[mw[mi+1][i]][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate; j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(h=0; h<=nhstepm; h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    return -l;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /*************** log-likelihood *************/
       for(j=1; j<= nlstate; j++)  double funcone( double *x)
         for(h=0; h<=nhstepm; h++){  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Same as likeli but slower because of a lot of printf and if */
         }    int i, ii, j, k, mi, d, kk;
     } /* End theta */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double lli; /* Individual log likelihood */
     double llt;
     for(h=0; h<=nhstepm; h++)    int s1, s2;
       for(j=1; j<=nlstate;j++)    double bbh, survp;
         for(theta=1; theta <=npar; theta++)    /*extern weight */
           trgradg[h][j][theta]=gradg[h][theta][j];    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(i=1;i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
       for(j=1;j<=nlstate;j++)      printf(" %d\n",s[4][i]);
         vareij[i][j][(int)age] =0.;    */
     for(h=0;h<=nhstepm;h++){    cov[1]=1.;
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(j=1;j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             vareij[i][j][(int)age] += doldm[i][j];      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
     h=1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) h=stepm/YEARM;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++){          newm=savm;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresvij,"\n");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          savm=oldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          oldm=newm;
   } /* End age */        } /* end mult */
          
   free_vector(xp,1,npar);        s1=s[mw[mi][i]][i];
   free_matrix(doldm,1,nlstate,1,npar);        s2=s[mw[mi+1][i]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
 }         * is higher than the multiple of stepm and negative otherwise.
          */
 /************ Variance of prevlim ******************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli=log(out[s1][s2] - savm[s1][s2]);
 {        } else if (mle==1){
   /* Variance of prevalence limit */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if(mle==2){
   double **newm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==3){  /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int k, cptcode;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double *xp;          lli=log(out[s1][s2]); /* Original formula */
   double *gp, *gm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **gradg, **trgradg;          lli=log(out[s1][s2]); /* Original formula */
   double age,agelim;        } /* End of if */
   int theta;        ipmx +=1;
            sw += weight[i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"# Age");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)        if(globpr){
       fprintf(ficresvpl," %1d-%1d",i,i);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   fprintf(ficresvpl,"\n");   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   xp=vector(1,npar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   dnewm=matrix(1,nlstate,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   doldm=matrix(1,nlstate,1,nlstate);            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresilk," %10.6f\n", -llt);
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end of wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } /* end of individual */
     if (stepm >= YEARM) hstepm=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     gradg=matrix(1,npar,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gp=vector(1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     gm=vector(1,nlstate);      gipmx=ipmx;
       gsw=sw;
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    return -l;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*************** function likelione ***********/
         gp[i] = prlim[i][i];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      {
       for(i=1; i<=npar; i++) /* Computes gradient */    /* This routine should help understanding what is done with 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       the selection of individuals/waves and
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       to check the exact contribution to the likelihood.
       for(i=1;i<=nlstate;i++)       Plotting could be done.
         gm[i] = prlim[i][i];     */
     int k;
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    if(*globpri !=0){ /* Just counts and sums, no printings */
     } /* End theta */      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
     trgradg =matrix(1,nlstate,1,npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1;i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       varpl[i][(int)age] =0.;      for(k=1; k<=nlstate; k++) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     *fretone=(*funcone)(p);
     fprintf(ficresvpl,"%.0f ",age );    if(*globpri !=0){
     for(i=1; i<=nlstate;i++)      fclose(ficresilk);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     fprintf(ficresvpl,"\n");      fflush(fichtm); 
     free_vector(gp,1,nlstate);    } 
     free_vector(gm,1,nlstate);    return;
     free_matrix(gradg,1,npar,1,nlstate);  }
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  
   /*********** Maximum Likelihood Estimation ***************/
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     int i,j, iter;
 }    double **xi;
     double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
 /***********************************************/    xi=matrix(1,npar,1,npar);
 /**************** Main Program *****************/    for (i=1;i<=npar;i++)
 /***********************************************/      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 /*int main(int argc, char *argv[])*/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 int main()    strcpy(filerespow,"pow"); 
 {    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      printf("Problem with resultfile: %s\n", filerespow);
   double agedeb, agefin,hf;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double agemin=1.e20, agemax=-1.e20;    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double fret;    for (i=1;i<=nlstate;i++)
   double **xi,tmp,delta;      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double dum; /* Dummy variable */    fprintf(ficrespow,"\n");
   double ***p3mat;  
   int *indx;    powell(p,xi,npar,ftol,&iter,&fret,func);
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];    fclose(ficrespow);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   char filerest[FILENAMELENGTH];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  }
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */  /**** Computes Hessian and covariance matrix ***/
   int c,  h , cpt,l;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int ju,jl, mi;  {
   int i1,j1, k1,jk,aa,bb, stepsize;    double  **a,**y,*x,pd;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double **hess;
      int i, j,jk;
   int hstepm, nhstepm;    int *indx;
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double **prlim;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double *severity;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double ***param; /* Matrix of parameters */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double  *p;    double gompertz(double p[]);
   double **matcov; /* Matrix of covariance */    hess=matrix(1,npar,1,npar);
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    printf("\nCalculation of the hessian matrix. Wait...\n");
   double ***eij, ***vareij;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double **varpl; /* Variances of prevalence limits by age */    for (i=1;i<=npar;i++){
   double *epj, vepp;      printf("%d",i);fflush(stdout);
   char version[80]="Imach version 0.64, May 2000, INED-EUROREVES ";      fprintf(ficlog,"%d",i);fflush(ficlog);
   char *alph[]={"a","a","b","c","d","e"}, str[4];     
   char z[1]="c", occ;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 #include <sys/time.h>      
 #include <time.h>      /*  printf(" %f ",p[i]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   /* long total_usecs;    }
   struct timeval start_time, end_time;    
      for (i=1;i<=npar;i++) {
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   printf("\nIMACH, Version 0.64a");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   printf("\nEnter the parameter file name: ");          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
 #ifdef windows          hess[j][i]=hess[i][j];    
   scanf("%s",pathtot);          /*printf(" %lf ",hess[i][j]);*/
   cygwin_split_path(pathtot,path,optionfile);        }
      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);      }
      chdir(path);    }
      printf("\n");
   /*size=30;    fprintf(ficlog,"\n");
   getcwd(pathcd, size);    
   printf("pathcd=%s, path=%s, optionfile=%s\n",pathcd,path,optionfile);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   cutv(path,optionfile,pathtot,'\\');    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   chdir(path);    
   replace(pathc,path);    a=matrix(1,npar,1,npar);
   printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);    y=matrix(1,npar,1,npar);
   */    x=vector(1,npar);
 #endif    indx=ivector(1,npar);
 #ifdef unix    for (i=1;i<=npar;i++)
   scanf("%s",optionfile);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 #endif    ludcmp(a,npar,indx,&pd);
   
 /*-------- arguments in the command line --------*/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   strcpy(fileres,"r");      x[j]=1;
   strcat(fileres, optionfile);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   /*---------arguments file --------*/        matcov[i][j]=x[i];
       }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    printf("\n#Hessian matrix#\n");
   }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   strcpy(filereso,"o");      for (j=1;j<=npar;j++) { 
   strcat(filereso,fileres);        printf("%.3e ",hess[i][j]);
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficlog,"%.3e ",hess[i][j]);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      }
   }      printf("\n");
       fprintf(ficlog,"\n");
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* Recompute Inverse */
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=npar;i++)
     puts(line);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     fputs(line,ficparo);    ludcmp(a,npar,indx,&pd);
   }  
   ungetc(c,ficpar);    /*  printf("\n#Hessian matrix recomputed#\n");
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (j=1;j<=npar;j++) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      x[j]=1;
       lubksb(a,npar,indx,x);
   covar=matrix(1,NCOVMAX,1,n);          for (i=1;i<=npar;i++){ 
   if (strlen(model)<=1) cptcovn=0;        y[i][j]=x[i];
   else {        printf("%.3e ",y[i][j]);
     j=0;        fprintf(ficlog,"%.3e ",y[i][j]);
     j=nbocc(model,'+');      }
     cptcovn=j+1;      printf("\n");
   }      fprintf(ficlog,"\n");
     }
   ncovmodel=2+cptcovn;    */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      free_matrix(a,1,npar,1,npar);
   /* Read guess parameters */    free_matrix(y,1,npar,1,npar);
   /* Reads comments: lines beginning with '#' */    free_vector(x,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ivector(indx,1,npar);
     ungetc(c,ficpar);    free_matrix(hess,1,npar,1,npar);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /*************** hessian matrix ****************/
    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
     for(i=1; i <=nlstate; i++)    int i;
     for(j=1; j <=nlstate+ndeath-1; j++){    int l=1, lmax=20;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double k1,k2;
       fprintf(ficparo,"%1d%1d",i1,j1);    double p2[NPARMAX+1];
       printf("%1d%1d",i,j);    double res;
       for(k=1; k<=ncovmodel;k++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fscanf(ficpar," %lf",&param[i][j][k]);    double fx;
         printf(" %lf",param[i][j][k]);    int k=0,kmax=10;
         fprintf(ficparo," %lf",param[i][j][k]);    double l1;
       }  
       fscanf(ficpar,"\n");    fx=func(x);
       printf("\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficparo,"\n");    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
        delts=delt;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(k=1 ; k <kmax; k=k+1){
   p=param[1][1];        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   /* Reads comments: lines beginning with '#' */        k1=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){        p2[theta]=x[theta]-delt;
     ungetc(c,ficpar);        k2=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     puts(line);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fputs(line,ficparo);        
   }  #ifdef DEBUG
   ungetc(c,ficpar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  #endif
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for(i=1; i <=nlstate; i++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(j=1; j <=nlstate+ndeath-1; j++){          k=kmax;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficparo,"%1d%1d",i1,j1);          k=kmax; l=lmax*10.;
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         printf(" %le",delti3[i][j][k]);          delts=delt;
         fprintf(ficparo," %le",delti3[i][j][k]);        }
       }      }
       fscanf(ficpar,"\n");    }
       printf("\n");    delti[theta]=delts;
       fprintf(ficparo,"\n");    return res; 
     }    
   }  }
   delti=delti3[1][1];  
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i;
     ungetc(c,ficpar);    int l=1, l1, lmax=20;
     fgets(line, MAXLINE, ficpar);    double k1,k2,k3,k4,res,fx;
     puts(line);    double p2[NPARMAX+1];
     fputs(line,ficparo);    int k;
   }  
   ungetc(c,ficpar);    fx=func(x);
      for (k=1; k<=2; k++) {
   matcov=matrix(1,npar,1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
   for(i=1; i <=npar; i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
     fscanf(ficpar,"%s",&str);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("%s",str);      k1=func(p2)-fx;
     fprintf(ficparo,"%s",str);    
     for(j=1; j <=i; j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       fscanf(ficpar," %le",&matcov[i][j]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       printf(" %.5le",matcov[i][j]);      k2=func(p2)-fx;
       fprintf(ficparo," %.5le",matcov[i][j]);    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
     fscanf(ficpar,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("\n");      k3=func(p2)-fx;
     fprintf(ficparo,"\n");    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i <=npar; i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=i+1;j<=npar;j++)      k4=func(p2)-fx;
       matcov[i][j]=matcov[j][i];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      #ifdef DEBUG
   printf("\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
    if(mle==1){    }
     /*-------- data file ----------*/    return res;
     if((ficres =fopen(fileres,"w"))==NULL) {  }
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }  /************** Inverse of matrix **************/
     fprintf(ficres,"#%s\n",version);  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
     if((fic=fopen(datafile,"r"))==NULL)    {    int i,imax,j,k; 
       printf("Problem with datafile: %s\n", datafile);goto end;    double big,dum,sum,temp; 
     }    double *vv; 
    
     n= lastobs;    vv=vector(1,n); 
     severity = vector(1,maxwav);    *d=1.0; 
     outcome=imatrix(1,maxwav+1,1,n);    for (i=1;i<=n;i++) { 
     num=ivector(1,n);      big=0.0; 
     moisnais=vector(1,n);      for (j=1;j<=n;j++) 
     annais=vector(1,n);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     moisdc=vector(1,n);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     andc=vector(1,n);      vv[i]=1.0/big; 
     agedc=vector(1,n);    } 
     cod=ivector(1,n);    for (j=1;j<=n;j++) { 
     weight=vector(1,n);      for (i=1;i<j;i++) { 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        sum=a[i][j]; 
     mint=matrix(1,maxwav,1,n);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     anint=matrix(1,maxwav,1,n);        a[i][j]=sum; 
     s=imatrix(1,maxwav+1,1,n);      } 
     adl=imatrix(1,maxwav+1,1,n);          big=0.0; 
     tab=ivector(1,NCOVMAX);      for (i=j;i<=n;i++) { 
     ncodemax=ivector(1,8);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     i=1;          sum -= a[i][k]*a[k][j]; 
     while (fgets(line, MAXLINE, fic) != NULL)    {        a[i][j]=sum; 
       if ((i >= firstobs) && (i <=lastobs)) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                  big=dum; 
         for (j=maxwav;j>=1;j--){          imax=i; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        } 
           strcpy(line,stra);      } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if (j != imax) { 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<=n;k++) { 
         }          dum=a[imax][k]; 
                  a[imax][k]=a[j][k]; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          a[j][k]=dum; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        } 
         *d = -(*d); 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        vv[imax]=vv[j]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
       indx[j]=imax; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for (j=ncov;j>=1;j--){      if (j != n) { 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        dum=1.0/(a[j][j]); 
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         num[i]=atol(stra);      } 
     } 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/    free_vector(vv,1,n);  /* Doesn't work */
   ;
         i=i+1;  } 
       }  
     }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     /*scanf("%d",i);*/    int i,ii=0,ip,j; 
   imx=i-1; /* Number of individuals */    double sum; 
    
   /* Calculation of the number of parameter from char model*/    for (i=1;i<=n;i++) { 
   Tvar=ivector(1,8);          ip=indx[i]; 
          sum=b[ip]; 
   if (strlen(model) >1){      b[ip]=b[i]; 
     j=0;      if (ii) 
     j=nbocc(model,'+');        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     cptcovn=j+1;      else if (sum) ii=i; 
          b[i]=sum; 
     strcpy(modelsav,model);    } 
     if (j==0) {    for (i=n;i>=1;i--) { 
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     else {      b[i]=sum/a[i][i]; 
       for(i=j; i>=1;i--){    } 
         cutv(stra,strb,modelsav,'+');  } 
         if (strchr(strb,'*')) {  
           cutv(strd,strc,strb,'*');  /************ Frequencies ********************/
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
           cutv(strb,strc,strd,'V');  {  /* Some frequencies */
           for (k=1; k<=lastobs;k++)    
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
         else {cutv(strd,strc,strb,'V');    double ***freq; /* Frequencies */
         Tvar[i+1]=atoi(strc);    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         strcpy(modelsav,stra);      FILE *ficresp;
       }    char fileresp[FILENAMELENGTH];
       cutv(strd,strc,stra,'V');    
       Tvar[1]=atoi(strc);    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   /*printf("tvar=%d ",Tvar[1]);    strcat(fileresp,fileres);
   scanf("%d ",i);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fclose(fic);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     if (weightopt != 1) { /* Maximisation without weights*/      exit(0);
       for(i=1;i<=n;i++) weight[i]=1.0;    }
     }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     /*-calculation of age at interview from date of interview and age at death -*/    j1=0;
     agev=matrix(1,maxwav,1,imx);    
        j=cptcoveff;
     for (i=1; i<=imx; i++)  {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    first=1;
         if(s[m][i] >0){  
           if (s[m][i] == nlstate+1) {    for(k1=1; k1<=j;k1++){
             if(agedc[i]>0)      for(i1=1; i1<=ncodemax[k1];i1++){
               if(moisdc[i]!=99 && andc[i]!=9999)        j1++;
               agev[m][i]=agedc[i];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             else{          scanf("%d", i);*/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for (i=-1; i<=nlstate+ndeath; i++)  
               agev[m][i]=-1;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for (i=1; i<=nlstate; i++)  
             if(mint[m][i]==99 || anint[m][i]==9999)        for(m=iagemin; m <= iagemax+3; m++)
               agev[m][i]=1;          prop[i][m]=0;
             else if(agev[m][i] <agemin){        
               agemin=agev[m][i];        dateintsum=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        k2cpt=0;
             }        for (i=1; i<=imx; i++) {
             else if(agev[m][i] >agemax){          bool=1;
               agemax=agev[m][i];          if  (cptcovn>0) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for (z1=1; z1<=cptcoveff; z1++) 
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             /*agev[m][i]=anint[m][i]-annais[i];*/                bool=0;
             /*   agev[m][i] = age[i]+2*m;*/          }
           }          if (bool==1){
           else { /* =9 */            for(m=firstpass; m<=lastpass; m++){
             agev[m][i]=1;              k2=anint[m][i]+(mint[m][i]/12.);
             s[m][i]=-1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         else /*= 0 Unknown */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           agev[m][i]=1;                if (m<lastpass) {
       }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     }                }
     for (i=1; i<=imx; i++)  {                
       for(m=1; (m<= maxwav); m++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         if (s[m][i] > (nlstate+ndeath)) {                  dateintsum=dateintsum+k2;
           printf("Error: Wrong value in nlstate or ndeath\n");                    k2cpt++;
           goto end;                }
         }                /*}*/
       }            }
     }          }
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);        if  (cptcovn>0) {
     free_vector(moisnais,1,n);          fprintf(ficresp, "\n#********** Variable "); 
     free_vector(annais,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_matrix(mint,1,maxwav,1,n);          fprintf(ficresp, "**********\n#");
     free_matrix(anint,1,maxwav,1,n);        }
     free_vector(moisdc,1,n);        for(i=1; i<=nlstate;i++) 
     free_vector(andc,1,n);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
            
     wav=ivector(1,imx);        for(i=iagemin; i <= iagemax+3; i++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          if(i==iagemax+3){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            fprintf(ficlog,"Total");
              }else{
     /* Concatenates waves */            if(first==1){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              first=0;
               printf("See log file for details...\n");
             }
 Tcode=ivector(1,100);            fprintf(ficlog,"Age %d", i);
    nbcode=imatrix(1,nvar,1,8);            }
    ncodemax[1]=1;          for(jk=1; jk <=nlstate ; jk++){
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
    codtab=imatrix(1,100,1,10);          }
    h=0;          for(jk=1; jk <=nlstate ; jk++){
    m=pow(2,cptcovn);            for(m=-1, pos=0; m <=0 ; m++)
                pos += freq[jk][m][i];
    for(k=1;k<=cptcovn; k++){            if(pp[jk]>=1.e-10){
      for(i=1; i <=(m/pow(2,k));i++){              if(first==1){
        for(j=1; j <= ncodemax[k]; j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              }
            h++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
            if (h>m) h=1;codtab[h][k]=j;            }else{
          }              if(first==1)
        }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    }            }
           }
    /*for(i=1; i <=m ;i++){  
      for(k=1; k <=cptcovn; k++){          for(jk=1; jk <=nlstate ; jk++){
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      }              pp[jk] += freq[jk][m][i];
      printf("\n");          }       
    }*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    /*scanf("%d",i);*/            pos += pp[jk];
                posprop += prop[jk][i];
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */          for(jk=1; jk <=nlstate ; jk++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            if(pos>=1.e-5){
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*scanf("%d ",i);*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
               if(first==1)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if( i <= iagemax){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     /* For Powell, parameters are in a vector p[] starting at p[1]                /*probs[i][jk][j1]= pp[jk]/pos;*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              }
                  else
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
              }
     /*--------- results files --------------*/          
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
    jk=1;              if(freq[jk][m][i] !=0 ) {
    fprintf(ficres,"# Parameters\n");              if(first==1)
    printf("# Parameters\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    for(i=1,jk=1; i <=nlstate; i++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      for(k=1; k <=(nlstate+ndeath); k++){              }
        if (k != i)          if(i <= iagemax)
          {            fprintf(ficresp,"\n");
            printf("%d%d ",i,k);          if(first==1)
            fprintf(ficres,"%1d%1d ",i,k);            printf("Others in log...\n");
            for(j=1; j <=ncovmodel; j++){          fprintf(ficlog,"\n");
              printf("%f ",p[jk]);        }
              fprintf(ficres,"%f ",p[jk]);      }
              jk++;    }
            }    dateintmean=dateintsum/k2cpt; 
            printf("\n");   
            fprintf(ficres,"\n");    fclose(ficresp);
          }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
      }    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
     /* Computing hessian and covariance matrix */  }
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  /************ Prevalence ********************/
     fprintf(ficres,"# Scales\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     printf("# Scales\n");  {  
      for(i=1,jk=1; i <=nlstate; i++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for(j=1; j <=nlstate+ndeath; j++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
         if (j!=i) {       We still use firstpass and lastpass as another selection.
           fprintf(ficres,"%1d%1d",i,j);    */
           printf("%1d%1d",i,j);   
           for(k=1; k<=ncovmodel;k++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             printf(" %.5e",delti[jk]);    double ***freq; /* Frequencies */
             fprintf(ficres," %.5e",delti[jk]);    double *pp, **prop;
             jk++;    double pos,posprop; 
           }    double  y2; /* in fractional years */
           printf("\n");    int iagemin, iagemax;
           fprintf(ficres,"\n");  
         }    iagemin= (int) agemin;
       }    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
     k=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fprintf(ficres,"# Covariance\n");    j1=0;
     printf("# Covariance\n");    
     for(i=1;i<=npar;i++){    j=cptcoveff;
       /*  if (k>nlstate) k=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       i1=(i-1)/(ncovmodel*nlstate)+1;    
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    for(k1=1; k1<=j;k1++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficres,"%3d",i);        j1++;
       printf("%3d",i);        
       for(j=1; j<=i;j++){        for (i=1; i<=nlstate; i++)  
         fprintf(ficres," %.5e",matcov[i][j]);          for(m=iagemin; m <= iagemax+3; m++)
         printf(" %.5e",matcov[i][j]);            prop[i][m]=0.0;
       }       
       fprintf(ficres,"\n");        for (i=1; i<=imx; i++) { /* Each individual */
       printf("\n");          bool=1;
       k++;          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     while((c=getc(ficpar))=='#' && c!= EOF){                bool=0;
       ungetc(c,ficpar);          } 
       fgets(line, MAXLINE, ficpar);          if (bool==1) { 
       puts(line);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fputs(line,ficparo);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     ungetc(c,ficpar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     if (fage <= 2) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       bage = agemin;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fage = agemax;                  prop[s[m][i]][iagemax+3] += weight[i]; 
     }                } 
               }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            } /* end selection of waves */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          }
 /*------------ gnuplot -------------*/        }
 chdir(pathcd);        for(i=iagemin; i <= iagemax+3; i++){  
   if((ficgp=fopen("graph.plt","w"))==NULL) {          
     printf("Problem with file graph.plt");goto end;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
 #ifdef windows          } 
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif          for(jk=1; jk <=nlstate ; jk++){     
 m=pow(2,cptcovn);            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
  /* 1eme*/                probs[i][jk][j1]= prop[jk][i]/posprop;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              } 
    for (k1=1; k1<= m ; k1 ++) {            } 
           }/* end jk */ 
 #ifdef windows        }/* end i */ 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      } /* end i1 */
 #endif    } /* end k1 */
 #ifdef unix    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 #endif    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 for (i=1; i<= nlstate ; i ++) {  }  /* End of prevalence */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Death is a valid wave (if date is known).
 }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      for (i=1; i<= nlstate ; i ++) {       and mw[mi+1][i]. dh depends on stepm.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      int i, mi, m;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 #ifdef unix       double sum=0., jmean=0.;*/
 fprintf(ficgp,"\nset ter gif small size 400,300");    int first;
 #endif    int j, k=0,jk, ju, jl;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double sum=0.;
    }    first=0;
   }    jmin=1e+5;
   /*2 eme*/    jmax=-1;
     jmean=0.;
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      mi=0;
          m=firstpass;
     for (i=1; i<= nlstate+1 ; i ++) {      while(s[m][i] <= nlstate){
       k=2*i;        if(s[m][i]>=1)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          mw[++mi][i]=m;
       for (j=1; j<= nlstate+1 ; j ++) {        if(m >=lastpass)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          break;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else
 }            m++;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      }/* end while */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (s[m][i] > nlstate){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        mi++;     /* Death is another wave */
       for (j=1; j<= nlstate+1 ; j ++) {        /* if(mi==0)  never been interviewed correctly before death */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           /* Only death is a correct wave */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        mw[mi][i]=m;
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      wav[i]=mi;
       for (j=1; j<= nlstate+1 ; j ++) {      if(mi==0){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        nbwarn++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==0){
 }            printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          first=1;
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }        if(first==1){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   }        }
        } /* end mi==0 */
   /*3eme*/    } /* End individuals */
   
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(mi=1; mi<wav[i];mi++){
       k=2+nlstate*(cpt-1);        if (stepm <=0)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          dh[mi][i]=1;
       for (i=1; i< nlstate ; i ++) {        else{
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
    }              else if(j<0){
                  nberr++;
   /* CV preval stat */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (k1=1; k1<= m ; k1 ++) {                j=1; /* Temporary Dangerous patch */
     for (cpt=1; cpt<nlstate ; cpt ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       k=3;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       for (i=1; i< nlstate ; i ++)              }
         fprintf(ficgp,"+$%d",k+i+1);              k=k+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              if (j >= jmax) jmax=j;
                    if (j <= jmin) jmin=j;
       l=3+(nlstate+ndeath)*cpt;              sum=sum+j;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for (i=1; i< nlstate ; i ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);          }
       }          else{
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            k=k+1;
   }            if (j >= jmax) jmax=j;
              else if (j <= jmin)jmin=j;
   /* proba elementaires */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for(i=1,jk=1; i <=nlstate; i++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(k=1; k <=(nlstate+ndeath); k++){            if(j<0){
       if (k != i) {              nberr++;
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1; j <=ncovmodel; j++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);            }
           jk++;            sum=sum+j;
           fprintf(ficgp,"\n");          }
         }          jk= j/stepm;
       }          jl= j -jk*stepm;
     }          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   for(jk=1; jk <=m; jk++) {            if(jl==0){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              dh[mi][i]=jk;
   for(i=1; i <=nlstate; i++) {              bh[mi][i]=0;
     for(k=1; k <=(nlstate+ndeath); k++){            }else{ /* We want a negative bias in order to only have interpolation ie
       if (k != i) {                    * at the price of an extra matrix product in likelihood */
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);              dh[mi][i]=jk+1;
         for(j=3; j <=ncovmodel; j++)              bh[mi][i]=ju;
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
         fprintf(ficgp,")/(1");          }else{
         for(k1=1; k1 <=(nlstate+ndeath); k1++)            if(jl <= -ju){
           if (k1 != i) {              dh[mi][i]=jk;
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);              bh[mi][i]=jl;       /* bias is positive if real duration
             for(j=3; j <=ncovmodel; j++)                                   * is higher than the multiple of stepm and negative otherwise.
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                   */
             fprintf(ficgp,")");            }
           }            else{
         fprintf(ficgp,") t \"p%d%d\" ", i,k);              dh[mi][i]=jk+1;
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              bh[mi][i]=ju;
       }            }
     }            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
  fclose(ficgp);          } /* end if mle */
         }
     chdir(path);      } /* end wave */
     free_matrix(agev,1,maxwav,1,imx);    }
     free_ivector(wav,1,imx);    jmean=sum/k;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }
     free_imatrix(s,1,maxwav+1,1,n);  
      /*********** Tricode ****************************/
      void tricode(int *Tvar, int **nbcode, int imx)
     free_ivector(num,1,n);  {
     free_vector(agedc,1,n);    
     free_vector(weight,1,n);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    int cptcode=0;
     fclose(ficparo);    cptcoveff=0; 
     fclose(ficres);   
    }    for (k=0; k<maxncov; k++) Ndum[k]=0;
        for (k=1; k<=7; k++) ncodemax[k]=0;
    /*________fin mle=1_________*/  
        for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
     /* No more information from the sample is required now */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /* Reads comments: lines beginning with '#' */        Ndum[ij]++; /*store the modality */
   while((c=getc(ficpar))=='#' && c!= EOF){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     ungetc(c,ficpar);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fgets(line, MAXLINE, ficpar);                                         Tvar[j]. If V=sex and male is 0 and 
     puts(line);                                         female is 1, then  cptcode=1.*/
     fputs(line,ficparo);      }
   }  
   ungetc(c,ficpar);      for (i=0; i<=cptcode; i++) {
          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      ij=1; 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      for (i=1; i<=ncodemax[j]; i++) {
 /*--------- index.htm --------*/        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   if((fichtm=fopen("index.htm","w"))==NULL)    {            nbcode[Tvar[j]][ij]=k; 
     printf("Problem with index.htm \n");goto end;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }            
             ij++;
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n          }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if (ij > ncodemax[j]) break; 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        }  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      } 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    }  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>   for (k=0; k< maxncov; k++) Ndum[k]=0;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>   for (i=1; i<=ncovmodel-2; i++) { 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
  fprintf(fichtm," <li>Graphs</li>\n<p>");     Ndum[ij]++;
    }
  m=cptcovn;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   ij=1;
    for (i=1; i<= maxncov; i++) {
  j1=0;     if((Ndum[i]!=0) && (i<=ncovcol)){
  for(k1=1; k1<=m;k1++){       Tvaraff[ij]=i; /*For printing */
    for(i1=1; i1<=ncodemax[k1];i1++){       ij++;
        j1++;     }
        if (cptcovn > 0) {   }
          fprintf(fichtm,"<hr>************ Results for covariates");   
          for (cpt=1; cpt<=cptcovn;cpt++)   cptcoveff=ij-1; /*Number of simple covariates*/
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  }
          fprintf(fichtm," ************\n<hr>");  
        }  /*********** Health Expectancies ****************/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Health expectancies */
        }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for(cpt=1; cpt<=nlstate;cpt++) {    double age, agelim, hf;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double ***p3mat,***varhe;
 interval) in state (%d): v%s%d%d.gif <br>    double **dnewm,**doldm;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      double *xp;
      }    double **gp, **gm;
      for(cpt=1; cpt<=nlstate;cpt++) {    double ***gradg, ***trgradg;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    int theta;
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
      }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    xp=vector(1,npar);
 health expectancies in states (1) and (2): e%s%d.gif<br>    dnewm=matrix(1,nlstate*nlstate,1,npar);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 fprintf(fichtm,"\n</body>");    
    }    fprintf(ficreseij,"# Health expectancies\n");
  }    fprintf(ficreseij,"# Age");
 fclose(fichtm);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   /*--------------- Prevalence limit --------------*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficreseij,"\n");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    if(estepm < stepm){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }    else  hstepm=estepm;   
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficrespl,"#Prevalence limit\n");     * This is mainly to measure the difference between two models: for example
   fprintf(ficrespl,"#Age ");     * if stepm=24 months pijx are given only every 2 years and by summing them
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   fprintf(ficrespl,"\n");     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   prlim=matrix(1,nlstate,1,nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * to compare the new estimate of Life expectancy with the same linear 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * hypothesis. A more precise result, taking into account a more precise
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * curvature will be obtained if estepm is as small as stepm. */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* For example we decided to compute the life expectancy with the smallest unit */
   k=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   agebase=agemin;       nhstepm is the number of hstepm from age to agelim 
   agelim=agemax;       nstepm is the number of stepm from age to agelin. 
   ftolpl=1.e-10;       Look at hpijx to understand the reason of that which relies in memory size
   i1=cptcovn;       and note for a fixed period like estepm months */
   if (cptcovn < 1){i1=1;}    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   for(cptcov=1;cptcov<=i1;cptcov++){       means that if the survival funtion is printed only each two years of age and if
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         k=k+1;       results. So we changed our mind and took the option of the best precision.
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    */
         fprintf(ficrespl,"\n#****** ");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    agelim=AGESUP;
         fprintf(ficrespl,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              /* nhstepm age range expressed in number of stepm */
         for (age=agebase; age<=agelim; age++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           fprintf(ficrespl,"%.0f",age );      /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficrespl," %.5f", prlim[i][i]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
   fclose(ficrespl);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*------------- h Pij x at various ages ------------*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      /* Computing  Variances of health expectancies */
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;       for(theta=1; theta <=npar; theta++){
   if (stepm<=24) stepsize=2;        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   agelim=AGESUP;        }
   hstepm=stepsize*YEARM; /* Every year of age */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    
          cptj=0;
   k=0;        for(j=1; j<= nlstate; j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1; i<=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cptj=cptj+1;
       k=k+1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficrespij,"\n#****** ");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(j=1;j<=cptcovn;j++)            }
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
         fprintf(ficrespij,"******\n");        }
               
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(i=1; i<=npar; i++) 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          cptj=0;
           fprintf(ficrespij,"# Age");        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate;i++)          for(i=1;i<=nlstate;i++){
             for(j=1; j<=nlstate+ndeath;j++)            cptj=cptj+1;
               fprintf(ficrespij," %1d-%1d",i,j);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            }
             for(i=1; i<=nlstate;i++)          }
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(j=1; j<= nlstate*nlstate; j++)
             fprintf(ficrespij,"\n");          for(h=0; h<=nhstepm-1; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");       } 
         }     
     }  /* End theta */
   }  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficrespij);  
        for(h=0; h<=nhstepm-1; h++)
   /*---------- Health expectancies and variances ------------*/        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   strcpy(filerest,"t");            trgradg[h][j][theta]=gradg[h][theta][j];
   strcat(filerest,fileres);       
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          varhe[i][j][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
   strcpy(filerese,"e");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcat(filerese,fileres);       for(h=0;h<=nhstepm-1;h++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(k=0;k<=nhstepm-1;k++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
  strcpy(fileresv,"v");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(fileresv,fileres);        }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   k=0;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   for(cptcov=1;cptcov<=i1;cptcov++){            
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       k=k+1;  
       fprintf(ficrest,"\n#****** ");          }
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficrest,"******\n");      cptj=0;
       for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");        for(j=1; j<=nlstate;j++){
       for(j=1;j<=cptcovn;j++)          cptj++;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(ficreseij,"******\n");        }
       fprintf(ficreseij,"\n");
       fprintf(ficresvij,"\n#****** ");     
       for(j=1;j<=cptcovn;j++)      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresvij,"******\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      printf("\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficlog,"\n");
       oldm=oldms;savm=savms;  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_vector(xp,1,npar);
          free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficrest,"\n");  }
          
       hf=1;  /************ Variance ******************/
       if (stepm >= YEARM) hf=stepm/YEARM;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       epj=vector(1,nlstate+1);  {
       for(age=bage; age <=fage ;age++){    /* Variance of health expectancies */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         fprintf(ficrest," %.0f",age);    /* double **newm;*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double **dnewm,**doldm;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double **dnewmp,**doldmp;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    int i, j, nhstepm, hstepm, h, nstepm ;
           }    int k, cptcode;
           epj[nlstate+1] +=epj[j];    double *xp;
         }    double **gp, **gm;  /* for var eij */
         for(i=1, vepp=0.;i <=nlstate;i++)    double ***gradg, ***trgradg; /*for var eij */
           for(j=1;j <=nlstate;j++)    double **gradgp, **trgradgp; /* for var p point j */
             vepp += vareij[i][j][(int)age];    double *gpp, *gmp; /* for var p point j */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         for(j=1;j <=nlstate;j++){    double ***p3mat;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    double age,agelim, hf;
         }    double ***mobaverage;
         fprintf(ficrest,"\n");    int theta;
       }    char digit[4];
     }    char digitp[25];
   }  
            char fileresprobmorprev[FILENAMELENGTH];
  fclose(ficreseij);  
  fclose(ficresvij);    if(popbased==1){
   fclose(ficrest);      if(mobilav!=0)
   fclose(ficpar);        strcpy(digitp,"-populbased-mobilav-");
   free_vector(epj,1,nlstate+1);      else strcpy(digitp,"-populbased-nomobil-");
   /*scanf("%d ",i); */    }
     else 
   /*------- Variance limit prevalence------*/        strcpy(digitp,"-stablbased-");
   
 strcpy(fileresvpl,"vpl");    if (mobilav!=0) {
   strcat(fileresvpl,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     exit(0);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
   
  k=0;    strcpy(fileresprobmorprev,"prmorprev"); 
  for(cptcov=1;cptcov<=i1;cptcov++){    sprintf(digit,"%-d",ij);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      k=k+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      fprintf(ficresvpl,"\n#****** ");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      for(j=1;j<=cptcovn;j++)    strcat(fileresprobmorprev,fileres);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      fprintf(ficresvpl,"******\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
      oldm=oldms;savm=savms;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficresvpl);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   /*---------- End : free ----------------*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }  
      fprintf(ficresprobmorprev,"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficgp,"\n# Routine varevsij");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   free_matrix(matcov,1,npar,1,npar);      for(j=1; j<=nlstate;j++)
   free_vector(delti,1,npar);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficresvij,"\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     xp=vector(1,npar);
   printf("End of Imach\n");    dnewm=matrix(1,nlstate,1,npar);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
  end:    gmp=vector(nlstate+1,nlstate+ndeath);
 #ifdef windows    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  chdir(pathcd);    
 #endif    if(estepm < stepm){
  system("wgnuplot graph.plt");      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
 #ifdef windows    else  hstepm=estepm;   
   while (z[0] != 'q') {    /* For example we decided to compute the life expectancy with the smallest unit */
     chdir(pathcd);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");       nhstepm is the number of hstepm from age to agelim 
     scanf("%s",z);       nstepm is the number of stepm from age to agelin. 
     if (z[0] == 'c') system("./imach");       Look at hpijx to understand the reason of that which relies in memory size
     else if (z[0] == 'e') {       and note for a fixed period like k years */
       chdir(path);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       system("index.htm");       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
     else if (z[0] == 'q') exit(0);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
 #endif    */
 }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.4  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>