Diff for /imach/src/imach.c between versions 1.20 and 1.99

version 1.20, 2002/02/20 17:22:01 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.99  2004/06/05 08:57:40  brouard
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.98  2004/05/16 15:05:56  brouard
   Health expectancies are computed from the transistions observed between    New version 0.97 . First attempt to estimate force of mortality
   waves and are computed for each degree of severity of disability (number    directly from the data i.e. without the need of knowing the health
   of life states). More degrees you consider, more time is necessary to    state at each age, but using a Gompertz model: log u =a + b*age .
   reach the Maximum Likelihood of the parameters involved in the model.    This is the basic analysis of mortality and should be done before any
   The simplest model is the multinomial logistic model where pij is    other analysis, in order to test if the mortality estimated from the
   the probabibility to be observed in state j at the second wave conditional    cross-longitudinal survey is different from the mortality estimated
   to be observed in state i at the first wave. Therefore the model is:    from other sources like vital statistic data.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    The same imach parameter file can be used but the option for mle should be -3.
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Agnès, who wrote this part of the code, tried to keep most of the
   More covariates you add, less is the speed of the convergence.    former routines in order to include the new code within the former code.
   
   The advantage that this computer programme claims, comes from that if the    The output is very simple: only an estimate of the intercept and of
   delay between waves is not identical for each individual, or if some    the slope with 95% confident intervals.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Current limitations:
   hPijx is the probability to be    A) Even if you enter covariates, i.e. with the
   observed in state i at age x+h conditional to the observed state i at age    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   x. The delay 'h' can be split into an exact number (nh*stepm) of    B) There is no computation of Life Expectancy nor Life Table.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.97  2004/02/20 13:25:42  lievre
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.96d. Population forecasting command line is (temporarily)
   and the contribution of each individual to the likelihood is simply hPijx.    suppressed.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.96  2003/07/15 15:38:55  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.95  2003/07/08 07:54:34  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository):
   from the European Union.    (Repository): Using imachwizard code to output a more meaningful covariance
   It is copyrighted identically to a GNU software product, ie programme and    matrix (cov(a12,c31) instead of numbers.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.94  2003/06/27 13:00:02  brouard
   **********************************************************************/    Just cleaning
    
 #include <math.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>    (Module): Version 0.96b
   
 #define MAXLINE 256    Revision 1.92  2003/06/25 16:30:45  brouard
 #define FILENAMELENGTH 80    (Module): On windows (cygwin) function asctime_r doesn't
 /*#define DEBUG*/    exist so I changed back to asctime which exists.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    helps to forecast when convergence will be reached. Elapsed time
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NCOVMAX 8 /* Maximum number of covariates */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define MAXN 20000    of the covariance matrix to be input.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGEBASE 40    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.88  2003/06/23 17:54:56  brouard
 int npar=NPARMAX;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.87  2003/06/18 12:26:01  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.96
 int popbased=0;  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Change position of html and gnuplot routines and added
 int maxwav; /* Maxim number of waves */    routine fileappend.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.85  2003/06/17 13:12:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Check when date of death was earlier that
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    current date of interview. It may happen when the death was just
 double jmean; /* Mean space between 2 waves */    prior to the death. In this case, dh was negative and likelihood
 double **oldm, **newm, **savm; /* Working pointers to matrices */    was wrong (infinity). We still send an "Error" but patch by
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    assuming that the date of death was just one stepm after the
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    interview.
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Repository): Because some people have very long ID (first column)
 FILE *ficreseij;    we changed int to long in num[] and we added a new lvector for
   char filerese[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
  FILE  *ficresvij;    truncation)
   char fileresv[FILENAMELENGTH];    (Repository): No more line truncation errors.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define NR_END 1    place. It differs from routine "prevalence" which may be called
 #define FREE_ARG char*    many times. Probs is memory consuming and must be used with
 #define FTOL 1.0e-10    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NRANSI  
 #define ITMAX 200    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define CGOLD 0.3819660    Add log in  imach.c and  fullversion number is now printed.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  */
   /*
 #define GOLD 1.618034     Interpolated Markov Chain
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Short summary of the programme:
     
 static double maxarg1,maxarg2;    This program computes Healthy Life Expectancies from
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    case of a health survey which is our main interest) -2- at least a
 #define rint(a) floor(a+0.5)    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 static double sqrarg;    computed from the time spent in each health state according to a
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    model. More health states you consider, more time is necessary to reach the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 int imx;    probability to be observed in state j at the second wave
 int stepm;    conditional to be observed in state i at the first wave. Therefore
 /* Stepm, step in month: minimum step interpolation*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int m,nb;    complex model than "constant and age", you should modify the program
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    where the markup *Covariates have to be included here again* invites
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    you to do it.  More covariates you add, slower the
 double **pmmij, ***probs, ***mobaverage;    convergence.
 double dateintmean=0;  
     The advantage of this computer programme, compared to a simple
 double *weight;    multinomial logistic model, is clear when the delay between waves is not
 int **s; /* Status */    identical for each individual. Also, if a individual missed an
 double *agedc, **covar, idx;    intermediate interview, the information is lost, but taken into
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    account using an interpolation or extrapolation.  
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    hPijx is the probability to be observed in state i at age x+h
 double ftolhess; /* Tolerance for computing hessian */    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /**************** split *************************/    states. This elementary transition (by month, quarter,
 static  int split( char *path, char *dirc, char *name )    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
    char *s;                             /* pointer */    and the contribution of each individual to the likelihood is simply
    int  l1, l2;                         /* length counters */    hPijx.
   
    l1 = strlen( path );                 /* length of path */    Also this programme outputs the covariance matrix of the parameters but also
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    of the life expectancies. It also computes the stable prevalence. 
    s = strrchr( path, '\\' );           /* find last / */    
    if ( s == NULL ) {                   /* no directory, so use current */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #if     defined(__bsd__)                /* get current working directory */             Institut national d'études démographiques, Paris.
       extern char       *getwd( );    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
       if ( getwd( dirc ) == NULL ) {    It is copyrighted identically to a GNU software product, ie programme and
 #else    software can be distributed freely for non commercial use. Latest version
       extern char       *getcwd( );    can be accessed at http://euroreves.ined.fr/imach .
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
          return( GLOCK_ERROR_GETCWD );    
       }    **********************************************************************/
       strcpy( name, path );             /* we've got it */  /*
    } else {                             /* strip direcotry from path */    main
       s++;                              /* after this, the filename */    read parameterfile
       l2 = strlen( s );                 /* length of filename */    read datafile
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    concatwav
       strcpy( name, s );                /* save file name */    freqsummary
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if (mle >= 1)
       dirc[l1-l2] = 0;                  /* add zero */      mlikeli
    }    print results files
    l1 = strlen( dirc );                 /* length of directory */    if mle==1 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }       computes hessian
    return( 0 );                         /* we're done */    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
     open html file
 /******************************************/    stable prevalence
      for age prevalim()
 void replace(char *s, char*t)    h Pij x
 {    variance of p varprob
   int i;    forecasting if prevfcast==1 prevforecast call prevalence()
   int lg=20;    health expectancies
   i=0;    Variance-covariance of DFLE
   lg=strlen(t);    prevalence()
   for(i=0; i<= lg; i++) {     movingaverage()
     (s[i] = t[i]);    varevsij() 
     if (t[i]== '\\') s[i]='/';    if popbased==1 varevsij(,popbased)
   }    total life expectancies
 }    Variance of stable prevalence
    end
 int nbocc(char *s, char occ)  */
 {  
   int i,j=0;  
   int lg=20;  
   i=0;   
   lg=strlen(s);  #include <math.h>
   for(i=0; i<= lg; i++) {  #include <stdio.h>
   if  (s[i] == occ ) j++;  #include <stdlib.h>
   }  #include <unistd.h>
   return j;  
 }  /* #include <sys/time.h> */
   #include <time.h>
 void cutv(char *u,char *v, char*t, char occ)  #include "timeval.h"
 {  
   int i,lg,j,p=0;  /* #include <libintl.h> */
   i=0;  /* #define _(String) gettext (String) */
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define MAXLINE 256
   }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   lg=strlen(t);  #define FILENAMELENGTH 132
   for(j=0; j<p; j++) {  /*#define DEBUG*/
     (u[j] = t[j]);  /*#define windows*/
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
      u[p]='\0';  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
    for(j=0; j<= lg; j++) {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /********************** nrerror ********************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 void nrerror(char error_text[])  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   fprintf(stderr,"ERREUR ...\n");  #define AGESUP 130
   fprintf(stderr,"%s\n",error_text);  #define AGEBASE 40
   exit(1);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef unix
 /*********************** vector *******************/  #define DIRSEPARATOR '/'
 double *vector(int nl, int nh)  #define ODIRSEPARATOR '\\'
 {  #else
   double *v;  #define DIRSEPARATOR '\\'
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '/'
   if (!v) nrerror("allocation failure in vector");  #endif
   return v-nl+NR_END;  
 }  /* $Id$ */
   /* $State$ */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(v+nl-NR_END));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /************************ivector *******************************/  int npar=NPARMAX;
 int *ivector(long nl,long nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   int *v;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int popbased=0;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /******************free ivector **************************/  int gipmx, gsw; /* Global variables on the number of contributions 
 void free_ivector(int *v, long nl, long nh)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   free((FREE_ARG)(v+nl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /******************* imatrix *******************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double jmean; /* Mean space between 2 waves */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int **m;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   /* allocate pointers to rows */  double fretone; /* Only one call to likelihood */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  long ipmx; /* Number of contributions */
   if (!m) nrerror("allocation failure 1 in matrix()");  double sw; /* Sum of weights */
   m += NR_END;  char filerespow[FILENAMELENGTH];
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   /* allocate rows and set pointers to them */  FILE *ficresprobmorprev;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *fichtm, *fichtmcov; /* Html File */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficreseij;
   m[nrl] += NR_END;  char filerese[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  char title[MAXLINE];
   return m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /****************** free_imatrix *************************/  char command[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  int  outcmd=0;
       int **m;  
       long nch,ncl,nrh,nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char filerest[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /******************* matrix *******************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  struct timezone tzp;
   double **m;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long time_value;
   if (!m) nrerror("allocation failure 1 in matrix()");  extern long time();
   m += NR_END;  char strcurr[80], strfor[80];
   m -= nrl;  
   #define NR_END 1
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI 
   #define ITMAX 200 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************************free matrix ************************/  #define ZEPS 1.0e-10 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG)(m+nrl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* ma3x *******************************/  static double maxarg1,maxarg2;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    
   double ***m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double sqrarg;
   m += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m -= nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int imx; 
   m[nrl] += NR_END;  int stepm=1;
   m[nrl] -= ncl;  /* Stepm, step in month: minimum step interpolation*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int m,nb;
   m[nrl][ncl] += NR_END;  long *num;
   m[nrl][ncl] -= nll;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (j=ncl+1; j<=nch; j++)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     m[nrl][j]=m[nrl][j-1]+nlay;  double **pmmij, ***probs;
    double *ageexmed,*agecens;
   for (i=nrl+1; i<=nrh; i++) {  double dateintmean=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  double *weight;
       m[i][j]=m[i][j-1]+nlay;  int **s; /* Status */
   }  double *agedc, **covar, idx;
   return m;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /*************************free ma3x ************************/  double ftolhess; /* Tolerance for computing hessian */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /**************** split *************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /***************** f1dim *************************/    char  *ss;                            /* pointer */
 extern int ncom;    int   l1, l2;                         /* length counters */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double f1dim(double x)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   int j;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double f;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double *xt;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   xt=vector(1,ncom);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];        return( GLOCK_ERROR_GETCWD );
   f=(*nrfunc)(xt);      }
   free_vector(xt,1,ncom);      strcpy( name, path );               /* we've got it */
   return f;    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /*****************brent *************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int iter;      dirc[l1-l2] = 0;                    /* add zero */
   double a,b,d,etemp;    }
   double fu,fv,fw,fx;    l1 = strlen( dirc );                  /* length of directory */
   double ftemp;    /*#ifdef windows
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double e=0.0;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   a=(ax < cx ? ax : cx);  #endif
   b=(ax > cx ? ax : cx);    */
   x=w=v=bx;    ss = strrchr( name, '.' );            /* find last / */
   fw=fv=fx=(*f)(x);    if (ss >0){
   for (iter=1;iter<=ITMAX;iter++) {      ss++;
     xm=0.5*(a+b);      strcpy(ext,ss);                     /* save extension */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      l1= strlen( name);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      l2= strlen(ss)+1;
     printf(".");fflush(stdout);      strncpy( finame, name, l1-l2);
 #ifdef DEBUG      finame[l1-l2]= 0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return( 0 );                          /* we're done */
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  
       return fx;  /******************************************/
     }  
     ftemp=fu;  void replace_back_to_slash(char *s, char*t)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    int i;
       q=(x-v)*(fx-fw);    int lg=0;
       p=(x-v)*q-(x-w)*r;    i=0;
       q=2.0*(q-r);    lg=strlen(t);
       if (q > 0.0) p = -p;    for(i=0; i<= lg; i++) {
       q=fabs(q);      (s[i] = t[i]);
       etemp=e;      if (t[i]== '\\') s[i]='/';
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  int nbocc(char *s, char occ)
         d=p/q;  {
         u=x+d;    int i,j=0;
         if (u-a < tol2 || b-u < tol2)    int lg=20;
           d=SIGN(tol1,xm-x);    i=0;
       }    lg=strlen(s);
     } else {    for(i=0; i<= lg; i++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if  (s[i] == occ ) j++;
     }    }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    return j;
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  void cutv(char *u,char *v, char*t, char occ)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    /* cuts string t into u and v where u is ended by char occ excluding it
         } else {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
           if (u < x) a=u; else b=u;       gives u="abcedf" and v="ghi2j" */
           if (fu <= fw || w == x) {    int i,lg,j,p=0;
             v=w;    i=0;
             w=u;    for(j=0; j<=strlen(t)-1; j++) {
             fv=fw;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    lg=strlen(t);
             fv=fu;    for(j=0; j<p; j++) {
           }      (u[j] = t[j]);
         }    }
   }       u[p]='\0';
   nrerror("Too many iterations in brent");  
   *xmin=x;     for(j=0; j<= lg; j++) {
   return fx;      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /****************** mnbrak ***********************/  
   /********************** nrerror ********************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  void nrerror(char error_text[])
 {  {
   double ulim,u,r,q, dum;    fprintf(stderr,"ERREUR ...\n");
   double fu;    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  /*********************** vector *******************/
   if (*fb > *fa) {  double *vector(int nl, int nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!v) nrerror("allocation failure in vector");
   *fc=(*func)(*cx);    return v-nl+NR_END;
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /************************ free vector ******************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void free_vector(double*v, int nl, int nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /************************ivector *******************************/
       fu=(*func)(u);  int *ivector(long nl,long nh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int *v;
           SHFT(*fb,*fc,fu,(*func)(u))    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           }    if (!v) nrerror("allocation failure in ivector");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    return v-nl+NR_END;
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /******************free ivector **************************/
       u=(*cx)+GOLD*(*cx-*bx);  void free_ivector(int *v, long nl, long nh)
       fu=(*func)(u);  {
     }    free((FREE_ARG)(v+nl-NR_END));
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /*************** linmin ************************/    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 int ncom;    if (!v) nrerror("allocation failure in ivector");
 double *pcom,*xicom;    return v-nl+NR_END;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(v+nl-NR_END));
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************* imatrix *******************************/
   int j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double xx,xmin,bx,ax;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double fx,fb,fa;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   ncom=n;    int **m; 
   pcom=vector(1,n);    
   xicom=vector(1,n);    /* allocate pointers to rows */ 
   nrfunc=func;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
     pcom[j]=p[j];    m += NR_END; 
     xicom[j]=xi[j];    m -= nrl; 
   }    
   ax=0.0;    
   xx=1.0;    /* allocate rows and set pointers to them */ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] -= ncl; 
 #endif    
   for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     xi[j] *= xmin;    
     p[j] += xi[j];    /* return pointer to array of pointers to rows */ 
   }    return m; 
   free_vector(xicom,1,n);  } 
   free_vector(pcom,1,n);  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** powell ************************/        int **m;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        long nch,ncl,nrh,nrl; 
             double (*func)(double []))       /* free an int matrix allocated by imatrix() */ 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
               double (*func)(double []));    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************* matrix *******************************/
   double *xits;  double **matrix(long nrl, long nrh, long ncl, long nch)
   pt=vector(1,n);  {
   ptt=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xit=vector(1,n);    double **m;
   xits=vector(1,n);  
   *fret=(*func)(p);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   for (*iter=1;;++(*iter)) {    m += NR_END;
     fp=(*fret);    m -= nrl;
     ibig=0;  
     del=0.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (i=1;i<=n;i++)    m[nrl] += NR_END;
       printf(" %d %.12f",i, p[i]);    m[nrl] -= ncl;
     printf("\n");  
     for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return m;
       fptt=(*fret);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /*************************free matrix ************************/
       linmin(p,xit,n,fret,func);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         ibig=i;    free((FREE_ARG)(m+nrl-NR_END));
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /******************* ma3x *******************************/
       for (j=1;j<=n;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
     }    m -= nrl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       int k[2],l;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k[0]=1;    m[nrl] += NR_END;
       k[1]=-1;    m[nrl] -= ncl;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" %.12e",p[j]);  
       printf("\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(l=0;l<=1;l++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl][ncl] += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl][ncl] -= nll;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=ncl+1; j<=nch; j++) 
         }      m[nrl][j]=m[nrl][j-1]+nlay;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
       free_vector(xit,1,n);    }
       free_vector(xits,1,n);    return m; 
       free_vector(ptt,1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       free_vector(pt,1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       return;    */
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************************free ma3x ************************/
       ptt[j]=2.0*p[j]-pt[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     fptt=(*func)(ptt);    free((FREE_ARG)(m+nrl-NR_END));
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /*************** function subdirf ***********/
         linmin(p,xit,n,fret,func);  char *subdirf(char fileres[])
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    /* Caution optionfilefiname is hidden */
           xi[j][n]=xit[j];    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/"); /* Add to the right */
 #ifdef DEBUG    strcat(tmpout,fileres);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return tmpout;
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  /*************** function subdirf2 ***********/
 #endif  char *subdirf2(char fileres[], char *preop)
       }  {
     }    
   }    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**** Prevalence limit ****************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return tmpout;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* Caution optionfilefiname is hidden */
   double **out, cov[NCOVMAX], **pmij();    strcpy(tmpout,optionfilefiname);
   double **newm;    strcat(tmpout,"/");
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /***************** f1dim *************************/
    cov[1]=1.;  extern int ncom; 
    extern double *pcom,*xicom;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern double (*nrfunc)(double []); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;  double f1dim(double x) 
     /* Covariates have to be included here again */  { 
      cov[2]=agefin;    int j; 
      double f;
       for (k=1; k<=cptcovn;k++) {    double *xt; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovage;k++)    f=(*nrfunc)(xt); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_vector(xt,1,ncom); 
       for (k=1; k<=cptcovprod;k++)    return f; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*****************brent *************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int iter; 
     double a,b,d,etemp;
     savm=oldm;    double fu,fv,fw,fx;
     oldm=newm;    double ftemp;
     maxmax=0.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=1;j<=nlstate;j++){    double e=0.0; 
       min=1.;   
       max=0.;    a=(ax < cx ? ax : cx); 
       for(i=1; i<=nlstate; i++) {    b=(ax > cx ? ax : cx); 
         sumnew=0;    x=w=v=bx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fw=fv=fx=(*f)(x); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (iter=1;iter<=ITMAX;iter++) { 
         max=FMAX(max,prlim[i][j]);      xm=0.5*(a+b); 
         min=FMIN(min,prlim[i][j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       maxmin=max-min;      printf(".");fflush(stdout);
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     if(maxmax < ftolpl){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       return prlim;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /*************** transition probabilities ***************/        return fx; 
       } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   double s1, s2;        r=(x-w)*(fx-fv); 
   /*double t34;*/        q=(x-v)*(fx-fw); 
   int i,j,j1, nc, ii, jj;        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
     for(i=1; i<= nlstate; i++){        if (q > 0.0) p = -p; 
     for(j=1; j<i;j++){        q=fabs(q); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        etemp=e; 
         /*s2 += param[i][j][nc]*cov[nc];*/        e=d; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
       ps[i][j]=s2;          d=p/q; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     for(j=i+1; j<=nlstate+ndeath;j++){            d=SIGN(tol1,xm-x); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
       ps[i][j]=(s2);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
     /*ps[3][2]=1;*/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   for(i=1; i<= nlstate; i++){          SHFT(fv,fw,fx,fu) 
      s1=0;          } else { 
     for(j=1; j<i; j++)            if (u < x) a=u; else b=u; 
       s1+=exp(ps[i][j]);            if (fu <= fw || w == x) { 
     for(j=i+1; j<=nlstate+ndeath; j++)              v=w; 
       s1+=exp(ps[i][j]);              w=u; 
     ps[i][i]=1./(s1+1.);              fv=fw; 
     for(j=1; j<i; j++)              fw=fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } else if (fu <= fv || v == x || v == w) { 
     for(j=i+1; j<=nlstate+ndeath; j++)              v=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fv=fu; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */          } 
     } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    nrerror("Too many iterations in brent"); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *xmin=x; 
       ps[ii][jj]=0;    return fx; 
       ps[ii][ii]=1;  } 
     }  
   }  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              double (*func)(double)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){  { 
      printf("%lf ",ps[ii][jj]);    double ulim,u,r,q, dum;
    }    double fu; 
     printf("\n ");   
     }    *fa=(*func)(*ax); 
     printf("\n ");printf("%lf ",cov[2]);*/    *fb=(*func)(*bx); 
 /*    if (*fb > *fa) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(dum,*ax,*bx,dum) 
   goto end;*/        SHFT(dum,*fb,*fa,dum) 
     return ps;        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /**************** Product of 2 matrices ******************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* in, b, out are matrice of pointers which should have been initialized      if ((*bx-u)*(u-*cx) > 0.0) { 
      before: only the contents of out is modified. The function returns        fu=(*func)(u); 
      a pointer to pointers identical to out */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)        if (fu < *fc) { 
     for(k=ncolol; k<=ncoloh; k++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            SHFT(*fb,*fc,fu,(*func)(u)) 
         out[i][k] +=in[i][j]*b[j][k];            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   return out;        u=ulim; 
 }        fu=(*func)(u); 
       } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /************* Higher Matrix Product ***************/        fu=(*func)(u); 
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        } 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*************** linmin ************************/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  int ncom; 
      included manually here.  double *pcom,*xicom;
   double (*nrfunc)(double []); 
      */   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int i, j, d, h, k;  { 
   double **out, cov[NCOVMAX];    double brent(double ax, double bx, double cx, 
   double **newm;                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   /* Hstepm could be zero and should return the unit matrix */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1;i<=nlstate+ndeath;i++)                double *fc, double (*func)(double)); 
     for (j=1;j<=nlstate+ndeath;j++){    int j; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double xx,xmin,bx,ax; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double fx,fb,fa;
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    ncom=n; 
   for(h=1; h <=nhstepm; h++){    pcom=vector(1,n); 
     for(d=1; d <=hstepm; d++){    xicom=vector(1,n); 
       newm=savm;    nrfunc=func; 
       /* Covariates have to be included here again */    for (j=1;j<=n;j++) { 
       cov[1]=1.;      pcom[j]=p[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      xicom[j]=xi[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    } 
       for (k=1; k<=cptcovage;k++)    ax=0.0; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xx=1.0; 
       for (k=1; k<=cptcovprod;k++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #endif
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      xi[j] *= xmin; 
       savm=oldm;      p[j] += xi[j]; 
       oldm=newm;    } 
     }    free_vector(xicom,1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    free_vector(pcom,1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {  } 
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char *asc_diff_time(long time_sec, char ascdiff[])
          */  {
       }    long sec_left, days, hours, minutes;
   } /* end h */    days = (time_sec) / (60*60*24);
   return po;    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /*************** log-likelihood *************/    sec_left = (sec_left) % (60);
 double func( double *x)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************** powell ************************/
   double sw; /* Sum of weights */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double lli; /* Individual log likelihood */              double (*func)(double [])) 
   long ipmx;  { 
   /*extern weight */    void linmin(double p[], double xi[], int n, double *fret, 
   /* We are differentiating ll according to initial status */                double (*func)(double [])); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int i,ibig,j; 
   /*for(i=1;i<imx;i++)    double del,t,*pt,*ptt,*xit;
     printf(" %d\n",s[4][i]);    double fp,fptt;
   */    double *xits;
   cov[1]=1.;    int niterf, itmp;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    pt=vector(1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ptt=vector(1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    xit=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    xits=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=(*func)(p); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(d=0; d<dh[mi][i]; d++){    for (*iter=1;;++(*iter)) { 
         newm=savm;      fp=(*fret); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      ibig=0; 
         for (kk=1; kk<=cptcovage;kk++) {      del=0.0; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      last_time=curr_time;
         }      (void) gettimeofday(&curr_time,&tzp);
              printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         savm=oldm;      */
         oldm=newm;     for (i=1;i<=n;i++) {
                printf(" %d %.12f",i, p[i]);
                fprintf(ficlog," %d %.12lf",i, p[i]);
       } /* end mult */        fprintf(ficrespow," %.12lf", p[i]);
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf("\n");
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fprintf(ficlog,"\n");
       ipmx +=1;      fprintf(ficrespow,"\n");fflush(ficrespow);
       sw += weight[i];      if(*iter <=3){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        tm = *localtime(&curr_time.tv_sec);
     } /* end of wave */        strcpy(strcurr,asctime(&tmf));
   } /* end of individual */  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        itmp = strlen(strcurr);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        if(strcurr[itmp-1]=='\n')
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          strcurr[itmp-1]='\0';
   return -l;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   int i,j, iter;          if(strfor[itmp-1]=='\n')
   double **xi,*delti;          strfor[itmp-1]='\0';
   double fret;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   xi=matrix(1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++)      }
       xi[i][j]=(i==j ? 1.0 : 0.0);      for (i=1;i<=n;i++) { 
   printf("Powell\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        fptt=(*fret); 
   #ifdef DEBUG
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("fret=%lf \n",*fret);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /**** Computes Hessian and covariance matrix ***/        linmin(p,xit,n,fret,func); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   double  **a,**y,*x,pd;          ibig=i; 
   double **hess;        } 
   int i, j,jk;  #ifdef DEBUG
   int *indx;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   double hessii(double p[], double delta, int theta, double delti[]);        for (j=1;j<=n;j++) {
   double hessij(double p[], double delti[], int i, int j);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf(" x(%d)=%.12e",j,xit[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   hess=matrix(1,npar,1,npar);        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);        printf("\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"\n");
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
   for (i=1;i<=npar;i++) {        int k[2],l;
     for (j=1;j<=npar;j++)  {        k[0]=1;
       if (j>i) {        k[1]=-1;
         printf(".%d%d",i,j);fflush(stdout);        printf("Max: %.12e",(*func)(p));
         hess[i][j]=hessij(p,delti,i,j);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         hess[j][i]=hess[i][j];            for (j=1;j<=n;j++) {
         /*printf(" %lf ",hess[i][j]);*/          printf(" %.12e",p[j]);
       }          fprintf(ficlog," %.12e",p[j]);
     }        }
   }        printf("\n");
   printf("\n");        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   a=matrix(1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   y=matrix(1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   x=vector(1,npar);          }
   indx=ivector(1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(xit,1,n); 
     x[j]=1;        free_vector(xits,1,n); 
     lubksb(a,npar,indx,x);        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++){        free_vector(pt,1,n); 
       matcov[i][j]=x[i];        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   printf("\n#Hessian matrix#\n");        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=npar;i++) {        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=npar;j++) {        pt[j]=p[j]; 
       printf("%.3e ",hess[i][j]);      } 
     }      fptt=(*func)(ptt); 
     printf("\n");      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   /* Recompute Inverse */          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++)          for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            xi[j][ibig]=xi[j][n]; 
   ludcmp(a,npar,indx,&pd);            xi[j][n]=xit[j]; 
           }
   /*  printf("\n#Hessian matrix recomputed#\n");  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (j=1;j<=npar;j++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1;i<=npar;i++) x[i]=0;          for(j=1;j<=n;j++){
     x[j]=1;            printf(" %.12e",xit[j]);
     lubksb(a,npar,indx,x);            fprintf(ficlog," %.12e",xit[j]);
     for (i=1;i<=npar;i++){          }
       y[i][j]=x[i];          printf("\n");
       printf("%.3e ",y[i][j]);          fprintf(ficlog,"\n");
     }  #endif
     printf("\n");        }
   }      } 
   */    } 
   } 
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /**** Prevalence limit (stable prevalence)  ****************/
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   free_matrix(hess,1,npar,1,npar);  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 }  
     int i, ii,j,k;
 /*************** hessian matrix ****************/    double min, max, maxmin, maxmax,sumnew=0.;
 double hessii( double x[], double delta, int theta, double delti[])    double **matprod2();
 {    double **out, cov[NCOVMAX], **pmij();
   int i;    double **newm;
   int l=1, lmax=20;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double k1,k2;  
   double p2[NPARMAX+1];    for (ii=1;ii<=nlstate+ndeath;ii++)
   double res;      for (j=1;j<=nlstate+ndeath;j++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fx;      }
   int k=0,kmax=10;  
   double l1;     cov[1]=1.;
    
   fx=func(x);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++) p2[i]=x[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for(l=0 ; l <=lmax; l++){      newm=savm;
     l1=pow(10,l);      /* Covariates have to be included here again */
     delts=delt;       cov[2]=agefin;
     for(k=1 ; k <kmax; k=k+1){    
       delt = delta*(l1*k);        for (k=1; k<=cptcovn;k++) {
       p2[theta]=x[theta] +delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k1=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (k=1; k<=cptcovprod;k++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
 #ifdef DEBUG        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 #endif        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;      savm=oldm;
       }      oldm=newm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      maxmax=0.;
         k=kmax; l=lmax*10.;      for(j=1;j<=nlstate;j++){
       }        min=1.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        max=0.;
         delts=delt;        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   delti[theta]=delts;          max=FMAX(max,prlim[i][j]);
   return res;          min=FMIN(min,prlim[i][j]);
          }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      if(maxmax < ftolpl){
   int i;        return prlim;
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];  }
   int k;  
   /*************** transition probabilities ***************/ 
   fx=func(x);  
   for (k=1; k<=2; k++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (i=1;i<=npar;i++) p2[i]=x[i];  {
     p2[thetai]=x[thetai]+delti[thetai]/k;    double s1, s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*double t34;*/
     k1=func(p2)-fx;    int i,j,j1, nc, ii, jj;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;      for(i=1; i<= nlstate; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1; j<i;j++){
     k2=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetai]=x[thetai]-delti[thetai]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     k3=func(p2)-fx;          }
            ps[i][j]=s2;
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #ifdef DEBUG            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 #endif          }
   }          ps[i][j]=s2;
   return res;        }
 }      }
       /*ps[3][2]=1;*/
 /************** Inverse of matrix **************/      
 void ludcmp(double **a, int n, int *indx, double *d)      for(i=1; i<= nlstate; i++){
 {        s1=0;
   int i,imax,j,k;        for(j=1; j<i; j++)
   double big,dum,sum,temp;          s1+=exp(ps[i][j]);
   double *vv;        for(j=i+1; j<=nlstate+ndeath; j++)
            s1+=exp(ps[i][j]);
   vv=vector(1,n);        ps[i][i]=1./(s1+1.);
   *d=1.0;        for(j=1; j<i; j++)
   for (i=1;i<=n;i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
     big=0.0;        for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=n;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } /* end i */
     vv[i]=1.0/big;      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (j=1;j<=n;j++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<j;i++) {          ps[ii][jj]=0;
       sum=a[i][j];          ps[ii][ii]=1;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      }
     }      
     big=0.0;  
     for (i=j;i<=n;i++) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       sum=a[i][j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (k=1;k<j;k++)  /*         printf("ddd %lf ",ps[ii][jj]); */
         sum -= a[i][k]*a[k][j];  /*       } */
       a[i][j]=sum;  /*       printf("\n "); */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*        } */
         big=dum;  /*        printf("\n ");printf("%lf ",cov[2]); */
         imax=i;         /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
     if (j != imax) {      return ps;
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /**************** Product of 2 matrices ******************/
         a[j][k]=dum;  
       }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       *d = -(*d);  {
       vv[imax]=vv[j];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     indx[j]=imax;    /* in, b, out are matrice of pointers which should have been initialized 
     if (a[j][j] == 0.0) a[j][j]=TINY;       before: only the contents of out is modified. The function returns
     if (j != n) {       a pointer to pointers identical to out */
       dum=1.0/(a[j][j]);    long i, j, k;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   free_vector(vv,1,n);  /* Doesn't work */          out[i][k] +=in[i][j]*b[j][k];
 ;  
 }    return out;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  
   int i,ii=0,ip,j;  /************* Higher Matrix Product ***************/
   double sum;  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    /* Computes the transition matrix starting at age 'age' over 
     sum=b[ip];       'nhstepm*hstepm*stepm' months (i.e. until
     b[ip]=b[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (ii)       nhstepm*hstepm matrices. 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     else if (sum) ii=i;       (typically every 2 years instead of every month which is too big 
     b[i]=sum;       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   for (i=n;i>=1;i--) {       included manually here. 
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       */
     b[i]=sum/a[i][i];  
   }    int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
     double **newm;
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)    /* Hstepm could be zero and should return the unit matrix */
 {  /* Some frequencies */    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   FILE *ficresp;    for(h=1; h <=nhstepm; h++){
   char fileresp[FILENAMELENGTH];      for(d=1; d <=hstepm; d++){
         newm=savm;
   pp=vector(1,nlstate);        /* Covariates have to be included here again */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        cov[1]=1.;
   strcpy(fileresp,"p");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   strcat(fileresp,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1; k<=cptcovage;k++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     exit(0);        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   j=cptcoveff;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){        savm=oldm;
    for(i1=1; i1<=ncodemax[k1];i1++){        oldm=newm;
        j1++;      }
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(i=1; i<=nlstate+ndeath; i++)
          scanf("%d", i);*/        for(j=1;j<=nlstate+ndeath;j++) {
         for (i=-1; i<=nlstate+ndeath; i++)            po[i][j][h]=newm[i][j];
          for (jk=-1; jk<=nlstate+ndeath; jk++)            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            for(m=agemin; m <= agemax+3; m++)           */
              freq[i][jk][m]=0;        }
     } /* end h */
         dateintsum=0;    return po;
         k2cpt=0;  }
        for (i=1; i<=imx; i++) {  
          bool=1;  
          if  (cptcovn>0) {  /*************** log-likelihood *************/
            for (z1=1; z1<=cptcoveff; z1++)  double func( double *x)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
                bool=0;    int i, ii, j, k, mi, d, kk;
          }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
          if (bool==1) {    double **out;
            for(m=firstpass; m<=lastpass; m++){    double sw; /* Sum of weights */
              k2=anint[m][i]+(mint[m][i]/12.);    double lli; /* Individual log likelihood */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    int s1, s2;
                if(agev[m][i]==0) agev[m][i]=agemax+1;    double bbh, survp;
                if(agev[m][i]==1) agev[m][i]=agemax+2;    long ipmx;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*extern weight */
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* We are differentiating ll according to initial status */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                  dateintsum=dateintsum+k2;    /*for(i=1;i<imx;i++) 
                  k2cpt++;      printf(" %d\n",s[4][i]);
                }    */
     cov[1]=1.;
              }  
            }    for(k=1; k<=nlstate; k++) ll[k]=0.;
          }  
        }    if(mle==1){
         if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          fprintf(ficresp, "\n#********** Variable ");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(mi=1; mi<= wav[i]-1; mi++){
        fprintf(ficresp, "**********\n#");          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
        for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        fprintf(ficresp, "\n");            }
                  for(d=0; d<dh[mi][i]; d++){
   for(i=(int)agemin; i <= (int)agemax+3; i++){            newm=savm;
     if(i==(int)agemax+3)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       printf("Total");            for (kk=1; kk<=cptcovage;kk++) {
     else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("Age %d", i);            }
     for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         pp[jk] += freq[jk][m][i];            savm=oldm;
     }            oldm=newm;
     for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
       for(m=-1, pos=0; m <=0 ; m++)        
         pos += freq[jk][m][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if(pp[jk]>=1.e-10)          /* But now since version 0.9 we anticipate for bias and large stepm.
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       else           * (in months) between two waves is not a multiple of stepm, we rounded to 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
      for(jk=1; jk <=nlstate ; jk++){           * probability in order to take into account the bias as a fraction of the way
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         pp[jk] += freq[jk][m][i];           * -stepm/2 to stepm/2 .
      }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     for(jk=1,pos=0; jk <=nlstate ; jk++)           */
       pos += pp[jk];          s1=s[mw[mi][i]][i];
     for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
       if(pos>=1.e-5)          bbh=(double)bh[mi][i]/(double)stepm; 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /* bias is positive if real duration
       else           * is higher than the multiple of stepm and negative otherwise.
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           */
       if( i <= (int) agemax){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if(pos>=1.e-5){          if( s2 > nlstate){ 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
           probs[i][jk][j1]= pp[jk]/pos;               to the likelihood is the probability to die between last step unit time and current 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/               step unit time, which is also the differences between probability to die before dh 
         }               and probability to die before dh-stepm . 
       else               In version up to 0.92 likelihood was computed
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
     }          and not the date of a change in health state. The former idea was
     for(jk=-1; jk <=nlstate+ndeath; jk++)          to consider that at each interview the state was recorded
       for(m=-1; m <=nlstate+ndeath; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          introduced the exact date of death then we should have modified
     if(i <= (int) agemax)          the contribution of an exact death to the likelihood. This new
       fprintf(ficresp,"\n");          contribution is smaller and very dependent of the step unit
     printf("\n");          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
  }          probability to die within a month. Thanks to Chris
   dateintmean=dateintsum/k2cpt;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
   fclose(ficresp);          which slows down the processing. The difference can be up to 10%
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lower mortality.
   free_vector(pp,1,nlstate);            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   /* End of Freq */          }else{
 }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 /************ Prevalence ********************/          } 
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {  /* Some frequencies */          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ipmx +=1;
   double ***freq; /* Frequencies */          sw += weight[i];
   double *pp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    }  else if(mle==2){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
  for(k1=1; k1<=j;k1++){          for(d=0; d<=dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
       for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             freq[i][jk][m]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }  else if(mle==3){  /* exponential inter-extrapolation */
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){            }
           for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            newm=savm;
               pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
           for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
          for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
              pp[jk] += freq[jk][m][i];        
          }          s1=s[mw[mi][i]][i];
                    s2=s[mw[mi+1][i]][i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          for(jk=1; jk <=nlstate ; jk++){                    ipmx +=1;
            if( i <= (int) agemax){          sw += weight[i];
              if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                probs[i][jk][j1]= pp[jk]/pos;        } /* end of wave */
              }      } /* end of individual */
            }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
 }  /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************* Waves Concatenation ***************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Death is a valid wave (if date is known).            savm=oldm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            oldm=newm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          } /* end mult */
      and mw[mi+1][i]. dh depends on stepm.        
      */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   int i, mi, m;          if( s2 > nlstate){ 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            lli=log(out[s1][s2] - savm[s1][s2]);
      double sum=0., jmean=0.;*/          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int j, k=0,jk, ju, jl;          }
   double sum=0.;          ipmx +=1;
   jmin=1e+5;          sw += weight[i];
   jmax=-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=0.;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=imx; i++){        } /* end of wave */
     mi=0;      } /* end of individual */
     m=firstpass;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     while(s[m][i] <= nlstate){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(s[m][i]>=1)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         mw[++mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
       if(m >=lastpass)          for (ii=1;ii<=nlstate+ndeath;ii++)
         break;            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */            }
     if (s[m][i] > nlstate){          for(d=0; d<dh[mi][i]; d++){
       mi++;     /* Death is another wave */            newm=savm;
       /* if(mi==0)  never been interviewed correctly before death */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          /* Only death is a correct wave */            for (kk=1; kk<=cptcovage;kk++) {
       mw[mi][i]=m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
     wav[i]=mi;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if(mi==0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            savm=oldm;
   }            oldm=newm;
           } /* end mult */
   for(i=1; i<=imx; i++){        
     for(mi=1; mi<wav[i];mi++){          s1=s[mw[mi][i]][i];
       if (stepm <=0)          s2=s[mw[mi+1][i]][i];
         dh[mi][i]=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       else{          ipmx +=1;
         if (s[mw[mi+1][i]][i] > nlstate) {          sw += weight[i];
           if (agedc[i] < 2*AGESUP) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    } /* End of if */
           if (j <= jmin) jmin=j;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           sum=sum+j;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           /* if (j<10) printf("j=%d num=%d ",j,i); */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           }    return -l;
         }  }
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  /*************** log-likelihood *************/
           k=k+1;  double funcone( double *x)
           if (j >= jmax) jmax=j;  {
           else if (j <= jmin)jmin=j;    /* Same as likeli but slower because of a lot of printf and if */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int i, ii, j, k, mi, d, kk;
           sum=sum+j;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         jk= j/stepm;    double lli; /* Individual log likelihood */
         jl= j -jk*stepm;    double llt;
         ju= j -(jk+1)*stepm;    int s1, s2;
         if(jl <= -ju)    double bbh, survp;
           dh[mi][i]=jk;    /*extern weight */
         else    /* We are differentiating ll according to initial status */
           dh[mi][i]=jk+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if(dh[mi][i]==0)    /*for(i=1;i<imx;i++) 
           dh[mi][i]=1; /* At least one step */      printf(" %d\n",s[4][i]);
       }    */
     }    cov[1]=1.;
   }  
   jmean=sum/k;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Tricode ****************************/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void tricode(int *Tvar, int **nbcode, int imx)      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   int Ndum[20],ij=1, k, j, i;          for (j=1;j<=nlstate+ndeath;j++){
   int cptcode=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   for (k=0; k<19; k++) Ndum[k]=0;        for(d=0; d<dh[mi][i]; d++){
   for (k=1; k<=7; k++) ncodemax[k]=0;          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=imx; i++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ij=(int)(covar[Tvar[j]][i]);          }
       Ndum[ij]++;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (ij > cptcode) cptcode=ij;          savm=oldm;
     }          oldm=newm;
         } /* end mult */
     for (i=0; i<=cptcode; i++) {        
       if(Ndum[i]!=0) ncodemax[j]++;        s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
     ij=1;        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     for (i=1; i<=ncodemax[j]; i++) {         */
       for (k=0; k<=19; k++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if (Ndum[k] != 0) {          lli=log(out[s1][s2] - savm[s1][s2]);
           nbcode[Tvar[j]][ij]=k;        } else if (mle==1){
           ij++;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
         if (ij > ncodemax[j]) break;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
  for (k=0; k<19; k++) Ndum[k]=0;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
  for (i=1; i<=ncovmodel-2; i++) {        } /* End of if */
       ij=Tvar[i];        ipmx +=1;
       Ndum[ij]++;        sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  ij=1;        if(globpr){
  for (i=1; i<=10; i++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    if((Ndum[i]!=0) && (i<=ncov)){   %10.6f %10.6f %10.6f ", \
      Tvaraff[ij]=i;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      ij++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  }            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     cptcoveff=ij-1;          }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /*********** Health Expectancies ****************/      } /* end of wave */
     } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Health expectancies */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j, nhstepm, hstepm, h;    if(globpr==0){ /* First time we count the contributions and weights */
   double age, agelim,hf;      gipmx=ipmx;
   double ***p3mat;      gsw=sw;
      }
   fprintf(ficreseij,"# Health expectancies\n");    return -l;
   fprintf(ficreseij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);  /*************** function likelione ***********/
   fprintf(ficreseij,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   hstepm=1*YEARM; /*  Every j years of age (in month) */    /* This routine should help understanding what is done with 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   agelim=AGESUP;       Plotting could be done.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     */
     /* nhstepm age range expressed in number of stepm */    int k;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */    if(*globpri !=0){ /* Just counts and sums, no printings */
     if (stepm >= YEARM) hstepm=1;      strcpy(fileresilk,"ilk"); 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      strcat(fileresilk,fileres);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("Problem with resultfile: %s\n", fileresilk);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1; i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(j=1; j<=nlstate;j++)      for(k=1; k<=nlstate; k++) 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           eij[i][j][(int)age] +=p3mat[i][j][h];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
      
     hf=1;    *fretone=(*funcone)(p);
     if (stepm >= YEARM) hf=stepm/YEARM;    if(*globpri !=0){
     fprintf(ficreseij,"%.0f",age );      fclose(ficresilk);
     for(i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(j=1; j<=nlstate;j++){      fflush(fichtm); 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    } 
       }    return;
     fprintf(ficreseij,"\n");  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  
 }  /*********** Maximum Likelihood Estimation ***************/
   
 /************ Variance ******************/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  {
 {    int i,j, iter;
   /* Variance of health expectancies */    double **xi;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double fret;
   double **newm;    double fretone; /* Only one call to likelihood */
   double **dnewm,**doldm;    /*  char filerespow[FILENAMELENGTH];*/
   int i, j, nhstepm, hstepm, h;    xi=matrix(1,npar,1,npar);
   int k, cptcode;    for (i=1;i<=npar;i++)
   double *xp;      for (j=1;j<=npar;j++)
   double **gp, **gm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double ***p3mat;    strcpy(filerespow,"pow"); 
   double age,agelim;    strcat(filerespow,fileres);
   int theta;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(j=1; j<=nlstate;j++)    for (i=1;i<=nlstate;i++)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficresvij,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   doldm=matrix(1,nlstate,1,nlstate);  
      fclose(ficrespow);
   hstepm=1*YEARM; /* Every year of age */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   agelim = AGESUP;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /**** Computes Hessian and covariance matrix ***/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  {
     gp=matrix(0,nhstepm,1,nlstate);    double  **a,**y,*x,pd;
     gm=matrix(0,nhstepm,1,nlstate);    double **hess;
     int i, j,jk;
     for(theta=1; theta <=npar; theta++){    int *indx;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      void lubksb(double **a, int npar, int *indx, double b[]) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
       if (popbased==1) {    hess=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
          for (i=1;i<=npar;i++){
       for(j=1; j<= nlstate; j++){      printf("%d",i);fflush(stdout);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)     
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }      
       }      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
       if (popbased==1) {          printf(".%d%d",i,j);fflush(stdout);
         for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           prlim[i][i]=probs[(int)age][i][ij];          hess[i][j]=hessij(p,delti,i,j,func,npar);
       }          
           hess[j][i]=hess[i][j];    
       for(j=1; j<= nlstate; j++){          /*printf(" %lf ",hess[i][j]);*/
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    printf("\n");
       }    fprintf(ficlog,"\n");
   
       for(j=1; j<= nlstate; j++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }    a=matrix(1,npar,1,npar);
     } /* End theta */    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     for(h=0; h<=nhstepm; h++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(i=1;i<=nlstate;i++)      x[j]=1;
       for(j=1;j<=nlstate;j++)      lubksb(a,npar,indx,x);
         vareij[i][j][(int)age] =0.;      for (i=1;i<=npar;i++){ 
     for(h=0;h<=nhstepm;h++){        matcov[i][j]=x[i];
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
           for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
             vareij[i][j][(int)age] += doldm[i][j];    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
     }        printf("%.3e ",hess[i][j]);
     h=1;        fprintf(ficlog,"%.3e ",hess[i][j]);
     if (stepm >= YEARM) h=stepm/YEARM;      }
     fprintf(ficresvij,"%.0f ",age );      printf("\n");
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }    /* Recompute Inverse */
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++)
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_matrix(gm,0,nhstepm,1,nlstate);    ludcmp(a,npar,indx,&pd);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(doldm,1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
 }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      printf("\n");
 {      fprintf(ficlog,"\n");
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   double **newm;  
   double **dnewm,**doldm;    free_matrix(a,1,npar,1,npar);
   int i, j, nhstepm, hstepm;    free_matrix(y,1,npar,1,npar);
   int k, cptcode;    free_vector(x,1,npar);
   double *xp;    free_ivector(indx,1,npar);
   double *gp, *gm;    free_matrix(hess,1,npar,1,npar);
   double **gradg, **trgradg;  
   double age,agelim;  
   int theta;  }
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  /*************** hessian matrix ****************/
   fprintf(ficresvpl,"# Age");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    int i;
   fprintf(ficresvpl,"\n");    int l=1, lmax=20;
     double k1,k2;
   xp=vector(1,npar);    double p2[NPARMAX+1];
   dnewm=matrix(1,nlstate,1,npar);    double res;
   doldm=matrix(1,nlstate,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
   hstepm=1*YEARM; /* Every year of age */    int k=0,kmax=10;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double l1;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fx=func(x);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++) p2[i]=x[i];
     if (stepm >= YEARM) hstepm=1;    for(l=0 ; l <=lmax; l++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      l1=pow(10,l);
     gradg=matrix(1,npar,1,nlstate);      delts=delt;
     gp=vector(1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     gm=vector(1,nlstate);        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     for(theta=1; theta <=npar; theta++){        k1=func(p2)-fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */        p2[theta]=x[theta]-delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(i=1;i<=nlstate;i++)        
         gp[i] = prlim[i][i];  #ifdef DEBUG
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         gm[i] = prlim[i][i];          k=kmax;
         }
       for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          k=kmax; l=lmax*10.;
     } /* End theta */        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     trgradg =matrix(1,nlstate,1,npar);          delts=delt;
         }
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];    delti[theta]=delts;
     return res; 
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;  }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i;
     int l=1, l1, lmax=20;
     fprintf(ficresvpl,"%.0f ",age );    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int k;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    fx=func(x);
     free_vector(gm,1,nlstate);    for (k=1; k<=2; k++) {
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   } /* End age */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /************ Variance of one-step probabilities  ******************/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      k3=func(p2)-fx;
 {    
   int i, j;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int k=0, cptcode;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   double *xp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double *gp, *gm;  #ifdef DEBUG
   double **gradg, **trgradg;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double age,agelim, cov[NCOVMAX];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int theta;  #endif
   char fileresprob[FILENAMELENGTH];    }
     return res;
   strcpy(fileresprob,"prob");  }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /************** Inverse of matrix **************/
     printf("Problem with resultfile: %s\n", fileresprob);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    int i,imax,j,k; 
      double big,dum,sum,temp; 
     double *vv; 
   xp=vector(1,npar);   
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    vv=vector(1,n); 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    *d=1.0; 
      for (i=1;i<=n;i++) { 
   cov[1]=1;      big=0.0; 
   for (age=bage; age<=fage; age ++){      for (j=1;j<=n;j++) 
     cov[2]=age;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     gradg=matrix(1,npar,1,9);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     trgradg=matrix(1,9,1,npar);      vv[i]=1.0/big; 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    } 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
     for(theta=1; theta <=npar; theta++){        sum=a[i][j]; 
       for(i=1; i<=npar; i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        a[i][j]=sum; 
            } 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      big=0.0; 
          for (i=j;i<=n;i++) { 
       k=0;        sum=a[i][j]; 
       for(i=1; i<= (nlstate+ndeath); i++){        for (k=1;k<j;k++) 
         for(j=1; j<=(nlstate+ndeath);j++){          sum -= a[i][k]*a[k][j]; 
            k=k+1;        a[i][j]=sum; 
           gp[k]=pmmij[i][j];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
       }          imax=i; 
         } 
       for(i=1; i<=npar; i++)      } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (j != imax) { 
            for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          a[imax][k]=a[j][k]; 
       k=0;          a[j][k]=dum; 
       for(i=1; i<=(nlstate+ndeath); i++){        } 
         for(j=1; j<=(nlstate+ndeath);j++){        *d = -(*d); 
           k=k+1;        vv[imax]=vv[j]; 
           gm[k]=pmmij[i][j];      } 
         }      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
            if (j != n) { 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        dum=1.0/(a[j][j]); 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
     } 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    free_vector(vv,1,n);  /* Doesn't work */
       for(theta=1; theta <=npar; theta++)  ;
       trgradg[j][theta]=gradg[theta][j];  } 
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  void lubksb(double **a, int n, int *indx, double b[]) 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  { 
     int i,ii=0,ip,j; 
      pmij(pmmij,cov,ncovmodel,x,nlstate);    double sum; 
    
      k=0;    for (i=1;i<=n;i++) { 
      for(i=1; i<=(nlstate+ndeath); i++){      ip=indx[i]; 
        for(j=1; j<=(nlstate+ndeath);j++){      sum=b[ip]; 
          k=k+1;      b[ip]=b[i]; 
          gm[k]=pmmij[i][j];      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      }      else if (sum) ii=i; 
            b[i]=sum; 
      /*printf("\n%d ",(int)age);    } 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (i=n;i>=1;i--) { 
              sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      b[i]=sum/a[i][i]; 
      }*/    } 
   } 
   fprintf(ficresprob,"\n%d ",(int)age);  
   /************ Frequencies ********************/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  {  /* Some frequencies */
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    
   }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double ***freq; /* Frequencies */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double *pp, **prop;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    FILE *ficresp;
 }    char fileresp[FILENAMELENGTH];
  free_vector(xp,1,npar);    
 fclose(ficresprob);    pp=vector(1,nlstate);
  exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
 }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
 /***********************************************/    if((ficresp=fopen(fileresp,"w"))==NULL) {
 /**************** Main Program *****************/      printf("Problem with prevalence resultfile: %s\n", fileresp);
 /***********************************************/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 /*int main(int argc, char *argv[])*/    }
 int main()    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 {    j1=0;
     
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    j=cptcoveff;
   double agedeb, agefin,hf;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double agemin=1.e20, agemax=-1.e20;  
     first=1;
   double fret;  
   double **xi,tmp,delta;    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   double dum; /* Dummy variable */        j1++;
   double ***p3mat;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int *indx;          scanf("%d", i);*/
   char line[MAXLINE], linepar[MAXLINE];        for (i=-1; i<=nlstate+ndeath; i++)  
   char title[MAXLINE];          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            for(m=iagemin; m <= iagemax+3; m++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];              freq[i][jk][m]=0;
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];      for (i=1; i<=nlstate; i++)  
   char popfile[FILENAMELENGTH];        for(m=iagemin; m <= iagemax+3; m++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          prop[i][m]=0;
   int firstobs=1, lastobs=10;        
   int sdeb, sfin; /* Status at beginning and end */        dateintsum=0;
   int c,  h , cpt,l;        k2cpt=0;
   int ju,jl, mi;        for (i=1; i<=imx; i++) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          bool=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          if  (cptcovn>0) {
   int mobilav=0,popforecast=0;            for (z1=1; z1<=cptcoveff; z1++) 
   int hstepm, nhstepm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int *popage;/*boolprev=0 if date and zero if wave*/                bool=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;          }
           if (bool==1){
   double bage, fage, age, agelim, agebase;            for(m=firstpass; m<=lastpass; m++){
   double ftolpl=FTOL;              k2=anint[m][i]+(mint[m][i]/12.);
   double **prlim;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double *severity;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double ***param; /* Matrix of parameters */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double  *p;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **matcov; /* Matrix of covariance */                if (m<lastpass) {
   double ***delti3; /* Scale */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double *delti; /* Scale */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double ***eij, ***vareij;                }
   double **varpl; /* Variances of prevalence limits by age */                
   double *epj, vepp;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double kk1, kk2;                  dateintsum=dateintsum+k2;
   double *popeffectif,*popcount;                  k2cpt++;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;                }
   double yp,yp1,yp2;                /*}*/
             }
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";          }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
          
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   char z[1]="c", occ;  
 #include <sys/time.h>        if  (cptcovn>0) {
 #include <time.h>          fprintf(ficresp, "\n#********** Variable "); 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   /* long total_usecs;        }
   struct timeval start_time, end_time;        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        fprintf(ficresp, "\n");
         
         for(i=iagemin; i <= iagemax+3; i++){
   printf("\nIMACH, Version 0.7");          if(i==iagemax+3){
   printf("\nEnter the parameter file name: ");            fprintf(ficlog,"Total");
           }else{
 #ifdef windows            if(first==1){
   scanf("%s",pathtot);              first=0;
   getcwd(pathcd, size);              printf("See log file for details...\n");
   /*cygwin_split_path(pathtot,path,optionfile);            }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            fprintf(ficlog,"Age %d", i);
   /* cutv(path,optionfile,pathtot,'\\');*/          }
           for(jk=1; jk <=nlstate ; jk++){
 split(pathtot, path,optionfile);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   chdir(path);              pp[jk] += freq[jk][m][i]; 
   replace(pathc,path);          }
 #endif          for(jk=1; jk <=nlstate ; jk++){
 #ifdef unix            for(m=-1, pos=0; m <=0 ; m++)
   scanf("%s",optionfile);              pos += freq[jk][m][i];
 #endif            if(pp[jk]>=1.e-10){
               if(first==1){
 /*-------- arguments in the command line --------*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   strcpy(fileres,"r");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   strcat(fileres, optionfile);            }else{
               if(first==1)
   /*---------arguments file --------*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            }
     printf("Problem with optionfile %s\n",optionfile);          }
     goto end;  
   }          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   strcpy(filereso,"o");              pp[jk] += freq[jk][m][i];
   strcat(filereso,fileres);          }       
   if((ficparo=fopen(filereso,"w"))==NULL) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            pos += pp[jk];
   }            posprop += prop[jk][i];
           }
   /* Reads comments: lines beginning with '#' */          for(jk=1; jk <=nlstate ; jk++){
   while((c=getc(ficpar))=='#' && c!= EOF){            if(pos>=1.e-5){
     ungetc(c,ficpar);              if(first==1)
     fgets(line, MAXLINE, ficpar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     puts(line);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fputs(line,ficparo);            }else{
   }              if(first==1)
   ungetc(c,ficpar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            if( i <= iagemax){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);              if(pos>=1.e-5){
 while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     ungetc(c,ficpar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     fgets(line, MAXLINE, ficpar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     puts(line);              }
     fputs(line,ficparo);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   ungetc(c,ficpar);            }
            }
              
   covar=matrix(0,NCOVMAX,1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   cptcovn=0;            for(m=-1; m <=nlstate+ndeath; m++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   ncovmodel=2+cptcovn;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
   /* Read guess parameters */          if(i <= iagemax)
   /* Reads comments: lines beginning with '#' */            fprintf(ficresp,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){          if(first==1)
     ungetc(c,ficpar);            printf("Others in log...\n");
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"\n");
     puts(line);        }
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);    dateintmean=dateintsum/k2cpt; 
     
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fclose(ficresp);
     for(i=1; i <=nlstate; i++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_vector(pp,1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficparo,"%1d%1d",i1,j1);    /* End of Freq */
       printf("%1d%1d",i,j);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  /************ Prevalence ********************/
         printf(" %lf",param[i][j][k]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(ficparo," %lf",param[i][j][k]);  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fscanf(ficpar,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       printf("\n");       We still use firstpass and lastpass as another selection.
       fprintf(ficparo,"\n");    */
     }   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double ***freq; /* Frequencies */
     double *pp, **prop;
   p=param[1][1];    double pos,posprop; 
      double  y2; /* in fractional years */
   /* Reads comments: lines beginning with '#' */    int iagemin, iagemax;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    iagemin= (int) agemin;
     fgets(line, MAXLINE, ficpar);    iagemax= (int) agemax;
     puts(line);    /*pp=vector(1,nlstate);*/
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   ungetc(c,ficpar);    j1=0;
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    j=cptcoveff;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){    for(k1=1; k1<=j;k1++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i1=1; i1<=ncodemax[k1];i1++){
       printf("%1d%1d",i,j);        j1++;
       fprintf(ficparo,"%1d%1d",i1,j1);        
       for(k=1; k<=ncovmodel;k++){        for (i=1; i<=nlstate; i++)  
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for(m=iagemin; m <= iagemax+3; m++)
         printf(" %le",delti3[i][j][k]);            prop[i][m]=0.0;
         fprintf(ficparo," %le",delti3[i][j][k]);       
       }        for (i=1; i<=imx; i++) { /* Each individual */
       fscanf(ficpar,"\n");          bool=1;
       printf("\n");          if  (cptcovn>0) {
       fprintf(ficparo,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
   delti=delti3[1][1];          } 
            if (bool==1) { 
   /* Reads comments: lines beginning with '#' */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   while((c=getc(ficpar))=='#' && c!= EOF){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     ungetc(c,ficpar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fgets(line, MAXLINE, ficpar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     puts(line);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fputs(line,ficparo);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   ungetc(c,ficpar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   matcov=matrix(1,npar,1,npar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   for(i=1; i <=npar; i++){                } 
     fscanf(ficpar,"%s",&str);              }
     printf("%s",str);            } /* end selection of waves */
     fprintf(ficparo,"%s",str);          }
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);        for(i=iagemin; i <= iagemax+3; i++){  
       printf(" %.5le",matcov[i][j]);          
       fprintf(ficparo," %.5le",matcov[i][j]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     }            posprop += prop[jk][i]; 
     fscanf(ficpar,"\n");          } 
     printf("\n");  
     fprintf(ficparo,"\n");          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
   for(i=1; i <=npar; i++)              if(posprop>=1.e-5){ 
     for(j=i+1;j<=npar;j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       matcov[i][j]=matcov[j][i];              } 
                } 
   printf("\n");          }/* end jk */ 
         }/* end i */ 
       } /* end i1 */
     /*-------- data file ----------*/    } /* end k1 */
     if((ficres =fopen(fileres,"w"))==NULL) {    
       printf("Problem with resultfile: %s\n", fileres);goto end;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }    /*free_vector(pp,1,nlstate);*/
     fprintf(ficres,"#%s\n",version);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  /************* Waves Concatenation ***************/
     }  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     n= lastobs;  {
     severity = vector(1,maxwav);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     outcome=imatrix(1,maxwav+1,1,n);       Death is a valid wave (if date is known).
     num=ivector(1,n);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     moisnais=vector(1,n);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     annais=vector(1,n);       and mw[mi+1][i]. dh depends on stepm.
     moisdc=vector(1,n);       */
     andc=vector(1,n);  
     agedc=vector(1,n);    int i, mi, m;
     cod=ivector(1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     weight=vector(1,n);       double sum=0., jmean=0.;*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int first;
     mint=matrix(1,maxwav,1,n);    int j, k=0,jk, ju, jl;
     anint=matrix(1,maxwav,1,n);    double sum=0.;
     s=imatrix(1,maxwav+1,1,n);    first=0;
     adl=imatrix(1,maxwav+1,1,n);        jmin=1e+5;
     tab=ivector(1,NCOVMAX);    jmax=-1;
     ncodemax=ivector(1,8);    jmean=0.;
     for(i=1; i<=imx; i++){
     i=1;      mi=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {      m=firstpass;
       if ((i >= firstobs) && (i <=lastobs)) {      while(s[m][i] <= nlstate){
                if(s[m][i]>=1)
         for (j=maxwav;j>=1;j--){          mw[++mi][i]=m;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        if(m >=lastpass)
           strcpy(line,stra);          break;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        else
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          m++;
         }      }/* end while */
              if (s[m][i] > nlstate){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        mi++;     /* Death is another wave */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        mw[mi][i]=m;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      wav[i]=mi;
         for (j=ncov;j>=1;j--){      if(mi==0){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        nbwarn++;
         }        if(first==0){
         num[i]=atol(stra);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                  first=1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         i=i+1;        }
       }      } /* end mi==0 */
     }    } /* End individuals */
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    for(i=1; i<=imx; i++){
   imx=i-1; /* Number of individuals */      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   /* for (i=1; i<=imx; i++){          dh[mi][i]=1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        else{
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
     for (i=1; i<=imx; i++)              else if(j<0){
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* Calculation of the number of parameter from char model*/                j=1; /* Temporary Dangerous patch */
   Tvar=ivector(1,15);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   Tprod=ivector(1,15);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   Tvaraff=ivector(1,15);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   Tvard=imatrix(1,15,1,2);              }
   Tage=ivector(1,15);                    k=k+1;
                  if (j >= jmax) jmax=j;
   if (strlen(model) >1){              if (j <= jmin) jmin=j;
     j=0, j1=0, k1=1, k2=1;              sum=sum+j;
     j=nbocc(model,'+');              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     j1=nbocc(model,'*');              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     cptcovn=j+1;            }
     cptcovprod=j1;          }
              else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     strcpy(modelsav,model);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            k=k+1;
       printf("Error. Non available option model=%s ",model);            if (j >= jmax) jmax=j;
       goto end;            else if (j <= jmin)jmin=j;
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(i=(j+1); i>=1;i--){            if(j<0){
       cutv(stra,strb,modelsav,'+');              nberr++;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /*scanf("%d",i);*/            }
       if (strchr(strb,'*')) {            sum=sum+j;
         cutv(strd,strc,strb,'*');          }
         if (strcmp(strc,"age")==0) {          jk= j/stepm;
           cptcovprod--;          jl= j -jk*stepm;
           cutv(strb,stre,strd,'V');          ju= j -(jk+1)*stepm;
           Tvar[i]=atoi(stre);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           cptcovage++;            if(jl==0){
             Tage[cptcovage]=i;              dh[mi][i]=jk;
             /*printf("stre=%s ", stre);*/              bh[mi][i]=0;
         }            }else{ /* We want a negative bias in order to only have interpolation ie
         else if (strcmp(strd,"age")==0) {                    * at the price of an extra matrix product in likelihood */
           cptcovprod--;              dh[mi][i]=jk+1;
           cutv(strb,stre,strc,'V');              bh[mi][i]=ju;
           Tvar[i]=atoi(stre);            }
           cptcovage++;          }else{
           Tage[cptcovage]=i;            if(jl <= -ju){
         }              dh[mi][i]=jk;
         else {              bh[mi][i]=jl;       /* bias is positive if real duration
           cutv(strb,stre,strc,'V');                                   * is higher than the multiple of stepm and negative otherwise.
           Tvar[i]=ncov+k1;                                   */
           cutv(strb,strc,strd,'V');            }
           Tprod[k1]=i;            else{
           Tvard[k1][1]=atoi(strc);              dh[mi][i]=jk+1;
           Tvard[k1][2]=atoi(stre);              bh[mi][i]=ju;
           Tvar[cptcovn+k2]=Tvard[k1][1];            }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            if(dh[mi][i]==0){
           for (k=1; k<=lastobs;k++)              dh[mi][i]=1; /* At least one step */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              bh[mi][i]=ju; /* At least one step */
           k1++;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           k2=k2+2;            }
         }          } /* end if mle */
       }        }
       else {      } /* end wave */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    jmean=sum/k;
       cutv(strd,strc,strb,'V');    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       Tvar[i]=atoi(strc);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }   }
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /*********** Tricode ****************************/
         scanf("%d",i);*/  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
 }    
      int Ndum[20],ij=1, k, j, i, maxncov=19;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int cptcode=0;
   printf("cptcovprod=%d ", cptcovprod);    cptcoveff=0; 
   scanf("%d ",i);*/   
     fclose(fic);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for(i=1;i<=n;i++) weight[i]=1.0;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
     /*-calculation of age at interview from date of interview and age at death -*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     agev=matrix(1,maxwav,1,imx);        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    for (i=1; i<=imx; i++)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      for(m=2; (m<= maxwav); m++)                                         Tvar[j]. If V=sex and male is 0 and 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                                         female is 1, then  cptcode=1.*/
          anint[m][i]=9999;      }
          s[m][i]=-1;  
        }      for (i=0; i<=cptcode; i++) {
            if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (i=1; i<=imx; i++)  {      }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){      ij=1; 
         if(s[m][i] >0){      for (i=1; i<=ncodemax[j]; i++) {
           if (s[m][i] == nlstate+1) {        for (k=0; k<= maxncov; k++) {
             if(agedc[i]>0)          if (Ndum[k] != 0) {
               if(moisdc[i]!=99 && andc[i]!=9999)            nbcode[Tvar[j]][ij]=k; 
               agev[m][i]=agedc[i];            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             else {            
               if (andc[i]!=9999){            ij++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;          if (ij > ncodemax[j]) break; 
               }        }  
             }      } 
           }    }  
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;   for (i=1; i<=ncovmodel-2; i++) { 
             else if(agev[m][i] <agemin){     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               agemin=agev[m][i];     ij=Tvar[i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     Ndum[ij]++;
             }   }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];   ij=1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   for (i=1; i<= maxncov; i++) {
             }     if((Ndum[i]!=0) && (i<=ncovcol)){
             /*agev[m][i]=anint[m][i]-annais[i];*/       Tvaraff[ij]=i; /*For printing */
             /*   agev[m][i] = age[i]+2*m;*/       ij++;
           }     }
           else { /* =9 */   }
             agev[m][i]=1;   
             s[m][i]=-1;   cptcoveff=ij-1; /*Number of simple covariates*/
           }  }
         }  
         else /*= 0 Unknown */  /*********** Health Expectancies ****************/
           agev[m][i]=1;  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      
     }  {
     for (i=1; i<=imx; i++)  {    /* Health expectancies */
       for(m=1; (m<= maxwav); m++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         if (s[m][i] > (nlstate+ndeath)) {    double age, agelim, hf;
           printf("Error: Wrong value in nlstate or ndeath\n");      double ***p3mat,***varhe;
           goto end;    double **dnewm,**doldm;
         }    double *xp;
       }    double **gp, **gm;
     }    double ***gradg, ***trgradg;
     int theta;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_vector(severity,1,maxwav);    xp=vector(1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_vector(moisnais,1,n);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_vector(annais,1,n);    
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficreseij,"# Health expectancies\n");
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(ficreseij,"# Age");
     free_vector(moisdc,1,n);    for(i=1; i<=nlstate;i++)
     free_vector(andc,1,n);      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
        fprintf(ficreseij,"\n");
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    if(estepm < stepm){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     /* Concatenates waves */    else  hstepm=estepm;   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
       Tcode=ivector(1,100);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     * progression in between and thus overestimating or underestimating according
       ncodemax[1]=1;     * to the curvature of the survival function. If, for the same date, we 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           * to compare the new estimate of Life expectancy with the same linear 
    codtab=imatrix(1,100,1,10);     * hypothesis. A more precise result, taking into account a more precise
    h=0;     * curvature will be obtained if estepm is as small as stepm. */
    m=pow(2,cptcoveff);  
      /* For example we decided to compute the life expectancy with the smallest unit */
    for(k=1;k<=cptcoveff; k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for(i=1; i <=(m/pow(2,k));i++){       nhstepm is the number of hstepm from age to agelim 
        for(j=1; j <= ncodemax[k]; j++){       nstepm is the number of stepm from age to agelin. 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       Look at hpijx to understand the reason of that which relies in memory size
            h++;       and note for a fixed period like estepm months */
            if (h>m) h=1;codtab[h][k]=j;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          }       survival function given by stepm (the optimization length). Unfortunately it
        }       means that if the survival funtion is printed only each two years of age and if
      }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
        */
    /* Calculates basic frequencies. Computes observed prevalence at single age    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        and prints on file fileres'p'. */  
     agelim=AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* if (stepm >= YEARM) hstepm=1;*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     /* For Powell, parameters are in a vector p[] starting at p[1]      gp=matrix(0,nhstepm,1,nlstate*nlstate);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     if(mle==1){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     }   
      
     /*--------- results files --------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
        /* Computing  Variances of health expectancies */
   
    jk=1;       for(theta=1; theta <=npar; theta++){
    fprintf(ficres,"# Parameters\n");        for(i=1; i<=npar; i++){ 
    printf("# Parameters\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    for(i=1,jk=1; i <=nlstate; i++){        }
      for(k=1; k <=(nlstate+ndeath); k++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        if (k != i)    
          {        cptj=0;
            printf("%d%d ",i,k);        for(j=1; j<= nlstate; j++){
            fprintf(ficres,"%1d%1d ",i,k);          for(i=1; i<=nlstate; i++){
            for(j=1; j <=ncovmodel; j++){            cptj=cptj+1;
              printf("%f ",p[jk]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
              fprintf(ficres,"%f ",p[jk]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              jk++;            }
            }          }
            printf("\n");        }
            fprintf(ficres,"\n");       
          }       
      }        for(i=1; i<=npar; i++) 
    }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  if(mle==1){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /* Computing hessian and covariance matrix */        
     ftolhess=ftol; /* Usually correct */        cptj=0;
     hesscov(matcov, p, npar, delti, ftolhess, func);        for(j=1; j<= nlstate; j++){
  }          for(i=1;i<=nlstate;i++){
     fprintf(ficres,"# Scales\n");            cptj=cptj+1;
     printf("# Scales\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){        for(j=1; j<= nlstate*nlstate; j++)
             printf(" %.5e",delti[jk]);          for(h=0; h<=nhstepm-1; h++){
             fprintf(ficres," %.5e",delti[jk]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             jk++;          }
           }       } 
           printf("\n");     
           fprintf(ficres,"\n");  /* End theta */
         }  
       }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      }  
           for(h=0; h<=nhstepm-1; h++)
     k=1;        for(j=1; j<=nlstate*nlstate;j++)
     fprintf(ficres,"# Covariance\n");          for(theta=1; theta <=npar; theta++)
     printf("# Covariance\n");            trgradg[h][j][theta]=gradg[h][theta][j];
     for(i=1;i<=npar;i++){       
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;       for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(j=1;j<=nlstate*nlstate;j++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/          varhe[i][j][(int)age] =0.;
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);       printf("%d|",(int)age);fflush(stdout);
       for(j=1; j<=i;j++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficres," %.5e",matcov[i][j]);       for(h=0;h<=nhstepm-1;h++){
         printf(" %.5e",matcov[i][j]);        for(k=0;k<=nhstepm-1;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficres,"\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       printf("\n");          for(i=1;i<=nlstate*nlstate;i++)
       k++;            for(j=1;j<=nlstate*nlstate;j++)
     }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
     while((c=getc(ficpar))=='#' && c!= EOF){      }
       ungetc(c,ficpar);      /* Computing expectancies */
       fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
       puts(line);        for(j=1; j<=nlstate;j++)
       fputs(line,ficparo);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     ungetc(c,ficpar);            
    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
              }
     if (fage <= 2) {  
       bage = agemin;      fprintf(ficreseij,"%3.0f",age );
       fage = agemax;      cptj=0;
     }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
     fprintf(ficres,"# agemin agemax for life expectancy.\n");          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficreseij,"\n");
       
     while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     ungetc(c,ficpar);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     puts(line);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fputs(line,ficparo);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    }
   ungetc(c,ficpar);    printf("\n");
      fprintf(ficlog,"\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    free_vector(xp,1,npar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
          free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************ Variance ******************/
     fputs(line,ficparo);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   ungetc(c,ficpar);    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double **dnewm,**doldm;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int k, cptcode;
    fprintf(ficparo,"pop_based=%d\n",popbased);      double *xp;
    fprintf(ficres,"pop_based=%d\n",popbased);      double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gradgp, **trgradgp; /* for var p point j */
     ungetc(c,ficpar);    double *gpp, *gmp; /* for var p point j */
     fgets(line, MAXLINE, ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     puts(line);    double ***p3mat;
     fputs(line,ficparo);    double age,agelim, hf;
   }    double ***mobaverage;
   ungetc(c,ficpar);    int theta;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    char digit[4];
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    char digitp[25];
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  
     char fileresprobmorprev[FILENAMELENGTH];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  
     if(popbased==1){
  /*------------ gnuplot -------------*/      if(mobilav!=0)
 chdir(pathcd);        strcpy(digitp,"-populbased-mobilav-");
   if((ficgp=fopen("graph.plt","w"))==NULL) {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with file graph.gp");goto end;    }
   }    else 
 #ifdef windows      strcpy(digitp,"-stablbased-");
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    if (mobilav!=0) {
 m=pow(2,cptcoveff);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  /* 1eme*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    for (k1=1; k1<= m ; k1 ++) {      }
     }
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    strcpy(fileresprobmorprev,"prmorprev"); 
 #endif    sprintf(digit,"%-d",ij);
 #ifdef unix    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 #endif    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
 for (i=1; i<= nlstate ; i ++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 }    }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresprobmorprev," p.%-d SE",j);
      for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }      fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    fprintf(ficgp,"\n# Routine varevsij");
 #ifdef unix    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 fprintf(ficgp,"\nset ter gif small size 400,300");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 #endif  /*   } */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /*2 eme*/    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {      for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
        fprintf(ficresvij,"\n");
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    xp=vector(1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    dnewm=matrix(1,nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    doldm=matrix(1,nlstate,1,nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    gpp=vector(nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    gmp=vector(nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
         else fprintf(ficgp," \%%*lf (\%%*lf)");    if(estepm < stepm){
 }        printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    else  hstepm=estepm;   
       for (j=1; j<= nlstate+1 ; j ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }         nstepm is the number of stepm from age to agelin. 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       Look at hpijx to understand the reason of that which relies in memory size
       else fprintf(ficgp,"\" t\"\" w l 0,");       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*3eme*/       results. So we changed our mind and took the option of the best precision.
     */
   for (k1=1; k1<= m ; k1 ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    agelim = AGESUP;
       k=2+nlstate*(cpt-1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for (i=1; i< nlstate ; i ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
   }  
    
   /* CV preval stat */      for(theta=1; theta <=npar; theta++){
   for (k1=1; k1<= m ; k1 ++) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for (cpt=1; cpt<nlstate ; cpt ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       k=3;        }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (i=1; i< nlstate ; i ++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        if (popbased==1) {
                if(mobilav ==0){
       l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              prlim[i][i]=probs[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {          }else{ /* mobilav */ 
         l=3+(nlstate+ndeath)*cpt;            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",l+i+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }        for(j=1; j<= nlstate; j++){
   }            for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /* proba elementaires */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {        /* This for computing probability of death (h=1 means
         for(j=1; j <=ncovmodel; j++){           computed over hstepm matrices product = hstepm*stepm months) 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/           as a weighted average of prlim.
           /*fprintf(ficgp,"%s",alph[1]);*/        */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           jk++;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           fprintf(ficgp,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
     }  
     }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for(jk=1; jk <=m; jk++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    i=1;   
    for(k2=1; k2<=nlstate; k2++) {        if (popbased==1) {
      k3=i;          if(mobilav ==0){
      for(k=1; k<=(nlstate+ndeath); k++) {            for(i=1; i<=nlstate;i++)
        if (k != k2){              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }else{ /* mobilav */ 
 ij=1;            for(i=1; i<=nlstate;i++)
         for(j=3; j <=ncovmodel; j++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;  
           }        for(j=1; j<= nlstate; j++){
           else          for(h=0; h<=nhstepm; h++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           fprintf(ficgp,")/(1");          }
                }
         for(k1=1; k1 <=nlstate; k1++){          /* This for computing probability of death (h=1 means
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           computed over hstepm matrices product = hstepm*stepm months) 
 ij=1;           as a weighted average of prlim.
           for(j=3; j <=ncovmodel; j++){        */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             ij++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
           else        /* end probability of death */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }        for(j=1; j<= nlstate; j++) /* vareij */
           fprintf(ficgp,")");          for(h=0; h<=nhstepm; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
        }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      }        }
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      } /* End theta */
   }  
          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fclose(ficgp);  
          for(h=0; h<=nhstepm; h++) /* veij */
 chdir(path);        for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     free_ivector(wav,1,imx);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     free_ivector(num,1,n);        for(theta=1; theta <=npar; theta++)
     free_vector(agedc,1,n);          trgradgp[j][theta]=gradgp[theta][j];
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    
     fclose(ficparo);  
     fclose(ficres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /*  }*/      for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
    /*________fin mle=1_________*/          vareij[i][j][(int)age] =0.;
      
       for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
     /* No more information from the sample is required now */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     puts(line);        }
     fputs(line,ficparo);      }
   }    
   ungetc(c,ficpar);      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 /*--------- index.htm --------*/          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   strcpy(optionfilehtm,optionfile);      /*  x centered again */
   strcat(optionfilehtm,".htm");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     printf("Problem with %s \n",optionfilehtm);goto end;   
   }      if (popbased==1) {
         if(mobilav ==0){
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          for(i=1; i<=nlstate;i++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            prlim[i][i]=probs[(int)age][i][ij];
 Total number of observations=%d <br>        }else{ /* mobilav */ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          for(i=1; i<=nlstate;i++)
 <hr  size=\"2\" color=\"#EC5E5E\">            prlim[i][i]=mobaverage[(int)age][i][ij];
 <li>Outputs files<br><br>\n        }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>               
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      /* This for computing probability of death (h=1 means
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>         as a weighted average of prlim.
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>      }    
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      /* end probability of death */
   
  fprintf(fichtm," <li>Graphs</li><p>");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  m=cptcoveff;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  j1=0;        }
  for(k1=1; k1<=m;k1++){      } 
    for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficresprobmorprev,"\n");
        j1++;  
        if (cptcovn > 0) {      fprintf(ficresvij,"%.0f ",age );
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(i=1; i<=nlstate;i++)
          for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=1; j<=nlstate;j++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
        }      fprintf(ficresvij,"\n");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      free_matrix(gp,0,nhstepm,1,nlstate);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          free_matrix(gm,0,nhstepm,1,nlstate);
        for(cpt=1; cpt<nlstate;cpt++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    } /* End age */
     for(cpt=1; cpt<=nlstate;cpt++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_vector(gmp,nlstate+1,nlstate+ndeath);
 interval) in state (%d): v%s%d%d.gif <br>    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      for(cpt=1; cpt<=nlstate;cpt++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 health expectancies in states (1) and (2): e%s%d.gif<br>    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 fprintf(fichtm,"\n</body>");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
    }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 fclose(fichtm);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*--------------- Prevalence limit --------------*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    free_vector(xp,1,npar);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    free_matrix(doldm,1,nlstate,1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    free_matrix(dnewm,1,nlstate,1,npar);
   }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficrespl,"#Age ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fclose(ficresprobmorprev);
   fprintf(ficrespl,"\n");    fflush(ficgp);
      fflush(fichtm); 
   prlim=matrix(1,nlstate,1,nlstate);  }  /* end varevsij */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance of prevlim ******************/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Variance of prevalence limit */
   k=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   agebase=agemin;    double **newm;
   agelim=agemax;    double **dnewm,**doldm;
   ftolpl=1.e-10;    int i, j, nhstepm, hstepm;
   i1=cptcoveff;    int k, cptcode;
   if (cptcovn < 1){i1=1;}    double *xp;
     double *gp, *gm;
   for(cptcov=1;cptcov<=i1;cptcov++){    double **gradg, **trgradg;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double age,agelim;
         k=k+1;    int theta;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     
         fprintf(ficrespl,"\n#******");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresvpl,"# Age");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"******\n");        fprintf(ficresvpl," %1d-%1d",i,i);
            fprintf(ficresvpl,"\n");
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    xp=vector(1,npar);
           fprintf(ficrespl,"%.0f",age );    dnewm=matrix(1,nlstate,1,npar);
           for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);    
           fprintf(ficrespl,"\n");    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       }    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficrespl);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   /*------------- h Pij x at various ages ------------*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      gp=vector(1,nlstate);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      gm=vector(1,nlstate);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing pij: result on file '%s' \n", filerespij);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   /*if (stepm<=24) stepsize=2;*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   agelim=AGESUP;          gp[i] = prlim[i][i];
   hstepm=stepsize*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gm[i] = prlim[i][i];
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");        for(i=1;i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* End theta */
         fprintf(ficrespij,"******\n");  
              trgradg =matrix(1,nlstate,1,npar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(theta=1; theta <=npar; theta++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          trgradg[j][theta]=gradg[theta][j];
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"# Age");        varpl[i][(int)age] =0.;
           for(i=1; i<=nlstate;i++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             for(j=1; j<=nlstate+ndeath;j++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
               fprintf(ficrespij," %1d-%1d",i,j);      for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficresvpl,"%.0f ",age );
             for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fprintf(ficresvpl,"\n");
             fprintf(ficrespij,"\n");      free_vector(gp,1,nlstate);
           }      free_vector(gm,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gradg,1,npar,1,nlstate);
           fprintf(ficrespij,"\n");      free_matrix(trgradg,1,nlstate,1,npar);
         }    } /* End age */
     }  
   }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   fclose(ficrespij);  }
   
   /*---------- Forecasting ------------------*/  /************ Variance of one-step probabilities  ******************/
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   strcpy(fileresf,"f");    int first=1, first1;
   strcat(fileresf,fileres);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    double *xp;
   }    double *gp, *gm;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double **gradg, **trgradg;
     double **mu;
   free_matrix(mint,1,maxwav,1,n);    double age,agelim, cov[NCOVMAX];
   free_matrix(anint,1,maxwav,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   free_matrix(agev,1,maxwav,1,imx);    int theta;
   /* Mobile average */    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char fileresprobcor[FILENAMELENGTH];
   
   if (mobilav==1) {    double ***varpij;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    strcpy(fileresprob,"prob"); 
       for (i=1; i<=nlstate;i++)    strcat(fileresprob,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           mobaverage[(int)agedeb][i][cptcod]=0.;      printf("Problem with resultfile: %s\n", fileresprob);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    }
       for (i=1; i<=nlstate;i++){    strcpy(fileresprobcov,"probcov"); 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcat(fileresprobcov,fileres);
           for (cpt=0;cpt<=4;cpt++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcov);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    }
         }    strcpy(fileresprobcor,"probcor"); 
       }    strcat(fileresprobcor,fileres);
     }      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   agelim=AGESUP;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*hstepm=stepsize*YEARM; *//* Every year of age */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   hstepm=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficresprob,"# Age");
   mprojmean=yp;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficresprobcov,"# Age");
   jprojmean=yp;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if(jprojmean==0) jprojmean=1;    fprintf(ficresprobcov,"# Age");
   if(mprojmean==0) jprojmean=1;  
   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   if (popforecast==1) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if((ficpop=fopen(popfile,"r"))==NULL)    {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       printf("Problem with population file : %s\n",popfile);goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
     popage=ivector(0,AGESUP);   /* fprintf(ficresprob,"\n");
     popeffectif=vector(0,AGESUP);    fprintf(ficresprobcov,"\n");
     popcount=vector(0,AGESUP);    fprintf(ficresprobcor,"\n");
    */
     i=1;     xp=vector(1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         i=i+1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     imx=i;    first=1;
        fprintf(ficgp,"\n# Routine varprob");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       k=k+1;    file %s<br>\n",optionfilehtmcov);
       fprintf(ficresf,"\n#******");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       for(j=1;j<=cptcoveff;j++) {  and drawn. It helps understanding how is the covariance between two incidences.\
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficresf,"******\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       fprintf(ficresf,"# StartingAge FinalAge");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  standard deviations wide on each axis. <br>\
       if (popforecast==1)  fprintf(ficresf," [Population]");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for (cpt=0; cpt<=5;cpt++) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficresf,"\n");  
   fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      cov[1]=1;
       for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    tj=cptcoveff;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         nhstepm = nhstepm/hstepm;    j1=0;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        j1++;
         oldm=oldms;savm=savms;        if  (cptcovn>0) {
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresprob, "\n#********** Variable "); 
                          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (h=0; h<=nhstepm; h++){          fprintf(ficresprob, "**********\n#\n");
           if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficresprobcov, "\n#********** Variable "); 
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprobcov, "**********\n#\n");
           for(j=1; j<=nlstate+ndeath;j++) {          
             kk1=0.;kk2=0;          fprintf(ficgp, "\n#********** Variable "); 
             for(i=1; i<=nlstate;i++) {                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if (mobilav==1)          fprintf(ficgp, "**********\n#\n");
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          
               else {          
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          fprintf(ficresprobcor, "\n#********** Variable ");    
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                    fprintf(ficresprobcor, "**********\n#");    
             if (h==(int)(calagedate+12*cpt)){        }
               fprintf(ficresf," %.3f", kk1);        
                      for (age=bage; age<=fage; age ++){ 
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          cov[2]=age;
             }          for (k=1; k<=cptcovn;k++) {
           }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         }          }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }          for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if (popforecast==1) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
     free_ivector(popage,0,AGESUP);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     free_vector(popeffectif,0,AGESUP);      
     free_vector(popcount,0,AGESUP);          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
   free_imatrix(s,1,maxwav+1,1,n);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   free_vector(weight,1,n);            
   fclose(ficresf);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*---------- Health expectancies and variances ------------*/            
             k=0;
   strcpy(filerest,"t");            for(i=1; i<= (nlstate); i++){
   strcat(filerest,fileres);              for(j=1; j<=(nlstate+ndeath);j++){
   if((ficrest=fopen(filerest,"w"))==NULL) {                k=k+1;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                gp[k]=pmmij[i][j];
   }              }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            }
             
             for(i=1; i<=npar; i++)
   strcpy(filerese,"e");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   strcat(filerese,fileres);      
   if((ficreseij=fopen(filerese,"w"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            k=0;
   }            for(i=1; i<=(nlstate); i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
  strcpy(fileresv,"v");                gm[k]=pmmij[i][j];
   strcat(fileresv,fileres);              }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(theta=1; theta <=npar; theta++)
       k=k+1;              trgradg[j][theta]=gradg[theta][j];
       fprintf(ficrest,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficrest,"******\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficreseij,"\n#****** ");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
       fprintf(ficresvij,"\n#****** ");          k=0;
       for(j=1;j<=cptcoveff;j++)          for(i=1; i<=(nlstate); i++){
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresvij,"******\n");              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;          }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       oldm=oldms;savm=savms;              varpij[i][j][(int)age] = doldm[i][j];
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
                /*printf("\n%d ",(int)age);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficrest,"\n");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    }*/
       hf=1;  
       if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(ficresprob,"\n%d ",(int)age);
       epj=vector(1,nlstate+1);          fprintf(ficresprobcov,"\n%d ",(int)age);
       for(age=bage; age <=fage ;age++){          fprintf(ficresprobcor,"\n%d ",(int)age);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           for(i=1; i<=nlstate;i++)            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             prlim[i][i]=probs[(int)age][i][k];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                    fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fprintf(ficrest," %.0f",age);          }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          i=0;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (k=1; k<=(nlstate);k++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            for (l=1; l<=(nlstate+ndeath);l++){ 
           }              i=i++;
           epj[nlstate+1] +=epj[j];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         for(i=1, vepp=0.;i <=nlstate;i++)              for (j=1; j<=i;j++){
           for(j=1;j <=nlstate;j++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             vepp += vareij[i][j][(int)age];                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));              }
         for(j=1;j <=nlstate;j++){            }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          }/* end of loop for state */
         }        } /* end of loop for age */
         fprintf(ficrest,"\n");  
       }        /* Confidence intervalle of pij  */
     }        /*
   }          fprintf(ficgp,"\nset noparametric;unset label");
                  fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  fclose(ficreseij);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  fclose(ficresvij);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   fclose(ficrest);        */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   /*  scanf("%d ",i); */        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   /*------- Variance limit prevalence------*/            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
 strcpy(fileresvpl,"vpl");            j=(k2-1)*(nlstate+ndeath)+l2;
   strcat(fileresvpl,fileres);            for (k1=1; k1<=(nlstate);k1++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                if(l1==k1) continue;
     exit(0);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
  k=0;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  for(cptcov=1;cptcov<=i1;cptcov++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      k=k+1;                    mu1=mu[i][(int) age]/stepm*YEARM ;
      fprintf(ficresvpl,"\n#****** ");                    mu2=mu[j][(int) age]/stepm*YEARM;
      for(j=1;j<=cptcoveff;j++)                    c12=cv12/sqrt(v1*v2);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /* Computing eigen value of matrix of covariance */
      fprintf(ficresvpl,"******\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                          lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                    /* Eigen vectors */
      oldm=oldms;savm=savms;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    /*v21=sqrt(1.-v11*v11); *//* error */
    }                    v21=(lc1-v1)/cv12*v11;
  }                    v12=-v21;
                     v22=v11;
   fclose(ficresvpl);                    tnalp=v21/v11;
                     if(first1==1){
   /*---------- End : free ----------------*/                      first1=0;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    if(first==1){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                      first=0;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nset parametric;unset label");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   free_matrix(matcov,1,npar,1,npar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   free_vector(delti,1,npar);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("End of Imach\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*------ End -----------*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  end:                    }else{
 #ifdef windows                      first=0;
  chdir(pathcd);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 #endif                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  system("..\\gp37mgw\\wgnuplot graph.plt");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 #ifdef windows                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   while (z[0] != 'q') {                    }/* if first */
     chdir(pathcd);                  } /* age mod 5 */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                } /* end loop age */
     scanf("%s",z);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (z[0] == 'c') system("./imach");                first=1;
     else if (z[0] == 'e') {              } /*l12 */
       chdir(path);            } /* k12 */
       system(optionfilehtm);          } /*l1 */
     }        }/* k1 */
     else if (z[0] == 'q') exit(0);      } /* loop covariates */
   }    }
 #endif    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.20  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>